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Abstract

This paper describes the evaluation function of one of
today’s strongest Othello programs — LOGISTELLO.
The function is based on statistical analysis of a large
set of example game positions and profits from ideas
regarding pattern value estimation, determination of
feature weights, and the fast approximation of time
consuming evaluation features.

Introduction

Most game—playing programs use evaluation functions
to estimate the players’ winning chances at the leaves
of game—trees. Normally, these functions combine fea-
tures that measure specific properties of the position
which are correlated with winning. In this paper such
an evaluation function for the game of Othello® is de-
scribed, which is almost entirely based on statistical
analysis. It is the heart of LOGISTELLO, considered to
be one of the strongest Othello programs ever.

Central to the following discussions is the use of a
large set of loss—draw—win classified example positions.
This serves several purposes:

e First, it is used to compute the discordance of fea-
tures which is a global measure for the feature’s abil-
ity to separate positions from different classes.? In
comparison with the feature’s misclassification rate,
the discordance is more meaningful in the context of
game—tree search since normally the goal is to find
the best move rather than to decide whether a posi-
tion is won or lost.

e Secondly, the large position set is used to evaluate
instances of board patterns by estimating the win-
ning chances conditioned upon their occurrence.

e Finally, feature weights are determined by fitting a
statistical model.

'For those readers unfamiliar with this game, a brief
description is given in the appendix.

2To be precise, the discordance is defined as the ratio of
the number of incorrectly separated pairs of positions with
different outcomes and the total number of all such pairs.

Over a period of two years, about 60,000 Othel-
lo games® were played by early versions of Igor
Durdanovié¢’s program KITTY and LOGISTELLO. Dur-
ing the last two years, LOGISTELLO generated about
20,000 additional games while extending its opening
book. Positions from these games are also used to in-
crease the number of examples especially for pattern
value estimation. All in all, a total of approximately
three million game positions were classified by nega-
maxing the final game results in the tree built from all
games.

The following sections describe LOGISTELLO’s eval-
uation features, their combination, and implementa-
tion aspects.

Evaluation Features
LOGISTELLO’s features fall into two classes, namely
e Mobility measures
e Patterns

which together approximate important concepts in
Othello, like striving for stable discs, maximizing the
number of moves, and parity.

Mobility

Besides the ownership of stable discs (that cannot be
flipped by the opponent), mobility plays a central role
in Othello. Many mobility measures have been dis-
cussed in the literature (Rosenbloom 1982; Mitchell
1984). The simplest approach is to count legal moves
but — unfortunately — the determination of all le-
gal moves is very time consuming. Early versions of
LOGISTELLO used about 50% of their time for this
task. Nowadays, LOGISTELLO uses a fast approx-
imation of the simple mobility measure. Here the
idea is to approximate the globally defined mobility
by the sum of mobilities local to the lines of the board,
i.e. the horizontals, verticals, and diagonals, in order
to avoid any legal-move computation.* Diagonals of

3The game file can be obtained via anonymous ftp:
ftp.nj.nec.com/pub/igord/othello/misc/database.zip

“Lee & Mahajan (1990) used this technique to adjust
the ezact mobility score.
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Figure 1: Moves that
are counted k—times by
the mobility approxima-
tion (1 < k <4).
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length three are not considered, since the correspond-
ing moves flip discs on X—squares which is dangerous.
Moreover, omitting these diagonals speeds up the in-
cremental update of the pattern indices as discussed
in the implementation section. In this way the mobil-
ity can be quickly approximated by simply adding 34
values that are stored in tables. However, it must be
asked, whether the new mobility measure can compete
with the original exact mobility, since there are situ-
ations in which it overestimates the number of moves
(Figure 1). As Figure 4 shows, in the opening and
middle-game the exact mobility has only a slightly bet-
ter separation ability than its approximation, whereas
in the endgame this advantage vanishes. Thus, the ex-
act mobility can be safely replaced by its much faster
approximation.

Potential Mobility

Since current mobility is an important feature in Oth-
ello, it is a good strategy to strive for positions in which
future move possibilities are likely. For making a move,
it is necessary that the move square is empty and there
is an adjacent opponent’s disc which can be brack-
eted. Thus, the relationship between empty squares
around opponent’s discs is important for future mobil-
ity. Rosenbloom (1982) proposed three measures for
potential mobility. Since these are strongly correlated,
only the feature with the lowest test—set discordance
among the three was chosen and slightly adapted: LO-
GISTELLO defines the potential mobility for one player
as the number of adjacent pairs of opponent’s discs and
empty squares. Only those empty squares are consid-
ered which might be used to flip an opponent’s disc,
but which — in order to decrease the correlation of po-
tential and current mobility — are not currently legal
moves. Furthermore, potential mobility on edges and
length—3 diagonals are ignored, since placing a disc on
these lines might generate legal moves in the future but
is otherwise very dangerous because corners and X-—
squares are probably involved. Finally, the difference
of the players’ values can be approximated analogously
to current mobility by a sum of line values in order to
speed up the computation.

Patterns

There are many edge situations which lead to a forced
win or loss of a corner. Therefore, it is important to
be aware of them when evaluating a leaf position in
the game tree. In early approaches values were man-

ually assigned to edge instances and stored in a table.
This allows a fast edge evaluation since only four val-
ues have to be added. Rosenbloom (1982) and Lee
& Mahajan (1990) proposed semi—automatic (proba-
bilistic) minimax procedures for edge—table generation
which worked quite well. However, there is a problem
with these approaches: for the recursive edge filling
process, many constants had to be pre—defined intu-
itively. This raises the question whether the quality of
the computed table could be increased by altering the
constants.

A New Approach In order to circumvent this prob-
lem, and to make the pattern approach more flexible,
the early concepts can be generalized as follows:

e Any set of squares is called a pattern.

e A pattern instance (or configuration) assigns an el-
ement from {empty,black, white} to each pattern
square. Without loss of generality, it is assumed
that Black is to move.

e The value of a pattern instance is defined as the ex-
pected value of a suitable random—variable — de-
fined on the set of all positions — conditioned upon
the occurrence of that instance.

In order to illustrate this definition, Figure 2 shows
all patterns that are currently used by LOGISTELLO,
and Figure 3 gives some edge configuration examples.
Meaningful definitions for the random—variable include
the game outcome (win= 0.5, draw= 0, loss= —0.5) or
the final disc—difference (—64..64) from Black’s point
of view after optimal play.

For some patterns — especially for those including
corners — the side to move makes a big difference and
one might guess that it is very important to distin-
guish both cases. However, the right to move can only
be realized in one region of the board, and optimizing
this aspect everywhere can lead to an overestimation of

diagonal 5 diagonal 6 diagonal 7 in di
< O < ©
< i < <
< i < <
i 3 i 3
i 3 i 3
3 i 3
i 3
3
edge horizontal 2 horizontal 3 horizontal 4
ORI
oo
ORI
SRR

Figure 2: Used patterns (dots mark squares of sub—
patterns which are described at the end of the section).



the position. On the other hand, averaging both values
is more robust in this sense, increases the number of
examples for each instance, since all occurrences con-
tribute regardless of the side to move, and, finally, the
table size can be reduced by roughly 50% due to color
symmetry. Early experiments showed no advantage of
the side-to—move distinction.

Another very important question is how the position
sample space influences the estimates. Considering the
application of the evaluation function, it seems reason-
able to restrict the positions to those which actually
occur in af game-tree searches. Unfortunately, this
approach doesn’t work for the following reason:

Due to the nature of minimax searches, in the ma-
jority of visited positions the side to move is extremely
favored. This effect causes a bias in the estimations
since there appears to be an a priori winning probabil-
ity much greater than 0.5, which is definitely not true
for positions on principal variations. This bias intro-
duces large evaluation oscillations in iterative deepen-
ing searches. Furthermore, while important patterns
like edges get their deserved credit for correctly guess-
ing the outcome after bad moves that — for example
— give corners without compensation, the less impor-
tant patterns suffer from extreme training examples in
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Figure 3: Values of some edge instances

that their estimates are pushed towards 0 since these
patterns simply don’t matter in this case.

A pragmatic solution to both problems which gives
good results is to take training positions from well-
played games. This also has the advantage that all
positions can be easily classified as a win, draw, or loss
by negamaxing the tree built from the games. A dis-
advantage of this approach is that only a subset of the
possible pattern instances occur in good games which
may cause inaccurate evaluations when unknown in-
stances appear during search. In extreme cases — for
instance where corners are involved — a quiescence
search can help, which explores lines more deeply in
tactical situations.®

For an accurate estimation, a large number of ex-
amples is needed since the number of instances can
be quite large. For example, the 8-disc pattern along
the edge of the board has 3% = 6561 instances. Fur-

5To overcome all these problems, currently a new ap-
proach is under investigation which gives each training po-
sition a weight that favors even positions. In this way ta-
bles are not only tuned for evaluating relevant positions on
principal variations, but are also aware of rare situations if
training positions generated by searches are also used.
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Figure 4: Discordance of important features and the
evaluation function



thermore, pattern evaluations are normally game phase
dependent, so even more examples are needed to esti-
mate the table entries with a small variance. In order
to mute this effect, it is possible to take advantage of
pattern and color symmetry, as well as to smooth the
estimates between adjacent phases.

Another problem caused by using well-played games
lies in the local occurrence of pattern instances. For
example, corners are normally occupied not until
endgame, but even in the opening corner moves are
examined in the course of minimax game—tree search
and positions with occupied corners must be assigned a
value. Therefore, it is reasonable to extrapolate evalu-
ations to game phases in which pattern instances rarely
occur.

As an application of the new pattern evaluation ap-
proach, Figure 3 shows the expected outcome for Black
conditioned upon the occurrence of some interesting
edge configurations after extrapolation and smoothing.
The value for pattern p is estimated using the following
expression:

Vip) = Y(p)+05
N(p)+1.0

where N(p) = number of positions containing p, and
Y (p) = number of positions containing p which are won
for Black + 0.5 - number of drawn positions containing
p. The additive constants 0.5 and 1.0 assure a neutral
evaluation (0) of pattern instances that do not occur.

While only good Othello players know the deep se-
crets of edge—play, some non—expert remarks are in
order: A few games against experienced opponents
suffice to teach a beginner that edge configuration 1
is very dangerous for Black because normally White
can easily attack and win the upper left corner. Fur-
thermore, the earlier that configuration appears on the
board the more dangerous it is. Figure 3 underpins this
observation. Configurations 2 and 3 regularly show up
in tournament games, and examples 4-8 make clear
that the simple concept “corners are good” must be
qualified. Indeed, a short reflection reveals that there
is a tradeoff between corner possession and mobility,
and that while corner discs are the prominent stable
discs which can be used as an anchor to produce more
stable discs, at the end of the game there are more
stable discs between them. These effects might ex-
plain the decreasing evaluation of configuration 4 and
the evaluation differences of configurations 5-8.

Choosing Patterns When choosing patterns used
for evaluation, one has to take into account their cor-
relation, how well the table entries can be estimated
given a certain number of example positions, how large
the tables are, and how fast the according indices can
be computed. The latter question suggests using lines
of the board since their indices are already used for
mobility approximation. On the other hand, experi-
ments showed that game phase dependent 8-disc pat-
terns are manageable even with the limitations of only

about 80,000 available example games and a few mil-
lion bytes of RAM for the tables. In order to compare
the separation quality of different patterns, the exam-
ple position set was divided into two parts. The first
subset was used as a training set for pattern value esti-
mation whereas the discordance was determined using
the second set to avoid overfitting effects. A new very
powerful 8—disc pattern, the 2x4—corner pattern, was
found that even outperforms the widely used edge pat-
tern, as shown in Figure 4.

Recently two 10—disc patterns and one 12—disc pat-
tern were incorporated in order to increase LOGIS-
TELLO’s knowledge about X-square—edge interaction
and parity, namely the edge+2X, the 2 x 5— and the
3x4—corner pattern, which are shown in Figure 2. Since
the number of examples was insufficient to estimate ta-
ble entries for these large patterns for multiple stages
of the game, single tables store the evaluation for all
stages. Even with this restriction many configurations
occurred rarely. Thus, the estimates of specific sub—
configurations served as seed values using the following
convex combination of estimates for the large configu-
ration and its sub-configuration:

Y(p) +0.5 Y (sub p) + 0.5
Ny 10 T Y NEab p) £ 1.0

where a@ = min{1, N(p)/40} is a weight which models
the increasing influence of the large configuration esti-
mate dependent on N(p). In Figure 2, the squares of
the chosen sub—patterns are marked with a dot.

V(p) = 0.5,

Feature Combination

Often game stage dependent linear feature combina-
tions are used to evaluate positions because they are
quickly computable and there are efficient methods to
determine the feature weights. Besides several hill
climbing techniques three statistical approaches have
been used:

e Mitchell (1984) labels Othello positions with the
game result in the form of the disc—difference and
performs a linear regression.

o Lee & Mahajan (1988) use a quadratic discriminant
function assuming the features to be multivariate
normal within the win and loss class.

e In (Buro 1994,1995) evaluation functions are de-
scribed in the statistical framework of generalized
linear models and logistic regression is used for pa-
rameter estimation.

These approaches give the evaluation function a game
phase independent meaning. This is important if the
evaluation function depends on the game phase and
positions from different phases have to be compared

6 An extensive pattern comparison can be found in (Buro
1994).



(e.g. selective extensions, reductions, or choosing open-
ing book lines). Mitchell’s evaluation function es-
timates the disc—difference at the end of the game,
whereas Lee & Mahajan’s quadratic discriminant func-
tion and logistic regression model the winning proba-
bility.

In order to determine LOGISTELLO’s feature
weights, the following statistical approaches were com-
pared empirically:

e The quadratic discriminant function for normally
distributed features with different covariance matri-
ces within the win and loss class.

e The linear discriminant function for normally dis-
tributed features with equal covariance matrices
(also known as Fisher’s linear discriminant).

e Logistic regression, which makes no assumptions
about the feature distribution.

Since each of these methods model the winning prob-
ability, they also apply to games without win degrees.
After maximum-likelihood parameter estimations
for each model and several game phases defined by disc
number, tournaments were played under usual tim-
ing conditions (30 minutes per player per game) using
100 nearly even starting positions from LOGISTELLO’s
opening book. It turned out that the weight vectors
determined by logistic regression led to the strongest
tournament program. A detailed description of these
experiments can be found in (Buro 1994, 1995).

Implementation Aspects

In game-tree search there is a tradeoff between the
evaluation function’s quality and its computation time.
Thus, it is very important to implement the function
as efficient as possible once it has been chosen. In this
section techniques are described which significantly in-
crease the evaluation speed of the presented table—
based evaluation function.

Incremental Index Updates

It is well known that incremental updates might be
faster than performing all computation concerning
evaluation at the leaves. With the table look—up ap-
proach it is necessary to determine indices from the
current position. Assuming a 10x10 byte—array repre-
sentation of the board — with +1 standing for black
discs, 0 for empty squares, and —1 for white discs —
the index representing the northern edge can be com-
puted as follows:

3k (3% (3% (3% (3% (3% (3*%b[11]1+b[12])+b[13])+
b[14]1)+b[15]1)+b[16]1)+b[17]1)+b[18]

At first glance, this expression seems to be very time—
consuming. However, an optimizing compiler should
be able to replace the multiplications by additions in
order to speed up the computation. On average, the
typical move flips 2—4 discs, depending of the stage of

the game. Therefore, it would be faster to compute
indices at the root position and to update them while
making moves. Modifying one square’s contents influ-
ences at most five line— and 2d—corner—indices because
diagonals of length less than four are not considered
(Figure 5 gives an illustration). Thus, the following
lines of C—code suffice to perform all necessary index
updates caused by flipping or placing a single disc:

for (i=0; i < 5; i++)
*(p->Index[i]) OP= p->0FFSET[i];

where p is a pointer to a pre-computed structure which
contains the square’s index addresses and index offsets,
0P is either + or - depending on the side to move, and
OFFSET is either F1ipOffset or PlaceOffset. Here it
is assumed that the compiler is able to unroll the loop.

Extending this scheme to the described 10— and 12—
disc—patterns makes it necessary to increase the max-
imum number of index updates for some squares. It
turned out that with LOGISTELLO’s implementation
this approach is slower than simply using the 2x4-
corner—indices to compute the 2x5— and 3x4—corner—
indices and using the edge-indices to determine the
edge+2X—indices at the leaves.

Another important question is whether to perform
copy/move or move/undo pairs in the tree—search pro-
cess. On both Sun—Sparc and Intel-Pentium architec-
ture LOGISTELLO’s undo—move — that is flipping back
discs, remove the placed disc, and update indices using
negated offsets — is faster on average than to copy the
entire board structure including indices.
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Figure 5: Indices influenced by squares c2 and h7.

Speed vs. Space — Table Combination

During the evaluation of the board, the indices for
the diagonals, horizontals, and verticals are used three
times: for the approximation of mobility and potential
mobility, and for pattern instance evaluations. Rather
than to access the three corresponding tables and to
add the values after multiplication with the feature
weights, it is possible to combine all three values into
one table for each game phase in a preprocessing step.
In this way, only one table has to be accessed for each
line of the board and during evaluation multiplications
with the feature weights are no longer needed. The
same trick also applies to patterns which include other



patterns. While this technique increases the space
needed for the tables, it speeds up LOGISTELLO’s
search by about 75%.

Using a similar approach in their Othello program
BILL, Lee & Mahajan (1990) were also able to speed
up the evaluation by ’parallelizing’ the computation of
different features defined on the same set of patterns.
However, their use of a quadratic feature combination
made it impossible to combine all weighted table en-
tries into a single value for each pattern instance.

Summary and Outlook

In this paper the evaluation function of one of to-
day’s strongest Othello programs has been presented
together with the underlying concepts for the construc-
tion of features, their fast approximation, quality com-
parison, and combination. These approaches are al-
most entirely based on the analysis of a large set of
example positions and do not require any manual pa-
rameter tuning.

The general ideas — feature approximation, pattern
instance evaluation, and feature combination, also ap-
ply to other games. For instance, in chess one might
think of piece constellation patterns and the estima-
tion of feature weights based on existing large game
databases and logistic regression. However, some prob-
lems of pattern learning — like choosing the right sam-
ple space — are unresolved and still under investiga-
tion. Hopefully, a greater insight will lead to even
stronger programs.
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Appendix: Othello

Othello is a two—person zero sum perfect information
game played on a 8x8 board using 64 two—colored
discs. Its rules are quite simple: Black goes first with
White and Black alternating moves thereafter — if pos-
sible. In order to move, a disc is placed on an empty
square showing the player’s color such that the new
disc and another own disc already on the board bracket
at least one opponent’s disc. All bracketed discs in all
directions have to be turned, now showing the player’s
color. An example is given in the diagrams beneath.
A player without legal moves has to pass. The game
ends if neither player has a legal move in which case
the player with the most discs on the board has won
the game.
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