
StarCraft Unit Motion: Analysis and Search Enhancements

Douglas Schneider and Michael Buro
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8

{ds3|mburo}@ualberta.ca

Abstract

Real-time strategy (RTS) games pose challenges to AI re-
search on many levels, ranging from selecting targets in unit
combat situations, over efficient multi-unit pathfinding, to
high-level economic decisions. Due to the complexity of RTS
games, writing competitive AI systems for these games re-
quires high speed adaptive algorithms and simplified models
of the game world.
In this paper we focus on motion prediction and motion plan-
ning in StarCraft — a popular RTS game for which a C++
API exists that allows us to write AI systems to play the game.
We explore our existing unit motion model of StarCraft and
find and fix some inconsistencies to improve the model by ac-
counting for systematic command execution delays and unit
acceleration. We then investigate ways to improve existing
combat motion planning systems that are based on discrete
unit motion sets, and show that search-based algorithms and
scripts can benefit from using a new direction set that consid-
ers moves towards the closest enemy unit, away from it, and
perpendicular to both directions.

Introduction
In this paper we examine AI in the context of the game Star-
Craft. StarCraft is popular a real-time strategy (RTS) game
which involves the simulation of a war between two or more
players. There are many important components to this type
of game such as resource management, unit production plan-
ning, and high level and low level combat strategies. When
designing an AI system to play a complex game such as Star-
Craft, it makes sense to break the design of the bot into sev-
eral smaller modules that each individually solve less com-
plex AI problems (Ontanón et al. 2013). In this paper we
focus on the UAlbertaBot StarCraft bot, the champion bot
of the 2013 AIIDE StarCraft Competition (Churchill 2013)
and its motion prediction and planning.

UAlbertaBot is broken down into modules designed to
separately solve each of the problems mentioned above.
Each of these modules has unique challenges. One of the
weaker parts of UAlbertaBot is its low level combat, at the
unit or squad level. This includes moving individual units
around in combat, as well as choosing targets for each unit.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we analyze the model that is used by UAl-
bertaBot to simulate low level combat. We present measured
error in the model, analyze its source, and present new error
measurements after the model has been corrected. Improv-
ing the model of combat will allow UAlbertaBot to better
model the results of it’s actions and should lead to improved
combat performance.

After improving UAlbertaBot’s model of StarCraft com-
bat, we analyze the actions that UAlbertaBot is able to take
for each unit in combat. In specific we present a new motion
planning strategy for units that yields an increase in the win
rate in UAlbertaBot’s combat simulation.

StarCraft Unit Motion Analysis
Combat in StarCraft is quite complex. Unit acceleration, de-
celeration, and delay caused by attack animation frames all
add to the complexity of predicting combat outcomes. UAl-
bertaBot relies on the use of a simulation to perform combat.
The simulation has two important roles, first it reduces the
complexity of the game world, and second it provides a re-
liable and reproduceable way to predict the result of each
action. UAlbertaBot relies on a simulation called SparCraft
(Churchill 2015) to evaluate the current combat situation.
SparCraft is a standalone module that given an input set of
units and positions, is able to simulate combat, and predict
the result. SparCraft is a model of StarCraft combat which
is not entirely accurate. For example, SparCraft ignores unit
collisions in order to speed up its simulation. This is required
because AI systems for RTS game combat must act in real
time. Other than this, SparCraft is a fairly accurate simu-
lation, and most discrepancies between SparCraft and Star-
Craft are due to lack of access of the exact model the Star-
Craft game engine uses for combat.

Initial Experiment
As part of our work we wanted to measure any remaining
discrepancies between SparCraft’s model and StarCraft, and
try to fix them. Of interest to us was the movement of units.
In order to measure discrepancy, a combat simulation be-
tween a Dragoon (a ranged Protoss ground unit) and a Zealot
(a Protoss melee unit) was run. Using the positions from a
combat simulation allowed us to measure the error in a real-
istic scenario by gathering error from many sources such as
attacking, stopping, and moving. The Dragoon and Zealot



A) not accounting for initial move delays B) accounting for initial move delays

Figure 1: These graphs show the distance in pixels between the actual and expected positions of a Dragoon and Zealot in a
combat simulated by SparCraft when played out in StarCraft before and after accounting for initial move delays.

were positioned on a horizontal line 143 pixels apart. This
kept the Dragoon starting out of range of the Zealot forcing
it to start the combat by moving. The actions generated by
SparCraft at each frame were run inside of StarCraft on the
corresponding frame. The combat action sequence produced
by SparCraft consists of the Dragoon attacking the Zealot:
retreating while its attack recharges, then moving into attack
range, attacking, and repeating this pattern. This behaviour
is called “kiting”. The Zealot, on the other hand, charges
steadily towards the Dragoon until it is in range. It then at-
tacks and continues charging. This results in the Zealot tak-
ing a while to get its first attack. Then once the Zealot is
closer, it gets an attack against the Dragoon each time it
stops to attack. During combat the actual positions of each of
the two units was gathered at each frame and compared to
SparCraft’s expected positions. The resulting graph shown
in Fig. 1 A) demonstrates periodic spikes in the error of the
units’ positions, this is particularly obvious for the Zealot.
When examining the combat and the frames that the spikes
occur at, it was found that error is introduced each time a
unit is ordered to move. This is easily identifiable when the
Zealot is first ordered to move at frame zero. Each time one
of the units stops to attack and starts moving again there is
an increase in the error. Because the positions of the units
diverge rapidly from the expected positions as time goes on,
SparCraft may find what it thinks is a winning strategy is
not a winning strategy in the actual StarCraft game. This in-
consistency results in units getting attacked when SparCraft
didn’t think a unit could get attacked, or units not making it
into range to attack when SparCraft thought they would.

Measuring Initial Motion Delays
To fix this discrepancy we first needed to measure the initial
command delay. For this, different units were marched back
and forth in StarCraft. The number of frames between or-

dering a unit to move and the unit’s position changing were
measured. To prevent unit rotation from affecting the delay
measurement, units were moved a small distance and then
held still for a small amount of time. This was done in order
to get the units facing the correct direction and to make sure
they’d come to a complete stop. This experiment was run for
each unit type, and 50 samples were gathered for each. The
measurement statistics are shown in Fig. 2.

These graphs depict box plots of the delay between a
unit being ordered to move and the position of the unit first
changing. Based on the three graphs the average delay across
all unit types appears to be ≈ 6 frames. We didn’t have
enough time to systematically investigate why there was
variation in the delay for individual unit types. One explana-
tion may be that the experiments were run in bulk, and this
may have resulted in some units having a chance to rotate
after stopping before moving again. Coming up with more
accurate models of the unit delay is future work.

Without StarCraft’s source code, we can’t be certain of the
cause of the systematic 6 frame delay, but one hypothesis is
that this delay is used to prevent units from moving until the
cursor click animation has completed. Watching the cursor
animation in slow motion reveals it to last about the correct
number of frames. However, we were not able to confirmed
that this is the actual cause of the delay. It is also important
to note, that the library UAlbertaBot uses adds some delay
frames to account for latency, but because the experiments
were gathered on a single player map, the latency added does
not account for the entire delay witnessed.

After adding this fixed 6 frame delay to the SparCraft
model a new combat simulation was run inside of StarCraft.
The obtained results are shown in Fig 1 B). The error be-
tween the actual and expected positions of the Dragoon and
Zealot have been drastically reduced. There are still error
spikes that occur whenever one of the units goes to attack.



ID Terran Zerg Protoss
1 Battlecruiser Defiler Arbiter
2 Dropship Devourer Archon
3 Firebat Drone Carrier
4 Ghost Guardian Corsair
5 Goliath Hydralisk Dark Archon
6 Marine Lurker Dark Templar
7 Medic Mutalisk Dragoon
8 Science Vessel Overlord High Templar
9 SCV Queen Observer

10 Siege Tank Scourge Probe
11 Valkyrie Ultralisk Reaver
12 Vulture Zergling Scout
13 Wraith Shuttle
14 Zealot

Figure 2: Box plots for the delay between ordering a unit to move and the first change in its position measured in number of
game frames. These graphs contain data for all Terran, Zerg, and Protoss units.

This demonstrates that more tuning needs to be done to
properly account for attack delay. We hypothesize that the
error for each attack doesn’t accumulate because all or most
of the delay from attacking is accounted for, it just isn’t ac-
counted for on the right frames. The error in position rises
when the Dragoon goes to attack, because SparCraft thinks
that the Dragoon should still be moving. Then the error be-
gins to drop, because the Dragoon is moving and SparCraft
thinks the Dragoon should be standing still. Thus at the end
of each attack the error is reduced to, or near zero. We will
leave investigations into this matter to future work. Over-
all, adding the movement delay to the model drastically in-
creased its accuracy, and thus allows SparCraft to provide
more accurate long term battle plans to UAlbertaBot.

Modelling Unit Acceleration
There’s one more significant motion detail that isn’t mod-
elled by SparCraft yet: unit acceleration. This isn’t appar-
ent for the Dragoon’s or Zealot’s position error because nei-
ther of those two units accelerate. When units move in Spar-
Craft they move at a constant speed and no acceleration time
is taken into account. Because in combat units often start
and stop moving, the prediction error can become large very
quickly. To account for acceleration, rather than simulate it,
we simplified the problem by finding the best frame to use
as the frame where a unit’s top speed is achieved. The best
frame is the frame that will result in the lowest overall Mean
Squared Error(MSE) between the actual and predicted posi-
tion of the unit. This allows us to move the unit forward a
distance by that frame, and then move the unit forward at a
constant speed after that point. By removing the assumption
of zero acceleration, units with acceleration will have more



accurate positions in the model.
To find the best frame to use for hitting top speed, a lin-

ear regression was done using each possible frame between
when the unit starts moving and frame 150, at which all units
were at their top speed. After that point, the predicted val-
ues fall on the line fixed at the average distance travelled at
the top speed, and the average distance travelled at frame
150. The MSE is then calculated based on the predicted and
actual values. The top speed frame with the lowest overall
MSE then is the frame that we use for when the unit reaches
top speed. The samples for this data were gathered by mov-
ing units in a straight horizontal line for 1000 pixels. All
units were moved from a stand still while facing the correct
direction of movement. Fifty samples were gathered for each
unit.

Assuming the StarCraft game engine implements simple
kinematics laws using constant acceleration, we have d =
d0 + v0t +

1
2at

2. Because we are moving the units from
a stop, d0 = 0 and v0 = 0. So, d = 1

2at
2. Now we can

replace 1
2a with c to get d = ct2. This is what we’ll perform

the linear regression on. By using the sample data we can
find the best value for c and thus a. In order to find the best
frame to use as the top speed frame, we try every possible
frame, and perform the linear regression using data up to that
frame. The frame that results in the lowest total MSE we use
as the frame where top speed is achieved. Minimizing the
MSE w.r.t. one variable is a straight-forward calculation: If
we take the derivative of the error ε =

∑n
i=1(ct

2
i−di)2, then

we get dεdc = c
∑n
i=1 t

4
i −

∑n
i=1 dit

2
i = 0 since we want the

c which results in the minimum error. Finally, c
∑n
i=1 t

4
i =∑n

i=1 dit
2
i and c =

∑n
i=1 dit

2
i /

∑n
i=1 t

4
i .

Having computed the top-speed frame that minimizes the
overall MSE, we can then break the distance travelled by a
unit into two stages. The stage involving acceleration and
the stage involving constant velocity. By factoring this into
SparCraft’s model, we can obtain an even more accurate
model of unit movement.

Fig. 3 depicts the result of running this experiment for a
single unit, the Protoss arbiter. The blue line represents the
average position of the unit over 50 samples. The green line
represents the predicted position when using the indicated
frame as the top speed. The top speed frame is indicated by
a light blue vertical line. This line has two numbers beside
it. The first is the frame in which top speed is attained. And
the second is the number of frames before any movement
was achieved. This is the delay from above. Thus subtract-
ing the second number from the first yields the actual num-
ber of frames that acceleration occurred over. Note that the
MSE measured between the predicted and actual distance
travelled is multiplied by 10 to make the MSE more visible.
The MSE has a max value of around seven. This means that
during the whole movement our predicted distance travelled
is off by just a few pixels.

In future work, this acceleration model can easily be
added to SparCraft’s unit movement prediction after the top-
speed frame and the according c value have been estimated
for each unit type.

Improving Motion Search
After improving SparCraft’s motion model of StarCraft we
were interested in improving unit motion planning, i.e., the
process of coming up with each unit’s physical movements
during a battle.

SparCraft simulates combat by assuming that each player
takes turns making moves. In each turn a player is able to
move each unit they control and attack any unit in range of
each of their units that are able to attack. One common re-
striction is that a unit that is currently attacking may neither
move nor attack until it is done attacking (with the exception
of Tanks in StarCraft which can shoot while moving). Rep-
resenting the game in this way simplifies the problem and
makes it easy to apply existing search algorithms, such as
Alpha-Beta search or Monte-Carlo Tree search, because it is
turn based.

Currently, the simulation relies on a few different algo-
rithms for approximating the best actions to take. The first
algorithm, Alpha-Beta search, assumes that each turn we
take the best move for us, and our opponent takes the worst
move for us. If the model of the world is good and the do-
main isn’t that complex, Alpha-Beta search is often able to
come up with a good move for us to take. Each node in the
Alpha-Beta search is given a score based on a playout based
evaluation. The playout runs the quick NOKDPS combat
script (see below) for both sides on that node and uses a
score based off of the result.

The second algorithm is Portfolio Greedy search (PGS,
(Churchill and Buro 2013)). PGS uses a portfolio of scripts
(or game play types), and chooses a script for each unit to
use. The selection is then scored using a playout against an
enemy whose units have been assigned scripts in the same
manner. The players scripts are then improved by search-
ing over each script in the portfolio exactly once for each
unit. The same is done for the enemy, and the assignment
of scripts is scored again using playout. This is done for

Figure 3: A graph depicting actual and predicted positions
as well as prediction errors and the best frame to use for the
top speed of the Protoss arbiter.



a number of iterations. In our experiments, the player uses
the NOKDPS and KiterDPS scripts, and the enemy uses the
NOKDPS script.

The final strategy we focus on in this paper is called “No-
Overkill Damage Per Second” (NOKDPS, (Churchill and
Buro 2013)). NOKDPS is a scripted strategy that doesn’t
involve search. It attempts to deal the most damage on each
turn without causing any more damage to each enemy unit
than is required to take its health down to zero — or as little
overkill as possible because getting to exactly 0 isn’t always
possible. NOKDPS moves units to be the closest to an en-
emy. Thus, given a set of any number of movements it will
choose the movement that takes the unit closest to an enemy
unit. The KiterDPS script we mentioned above behaves by
preferring moves that either move the unit closer to the clos-
est enemy unit (in the case of attacking), or maximizes the
distance to the nearest enemy unit (in the case of retreating)
(Churchill and Buro 2013). When attacking, the KiterDPS
script attacks the enemy with the highest ratio of damage
per frame, to remaining health. Damage per frame is calcu-
lated by taking the total damage per attack and dividing it by
the number of cooldown frames required after performing an
attack.

When SparCraft uses above algorithms to compute a com-
bat strategy, it moves units in the limited set of cardinal di-
rections (North, East, South, and West). This provides each
unit with a versatile set of movements, while keeping the
number of possible movements low and search trees small.
As a result, in the limited amount of time SparCraft has to
compute a strategy, more of the search space can be explored
which often yields better search results.

When looking to improve the small-scale unit combat of
UAlbertaBot we wondered what limited set of movements
can be used to achieve better performance. Here, perfor-
mance is the measure of the percentage of wins a player
using a new search space has over a player using the old
search space inside of the SparCraft simulation. The current
set of movements chosen are the four cardinal directions. Is
there a set of four movements that performs better?

A couple of different sets of movements were considered.
The first was to choose the two closest enemies and move in
each of their directions, and choose the two closest allies and
move towards each of them (Fig. 4). In the case that there are
fewer than two enemies or fewer than two allies, the cardinal
directions are added to supplement the current movements,
and keep the branching factor at four. The idea behind these
movement choices was that our units will attack, and when
it’s better to retreat, will regroup towards each other.

The second option was to plan movements based on the
closest enemy (Fig. 5). Here, we consider moving towards
the closest enemy and away from it, and the two movements
orthogonal to the previous directions. The idea behind this
selection of moves was to provide movement to the closest
target, as well as three potential retreat plans. In addition,
the movements are equally spaced which allows for a good
motion spread.

To compare the two motion sets, experiments were run
comparing each set to the original cardinal direction set.
The experiments consisted of running a simulation of two

Figure 4: Closest enemy/ally movement directions.

Figure 5: Closest enemy based perpendicular movement di-
rections (“Closest-×” method).

teams. One team using one of the proposed motion sets,
and one team using the cardinal direction motion set. Each
team consisted of four Dragoons. The units were laid out
using SparCraft’s SeparatedState placement. This places the
two teams symmetrically across the diagonal, and separated
so that they are not overlapping. This was done to ensure
that the full benefit of the new motion sets were measured.
Otherwise, units might be placed so that no motion was
required. Each experiment consisted of nine configurations
with 20 executions each. The configurations were the pair-
wise matching of the Alpha-Beta, PGS, and NOKDPS algo-
rithms for both the proposed motion sets and the cardinal di-
rection motion set. The PGS algorithm used NOKDPS and a
melee script as portfolios for the Zealots, and NOKDPS and
a kiter script as portfolios for the Dragoons.

Both motion sets were tried to see which had a higher
win ratio. The first set performed worse than the simple
cardinal movements. The movement of units seemed to be
very limited resulting in a poor search space coverage. After
some trials it occurred to us that even though four movement
choices were available, as the battle progressed essentially
only two choices would exist. The problem is that our units
gather together in clumps. The result is that the two move-
ments to our closest allies result in movements that lead to
similar location. In addition, the two closest enemies are of-
ten very close to each other. The result is that we often only
consider two movements: the first is towards our enemies



and the second is to stay still. Because of the clumping of
units this movement set is very limited.

The second movement set, however, showed an improve-
ment over the simple cardinal direction scheme and per-
formed quite well. This set seems to perform better be-
cause the motion directions are evenly spaced. In addition,
NOKDPS works best when it is moving directly towards the
closest target. So, giving it the option to move towards the
closest target gives it the best option for charging, and leaves
three potential retreat directions.

Now that the second motion set has been shown to be
more effective than the first, we ran a larger set of experi-
ments to measure its performance across a larger range of
tests. For easy reference, the second motion set has been
named the “Closest-×” motion set. The larger set of exper-
iments consists of the same setup as the previous experi-
ments, but variations of Dragoons and Zealots are used. The
first experiment runs with each team containing four Dra-
goons as before. The second experiment consists of each
team containing two Dragoons, and two Zealots. The final
experiment consists of each team containing four Zealots. In
each experiment, the total number of units was kept to eight
to prevent the branching factor from reducing the Alpha-
Beta search depth and thus decreasing performance. During
combat, Alpha-Beta was usually able to make it to a search
depth of four.

Table 1 contains the results of experiments comparing
Closest-× motion planning to Cardinal direction motion
planning for three team settings. As can be seen, Closest-×
motion planning increases the win ratio of both Alpha-Beta
search and the NOKDPS script when compared to the simple
cardinal direction motion planning in all three experiments.

Table 1: The win ratio of Closest-×motion planning against
cardinal direction motion planning for Alpha-Beta, PGS,
and NOKDPS and three different unit configurations.

4 Dragoons each
Cardinal Direction

Closest-× Alpha-Beta PGS NOKDPS
Alpha-Beta 0.65 0.35 1.00

PGS 0.15 0.50 0.95
NOKDPS 0.10 0.30 0.90

2 Dragoons and 2 Zealots each
Cardinal Direction

Closest-× Alpha-Beta PGS NOKDPS
Alpha-Beta 0.65 0.05 1.00

PGS 0.25 0.48 1.00
NOKDPS 0.15 0.25 0.70

4 Zealots each
Cardinal Direction

Closest-× Alpha-Beta PGS NOKDPS
Alpha-Beta 0.63 0.00 1.00

PGS 0.40 0.45 0.95
NOKDPS 0.45 0.45 0.90

Table 2: The win ratio of Closest-×motion planning against
cardinal direction motion planning for PGS and NOKDPS
using 6 bigger unit configurations.

8 Dragoons each
Cardinal Direction

Closest-× PGS NOKDPS
PGS 0.30 1.00

NOKDPS 0.30 1.00

16 Dragoons each
Cardinal Direction

Closest-× PGS NOKDPS
PGS 0.05 1.00

NOKDPS 0.25 0.90

4 Dragoons and 4 Zealots each
Cardinal Direction

Closest-× PGS NOKDPS
PGS 0.15 1.00

NOKDPS 0.10 0.90

8 Dragoons and 8 Zealots each
Cardinal Direction

Closest-× PGS NOKDPS
PGS 0.05 1.00

NOKDPS 0.05 0.90

8 Zealots each
Cardinal Direction

Closest-× PGS NOKDPS
PGS 0.30 1.00

NOKDPS 0.35 1.00

16 Zealots each
Cardinal Direction

Closest-× PGS NOKDPS
PGS 0.30 1.00

NOKDPS 0.30 0.90

The win ratio for PGS tells a different story. The win rate ei-
ther stays the same or decreases. The likely reason for this is
that PGS uses the NOKDPS script and the KiterDPS script
to generate its actions. Thus it’s possible that the KiterDPS
script does not perform as well with the new motion plan
as the NOKDPS script does and the performance decreases
overall. But when using the NOKDPS script or Alpha-Beta
search, the new motion plan provides a set of movements
that increases the win ratio in all three experiments.

In order to test the performance of Closest-×motion plan-
ning when more units are involved, tests with similar unit
breakdowns as the previous tests were run with eight and
sixteen units per team. Table 2 contains results from larger
tests, Alpha-Beta is not included in the table for the reason
mentioned above.

In these cases the Closest-× motion planning continues
to beat cardinal direction motion planning when using the
NOKDPS script. The win rate is between 90% and 100%



in all of the tests. This makes sense because as mentioned
above NOKPDS prefers to move toward the closest target,
thus the optimal move is provided.

In the scaled up experiments Closest-× PGS continues to
perform poorly against the cardinal direction PGS with a win
rate ranging between 5% and 30%. This implies that scaling
up the number of units does not improve the performance of
the KiterDPS script when using Closest-×motion planning.

Conclusions and Future Work
In this paper we addressed two motion related problems in
RTS games: accurate unit position prediction and motion
planning based on small sets of discrete motion options.

Our work has demonstrated a previously unaccounted de-
lay in movement when ordering a unit to move in StarCraft,
as shown with before and after graphs of the unit positions
error. Accounting for the delay and also accounting for unit
acceleration we were able to remove most of the unit posi-
tion error that remains in our motion prediction model.

Our experiments with unit motion planning showed that
without increasing the latency of decisions we are able to
come up with a new motion direction set for units consid-
ered during look-ahead search that increases low level com-
bat performance. This result demonstrates the potential that
changing motion planning for units can have on combat. It
raises the question of what effects other new direction sets
may have on the performance of low level combat of Star-
Craft bots.

We do have some thoughts on alternative direction sets
that may increase performance further. One plan is to iden-
tify move directions based on influence maps which aggre-
gate unit positions and firepower to identify high-valued tar-
gets or threats nearby. In addition to our work on motion
planning, more future work is to come up with more precise
measurements of the delay when ordering a unit to move and
it beginning to move. For this it would be helpful to identify
whether unit heading or other attributes influence the delay.
Lastly, to make our model even more accurate, we’d also
like to explore the spikes in the error of the unit position that
remained in the model even after the movement delay was
accounted for. This would involve examining what possible
delay may not be accounted for when a unit goes to attack.

References
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Churchill, D. 2013. AIIDE StarCraft AI competition.
http://www.starcraftaicompetition.com/.
Churchill, D. 2015. SparCraft: open
source StarCraft combat simulation.
github.com/davechurchill/ualbertabot/tree/master/SparCraft.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG 5(4):293–311.


