
Alpha-Beta Pruning for Games with Simultaneous Moves
Abdallah Saffidine

LAMSADE, Université Paris-Dauphine, 75775 Paris Cedex 16, France
Email: abdallah.saffidine@dauphine.fr

Hilmar Finnsson
Reykjavík University, Menntavegi 1, 101 Reykjavík, Iceland

Email: hif@ru.is

Michael Buro
University of Alberta, Edmonton, T6G 2E8, Canada

Email: mburo@ualberta.ca

Abstract

Alpha-Beta pruning is one of the most powerful and funda-
mental MiniMax search improvements. It was designed for
sequential two-player zero-sum perfect information games.
In this paper we introduce an Alpha-Beta-like sound prun-
ing method for the more general class of “stacked matrix
games” that allow for simultaneous moves by both players.
This is accomplished by maintaining upper and lower bounds
for achievable payoffs in states with simultaneous actions and
dominated action pruning based on the feasibility of certain
linear programs. Empirical data shows considerable savings
in terms of expanded nodes compared to naive depth-first
move computation without pruning.

1 Introduction
When searching game trees, especially in a competitive set-
ting, significant benefits can be achieved by pruning branches
which under no circumstances can affect the decision being
made at the root.

The best known pruning method is the Alpha-Beta algo-
rithm (Knuth and Moore 1975; Russell and Norvig 2010).
It applies to sequential zero-sum two-player games with per-
fect information such as Chess and Checkers. Alpha-Beta
maintains upper and lower value bounds to decide whether
branches can be cut. This type of pruning can lead to consid-
erable search reductions — essentially doubling the search
depth over the original MiniMax algorithm when given the
same search time.

After its discovery, sound Alpha-Beta style pruning has
been extended to other game types and game tree search algo-
rithms. E.g., for sequential two-player zero-sum games with
perfect information and chance nodes, *-MiniMax search
safely prunes irrelevant subtrees (Ballard 1983), and (Sturte-
vant and Korf 2000; Sturtevant 2005) describe Alpha-Beta
like pruning rules for general-sum games and games with
more than two players. Recently, Monte Carlo Tree Search
(MCTS), which is a type of simulation-based best-first search
algorithm, has been extended to allow for Alpha-Beta style
pruning (Cazenave and Saffidine 2011).

Copyright c
 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we generalize Alpha-Beta pruning to two-
player zero-sum games with simultaneous moves. These
games are a subset of the multi-agent environment (MAE)
as described in (Schiffel and Thielscher 2010) which we will
use as a reference in order to place our contribution within
the world of studied game types.

The paper is structured as follows: First, we give the neces-
sary technical background before introducing Simultaneous
Move Alpha-Beta (SMAB) pruning — and explaining it in
detail. We then describe how SMAB pruning can be used in
the context of depth-first search and present empirical data
to show its effectiveness. We conclude the paper with ideas
for future work in this area.

2 Background
2.1 MiniMax and Alpha-Beta
The MiniMax value of a game tree is calculated based on
the assumption that the two players, called Max and Min,
will choose their next move such that when it is Max’s turn
he will select the action that maximizes his gain while Min
will select the one that minimizes it on his turn. MiniMax
values are propagated from the leaves of the game tree to its
root using this rule. Alpha-beta utilizes the MiniMax value
to prune a subtree when it has proof that a move will not
affect the decision at the root node. This happens when a
partial search of the subtree reveals that the opponent has the
opportunity to lower an already established MiniMax value
backed up from a different subtree.

2.2 Score Bounded MCTS
An MCTS solver which backs up exact MiniMax values of
the sequential zero-sum two-outcome game Lines of Action
was introduced in (Winands, Björnsson, and Saito 2008).
Score bounded MCTS (Cazenave and Saffidine 2011) ex-
pands on this idea and generalized the MCTS solver con-
cept to any sequential zero-sum game. Score bounded search
allows for pruning in the absence of exact MiniMax values
as long as there is some information available to establish
bounds.

Because simulations do not usually methodically explore
the game tree, it is to be expected that we cannot easily as-



Table 1: Pruning in Multi-Agent Environments

Sequential Zero-sum Agents Pruning
Yes Yes Two ��
Yes Yes Any (Sturtevant and Korf 2000)
Yes No - (Sturtevant 2005)
No Yes Two This paper

sign MiniMax values to the states when we explore them as
we are only sampling the subtree below. Even thoughwemay
not have explored every reachable state, the sampling infor-
mation builds up and can be used to get tighter and tighter
bounds on state values. These bounds are called pessimistic
and optimistic, referring to the payoffMax believes he can get
in the worst and best case, respectively. The default bounds
are the minimum and maximum achievable values. Instead
of backing up a MiniMax value, the bounds of a state are
deduced from the bounds of subsequent states and used in
Alpha-Beta fashion by checking whether lower and upper
bounds coincide.

2.3 Multi-Agent Environment (MAE)
The Multi-Agent Environment (MAE) formally describes
discrete and deterministic multi-agent domains (Schiffel and
Thielscher 2010). It can be seen as a transition system where
each node corresponds to a state and transitions are associ-
ated with joint actions executed by the participating agents.
It is useful to classify MAEs along several dimensions:
Definition 1. An MAE is single-player if the number of
agents is exactly one, two-player if the number of agents is
exactly two, and multiplayer otherwise.
Definition 2. An MAE is (purely) sequential if in any state,
there is at most one agent with more than one legal action.
Definition 3. An MAE is zero-sum if the sum of utilities of
all agents is constant in all final states.
Table 1 summarizes related work of where pruning has been
achieved in the context of MAE and clarifies where our con-
tribution lies.

2.4 Nash Equilibrium and Normal-Form Games
A Nash equilibrium is a strategy profile for all players for
which no player can increase his payoff by deviating uni-
laterally from his strategy. In the case of zero-sum two-
player games, all Nash equilibria result in the same payoff,
called the value of the game. When faced with simultaneous
actions, Nash equilibrium strategies are often mixed strate-
gies in which actions are performed with certain probabili-
ties (e.g. the only Nash equilibrium strategy for rock-paper-
scissors is playing Rock, Paper, and Scissors with probabil-
ity 1=3 each).

Two-player zero-sum games are often presented in
normal-form which in a matrix lists payoffs for player Max
for all action — or more generally pure strategy — pairs.
Throughout this paper, playerMax chooses rows, and player
Min chooses columns. When working with normal-form

games it is sometimes possible to simplify them based on
action domination. This happens when no matter how the
opponent acts, the payoff for some action a is always less or
equal to the payoff for some other action b or a mixed strat-
egy not containing a. In this situation there is no incentive to
play action a and it can be ignored. The possibility of actions
being dominated opens the door for pruning.
Example 1. Consider game G below. The row player will
only select action A2 if the value of subgame H is greater
than 5. Now consider subgameH: no matter what the values
of cells (A3; B3) and (A4; B3) are, the best value the row
player can hope for at this point is 4. As a result, we do not
even need to compute the exact value for H and it can be
pruned.

G =
B1

A1 5
A2 value(H)

H =
B2 B3

A3 4 ?
A4 3 ?

2.5 Applicable Game Domains and
General Solution Techniques

The type of games our pruning technique applies to can be
loosely described as stacked matrix games, but they can also
be seen as a deterministic non-loopy subclass of recursive
games (Everett 1957). This class of games encompasses
a small portion of games appearing in the GGP competi-
tion such as bidding-tictactoe. Furthermore, particular in-
stances of this game class have been studied in (Buro 2003;
Kovarsky and Buro 2005; Furtak and Buro 2010).

As a subset of general zero-sum imperfect information
games, stacked matrix games can be solved by general tech-
niques such as creating a single-matrix game in which indi-
vidual moves represent pure strategies in the original game.
However, because this transformation leads to an exponential
blowup, it can only be applied to tiny problems. In their land-
mark paper, (Koller, Megiddo, and von Stengel 1994) define
the sequence form game representation which avoids redun-
dancies present in above game transformation and reduces
the game value computation time to polynomial in the game
tree size. In the experimental section we present data show-
ing that even for small stacked matrix games, the sequence
form approach requires lots of memory and therefore can’t
solve larger problems. The main reason is that the algorithm
doesn’t detect the regular information set structure present
in stacked matrix games, and also computes mixed strate-
gies for all information sets, which may not be necessary. To
overcome these problems (Gilpin and Sandholm 2007) intro-
duce a loss-less abstraction for games with certain regularity
constraints and show that Nash equilibria found in the of-
ten much smaller game abstractions correspond to ones in
the original game. General stacked matrix games don’t fall
into the game class considered in this paper, but the general
idea of pre-processing games to transform them into smaller,
equivalent ones may also apply to stacked matrix games.

3 Simultaneous Move Pruning
In this section we assume that, without loss of generality, all
payoffs are given in view of row-player Max. Moreover, to
allow us to use moves as indexes, we assume that there is a

2



x =

0
BBBBBBB@

x1
...

xa�1
xa+1
...
xm

1
CCCCCCCA
; P =

0
BBBBBBB@

p1;1 : : : p1;n
...

...
pa�1;1 : : : pa�1;n
pa+1;1 : : : pa+1;n

...
...

pm;1 : : : pm;n

1
CCCCCCCA
; e =

0
B@
1
...
1

1
CA

f = (oa;1 : : : oa;n)

xtP � f; 0 � x � 1;
P

i xi = 1

Figure 1: System of inequalities for deciding whether row
action a is dominated. a is dominated and can be pruned if
the system of inequalities is feasible.

x =

0
BBBBBBB@

x1
...

xa�1
xa+1
...
xm

1
CCCCCCCA
; p =

0
BBBBBBB@

p1
...

pa�1
pa+1
...
pm

1
CCCCCCCA
; e =

0
B@
1
...
1

1
CA

xtp � oa; 0 � x � 1;
P

i xi = 1

Figure 2: System of inequalities to decide if a row action a
can be pruned when there is only one column action.

bijection between legal moves and a subset of consecutive
natural numbers starting with 1.

The criterion we use for pruning is similar to that of the
original Alpha-Beta algorithm: we prune sub-trees if we
have proof that they will under no circumstances improve
upon the current guaranteed payoff assuming rational play-
ers.

Let q be a position in the game tree with m actions for
Max and n actions for Min. For all 1 � i � m and 1 � j �
n, we call qi;j the position reached after joint action (i; j)
is executed in q. We assume that the information we have
gained so far about position qi;j is in the form of a pessimistic
bound pi;j and an optimistic bound oi;j on the real value of
qi;j . For instance, if the value v of qi;j has been determined,
we have pi;j = v = oi;j . If, however, no information about
qi;j is known, we have pi;j = minval and oi;j = maxval.
To determine if a row action a can be safely pruned from

the set of availableMax actions in the presence of pessimistic
payoff bounds pi;j and optimistic payoff bounds oi;j we use
linear programming. A sufficient pruning condition is that
action a is dominated by a mixed strategy excluding a. Us-
ing the given payoff bounds, we need to prove that there is
a mixed strategy excluding action a that, when using pes-
simistic payoff bounds, dominates action a’s optimistic pay-
off bounds. If such a mixed strategy exists then there is no
need to consider action a, because a certain mixture of other
actions is at least as good.

The system of inequalities (SI) in Figure 1 shows these
calculations. If this system is feasible then action a can be

x = (x1 : : : xb�1 xb+1 : : : xm)

O =

0
B@
o1;1 : : : o1;b�1 o1;b+1 : : : o1;n
...

...
...

...
om;1 : : : om;b�1 om;b+1 : : : om;n

1
CA

f =

0
B@
p1;b
...

pm;b

1
CA

e = (1 : : : 1)

Oxt � f; 0 � x � 1;
P

i xi = 1

Figure 3: System of inequalities to decide if a column ac-
tion b is dominated. b is dominated and can be pruned if the
system of inequalities is feasible.

pruned. Note that if n = 1, i.e. this state features a non-
simultaneous action with Max to play, the SI reduces to the
one shown in Figure 2. This SI is feasible if and only if
there exists an action a0 6= a such that pa0 � oa. This
is can be reformulated as pruning action a if max pi �
oa which matches the pruning criterion in score bounded
MCTS (Cazenave and Saffidine 2011) exactly. The analo-
gous SI for pruning dominated column actions is shown in
Figure 3.

4 Simultaneous Move Alpha-Beta Search
Like the original Alpha-Beta algorithm, we traverse a given
game tree in depth-first manner, for each position q using a
lower bound � and an upper bound � on the value of q. As
soon as we can prove that the value of q lies outside (�; �),
we can prune the remaining positions below q and backtrack.
In this section we again assume that payoffs are given in

view of row-player Max and that for each game state and
player we have a bijection between legal moves and move
indices starting at 1.
We begin by explaining how to determine the � and �

bounds from pessimistic and optimistic value bounds. We
then show how this computation can be integrated into a
recursive depth-first search algorithm. Finally, we discuss
some practical aspects.

4.1 Propagating Bounds
Let q be a position in the game tree and A = f1::mg and
B = f1::ng the move sets for players Max and Min. For all
(i; j) 2 A � B, we call qi;j the position reached after joint
action (i; j) is executed in q. We assume that the informa-
tion we have gained so far about position qi;j is in the form
of a pessimistic bound pi;j and an optimistic bound oi;j on
the real value of qi;j . The default bound values are minval
and maxval, respectively. Let qa;b be the next position to
examine. We are interested in computing �qa;b and �qa;b
in terms of �, � (the value bounds for q), pi;j and oi;j for
(i; j) 2 A�B. We first concentrate on computing �qa;b , or
�a;b for short. �a;b can be derived analogously.

3



x =

0
BBBBBBBBB@

x1
...

xa�1
xa+1
...
xm
xm+1

1
CCCCCCCCCA

; P =

0
BBBBBBBBB@

p1;1 : : : p1;b�1 p1;b+1 : : : p1;n
...

...
...

...
pa�1;1 : : : pa�1;b�1 pa�1;b+1 : : : pa�1;n
pa+1;1 : : : pa+1;b�1 pa+1;b+1 : : : pa+1;n

...
...

...
...

pm;1 : : : pm;b�1 pm;b+1 : : : pm;n

� : : : � � : : : �

1
CCCCCCCCCA

; e =

0
BBBBBBBBB@

p1;b
...

pa�1;b
pa+1;b

...
pm;b

�

1
CCCCCCCCCA

f = (oa;1 : : : oa;b�1 oa;b+1 : : : oa;n)

�a;b = maxxte; subject to xtP � f; 0 � x � 1;
P

i xi = 1; or minval�1 if the LP is infeasible

Figure 4: Computing the pessimistic value �a;b

x = (x1 : : : xb�1 xb+1 : : : xn xn+1)

O =

0
BBBBBBB@

o1;1 : : : o1;b�1 o1;b+1 : : : o1;n �
...

...
...

... �
oa�1;1 : : : oa�1;b�1 oa�1;b+1 : : : oa�1;n �
oa+1;1 : : : oa+1;b�1 oa+1;b+1 : : : oa+1;n �

...
...

...
... �

om;1 : : : om;b�1 om;b+1 : : : om;n �

1
CCCCCCCA
; f =

0
BBBBBBB@

p1;b
...

pa�1;b
pa+1;b

...
pm;b

1
CCCCCCCA

e = (oa;1 : : : oa;b�1 oa;b+1 : : : oa;n �)

�a;b = min ext; subject to Oxt � f; 0 � xt � 1;
P

i xi = 1; or maxval+1 if the LP is infeasible

Figure 5: Computing the optimistic value �a;b

There are two reasons why we might not need to know
the exact value of qa;b, if it is rather small. Either we have
proved that it is so small that a is dominated by a mixed strat-
egy not containing a (shallow pruning), or it is so small that
as a result we can prove that the value of q is smaller than
� (deep pruning). We can combine both arguments into one
LP by adding an artificial action m + 1 for Max that cor-
responds to Max deviating earlier. This action guarantees a
score of at least �, i.e. pm+1;j = � for all j 2 B. We can
now restrict ourselves to determining under which condition
action a would be dominated by a mixed strategy of actions
M := f1; : : : ;m + 1gnfag. To guarantee soundness, we
need to look at the situation where a is least expected to be
pruned, i.e. when the values of positions qa;j reach their op-
timistic bounds oa;j and for every other action i 6= a, the
values of positions qi;j reach their pessimistic bounds pi;j .
Consider the set of mixed strategies D dominating a on

every column but b, i.e.

D = fx 2 IRm
�0 j
X
i

xi = 1; 8j 6= b :
X
i2M

xipi;j � oa;jg

Action a is dominated if and only if a is dominated on col-
umn b by a strategy in D. I.e., action a is dominated if and
only if value v of qa;b satisfies:

9x 2 D :
X
i2M

xipi;b � v

IfD is non-empty, to have the tightest�a;b possible, wemax-
imize over such values:

�a;b = max
x2D

X
i2M

xipi;b

Otherwise, if D is empty, qa;b can’t be bound from below
and we set �a;b = minval.
This process can be directly translated into the LP pre-

sented in Figure 4. Similarly, the bound �qa;b is defined as
the objective value of the LP shown in Figure 5.

4.2 Main Algorithm
Algorithm 1 describes how our simultaneous move pruning
can be incorporated in a depth-first search algorithm by loop-
ing through all joint action pairs first checking trivial exit
conditions and if these fail, proceeding with computing opti-
mistic and pessimistic bounds for the entry in questions, and
then recursively computing the entry value. We call this pro-
cedure Simultaneous Move Alpha-Beta (SMAB) Search.

Theorem: When SMAB is called with q; �; � and � < � ...

1. ... it runs in weakly polynomial time in the size of the game
tree rooted in q.

2. ... and returns v � �, then value(q) � v.
3. ... and returns v � �, then value(q) � v.
4. ... and returns � < v < �, then value(q) = v.

4



1 SMAB(state q, lower bound �, upper bound �)
2 if q is a terminal state then
3 return payoff for q
4 else
5 let A = the set of legal moves for the row player;
6 let B = the set of legal moves for the col player;
7 let pi;j = minval for i 2 A; j 2 B;
8 let oi;j = maxval for i 2 A; j 2 B;
9 let P denote the matrix formed by all pi;j ;

10 let O denote the matrix formed by all oi;j ;
11 for each (a; b) 2 A�B do
12 if row a and column b not dominated then
13 let �a;b as defined in Fig. 4 restricted to

non-dominated actions;
14 let �a;b as defined in Fig. 5 restricted to

non-dominated actions;
15 let qa;b = the state reached after applying

(a; b) to q;
16 if �a;b � �a;b then
17 let va;b = SMAB(qa;b, �a;b, �a;b + �);
18 if va;b � �a;b then a is dominated;
19 else b is dominated;
20 else
21 let va;b = SMAB(qa;b, �a;b, �a;b);
22 if va;b � �a;b then a is dominated;
23 else if va;b � �a;b then b is dominated;
24 else let pa;b = oa;b = va;b;
25 end
26 end
27 end
28 return Nash(P restricted to non-dominated actions)
29 end
Algorithm 1: Pseudo-code for simultaneous move Alpha-
Beta search. Function Nash(X) computes the Nash equi-
librium value of normal-form game payoffmatrixX for row
player Max.

Proof Sketch:

1.: Weakly polynomial run-time in the sub-tree size can be
shown by induction on the tree height using the fact that LPs
can be solved by interior point methods inweakly polynomial
time.
2.,3.,4.: Induction on tree height h. For h = 0, SMAB im-
mediately returns the true value. Thus, properties 2.-4. hold.
Now we assume they hold for all heights h � k and q has
height k + 1 and proceed with an induction on the number
of inner loop iterations claiming that P and O are correctly
updated in each step (using the derivations in the previous
subsection and the main induction hypothesis) and if line 28
is reached, properties 2.-4. hold. �

4.3 Ordering Move Pairs
Heuristics can be used to initialize (pi;j ; oi;j), given that they
have the admissibility property with regards to the bound
they are applied to. As an example, we might in some game
know from the material strength on the board in some state

1 2 3 4 5
6 10 11 12 13
7 14 17 18 19
8 15 20 22 23
9 16 21 24 25

Figure 6: L-shaped cell ordering for 5� 5 matrices.

that we are guaranteed at least a draw, allowing us to initial-
ize the pessimistic value to a draw. Similarly, we should be
able to set the optimistic value to a draw if the opponent is
equally up in material.

Additionally, the order in which the pairs (a; b) will be
visited in line 11 in Algorithm 1 can dramatically affect the
amount of pruning. This problem can be decomposed into
two parts. Move ordering in which the individual moves are
ordered and cell ordering in which the joint moves are or-
dered based on the order of the individual moves. Formally,
move ordering means endowing the sets A and B with total
orders <A and <B and cell ordering is the construction of a
total order forA�B based on<A and<B . For instance, the
lexicographical ordering is a possible cell ordering: (a1; b1)
will be explored before (a2; b2) iff a1 <A a2 or a1 = a2 and
b1 < b2. We will discuss heuristic cell orderings in the next
section.

5 Experimental Results
As a test case we implemented SMAB pruning for the game
of Goofspiel. The following experimental results were ob-
tained running OCaml 3.11.2, g++ 4.5.2, and the glpk 4.43
LP-solver under Ubuntu on a laptop with Intel T3400 CPU
at 2.2 GHz.

5.1 Goofspiel
The game Goofspiel (Ross 1971; Shaei, Sturtevant, and
Schaeffer 2009) uses cards in three suits. In the version we
use, each player has all the cards of a single suit and the re-
maining suit is stacked on the table face up in a pre-defined
order. On each turn both players simultaneously play a card
from their hand and the higher card wins its player the top
card from the table. If the played cards are of equal value
the table card is discarded. When all cards have been played
the winner is the player whose accumulated table cards sum
up to a higher value. We used games with various number of
cards per suit to monitor how the pruning efficiency develops
with increasing game-tree sizes.

We use a cell ordering that strives to keep a balance be-
tween the number of rows filled and the number of columns
filled. We call it L-shaped and it can be seen as the lexico-
graphical ordering over tuples (minfa; bg; a; b). Its applica-
tion to 5�5matrix is described in Figure 6. In all of our pre-
liminary experiments, the L-shaped ordering proved to lead
to earlier and more pruning than the natural lexicographical
orderings.

To save some calculations, it is possible to skip the LP
computations for some cells and directly set the correspond-

5



Table 2: Solving Goofspiel with backward induction.

size nodes (= LP calls) total time LP time
4 109 0.008 0.004
5 1926 0.188 0.136
6 58173 5.588 4.200
7 2578710 247.159 184.616

Table 3: Solving Goofspiel with a sequence form solver.

size memory time
4 8 MB <1 s
5 43 MB 152 s
6 > 2 GB > 177 s

ing � and � bounds to (minval - 1) and (maxval+1), respec-
tively. On the one hand, if the computed bounds wouldn’t
have enabled much pruning, then using the default bounds
instead allows to save some time. On the other hand, if too
many bounds are loose, there will be superfluous computa-
tions in prunable subtrees.

To express this tradeoff, we introduce the early bound skip-
ping heuristic. This heuristic is parameterized by an integer
s and consists in skipping the LP-based computations of the
� and � bounds as long as the matrix does not have at least
s rows and s columns completely filled. For instance, if we
use this heuristic together with the L-shaped ordering on a
5�5matrix with parameter s = 1, no LP computation takes
place for the bounds of the first 9 cells.

In our backward induction implementation that recur-
sively solves subgames in depth-first-fashion, we used one
LP call per non-terminal node expansion. Table 2 shows the
number of non-terminal node expansions/LP calls, the total
time spent running the algorithm, and the time spent specif-
ically solving LPs.

Table 4 shows the same information for SMAB using L-
shaped ordering and early bound skipping parameterized by
s. This table has separate columns for the number of non-
terminal node expansions and the number of calls to the LP
solver as they are not equal in the case of SMAB.

Table 3 shows the memory and time needed to solve
Goofspiel using a sequence form solver based on based on
(Koller, Megiddo, and von Stengel 1994). The algorithm
needs a huge amount of memory to solve even a moderate
size instance of Goofspiel. The backward induction and the
SMAB implementations, on the contrary, never needed more
than 60 MB of memory. This difference is expected as the
backward induction and SMAB are depth-first search algo-
rithms solving hundreds of thousands of relatively small LPs
while the sequence form algorithm solves a single large LP.

6 Conclusion and Future Work
We have shown that it is possible to extend Alpha-Beta prun-
ing to include simultaneous move games and that our SMAB
pruning procedure can reduce the node count and run-time
when solving non-trivial games. In the reported experiments

Table 4: Solving Goofspiel with SMAB.

size nodes LP calls total time LP time s

4 55 265 0.020 0.016 0
4 59 171 0.012 0.012 1
4 70 147 0.012 0.012 2
5 516 2794 0.216 0.148 0
5 630 1897 0.168 0.128 1
5 1003 1919 0.184 0.152 2
6 13560 74700 5.900 4.568 0
6 18212 55462 4.980 3.852 1
6 30575 57335 5.536 4.192 2
7 757699 4074729 324.352 245.295 0
7 949521 2857133 259.716 197.700 1
7 1380564 2498366 241.735 182.463 2
7 1734798 2452624 237.903 177.411 3
7 1881065 2583307 253.476 188.276 4

we used a fixed move ordering and a fixed cell ordering. The
results show a considerable drop in node expansions, even
though not nearly as much as with Alpha-Beta in the sequen-
tial setting, but certainly enough to be very promising. Still,
this threshold is not high and with increasing game size the
run-time appears to be increasingly improving. The pruning
criterion we propose is sound, but it only allows us to prune
provably dominated actions. As a result, some actions which
are not part of any equilibrium strategy may not get pruned
by our method. Consider the following example:
Example 2. The following game has a unique Nash equilib-
rium at (A2; B2), but no action is dominated.

B1 B2 B3

A1 6 1 0
A2 3 3 3
A3 0 1 6

SMAB yields considerable savings in practice, but this ex-
ample shows that there is room for even more pruning.

It will be interesting to see how SMAB pruning performs
in other domains and it can also be applied to MCTS which
has become the state-of-the-art algorithmic framework for
computer go and the general game playing competition.
A natural candidate is to extend the score bounded MCTS
framework that we described earlier.

In our implementation we just used a naive move order-
ing scheme. However, simultaneous moves offer some inter-
esting opportunities for improvements. As each individual
action is considered more than once in a state, we get some
information on them before their pairings are fully enumer-
ated. The question is whether we can use this information
to order the actions such that the efficiency of the pruning
increases, like it does for sequential Alpha-Beta search.

Finally, it may be possible to establish theminimal number
of node expansions when solving certain classes of stacked
matrix games with depth-first search algorithms in general,
or SMAB in particular.

6



Acknowledgments
We want to thank Martin Müller, Yannick Viossat, and
Tim Furtak for frutifull discussions regarding SMAB, Marc
Lanctot for letting us use his sequence form solver, and the
anonymous reviewers for their constructive feedback. Finan-
cial support was provided by NSERC.

References
Ballard, B. W. 1983. The *-minimax search procedure
for trees containing chance nodes. Artificial Intelligence
21(3):327–350.
Buro, M. 2003. Solving the Oshi-Zumo game. In van den
Herik, H. J.; Iida, H.; and Heinz, E. A., eds., Advances in
Computer Games, Many Games, Many Challenges, 10th In-
ternational Conference, volume 263 of IFIP, 361–366. Graz,
Austria: Kluwer.
Cazenave, T., and Saffidine, A. 2011. Score boundedMonte-
Carlo tree search. In van den Herik, H.; Iida, H.; and Plaat,
A., eds., Computers and Games, volume 6515 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg.
93–104.
Everett, H. 1957. Recursive games. Contributions to the
Theory of Games III 39:47–78.
Furtak, T., and Buro, M. 2010. On the complexity of two-
player attrition games played on graphs. In Youngblood,
G. M., and Bulitko, V., eds., Proceedings of the Sixth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2010.
Gilpin, A., and Sandholm, T. 2007. Lossless abstraction of
imperfect information games. Journal of the ACM 54(5).
Knuth, D. E., and Moore, R. W. 1975. An analysis of alpha-
beta pruning. Artificial Intelligence 6(4):293–326.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proceedings of the 26th ACM Symposium on Theory of
Computing, 750–759.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Canadian Conference on AI,
66–78.
Ross, S. M. 1971. Goofspiel: The game of pure strategy.
Journal of Applied Probability 8(3):621–625.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence
— A Modern Approach (3rd international edition). Pearson
Education.
Schiffel, S., and Thielscher, M. 2010. A multiagent seman-
tics for the game description language. In Filipe, J.; Fred,
A.; and Sharp, B., eds., Agents and Artificial Intelligence,
volume 67 ofCommunications in Computer and Information
Science. Springer Berlin Heidelberg. 44–55.
Shaei, M.; Sturtevant, N.; and Schaeffer, J. 2009. Compar-
ing UCT versus CFR in simultaneous games. In Proceed-
ings of the IJCAI-09 Workshop on General Game Playing
(GIGA’09), 75–82.
Sturtevant, N. R., and Korf, R. E. 2000. On pruning tech-
niques for multi-player games. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence and

Twelfth Conference on Innovative Applications of Artificial
Intelligence, AAAI/IAAI 2000, 201–207.
Sturtevant, N. R. 2005. Leaf-value tables for pruning non-
zero-sum games. In IJCAI-05, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelli-
gence, 317–323. Edinburgh, Scotland, UK: Professional
Book Center.
Winands, M. H.; Björnsson, Y.; and Saito, J.-T. 2008.
Monte-Carlo tree search solver. In Proceedings of the 6th
international conference on Computers and Games, CG ’08,
25–36. Berlin, Heidelberg: Springer-Verlag.

7


