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Abstract. This paper presents the first performance results for Bal-
lard’s *-Minimax algorithms applied to a real-world domain: backgam-
mon. It is shown that with effective move ordering and probing the Star2
algorithm considerably outperforms Expectimax. Star2 allows strong
backgammon programs to conduct depth 5 full-width searches (up from
3) under tournament conditions on regular hardware without using risky
forward pruning techniques. We also present empirical evidence that with
today’s sophisticated evaluation functions good checker play in backgam-
mon does not require deep searches.

1 Introduction

*.Minimax is a generalization of Alpha-Beta search for minimax trees with
chance nodes [4][6][7]. Like Alpha-Beta search, *-Minimax can safely prune
subtrees which provably do not influence the move decision at the root node.
Although introduced by Ballard as early as 1983, *-Minimax has not received
much attention in the AI research community. In fact, it never found its way
into strong backgammon programs. This is surprising in view of the importance
of searching deeper in deterministic two—player perfect information games like
chess, checkers, and Othello. Curious about the reasons for this we set out to
investigate. Here we report the results we obtained.

The paper is organized as follows: we first briefly discuss search algorithms for
trees with chance nodes. Then we survey the development of strong backgammon
programs and describe the GNU backgammon program in some detail because
we used its evaluation function in our *-Minimax experiments. Thereafter, we
discuss implementation issues and our experimental setup, and present empirical
results on the search performance and playing strength obtained by *-Minimax
in backgammon. We conclude the paper by suggesting future research directions.

2 Heuristic Search in Trees with Chance Nodes

The baseline algorithm for trees with chance nodes analogous to Minimax search
is the Expectimax algorithm [9]. Just like Minimax, Expectimax is a full-width
search algorithm. It behaves exactly like Minimax except it adds an extra com-
ponent for dealing with chance nodes (in addition to Min or Max nodes): at



chance nodes, the heuristic value (or Expectimax value) is equal to the sum of
the heuristic values of its successors weighted by their individual probabilities.

Just as cutoffs in Minimax search can be obtained by computing value bounds
which are passed down to successor nodes (the Alpha-Beta algorithm), so too
can we derive a strategy for pruning subtrees in Expectimax based on value
windows. Cutoffs at Min and Max nodes are found in the same way as in Alpha-
Beta search, i.e. whenever a value of a Max node successor is not smaller than
the upper bound [ passed down from the parent node, no further successors have
to be considered. Similarly, cutoffs can be obtained at Min nodes by comparing
successor values with the lower bound «. Ballard discovered that also at chance
nodes cutoffs are possible [4]: if we know lower and upper bounds on the values
leaf nodes can take (called L and U respectively), we can determine bounds on
the value of a chance node based on the passed down search window («, 3), the
values of successors we already determined (V4,...,V;_1), the current successor
value V;, and pessimistic/optimistic assumptions about the successor values yet
to be determined (Vit1,...,V,). Assuming probability P; for event j we obtain
the following sufficient conditions for the node value V to fall outside the current
search window («, 3):
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These value bound computations are at the core of Ballard’s Starl algorithm
which prunes move ¢ when the resulting window for V; is empty.

Ballard’s family of Star2 algorithms improves upon Starl by exploiting the
regularity of trees in which successors of chance nodes have the same type (either
Min or Max). This condition, however, is not a severe constraint because any
tree with chance nodes can be transformed into the required form above by
merging nodes and introducing artificial single action nodes. To illustrate the
idea behind Star2, we consider the case where a chance node is followed by Max
nodes. In order to establish non-trivial lower bounds on the chance node value
it is sufficient to probe just a subset of moves at the following Max nodes. IL.e.
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where m < n and V" is obtained by maximizing values over a subset of moves
available at successor j. A straight—forward and simple probing strategy — which
we use in our backgammon experiments — is to consider only single good moves
at each successor node and continuing the search like Starl if the probing phase
does not produce a cutoff. Note that probing itself calls the Star2 routine recur-
sively.

For a more detailed description and analysis the reader is referred to Ballard’s
original work [4] and our companion paper [7] which also provides pseudo-code.



3 Backgammon Programs: Past and Present

With a large state space (estimated to be bigger than 102 states [12]) and an im-
posing branching factor (there are 21 unique dice rolls, and about 20 moves per
roll, on average), it is not surprising that most of the early computer backgam-
mon programs were knowledge-based. Knowledge-based systems do not rely much
on search, but rather attempt to choose moves based on knowledge about the
domain, usually programmed into the system by a human expert.

The first real success in computer backgammon was BKG, developed by Hans
Berliner. In 1979, BKG played the world champion at the time, Luigi Villa, and
managed to defeat him 7-1 in a five point match [5]. While many people were
shocked, even Berliner himself would concede weeks after the match that BKG
had been lucky with rolls and made several technical blunders. However, Villa
had not been able to capitalize on those mistakes — such is the life with dice.

The second milestone in computer backgammon was Neurogammon [11], the
work of IBM researcher Gerald Tesauro. Neurogammon used an artificial neural
network for evaluating backgammon positions. Neurogammon was trained with
supervised learning; it was fed examples labeled by a human expert, and told
what the answer should be. The program quickly became the best in computer
backgammon, but still only played at the level of a strong human amateur player.

Tesauro went back to the drawing board. One of the first things he changed
was the data the program was training on. Instead of using hand-labeled posi-
tions, he decided he would rely solely on self-play to generate training data — the
program would simply play against itself. This has advantages over the previous
method since a human expert may label positions incorrectly, or tire quickly
(Neurogammon only used selected positions from about 3000 games [11] to train
checker play, culled from games where Tesauro had played both sides), but self-
play also may lead a program into a local area of play. For example, a program
can learn how to play well against itself, but not against another opponent. This
local minima problem in backgammon is partially overcome due to the fact that
the environment is stochastic — dice insert a certain level of randomness — so a
program is forced to explore different areas of the state space.

The other thing Tesauro changed was the training method itself. Instead of
using a supervised learning approach that adjusted the network after each move
(which he could do before because each training example was labeled), Tesauro
decided on adapting temporal-difference learning for use with his neural network
[10]{12]. TD learning is based on the idea that an evaluation for a state should
depend on the state that follows it. In a game sense, the computer keeps track
of each position from start to finish, and then works backward. It trains itself
on the last position, with the target score being the outcome of the game. Then
it trains itself on the second last position, trying to more accurately predict the
score it got for the last position (not the final score). The last position is the
only position which is given a reward signal, or absolute value; all other positions
are only trained to better predict the position that followed it. In games, the
reward signal is related to the outcome of the game. If the program had lost, the
reward signal would be low (to act sort of like a punishment). If the program



won, the reward signal would be high. Since backgammon cannot end in a draw,
the reward signal could never be zero.

In this manner, Tesauro delayed the final reward signal for the neural net-
work until the game was won or lost, at which point the network would begin
adjusting itself. This new program was called TD-Gammon in honour of its
training method. Tesauro trained the first version of TD-Gammon against it-
self for 300,000 games, at which point the program was able to play as well as
Neurogammon — quite surprising, considering the program had essentially “dis-
covered” good play on its own, with no human intervention, and zero explicit
knowledge. Later versions of TD-Gammon increased the size of the hidden units
in the network, added hand-crafted features to the input representation, trained
for longer amounts of time, and included a selective search algorithm to extend
the search process deeper than a single ply. TD-Gammon is considered to safely
be in the top-3 players of the world. One human expert even ventured to say
it was probably better than any human, since it does not suffer from mental
exhaustion or emotional play.

TD-Gammon’s use of temporal difference learning and a neural network eval-
uation function has lead to several copy-cat ventures, including the commercial
programs Jellyfish [2] and Snowie [3], as well as the open-source GNU Backgam-
mon [1] (also known as Gnubg). Several versions of GNU Backgammon have
sprung up on the Internet, and it has quickly become one of the most popular
codebases for developers.

4 Search In Top Backgammon Programs

Much effort has been put into creating backgammon programs with increas-
ingly stronger evaluation functions. Compared to other classic games like chess
and checkers, however, not much research on improving search algorithms for
games with chance nodes has been conducted in the past. Both TD-Gammon
and Gnubg use a forward pruning approach to search, where some possible moves
are eliminated before they are searched in order to reduce the branching factor
of the game. Depending on the approach, using forward pruning can be a bit
of a gamble, since the program is risking never seeing a good line of play, and
therefore never having the chance to take it. Section 5.2 discusses Gnubg’s search
approach in some detail.

There are two important reasons why improvements in search have not been
developed in backgammon. The first is that the current crop of neural network-
based evaluation functions are very accurate, but take far too long in processing
terms. For example, a complete 3-ply search of an arbitrary position in backgam-
mon can take several minutes to complete. This is clearly undesirable from a per-
formance perspective. The second reason has to do with the game itself. Since
there are 21 distinct rolls in backgammon (with varying probability), and often
up to 20 moves per roll, the effective branching factor becomes so large that,
especially for a slow heuristic, searching anything deeper than a ply or two be-
comes impractical. It is clear due to these reasons why efforts have concentrated



on developing an evaluation function that is as accurate as possible, instead of
trying to grapple with the large branching factor inherent in the game.

But search is still important. Deeper search allows for the inaccuracies of
a heuristic to be reduced, and as mentioned before, the deeper a program can
search, the better that program can play. Backgammon is no exception, even
with a trained neural network acting as a near-oracle. Still, it is interesting to
note that improving search in backgammon programs has not been a priority,
to the point where some of the GNU backgammon team are unfamiliar with
the concept of Alpha-Beta search. Tesauro thinks that improvements in search
will come as a result of faster processors and Moore’s Law [13]. In [14] he also
considered on-line Monte Carlo sampling or so-called rollout analysis run on a
parallel computer. The idea is to play many games starting in a given position
using only a shallow search at each decision point and to pick the root move
that on average yields the highest value. The results obtained by conducting
on-line rollouts on a multi-processor machine are promising and could lead to a
top program running on one of today’s much faster single processor machines.

5 Overview of GNU Backgammon

GNU Backgammon is an open-source backgammon program developed through
the GNU Project. Development began in 1997 by Gary Wong, and has continued
up to this time with contributions from dozens of people. The other five primary
members today are Joseph Heled, @ystein Johansen, David Montgomery, Jim
Segrave and Jgrn Thyssen. The current version of Gnubg, 0.14, boasts an im-
pressive list of features, including TD-trained neural network evaluation func-
tions, detailed analysis of matches (including rollouts), a tutor mode, bearoff
(endgame) databases, variable computer skill levels and a graphical user inter-
face. Gnubg is also free, and since its exposure to the backgammon community
was heightened, it is one of the most popular and strongest backgammon pro-
grams available. In fact, in September 2003 the results of a duel between Gnubg
and Jellyfish were posted to the rec.games.backgammon group on UseNet [8].
Both programs played 5,000 money games, each using their “optimal” settings.
Gnubg came out the winner by an average of 0.12 points per game which is
a statistically significant indication that Gnubg is stronger than the expensive
“professional” backgammon program Jellyfish [15].

5.1 The Evaluation Function

Gnubg has three different neural networks it uses for evaluating a backgammon
position, depending on the classification of that position: either contact (at least
one checker of a player is behind a checker of the other player), crashed (same as
contact but with the added restriction that the player has six or less checkers left
on the board, not including any checkers on the opponent’s 1 or 2 points) or race
(the opposite of a contact position). Since each of the three types of positions are



quite different from the others, using three different neural networks improves
the quality of the evaluation.

Each neural network is first trained using temporal difference learning, us-
ing self-play, similar to TD-Gammon. The input and output representations of
the neural networks are also similar to TD-Gammon. The input neurons are
comprised of both a raw board representation (with four neurons per point per
player) as well as several hand-crafted features, such as the position of back
anchors, mobility, as well as probabilities for hitting blots.

After self-play, the networks are trained against a position database (one each
for the contact, crashed and race networks). The databases contain “interesting”
positions, so-named because a network would return different moves depending
on if they searched to either depth=1 or depth=>5; and whenever a depth=5
search retains a better result than depth=1, two entries are made in the database
for that position: the position after the depth=1 move, and the position after
the depth=>5 move. The positions are a mixture of randomly-generated positions
as well as drawn from a large collection of human versus bot or bot self-play
games, with the idea that the networks should gain more exposure to “real-life”
playing situations than random situations. In total, over 110,000 positions form
the position database collection used by the Gnubg team.

There is an entry for each position’s cubeless evaluation in the database,
along with five legal moves and their evaluations. An evaluation consists of the
probabilities of normal win, gammon win, backgammon win, gammon loss and
backgammon loss for the player to move (a normal loss is not explicitly evaluated,
as it is just equal to 1 — P, 11101 win)- The moves in the database are chosen by
first completing a depth=1 search using Gnubg, taking the top 20 moves from
that search, and then searching those to depth=>5; the best five moves from the
depth=>5 search are then kept. These moves are then “rolled out”, meaning that
the resulting position after the move is then played by Gnubg (doing the moves
for both sides) until the game is over. Typically the number of rollouts is equal
to a multiple of 36 (say, 1296) by using “quasi-random dice” in order to reduce
the variance in the result, where each of the 36 possible rolls after the move
is explored, with random dice thereafter. When a race condition is met in the
game, the remaining rolls are played using a One-Sided Race (OSR) evaluator.
The OSR is basically a table which gives the expected number of rolls needed
to bear off all checkers, for a given position. It does not include any strategic
elements. By using the OSR, the contact and crashed networks are judged on
their own merits, and not based on the luck of the dice in the endgame. This
is because race games are generally devoid of strategic play, because there is no
interaction between the players anymore, not counting cube actions. Each rollout
is performed in a 7-point money game setting, without cubeful evaluations.

A new network is trained against this database so its depth=1 evaluations
more closely resemble a depth=5 search, and after the new network is fully
trained, it then provides new entries for each position in the database. Gnubg
was able to obtain a rating of about 1930 at a depth=1 setting on the First



Internet Backgammon Server (FIBS), which put it roughly at an expert level on
the server.

5.2 The Search Algorithm

Gnubg’s search is based on heavy use of forward pruning to either completely
eliminate or greatly reduce the branching factor at move nodes, and lower the
branching factor at the root, in order to keep the search fast. Pruning is based
on move filters that define how many moves are kept at the root node (and,
depending on the depth of the search, at other move nodes lower in the tree). A
move filter guarantees a fixed number of candidates that will be kept at a move
node (if there are enough moves), plus the addition of n candidates which are
added if they are within e equity of the best move. Search is performed using
iterative deepening, and root move pruning is done after each iteration. At all
other move nodes, the move filter will either limit the number of moves or only
keep one move. Candidate moves are chosen by doing a static evaluation of all
children of the move node and choosing the n moves with the best scores; in
other words, a small depth=1 search is done at all move nodes.

The branching factor at chance nodes can also be optionally reduced by
limiting the number of rolls to a smaller set than 21. All roll sets are hard-coded,
so no attempt is made to order rolls nor bias roll selection when a reduced set
is desired.

Unfortunately, Gnubg has an unusual definition of ply. In Gnubg, a depth=1
search is called “O-ply”, a depth=3 search is considered “l-ply”, and so on.
While most users quickly adapt to this quirk, it makes working with the code
potentially tricky, since one must always remember this to avoid bugs.

For depth=1 searches, Gnubg simply performs a static evaluation of all root
move candidates (a candidate being a move that has not been pruned by the
move filter), and the move with the highest score is chosen. At chance nodes
in the search tree, all rolls in the roll set (the set is usually all 21 rolls but
it can be reduced for speed) are investigated, and the best move for each roll
(chosen by simple static evaluation) is applied and expanded, until the depth
cutoff is reached. In homogeneous search trees Expectimax visits b(nb)(¢—1)/2
leaves, where b is the branching factor at move nodes, n is the branching factor
at chance nodes, and d is the odd search depth. By only doing a static evaluation
of children at move nodes and then choosing only one for further expansion, the
number of leaves of a Gnubg search tree for increasing d is = b (d = 1), =
bnb (d=3), <bnnb+bnb (d="5), <bnnnb+ bnnb+bnb (d=7), etc. which
can be bounded above by b? Zgi}l)ﬂ n' < 2b2n(d=1/2 for d,n > 1. Therefore,
this pruning technique allows the search tree to be exponentially smaller than
the full tree (with savings of at least b(¢=3)/2/2), but error is also introduced.

6 Implementation Issues and Experimental Setup

In this section we describe important implementation details and the environ-
ment in which the experiments were conducted.



6.1 Move Generation

Backgammon is not a trivial game to implement. While the board itself can
be fairly easily represented by a two-dimensional array of integers, generating
moves is rather complicated to not only do correctly, but also efficiently. Avoid-
ing duplicating moves is also an important consideration because of the large
branching factor for some situations (like a doubles roll for a player with check-
ers on several different points). The use of a transposition table can help reducing
the complexity of the move generation algorithm.

6.2 Evaluation Function

Instead of going out and designing a new evaluation function for our experiments,
there was already one available for use: the Gnubg codebase, which is a very
strong set of trained neural networks.

While many game programs are using integer valued evaluation functions,
the Gnubg evaluation function returns a floating point number (the value rep-
resenting the equity of the player who just moved). Whenever search programs
use floating point numbers, there is always the risk of floating point operations
having rounding errors; even comparing two (seemingly) identical values may
not result in the expected truth value.

To work around the uncertainty presented by floats and the continuous val-
ues they may have, we can discretize the values by putting them onto a one-
dimensional grid. This involves taking the floating point number and multiplying
it by a large number, and then rounding the value to the nearest integer number.
That integer can then be divided by the same large number used for the multi-
plication. The granularity of the grid can be adjusted to meet the desired level of
precision. A resolution of 262144 (2'®) was used to discretize the floating point
numbers in our experiments, to ensure a fine enough granularity without being
too fine for the floating point mantissa. Using floating point numbers instead of
integers also meant a small performance hit.

6.3 Transposition Table

A transposition table (TT) was used to speed up the search. The TT was im-
plemented as a simple hash table of 128 MB (more or less space could be used,
depending on the amount of main memory available). Each entry was 20 bytes
large, containing the value for the stored state, a flag to indicate if the entry was
in use, an indicator for the depth searched, two flags to determine what kind of
value for the state is stored (a lower bound, upper bound, or an exact value),
the best move chosen at that state, and the hash key for that state. A Zobrist
[16] hashing scheme was used.

6.4 Move Ordering and Probing

Move ordering and probe successor selection are both done with a different
heuristic than the evaluation function. This is especially a concern with a heavy



evaluation function such as Gnubg’s. Probe successors were selected as follows:
moves that hit opponent blots were taken first (best quality), moves that formed
a point were taken second (good quality), and if no moves met either condition,
the first move was chosen. Move ordering worked a little differently. Move sort-
ing was done by scoring a move based on a number of criteria: the number of
opponent checkers moved to the bar, the number of free blots it left open to
hit, and the number of safe points (2 or more checkers) made. These criteria
remained the same for all moves during the game.

6.5 Experimental Design

For obtaining quality results, all experiments were run on relatively new hard-
ware. Two undergraduate labs (one of 22 machines and one of 34 machines) were
made available for distributed processing. All machines were identical, each with
an Athlon-XP 1.8 GHz processor and 512 MB of RAM, as well as 27 GB of lo-
cal disk space (to bypass using NFS). Each machine used Slackware Linux with
kernel version 2.4.23 and had gcc version 3.2.2 installed. All search software was
coded in C.

While all experiments were performed when the labs were largely idle, all
experiments were nevertheless subjected to possible skewing if students logged
into a host to use it. However, less than a dozen students logged into any one of
the machines during the entire experimental phase, so fluctuations in results due
to lost CPU cycles are negligible. Since each machine only had a modest amount
of free RAM, the transposition table was kept to a relatively small size of 128
MB. Gnubg’s codebase was used for the evaluation function and all executables
were compiled under gcc with -03 optimization.

7 Performance

Using randomly-seeded positions does not make sense for backgammon, since it
is difficult to generate random positions which look “reasonable” in backgammon
terms. Instead of randomly generating positions, a position database was used.
The database came from the Gnubg team, used for training the neural network. It
is comprised of several thousands of positions classified into different categories.
The contact position database was made available for experiments. The results of
searching these positions are therefore more applicable to real-world performance
compared to random positions.

500 randomly selected contact positions were used for testing. Each was
searched to depths of 1, 3 and 5 by Expectimax, Starl and Star2. There is
a direct relation between time and node expansions, as the Gnubg evaluation
function is very heavy in terms of CPU usage (over 90%).

In Figures 1 (CPU time) and 2 (node expansions) graphed on a logarithmic
scale, we can see some variation in the amount of effort Star2 requires to complete
a search at depth=>5, which reflects the variety of backgammon positions during
a match. Each of the 25 positions shown were selected at random from the Gnubg



CPU Time (s) vs. Position: depth 5, contact positions
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Fig. 1. Time used (s) at d=5 for 25 contact positions
Nodes Expanded vs. Position: depth 5, contact positions
le+08 E T T T T T T T T T T T T T T T T T T T T T T T
expectimax —+—
1e+07 [
5 E
[T}
e}
c
c
Qo
4 1e+06
0 F
[}
=}
o
z 3
100000 F ¥
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10000 | I [ [ S E— —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Position

Fig. 2. Node expansions at d=>5 for 25 contact positions

contact position database, searched by all three algorithms, and then sorted in
order of Expectimax time. The variation in savings for Star2 for the 25 positions
goes from about 75% to about 95%. Expectimax and Starl closely follow each
other, where Starl has only a slight decrease in overall costs.

Table 1 summarizes the time usage over 500 positions. Star2 is clearly the
most efficient of the algorithms by over a factor of 10, but even at 21 seconds
per search, this would probably still be too slow for tournament play. Figure 3
shows the average number of node expansions over 500 positions, graphed on a
logarithmic scale.
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Average Nodes Expanded vs. Search Depth: contact positions
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Fig. 3. Average number of node expansions over 500 contact positions (interpolation
is used to indicate the trend)

Table 1. Average time (s) over 500 contact positions

Expectimax|| Starl Star2
pll  w] % pw%
d=3 1.1 1.1{100(| 1.0(91
d=5 315.0(|258.6| 82(|121.0| 7

7.1 Probe Efficiency

Table 2 shows the resulting probe efficiency for using Star2. The “quick” succes-
sor selection scheme for backgammon is relatively weak because backgammon is
a complicated game. Still, these results are better than Ballard’s, whose probing
was never successful more than about 45% of the time. The improvement here
is probably due to better move ordering.

Table 2. Probe efficiency for backgammon

d=3|d=5
68.9%|64.2%

7.2 0Odd-Even Effect
Many 2-player game-playing computer programs suffer from what is called the

odd-even effect, where alternating levels of move nodes will give scores that
are either optimistic (for odd-ply searches) or pessimistic (for even plies). For

11



Table 3. Root value difference statistics for two trials (3200 moves each)

| ||Average|Abs. Average|Abs. Std. Dev.|

d=1 vs. d=3|| 0.0280 0.0336 0.0397
d=1 vs. d=5|| 0.0018 0.0134 0.0184
| ||Average|Abs. Average|Abs. Std. Dev.|
d=1 vs. d=3|| 0.0267 0.0328 0.0389
d=1 vs. d=5|| 0.0014 0.0126 0.0172

example, a depth=1 search in any game will tend to be optimistic, since we are
only investigating the moves currently available to us. The odd-even effect comes
from the way in which an evaluation function is created, which generally tries
to score the position for the player-to-move.

Table 3 shows the results of two different trials of 3200 backgammon posi-
tions. The positions were generated as a continuous sequence of cubeless money
games, with the computer playing for both sides. This generated a decent set
of “real-world” moves for backgammon. The table shows the average difference,
absolute average difference, and absolute standard deviation in the root node
value when comparing searches of the same positions to different depths.

Numbers on both tables are very similar. The results show that the evaluation
of the root node for a depth=1 search is very close to the evaluation for a depth=5
search, on average. When absolute differences are used instead, depth=1 is not
as good as a predictor for a depth=>5 search, but the difference is reasonably
small (only about 0.01 points).

The differences between depth=1 and depth=3 are much more striking. Both
the average and the absolute average difference between them is nearly the same.
In fact, the average difference is positive, which means that the depth=3 search
value is usually significantly less than the value from a depth=1 search.

These results show a tangible odd-even effect with the Gnubg evaluation
function. Even if searches to different depths produce different values for the
root, the move chosen at the root usually is the same across searches of different
depths. This means the evaluation function itself is very consistent between
depths. These results also show that a depth=1 search value is a reasonable
predictor for a depth=5 search value for the same position.

7.3 Tournaments

Another way to measure an algorithm’s performance is to pit it against itself in
a tournament, where each player is searching to a different depth. The question
to answer, then, is if deeper search increases real performance in the game.
Tournaments were therefore run between combinations of players searching to
depths of 1, 3, and 5. Each tournament used a file containing a sequence of seed
values, such that they all would then have the same sequence of dice rolls across
each tournament. The starting roll for each game was pre-set by a testing script,
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and went through all combinations sequentially, in order to reduce variance.
Furthermore, for each opening roll and sequence of dice rolls, both players were
given an opportunity to be the starting player. A file containing 9,000 seeds was
used, and therefore a total of 18,000 games per tournament were played. We
chose cubeless money games as tournament mode to study *-Minimax checker
play performance. Gammons and backgammons only counted as one-point wins.
Tournaments were set up between the Gnubg search function and itself, and
Star2 against itself. Since Gnubg also has a facility for adding deterministic
noise to an evaluation, different noise settings were also investigated.

While we expected that deep search was beneficial for tournament perfor-
mance just like in chess and Othello, this was not evident in backgammon. Table
4 shows the results of Gnubg playing against itself at different depth settings.
We can see from the table that a depth=>5 search barely shows any significant
improvement over shallower searches. In fact, the three depth settings are nearly
identical. This suggests that deeper searches are only finding better moves a
small fraction of time, which suggests that the three searches are choosing the
same move just about every time. That means the Gnubg evaluation function
must be extremely consistent between depth levels. Table 5 A) shows the Star2
performance when playing against itself, in the same manner as Table 4. Deep
search is still pretty much irrelevant using the Gnubg evaluation function as-is.
Since the evaluation function is so consistent, results were also desired for a less
consistent setting. Instead of developing a new evaluation function, noise can
just be added to the evaluation function. Gnubg has a built-in noise generator
already, which can add either deterministic or non-deterministic noise to each
evaluation. Since it is highly desirable that the evaluation for a state be always
deterministic, especially when transpositions are possible, another tournament
using deterministic noise was added. Only modest amounts of noise were added,
consistent with an “intermediate” and “advanced” level of play for Gnubg (noise
settings n = 0.03 and n = 0.015). Tables 5 B) and C) show tournament results
in an identical manner to the previous two tables. Now, deeper search is pay-
ing off to a significant degree. For n = 0.03 a depth=1 search now loses to a
depth=5 search 64% of the time. Depth=1 fares slightly better against depth=3
at about 42% winning percentage. Depth=>5 wins slightly less than 55% of the
time against depth=3, but it is still a tangible amount. Deep search helps to
mitigate evaluation function errors by adding more foresight to the move deci-
sion process. Adding deterministic noise to the Gnubg evaluation function shows
that deep search becomes important again in backgammon.

Table 4. Tournament results for Gnubg with no noise versus Gnubg with no noise,
18,000 games per matchup. Reported are winning percentages and average points per
game in view of the top player for search depths 1, 3, and 5.

L 1] 3 5|
1 #50.92 +0.018]51.79 +0.036
3/[49.08 —0.018 *51.63 +0.037
5/148.21 —0.036|48.37 —0.037 *
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Table 5. Tournament results for Star2 vs. Star2 (4000 games per matchup). Reported
are winning percentages and average points per game in view of the top player for
various evaluation function noise levels and depth pairs.

i ] 3 7
*
A) noise level n = 0.000 1 50.60 +0.012{51.60 +0.032
3(|49.40 —0.012 *52.52 +0.050
5(|48.40 —0.032|47.48 —0.050 *
i T 3 7
X
B) noise level n = 0.015 1 55.53 +0.111|54.67 +0.093
3(|44.47 —0.111 *151.57 +0.031
5(|45.33 —0.093|48.43 —0.031 *
i T 3 7
X
C) noise level n = 0.030 1 59.00 +0.180(64.20 +0.284
3(|41.00 —0.180 *153.40 +0.068
5(|35.80 —0.284(46.60 —0.068 *

8 Conclusions and Future Work

Star2 and Starl both outperform Expectimax on single position searches. Star2
has a significant savings in costs even at depth=5, mostly due to the large
branching factor inherent in backgammon. Gnubg’s evaluation function is time
consuming which means that performance is strongly linked to eliminating as
many leaves as possible.

To our surprise strong cubeless money game tournament performance is not
much improved by deeper search. The Gnubg evaluation function is sufficiently
well-trained and consistent that searches to increasing depths almost always
choose the same move at the root. When the searches do not agree on the best
move it is usually because they are searching a tactical position. But even the
occurrence of tactical positions is relatively infrequent, and the benefits of deep
search in these situations is usually washed away by the randomness of the dice
rolls. However, when small amounts of deterministic noise are introduced into
the search, deep search once again becomes important as the evaluation func-
tion becomes less consistent and less accurate. This suggests future *-Minimax
experiments in domains less affected by chance events or in which good evalu-
ation functions are unknown. Comparing *-Minimax with Monte Carlo search
w.r.t. playing strength vs. search time in various domains would also be inter-
esting.

Gnubg’s forward-pruning search method works very well for its evaluation
function, since the best move candidate at the root is unlikely to change much
from one iteration to the next. Deeper search catches some tactical errors in
some situations, but because tactical situations can be thrown completely askew
by a single lucky roll, deep search does not pay huge dividends.

With an excellent evaluation function such as Gnubg’s set of neural net-
works, checker play is virtually perfect, even with shallow search. However, since
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backgammon matches are generally played with a doubling cube, and cube de-
cisions are usually the most important part of the game, this work should be
extended to cubeful games and cube decisions. Being able to see farther ahead
in these situations and to estimate the winning probability more accurately can
make or break a player’s chances of winning. The odd-even fluctuations we recog-
nized indicate that although neural networks may be almost optimal in ordering
moves, there is still room for improvement w.r.t. absolute accuracy. Looking
deeper by using *-Minimax and considering doubling actions in the search is a
promising approach.

In view of the close tournament outcomes reported in this paper, future
experiments should also consider gammons and backgammons to produce results
more relevant to actual tournament play. Moreover, choosing starting positions
unrelated to the Gnubg evaluation function tuning could generate results more
favorable to deeper search.

Since Star2 is so reliant on successful probing, a more powerful probing func-
tion would also increase performance. Right now successors are picked according
to some ad hoc rules about good backgammon play for quickly choosing a child,
but there are perhaps better techniques for making this decision — e.g. probing
functions amenable to fast incremental updating similar to piece—square tables
in chess.

There are other stochastic perfect-information games which could benefit
greatly from the use of *-Minimax search. One excellent domain would be the
German tile-laying game Carcassonne. Being able to see a line of play from even
five or six tiles out could result in expert play. Because computers can also keep
track of which tiles have been played better than humans, a computer player
could also avoid many of the pitfalls which plague humans. However, since the
branching factor at chance nodes after the root starts at 40 (when using the
most common expansion tileset, Inns & Cathedrals), some form of statistical
sampling may be required to jumpstart the computer player.
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