
FIRST EXPERIMENTAL RESULTS OFPROBCUT APPLIED TO CHESSAlbert Xin Jiang1 and Mi
hael Buro21Department of Computer S
ien
e, University of British ColumbiaVan
ouver V6T 1Z4 Canadaalbertjiang�yahoo.
om2Department of Computing S
ien
e, University of AlbertaEdmonton T6J 2E8, Canadamburo�
s.ualberta.
aAbstra
t ProbCut [2℄ is a sele
tive sear
h enhan
ement to the standard alpha{beta algorithm for two{person games. ProbCut and its improved variantMulti{ProbCut (MPC) [3℄ have been shown to be e�e
tive in Othelloand Shogi, but there had not been any report of su

ess in the gameof
hess previously. This paper dis
usses our implementation of Prob-Cut and MPC in the
hess engine Crafty. Initial test results suggestthat the MPC version of Crafty is stronger than the original version ofCrafty: it sear
hes deeper in promising lines and defeated the originalCrafty +22�10 = 32 (59.4%) in a 64{game mat
h. In
orporating MPCinto Crafty also in
reased its tournament performan
e against Ya
e {another strong
hess program: Crafty's speed
hess tournament s
orewent up from 51% to 56%.1. Introdu
tionComputer
hess has been an AI resear
h topi
 sin
e the invention ofthe
omputer, and it has
ome a long way. Nowadays, the best
om-puter
hess programs and the best human grandmasters play at roughlythe same level. Most of the su

essful
hess programs use the so{
alledbrute{for
e approa
h, in whi
h the program has limited
hess knowl-edge and relies on a fast sear
h algorithm to �nd the best move. Therehas been mu
h resear
h on improving the original minimax algorithmfor �nding moves in two player perfe
t information games. Enhan
e-ments range from sound ba
kward pruning (alpha{beta sear
h), overusing transposition tables and iterative deepening, to sele
tive sear
h

2heuristi
s that either extend interesting lines of play or prune uninter-esting parts of the sear
h tree.The ProbCut [2℄ and Multi{ProbCut (MPC) [3℄ heuristi
s fall intothe last
ategory. They were �rst implemented in Othello programswhere they resulted in a mu
h better performan
e
ompared to full{width alpha{beta sear
h. Utilizing MPC, Logistello defeated the reign-ing human Othello World Champion Takeshi Murakami by a s
ore of6{0 in 1997 [4℄.ProbCut and MPC do not rely on any game spe
i�
 properties. How-ever, there were no previous reports of su

ess at implementing them inthe game of
hess. In this paper we present our �rst implementations ofProbCut and MPC in a
hess program and some experimental results ontheir performan
e. Se
tion 2 gives some ne
essary ba
kground knowl-edge. Se
tion 3 dis
usses our ProbCut implementation and Se
tion 4dis
usses our MPC implementation. Finally, Se
tion 5
on
ludes anddis
usses some ideas for future resear
h.2. Ba
kground2.1 Minimax and Alpha{Beta Sear
hThere has been a lot of previous resear
h in the �eld of game{treesear
h. We will not attempt to
over it all here. Instead, we will
on
en-trate on things relevant to ProbCut. For an introdu
tion to game{treesear
h, a good web{site is www.xs4all.nl/~verhelst/
hess/sear
h.html.For two{person zero{sum games like
hess, positions
an be viewed asnodes in a tree or DAG. In this model, moves are represented by edgeswhi
h
onne
t nodes. Finding the best move in a given positions thenmeans to sear
h through the su

essors of the position in order to �ndthe best su

essor for the player to move after �nding the best su

essorfor the opponent in the next level of the tree. This pro
edure is
alledminimaxing. In pra
ti
e,
omputers do not have time to sear
h to theend of the game. Instead, they sear
h to a
ertain depth, and use aheuristi
 evaluation fun
tion to evaluate the leaf nodes stati
ally. For
hess, the evaluation fun
tion is based on material and other
onsidera-tions su
h as King safety, mobility, and pawn stru
ture.An important improvement over minimax sear
h is alpha{beta prun-ing [10℄. An alpha{beta sear
h pro
edure takes additional parametersalpha and beta, and returns the
orre
t minimax value (up to a
ertaindepth) if the value is inside the window (alpha, beta). A returned valuegreater or equal to beta is a lower bound on the the minimax value,and a value less or equal to alpha is an upper bound. These
ases are
alled fail{high and fail{low, respe
tively. A pseudo{
ode representa-

First Experimental Results ofProbCut Applied to Chess 3int AlphaBeta(int alpha, int beta, int height) {if (height == 0) return Evaluation();int total_moves = GenerateMoves();for (int i=0; i < total_moves; i++) {MakeMove(i);val = -AlphaBeta(-beta, -alpha, height-1);UndoMove(i);if (val >= beta) return val;if (val > alpha) alpha = val;}return alpha;} Figure 1. The alpha{beta algorithm (fail{hard version).tion of one version of the algorithm is shown in Figure 1. The algorithmshown is
alled \fail{hard" alpha{beta, be
ause it generally returns al-pha for fail{lows and beta for fail{highs. There exist \fail{soft" versionsof alpha{beta whi
h
an return values outside of the alpha{beta window,thus giving better bounds when it fail{high/fail{low.There have been a number of enhan
ements to alpha{beta, e.g. trans-position tables, iterative deepening, NegaS
out, et
. ([7℄, [11℄). Armedwith these re�nements, alpha{beta has be
ome the dominant algorithmfor game tree sear
hing [7℄.Compared to minimax, alpha{beta is able to prune many subtreesthat would not in
uen
e the minimax value of the root position. But itstill spends most of its time
al
ulating irrelevant bran
hes that humanexperts would never
onsider. Resear
hers have been trying to make thesear
h more sele
tive, while not overlooking important bran
hes. Howshould we de
ide whether to sear
h a parti
ular bran
h or not? Oneidea is to base this de
ision on the result of a shallower sear
h. Thenull{move heuristi
 ([1℄, [5℄) and ProbCut are two approa
hes based onthis idea.2.2 The Null{Move Heuristi
A null{move is equivalent to a pass: the player does nothing and letsthe opponent move. Passing is not allowed in
hess, but in
hess gamesit is almost always better to play a move than passing. The null{moveheuristi
 (or null{move pruning) takes advantage of this fa
t, and beforesear
hing the regular moves for height�1 plies as in alpha{beta, it does

4a shallower sear
h on the null{move for height�R � 1 plies, where Ris usually 2. If the sear
h on the null{move returns a value greater orequal to beta, then it is very likely that one of the regular moves willalso fail{high. In this
ase we simply return beta after the sear
h onthe null{move. This pro
edure
an even be applied re
ursively in theshallower sear
h, as long as no two null{moves are played
onse
utively.Be
ause the sear
h on the null{move is shallower than the rest, o
-
asionally it will overlook something and mistakenly
ut the bran
h,but the speed{up from
utting these bran
hes allows it to sear
h deeperon more relevant bran
hes. The bene�ts far outweigh the o

asionalmistakes. However, in
hess endgames with few pie
es left, zugzwangpositions are often en
ountered, in whi
h any move will deteriorate theposition. Null{move heuristi
 fails badly in zugzwang positions. As aresult,
hess programs turn o� null{move heuristi
 in late endgames.There have been some resear
h to further �ne{tune and improve thenull{move heuristi
. Adaptive Null{Move Pruning [6℄uses R = 3 forpositions near the root of the tree and R = 2 for positions near theleaves of the tree, as a
ompromise between the too aggressive R = 3and the robust but slower R = 2. Veri�ed Null{Move Pruning [13℄usesR = 3, but whenever the shallow null{move sear
h returns a fail{high,instead of
utting, the sear
h is
ontinued with redu
ed depth. Veri�ednull{move pruning
an dete
t zugzwang positions, have better ta
ti
alstrength while sear
hing less nodes than standard R = 2.The null{move heuristi
 is very e�e
tive in
hess, and most of thestrong
hess engines use it. But it depends on the property that theright to move has positive value, so it is not useful to games like Othelloand
he
kers, in whi
h zugzwang positions are
ommon.2.3 ProbCutProbCut is based on the idea that the result v0 of a shallow sear
h isa rough estimate of the result v of a deeper sear
h. The simplest way tomodel this relationship is by means of a linear model:v = a � v0 + b+ e;where e is a normally distributed error variable with mean 0 and stan-dard deviation �. The parameters a, b, and �
an be
omputed by linearregression applied to the sear
h results of thousands of positions.If based on the value of v0, we are
ertain that v � �, where � isthe beta{bound for the sear
h on the
urrent subtree, we
an prune thesubtree and return �. After some algebrai
 manipulations, the above
ondition be
omes (av0+b��)=� � �e=�. This means that v � � holdstrue with probability of at least p i� (av0 + b � �)=� � ��1(p). Here,

First Experimental Results ofProbCut Applied to Chess 5� is the standard Normal distribution. This inequality is equivalentto v0 � (��1(p) � � + � � b)=a. Similarly for v � �, the
onditionbe
omes v0 � (���1(p) � � + � � b)=a. This leads to the pseudo{
odeimplementation shown on Figure 2. Note that the sear
h windows for theshallow sear
hes are set to have width 1. These are
alled null{windowsear
hes. Generally, the narrower the window is, the earlier the sear
hreturns. Null{window sear
hes are very eÆ
ient when we do not
areabout the exa
t minimax value and only want to know whether the valueis above or below a
ertain bound, whi
h is the
ase here. The depthpair and
ut threshold are to be determined empiri
ally, by
he
king theperforman
e of the program with various parameter settings.For ProbCut to be su

essful, v0 needs to be a good estimator of v,with a fairly small �. This means that the evaluation fun
tion needsto be a fairly a

urate estimator of the sear
h results. Evaluation fun
-#define S 4 // depth of shallow sear
h#define H 8 //
he
k height#define T 1.0 //
ut thresholdint AlphaBeta(int alpha, int beta, int height) {if (height == 0) return Evaluation();if (height == H) {int bound;// is v >= beta likely?bound = round ((T * sigma + beta - b) / a);if (AlphaBeta(bound-1, bound, S) >= bound)return beta;// is v <= alpha likely?bound = round ((-T * sigma + alpha - b) / a);if (AlphaBeta(bound, bound+1, S) <= bound)return alpha;}// The rest of alpha-beta
ode goes here...}Figure 2. ProbCut implementation with depth pair (4,8) and
ut threshold 1.0.

6tions for
hess are generally not very a

urate, due to opportunities of
apturing whi
h
annot be resolved stati
ally. Fortunately, most
hessprograms
ondu
t a so{
alled quies
en
e sear
h: at the leaves of thegame tree where the regular sear
h height rea
hes zero, instead of
all-ing the evaluation fun
tion, a spe
ial quies
en
e sear
h fun
tion is
alledto sear
h only
apturing moves, only using the evaluation fun
tion's re-sults when there are no pro�table
apturing moves. Quies
en
e sear
hreturns a mu
h more a

urate value.In summary, the null{move heuristi
 and ProbCut both try to
om-pensate for the lower a

ura
y of the shallow sear
h by making it harderfor the shallow sear
h to produ
e a
ut. The null{move heuristi
 doesthis by giving the opponent a free move, while ProbCut widens thealpha{beta window.2.4 Multi{ProbCutMPC enhan
es ProbCut in several ways:Allowing di�erent regression parameters and
ut thresholds fordi�erent stages of the game.Using more than one depth pair. For example, when using depthpairs (3,5) and (4,8), if at
he
k height 8 the 4{ply shallow sear
hdoes not produ
e a
ut, then further down the 8{ply subtree we
ould still
ut some 5{ply subtrees using 3{ply sear
hes.Internal iterative deepening for shallow sear
hes.Figure 3 shows pseudo{
ode for a generi
 implementation of MPC.The MPC sear
h fun
tion is not re
ursive in the sense that ProbCutis not applied inside the shallow sear
hes. This is done to avoid the
ollapsing of sear
h depth. In the
ase of Othello, MPC shows signi�
antimprovements over ProbCut.2.5 ProbCut and ChessThere has been no report of su

ess for ProbCut or MPC in
hessthus far. There are at least two reasons for this:1 The null{move heuristi
 has been su

essfully applied to
hess.Null{move and ProbCut are based on similar ideas. As a resultthey tend to prune the same type of positions. Part of the rea-son why ProbCut is so su

essful in Othello is that the null{moveheuristi
 does not work in Othello be
ause it is a zugzwang game.But in
hess, ProbCut and MPC have to
ompete with null{moves,whi
h already improves upon brute{for
e alpha{beta sear
h.

First Experimental Results ofProbCut Applied to Chess 7#define MAX_STAGE 2 // e.g. middle-game, endgame#define MAX_HEIGHT 10 // max.
he
k height#define NUM_TRY 2 // max. number of
he
ks// ProbCut parameter sets for ea
h stage and heightstru
t Param {int d; // shallow depthfloat t; //
ut thresholdfloat a, b, s; // slope, offset, std.dev.} param[MAX_STAGE+1℄[MAX_HEIGHT+1℄[NUM_TRY℄;int MPC(int alpha, int beta, int height) {// ProbCut
he
kif (height <= MAX_HEIGHT) {for (int i=0; i < NUM_TRY; i++) {int bound;Param &pa = param[stage℄[height℄[i℄;// skip if there are no parameters availabeif (pa.d < 0) break;// is v_height >= beta likely?bound = round((pa.t*pa.s+beta-pa.b)/pa.a);if (AlphaBeta(bound-1, bound, pa.d) >= bound)return beta;// is v_height <= alpha likely?bound = round((-pa.t*pa.s+alpha-pa.b)/pa.a);if (AlphaBeta(bound, bound+1, pa.d) <= bound)return alpha;}}// the remainder of the alpha-beta algorithm...}Figure 3. Multi{ProbCut implementation. AlphaBeta() is the original alpha{betasear
h fun
tion.

8 2 The probability of a
hess sear
h making a serious error is relativelyhigh, probably due to the higher bran
hing fa
tor [9℄. This leadsto a relatively large standard deviation in the linear relationshipbetween shallow and deep sear
h results, whi
h makes it harderfor ProbCut to prune sub{trees.In the GAMES group at the University of Alberta there had been at-tempts to make ProbCut work in
hess in 1997 [8℄. However, the
ut{thresholds were
hosen too
onservatively resulting in a weak perfor-man
e.Re
ently, resear
hers in Japan have su

essfully applied ProbCut toShogi [12℄. In Shogi programs forward pruning methods are not widelyused, be
ause Shogi endgames are mu
h more volatile than
hess end-ings. Therefore, ProbCut by itself
an easily improve sear
h performan
e
ompared with plain alpha{beta sear
hers. As mentioned above, gainingimprovements in
hess, however, is mu
h harder be
ause of the alreadyvery good performan
e of the null{move heuristi
.3. ProbCut ImplementationBefore trying MPC, we implemented the simpler ProbCut heuristi
with one depth pair and in
orporated it into Crafty (version 18.15) byRobert Hyatt.1 Crafty is a state{of{the{art free
hess engine. It uses atypi
al brute{for
e approa
h, with a fast evaluation fun
tion, NegaS
outsear
h and all the standard enhan
ements: transposition table, iterativedeepening, Adaptive Null{Move heuristi
, et
. Crafty also utilizes qui-es
en
e sear
h, so the results of its evaluation fun
tion plus quies
en
esear
h are fairly a

urate.The philosophy of our approa
h is to take advantage of the speed{up provided by the null{move heuristi
 whenever possible. One obviousway to
ombine the null{move and ProbCut heuristi
s is to view null{move sear
h as part of the brute{for
e sear
h, and build ProbCut ontop of the \alpha{beta plus null{move" sear
h. Applying the ne
essary
hanges to Crafty is easy. We put the ProbCut shallow sear
h
ode infront of the null{move shallow sear
h
ode. We also implemented theMPC feature that allows di�erent parameters to be used for middle{game and endgame.Before ProbCut{Crafty
ould be tested, parameters of the linear Prob-Cut opinion
hange model had to be estimated. We let Crafty sear
h(using alpha{beta with null{move heuristi
) around 2700 positions andre
ord its sear
h results for 1; 2; : : : ; 10 plies. The positions were
ho-1Crafty's sour
e
ode is available at ftp://ftp.
is.uab.edu/pub/hyatt.

First Experimental Results ofProbCut Applied to Chess 9

-1000

-500

 0

 500

 1000

-800 -600 -400 -200 0 200 400 600 800

v,
 d

ep
th

 8

v’, depth 4Figure 4. v0 versus v for depth pair (4,8) The evaluation fun
tion's s
ale is 100= one pawn, i.e. a s
ore of 100 means the player to move is one pawn up (or hasequivalent positional advantage).sen randomly from some
omputer
hess tournament games and some ofCrafty's games against human grandmasters on internet
hess servers.Note that Crafty was using the null{move heuristi
 for these sear
hes.Then we �tted the linear regression model for several depth pairsand game phases, using the data
olle
ted. The results indi
ate thatshallow and deep sear
h results are
orrelated, as shown in Figure 4.However, the �t is not perfe
t. The v0 versus v relation has the following
hara
teristi
s:The slope is
loser to 1.0 and the standard deviation smaller for v0data points
loser to zero, For example, for depth pair (4, 8), and v0data points in the range [�300; 300℄, the slope is 1:07 and the stan-dard deviation is 83; for v0 data points in the range [�1000; 1000℄,the slope is 1:13 and the standard deviation is 103. This
an beexplained as follows: if say White has a big advantage, then Whitewill likely gain more material advantage after a few more moves.Therefore, if the shallow sear
h returns a big advantage, a deepersear
h will likely return a bigger advantage, and vi
e versa for dis-advantages. We only used v0 data points in the range [�300; 300℄for the linear regression.

10Table 1. Linear regression results. The evaluation fun
tion's s
ale is 100 = onepawn. r is the regression
orrelation
oeÆ
ient, a measure of how good the data �tsthe linear model. Pairs Stage a b � r(3,5) middle{game 0.998 �7 55.8 0.90(3,5) endgame 1.026 �4:1 51.8 0.94(4,8) middle{game 1.02 2:36 82 0.82(4,8) endgame 1.11 1:75 75 0.90O

asionally the shallow sear
h misses a
he
k{mate while thedeeper sear
h �nds it. For example, in a position White
an
he
k{mate in 7 plies. A 4{ply sear
h
annot �nd the
he
k{mate whilea 8{ply sear
h
an �nd it. For the depth pair (4, 8), and v0 datapoints in the range [�300; 300℄, this happens roughly on
e every1000 positions. A
he
k{mate{in{N{moves is represented by avery large integer in Crafty. We ex
luded these data points fromthe linear regression, be
ause the evaluation of
he
k{mate is arather arbitrary large number, there is no proper way to in
orpo-rate these data points in the linear regression.We also �tted model parameters for di�erent game stages. It turned outthat the standard deviation for the �t using only endgame positions2 issmaller than the standard deviation using only middle{game positions.Table 1 shows some of the results.We
ondu
ted some experiments3 with di�erent depth pairs and
utthresholds. Depth pairs (4; 6) and (4; 8), and
ut thresholds 1:0 and 1:5were tried. We used two types of tests. First, we test the sear
h speedby running �xed{time sear
hes and look at the depths rea
hed. If aProbCut version is not faster than the plain null{move version, then theProbCut version is
learly no good. If a ProbCut version is faster thannull{move, it is still not ne
essarily better. So to test the overall perfor-man
e, we then run mat
hes between the promising ProbCut versionsand the original Crafty.2In Crafty endgame positions are de�ned as those in whi
h both players have weightedmaterial
ount less than 15. Here queen is 9, rook is 5, knight/bishop is 3, and pawns don't
ount.3All initial experiments were run on Pentium{3/850MHz and Athlon{MP/1.66GHz ma
hinesunder Linux, whereas the later tournaments were all played on Athlon{MP/2GHz ma
hines.Crafty's hash table size was set to 48 MBytes, and the pawn hash table size to 6 MBytes.Opening books and thinking on opponent's time was turned o�.

First Experimental Results ofProbCut Applied to Chess 11We let the program sear
h about 300 real{game positions, spending30 se
onds on ea
h position, and see how deep it was able to sear
h onaverage. Results show thatVersions with depth pairs (4,6) and (4,8) have similar speeds.The versions with
ut threshold 1.5 are not faster than plain Crafty.The versions with
ut threshold 1.0 are slightly faster than Crafty:they sear
h 11.6 plies
ompared to 11.5 plies by Crafty. In somepositions, 80 � 90% of the shallow sear
hes result in
uts, andProbCut is mu
h faster than plain Crafty. But in some otherpositions the shallow sear
hes produ
e
uts less than 60% of thetime, and ProbCut is about the same speed or even slower thanCrafty. On average, this version of ProbCut produ
es more
utsthan plain Crafty's null{move heuristi
 does at the
he
k height.Be
ause the
ut threshold 1.5 is no good, we
on
entrated on the thresh-old 1.0 for the following experiments. We ran mat
hes between the Prob-Cut versions and plain Crafty. Ea
h side has 10 minutes per game. Ageneri
 opening book was used. Endgame databases were not used. A
onservative statisti
al test4 shows that in a 64{game mat
h, a s
oreabove 38 points (or 59%) is statisti
ally signi�
ant with p < 0:05. Herea win
ounts one point and a draw
ounts half a point.The mat
h results are not statisti
ally signi�
ant. The ProbCut ver-sions seem to be no better nor worse than plain Crafty. For
omparison,we ran a 64{game mat
h of ProbCut against Crafty with null{moveturned o� for both programs. The ProbCut version is signi�
antly bet-ter than Crafty here, winning the mat
h 40{24.4. Multi{ProbCut Implementation and ResultsProbCut produ
es more
uts than the plain null{move heuristi
 does,but it seems that the small speed{up provided by ProbCut is not enoughto result in better playing strength. This motivates our implementationof MPC. We already have di�erent regression parameters for middle{game and endgame in our ProbCut implementation. Now we imple-mented multiple depth pairs. The implementation was straightforward,mu
h like the pseudo{
ode in Figure 3.4The statisti
al test is based on the assumption that at least 30% of
hess games betweenthese programs are draws, whi
h is a fair estimate. The test is based on Amir Ban's programfrom his posting on re
.game.
hess.
omputer:http://groups.google.
om/groups?hl=en&lr=&ie=UTF-8&selm=33071608.796A%40msys.
o.il

12Table 2. Endgame threshold optimization results. Reported are the point per
ent-ages for MPC{Crafty playing 64{game tournaments against Crafty using di�erentvalues for the endgame
ut thresholds. Game timing was 2 minutes per player pergame plus 12 se
onds in
rement on an Athlon{MP 1.67 GHz. The middle{gamethreshold was �xed at 1.0.tend 0.5 0.6 0.7 0.8 0.9 1.0 1.05 1.1 1.2 1.3MPC % 53.9 59.3 53.1 48.5 51.6 57.8 52.3 54.7 51.6 51.6Table 3. Middle{game threshold optimization results. With the endgame threshold�xed at 1.0 we repeated the 64{game tournaments now using faster hardware (Athlon{MP 2 GHz) that just be
ame available and longer time
ontrols: 10 minutes per playerper game plus 60 se
onds in
rement. Ea
h tournament took about eight CPU days.tmid 0.8 0.9 1.0 1.1 1.2 1.3MPC % 54.7 59.4 57.8 58.6 59.4 53.1After initial experiments whi
h showed that the null{move heuristi
ex
els at small heights, we
hose depth pairs (2,6), (3,7), (4,8), (3,9), and(4,10) for endgames and middle{games. Another reason for
hoosingpairs with in
reasing depth di�eren
es is that otherwise the advantageof MPC rapidly diminishes in longer timed games. We tested the speedof the MPC implementation using a
ut threshold of 1.0 on the same300+ positions as in Se
tion 1.3. With 30 se
onds per position, it is ableto sear
h 12.0 plies on average, whi
h is 0.5 plies deeper than originalCrafty.For optimizing the endgame and middle{game
ut thresholds we thenran two sets of 64{game tournaments between MPC{Crafty and theoriginal version. In the �rst phase we kept the middle{game
ut thresh-old �xed at 1.0 and varied the endgame threshold. The results shownin Table 2 roughly indi
ate good threshold
hoi
es. However, the high
u
tuations suggest that we should play more games to get better play-ing strength estimates. After some more experimentation we �xed theendgame threshold at 1.0 and went on to optimizing the middle{game
ut threshold by playing a se
ond set of tournaments, now on faster hard-ware and longer time
ontrols. Threshold pairs (1:2; 1:0) and (1:0; 1:0)resulted in the highest s
ore (59.4%) against the original Crafty version.In order to validate the self{play optimization results, we �nally letMPC{Crafty play a set of tournaments against Ya
e | a strong
hessprogram written by Dieter Buerssner whi
h is available for Linux and
anbe downloaded from http://home1.stofanet.dk/moq/. Table 4 summa-

First Experimental Results ofProbCut Applied to Chess 13Table 4. Results of 64{game tournaments played by three Crafty versions againstYa
e using two di�erent time
ontrols.Pairing Crafty % Crafty %(2min+10se
/move) (8min+20se
/move)Crafty vs. Ya
e 42.0% 50.8%MPC{Crafty (1.2,1.0) vs. Ya
e 53.1% 56.3%MPC{Crafty (1.0,1.0) vs. Ya
e 57.0% 55.5%
rizes the promising results whi
h indi
ate a moderate playing strengthin
rease even against other
hess programs when using MPC.5. Con
lusions and Further Resear
hPreliminary results show that MPC
an be su

essfully applied to
hess. Our MPC implementation shows
lear improvement over ourProbCut (plus variable parameters for di�erent stages) implementation.This indi
ates that the main sour
e of improvement in MPC is the use ofmultiple depth pairs. Due to the already good performan
e of the null{move heuristi
 in
hess, the improvement provided by MPC in
hess isnot as huge as in Othello. However our implementation, whi
h
ombinesMPC and null{move heuristi
, shows de�nite advantage over the plainnull{move heuristi
 in Crafty, as shown by the mat
h results. MPC isrelatively easy to implement. We en
ourage
hess programmers to tryMPC in their
hess programs.More experiments need to be
ondu
ted on our MPC implementationto determine how evaluation fun
tion parameters like the King safetyweight
an in
uen
e MPC's performan
e. To further verify the strengthof the MPC implementation, we plan to run mat
hes with even longertime
ontrols.The depth pairs and the
ut threshold
an be further �ne{tuned.One way to optimize them is to run mat
hes between versions withdi�erent parameters. But better results against another version of thesame program do not ne
essarily translate into better results againstother opponents. An alternative would be to measure the a

ura
y ofsear
h algorithms by a method similar to the one employed in [9℄, usinga deeper sear
h as the \ora
le," and looking at the di�eren
e betweenthe ora
le's evaluations on the ora
le's best move and the move
hosenby the sear
h fun
tion we are measuring. Maybe the
ombination of theabove two methods gives a better indi
ation of
hess strength.

146. A
knowledgmentsWe would like to thank David Poole for his helpful
omments, andBob Hyatt for making the sour
e
ode of his ex
ellent and very readableCrafty
hess program available to the publi
.

Referen
es

[1℄ D.F. Beal. A generalized quies
en
e sear
h algorithm. Arti�
ial Intelligen
e,43:85{98, 1990.[2℄ M. Buro. ProbCut: An e�e
tive sele
tive extension of the alpha{beta algorithm.ICCA Journal, 18(2):71{76, 19951 .[3℄ M. Buro. Experiments with Multi{ProbCut and a new high{quality evaluationfun
tion for Othello. Workshop on game{tree sear
h, NECI, 19971 .[4℄ M. Buro. The Othello mat
h of the year: Takeshi Murakami vs. Logistello.ICCA Journal, 20(3):189{193, 19971.[5℄ C. Donninger. Null move and deep sear
h: Sele
tive sear
h heuristi
s for obtuse
hess programs. ICCA Journal, 16(3):137{143, 1993.[6℄ E.A. Heinz. Adaptive null-move pruning. ICCA Journal, 22(3):123{132, 1999.[7℄ A. Junghanns. Are there pra
ti
al alternatives to alpha{beta? ICCA Journal,21(1):14{32, 1998.[8℄ A. Junghanns and M. Bro
kington. Personal
ommuni
ation. 2002.[9℄ A. Junghanns, J. S
hae�er, M. Bro
kington, Y. Bj�ornsson, and T. Marsland.Dimishing returns for additional sear
h in
hess. In H.J. van den Herik andJ.W.H.M. Uiterwijk, editors, Advan
es in Computer Chess 8, pages 53{67, 1997.ISBN 9-062-16234-7.[10℄ D.E. Knuth and R.W. Moore. An analysis of alpha{beta pruning. Arti�
ialIntelligen
e Journal, 6:293{326, 1975.[11℄ A. Reinefeld. An improvement of the S
out tree sear
h algorithm. ICCA Jour-nal, 6(4):4{14, 1983.[12℄ K. Shibahara, N. Inui, and Y. Kotani. E�e
t of ProbCut in Shogi | by
hangingparameters a

ording to position
ategory. In Pro
eedings of the 7th GameProgramming Workshop, Hakone, Japan, 2002.1The author's arti
les
an be downloaded for personal use fromhttp://www.
s.ualberta.
a/~mburo/publi
ations.html

16[13℄ O.D. Tabibi and N.S. Netanyahu. Veri�ed null-move pruning. ICGA Journal,25(3):153{161, 2002.

