
1

Combat Outcome Prediction for RTS Games
Marius Stanescu, Nicolas A. Barriga and Michael Buro

[1 leave this spacer to make page count accurate]

[2 leave this spacer to make page count accurate]

[3 leave this spacer to make page count accurate]

[4 leave this spacer to make page count accurate]

[5 leave this spacer to make page count accurate]

[6 leave this spacer to make page count accurate]

[7 leave this spacer to make page count accurate]

[8 leave this spacer to make page count accurate]

[9 leave this spacer to make page count accurate]

[10 leave this spacer to make page count accurate]

[11 leave this spacer to make page count accurate]

[12 leave this spacer to make page count accurate]

[13 leave this spacer to make page count accurate]

[14 leave this spacer to make page count accurate]

[15 leave this spacer to make page count accurate]

[16 leave this spacer to make page count accurate]

[17 leave this spacer to make page count accurate]

[18 leave this spacer to make page count accurate]

[19 leave this spacer to make page count accurate]

[20 leave this spacer to make page count accurate]

1 Introduction

Smart decision making at the tactical level is important for AI agents to perform well in

Real-Time Strategy (RTS) games, in which winning battles is crucial. While human players

can decide when and how to attack based on their experience, it is challenging for AI agents

to estimate combat outcomes accurately. Prediction by running simulations is a popular

method, but it uses significant computational resources and needs explicit opponent

modeling in order to adjust to different opponents.

 This chapter describes an outcome evaluation model based on Lanchester’s attrition

laws, which were introduced in Lanchester’s seminal book "Aircraft in Warfare: The Dawn

of the Fourth Arm" in 1916 [Lanchester 16]. The original model has several limitations that

we have addressed in order to extend it to RTS games [Stanescu 15]. Our new model takes

into account that armies can be comprised of different unit types, and that troops can enter

battles with any fraction of their maximum health. The model parameters can easily be

estimated from past recorded battles using logistic regression. Predicting combat outcomes

with this method is accurate and orders of magnitude faster than running combat

simulations. Furthermore, the learning process does not require expert knowledge about the

game or extra coding effort in case of future unit changes (e.g. game patches).

2

2 The Engagement Decision

Suppose you command 20 knights and 40 swordsmen and just scouted an enemy army of 60

bowmen and 40 spearmen. Is this a fight you can win, or should you avoid the battle and

request reinforcements? This is called the engagement decision [Wetzel 08].

2.1 Scripted Behavior

Scripted behavior is a common choice for making such decisions, due to the ease of

implementation and very fast execution. Scripts can be tailored to any game or situation. For

example, always attack is a common policy for RPG or FPS games – e.g. guards charging as

soon as they spot the player. More complex strategy games require more complicated

scripts: attack closest, prioritize wounded, attack if enemy doesn’t have cavalry, attack if we

have more troops than the enemy or retreat otherwise. AI agents should be able to deal with

all possible scenarios encountered, some of which might not be foreseen by the AI designer.

Moreover, covering a very wide range of scenarios requires a significant amount of

development effort.

There is a distinction we need to make. Scripts are mostly used to make decisions,

while in this article we focus on estimating the outcome of a battle. In RTS games this

prediction is arguably the most important factor for making decisions, and here we focus on

providing accurate information to the AI agent. We are not concerned with making a

decision based on this prediction. Is losing 80% of the initial army too costly a victory?

Should we retreat and potentially let the enemy capture our castle? We leave these decisions

to a higher-level AI, and focus on providing accurate and useful combat outcome

predictions. Examples about how these estimations can improve decision making can be

found in [Bakkes 08] and [Barriga 17].

2.2 Simulations

One choice that bypasses the need for extensive game knowledge and coding effort is to

simulate the battle multiple times, without actually attacking in the game, and record the

outcomes. If from 100 mock battles we win 73, we can estimate that the chance of winning

the engagement is close to 73%. For this method to work, we need the combat engine to

allow the AI system to simulate battles. Moreover, it can be difficult to emulate enemy

player behaviors, and simulating exhaustively all possibilities is often too costly.

Technically, simulations do not directly predict the winner but provide information

about potential states of the world after a set of actions. Performing a playout for a limited

number of simulation frames is faster, but because there will often not be a clear winner, we

need a way of evaluating our chances of winning the battle from the resulting game state.

Evaluation (or scoring) functions are commonly employed by look-ahead algorithms, which

forward the current state using different choices and then need to numerically compare the

results. Even if we do not use a search algorithm, or partial simulations, an evaluation

function can be called on the current state and help us make a decision based on the

predicted combat outcome. However, accurately predicting the result of a battle is often a

difficult task.

The possibility of equal (or nearly equal armies) fighting with the winner seeing the

battle through with a surprisingly large remaining force is one of the interesting aspects of

3

strategic, war simulation based games. Let us consider two identical forces of 1000 men

each; the Red force is divided into two units of 500 men which serially engage the single

(1000 men) Blue force. Most linear scoring functions, or a casual gamer, would identify this

engagement as a slight win for the undivided Blue army, severely underestimating the

"concentration of power" axiom of war. A more experienced armchair general would never

make such a foolish attack, and according to the Quadratic Lanchester model (introduced

below) the Blue force completely destroys the Red army with only moderate loss (i.e., 30%)

to itself.

3 Lanchester’s Attrition Models

The original Lanchester equations represent simplified combat models: each side has

identical soldiers and a fixed strength (i.e. there are no reinforcements) which governs the

proportion of enemy soldiers killed. Range, terrain, movement, and all other factors that

might influence the fight are either abstracted within the parameters or ignored entirely.

Fights continue until the complete destruction of one force, and as such the following

equations are only valid until one of the army sizes is reduced to 0. The general form of the

attrition differential equations is:

𝑑𝐴

𝑑𝑡
= −𝛽𝐴2−𝑛 𝐵 and

𝑑𝐵

𝑑𝑡
= −𝛼𝐵2−𝑛 𝐴 (1)

where 𝑡 denotes time and 𝐴, 𝐵 are force strengths (number of units) of the two armies

assumed to be functions of time. By removing time as a variable, the pair of differential

equations can be combined into 𝛼(𝐴𝑛 − 𝐴0
𝑛) = 𝛽(𝐵𝑛 − 𝐵0

𝑛).

Parameters 𝛼 and 𝛽 are attrition rate coefficients representing how fast a soldier in

one army can kill a soldier in the other. The equation is easier to understand if one thinks of

𝛽 as the relative strength of soldiers in army 𝐵; it influences how fast army 𝐴 is reduced.

The exponent 𝑛 is called the attrition order, and represents the advantage of a higher rate of

target acquisition. It applies to the size of the forces involved in combat, but not to the

fighting effectiveness of the forces which is modeled by attrition coefficients 𝛼 and 𝛽. The

higher the attrition order, the faster any advantage an army might have in combat

effectiveness is overcome by numeric superiority.

For example, choosing 𝑛 = 1 leads to 𝛼(𝐴 − 𝐴0) = 𝛽(𝐵 − 𝐵0), known as

Lanchester’s Linear Law. This equation models situations in which one soldier can only

fight a single soldier at a time. If one side has more soldiers some of them won't always be

fighting as they wait for an opportunity to attack. In this setting, the casualties suffered by

both sides are proportional to the number of fighters and the attrition rates. If 𝛼 = 𝛽, then

the above example of splitting a force into two and fighting the enemy sequentially will have

the same outcome as without splitting: a draw. This was originally called Lanchester’s Law

of Ancient Warfare, because it is a good model for battles fought with melee weapons (such

as spears or swords which were the common choice of greek or roman soldiers).

Choosing 𝑛 = 2 results in the Square Law, which is also known as Lanchester’s Law

of Modern Warfare. It is intended to apply to ranged combat, as it quantifies the value of the

relative advantage of having a larger army. However, the Squared Law has nothing to do

4

with range – what is really important is the rate of acquiring new targets. Having ranged

weapons generally lets soldiers engage targets as fast as they can shoot, but with a sword or

a pike one would have to first locate a target and then move to engage it. In our experiments

for RTS games that have a mix of melee and ranged units, we found attrition order values

somewhere in between working best. For our particular game – StarCraft Broodwar – it was

close to 1.56.

 The state solution for the general law can be rewritten as 𝛼𝐴𝑛 − 𝛽𝐵𝑛 = 𝛼𝐴0
𝑛 −

 𝛽𝐵0
𝑛 = 𝑘. Constant 𝑘 depends only on the initial army sizes 𝐴0 and 𝐵0. Hence, if 𝑘 > 0 or

equivalently 𝛼𝐴0
𝑛 > 𝛽𝐵0

𝑛 then player A wins. If we denote the final army sizes with

 𝐴𝑓 and 𝐵𝑓 and assume player B lost, then 𝐵𝑓 = 0 and 𝛼𝐴0
𝑛 − 𝛽𝐵0

𝑛 = 𝛼𝐴𝑓
𝑛 − 0 and we can

predict the remaining victorious army size 𝐴𝑓. We just need to choose appropriate values 𝛼

and 𝛽 that reflect the strength of the two armies, a task we will focus on in the next section.

4 Lanchester Model Parameters

In RTS games it is often the case that both armies are composed of various units, with

different capabilities. To model these heterogeneous army compositions, we need to replace

the army effectiveness with an average value

𝛼𝑎𝑣𝑔 =
∑ 𝛼𝑗

𝐴
𝑗=1

𝐴
 (2)

where 𝛼𝑗 is the effectiveness of a single unit and 𝐴 is the total number of units. We can see

that predicting battle outcomes will require strength estimates for each unit involved. In the

next subsections we describe how these parameters can be either manually created or

learned.

4.1 Choosing Strength Values

The quickest and easiest way of approximating strength is to pick a single attribute that you

feel is representative. For instance, we can pick 𝛼𝑖 = 𝑙𝑒𝑣𝑒𝑙𝑖 if we think that a level 𝑘 dragon

is 𝑘 times as strong as a level 1 footman. Or maybe a dragon is much stronger, and if we

choose 𝛼𝑖 = 5𝑙𝑒𝑣𝑒𝑙𝑖 instead then it would be equivalent to 5𝑘 footmen.

 More generally, we can combine any number of attributes. For example, the cost of

producing or training a unit is very likely to reflect unit strength. In addition, if we would

like to take into account that injured units are less effective, we could add the current and

maximum health points to our formula:

𝛼𝑖 =
𝐶𝑜𝑠𝑡(𝑖)𝐻𝑃(𝑖)

𝑀𝑎𝑥𝐻𝑃(𝑖)
 (3)

This estimate may work well, but using more attributes, such as attack or defense

values, damage, armor, or movement speed could improve prediction quality, still. We can

create a function that takes all these attributes as parameters and outputs a single value.

However, this requires significant understanding of the game and, moreover, it will take a

designer a fair amount of time to write down and to tune such an equation.

Rather than using a formula based on attack, health and so on, it is easier to pick

5

some artificial values: for instance the dragon may be worth 100 points and a footman just 1

point. We have complete control over the relative combat values, and we can easily express

if we feel a knight is 5 times stronger than a footman. The disadvantage is that we might

guess wrong, and thus we still have to playtest and tune these values. Moreover, with any

change in the game we need to manually revise all the values.

4.2 Learning Strength Values

So far we have discussed choosing unit strength values for our combat predictor via two

methods. First, we could produce and use a simple formula based on one or more relevant

attributes such as unit level, cost, health etc. Second, we could directly pick a value for each

unit type based mainly on our intuition and understanding of the game. Both methods rely

heavily on the designer's experience and on extensive playtesting for tuning. To reduce this

effort, we can try to automatically learn these values by analyzing human game replays or,

alternatively, letting a few AI systems play against each other.

While playtesting might ensure that AI agents play well versus the game designers,

that does not guarantee it will also play well against other unpredictable players. However,

we can adapt the AI to any specific player by learning a unique set of unit strength values

taking into account only games played by this player. For example, the game client can

generate a new set of AI parameters before every new game, based on a number of recent

battles. Automatically learning the strength values will require less designer effort and

provide better experiences for the players.

The learning process can potentially be complex, depending on the machine learning

tools to be used. However, even a simple approach, such as logistic regression, can work

very well and it has the advantage of being easy to implement. We will outline the basic

steps for this process here.

First, we need a dataset consisting of as many battles as possible. Some learning

techniques can provide good results after as few as 10 battles [Stanescu 13], but for logistic

regression we recommend using at least a few hundred. If a player has only fought a few

battles, we can augment his dataset with a random set of battles from other players. These

will be slowly replaced by “real” data as our player fights more battles. This way the

parameter estimates will be more stable, and the more the player plays, the better we can

estimate the outcome of his or her battles.

An example dataset is shown in Table 1. Each row corresponds to one battle, and we

will now describe what each column represents. If we are playing a game with only two

types of soldiers, armed with spears or bows, we need to learn two parameters for each

player: 𝑤𝑠𝑝𝑒𝑎𝑟 and 𝑤𝑏𝑜𝑤. To maintain sensitivity to unit injuries, we use 𝛼𝑗 = 𝑤𝑠𝑝𝑒𝑎𝑟𝐻𝑃(𝑗)

or 𝛼𝑗 = 𝑤𝑏𝑜𝑤𝐻𝑃(𝑗), depending on unit type. The total value of army A can then be

expressed as:

𝐿(𝐴) = 𝛼𝑎𝑣𝑔𝐴𝑛 = 𝐴𝑛−1 ∑ 𝛼𝑗

𝐴

𝑗=1

= 𝐴𝑛−1 ∑ 𝑤𝑗𝐻𝑃(𝑗)

𝐴

𝑗=1

 = 𝐴𝑛−1(𝑤𝑠𝑝𝑒𝑎𝑟𝐻𝑃𝑠 + 𝑤𝑏𝑜𝑤𝐻𝑃𝑏) (4)

𝐻𝑃𝑠 is the sum of the health points of all of player A’s spearmen. After learning all 𝑤

6

parameters, the combat outcome can be estimated by subtracting 𝐿(𝐴) − 𝐿(𝐵). For

simplicity, in Table 1 we assume each soldier’s health is a number between 0 and 1.

Table 1 Example dataset needed for learning strength values.

Battle 𝐻𝑃𝑠 for A 𝐻𝑃𝑏 for A A 𝐻𝑃𝑠 for B 𝐻𝑃𝑏 for B B Winner

1 3.80 0.95 5 4.20 0.00 6 A

2 10.00 1.00 11 7.00 3.00 10 B

… … … … … … … …

4.3 Learning with Logistic Regression

As a brief reminder, logistic regression uses a linear combination of variables. The result is

squashed through the logistic function F, restricting the output to(0,1), which can be

interpreted as the probability of the first player winning.

𝑦 = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ . 𝐹(𝑦) =
1

1 + 𝑒−𝑦
 (5)

For example, if 𝑦 = 0 then 𝐹 = 0.5 which is a draw. If 𝑦 > 0, then the first player

has the advantage. For ease of implementation, we can process the previous table in such a

way that each column is associated with one parameter to learn, and the last column contains

the battle outcomes. Let's assume that both players are equally adept at controlling

spearmen, but bowmen require more skill to use efficiently and their strength value could

differ when controlled by the two players:

 𝑦 = 𝐿(𝐴) − 𝐿(𝐵)
= 𝑤𝑠𝑝𝑒𝑎𝑟(𝐴𝑛−1𝐻𝑃𝑠𝐴 − 𝐵𝑛−1𝐻𝑃𝑠𝐵) + 𝑤𝑏𝑜𝑤𝐴(𝐴𝑛−1𝐻𝑃𝑏𝐴) − 𝑤𝑏𝑜𝑤𝐵(𝐵𝑛−1𝐻𝑃𝑏𝐵) (6)

Table 2 Processed dataset, all but last column correspond to parameters to be learned.

𝐴𝑛−1𝐻𝑃𝑠𝐴 − 𝐵𝑛−1𝐻𝑃𝑠𝐵 𝐴𝑛−1𝐻𝑃𝑏𝐴 −(𝐵𝑛−1𝐻𝑃𝑏𝐵) Winner

… … … …

This table can be easily used to fit a logistic regression model in your coding

language of choice. For instance, using Python’s pandas library this can be done in as few as

5 lines of code.

5 Experiments

We have used the proposed Lanchester model but with a slightly more complex learning

algorithm in UAlbertaBot, a StarCraft open source bot for which detailed documentation is

available online [UAlbertaBot 16]. The bot runs combat simulations to decide if it should

attack the opponent with the currently available units if a win is predicted or retreat

otherwise. We replaced the simulation call in this decision procedure with a Lanchester

model based prediction.

Three tournaments were run. First, our bot ran one simulation with each side using

an attack closest policy. Second, it used the Lanchester model described here with static

7

strength values for each unit based on its damage per frame and current health: 𝛼𝑖 =
𝐷𝑀𝐺(𝑖)𝐻𝑃(𝑖). For the last tournament, a set of strength values was learned for each of 6

match-ups from the first 500 battles of the second tournament. In each tournament, 200

matches were played against six top bots from the 2014 AIIDE StarCraft AI tournament.

The results – winning percentages for different versions of our bot – are shown in Table 3.

On average, the learned parameters perform better than both static values and simulations,

but be warned that learning without any additional hand checks might lead to unexpected

behavior such as the match against Bot2 where the win rate actually drops by 3%.

Table 3 Our bot’s winning % using different methods for combat outcome prediction.

 Bot1 Bot2 Bot3 Bot4 Bot5 Bot6 Avg.

Simulations 60.0 79.0 84.0 65.5 19.5 57.0 60.8

Static 64.5 81.0 80.5 69.0 22.0 66.5 63.9

Learned 69.5 78.0 86.0 93.0 23.5 68.0 69.7

Our bot’s strategy is very simple: it only trains basic melee units, and tries to rush the

opponent and keep the pressure up. This is why we did not expect very large improvements

from using Lanchester models, as the only decision they affect is whether to attack or to

retreat. More often than not this translates into waiting for an extra unit, attacking with one

unit less, and better retreat triggers. While this makes all the difference in some games,

using this accurate prediction model to choose the army composition, for example, could

lead to much bigger improvements.

6 Conclusions

In this chapter we have described an approach to automatically generate an effective combat

outcome predictor that can be used in war simulation strategy games. Its parameters can be

static, fixed by the designer, or learned from past battles. The choice of training data

provided to the algorithm ensures adaptability to specific opponents or maps. For example,

learning only from siege battles will provide a good estimator for attacking or defending

castles, but it will be less precise for fighting in large unobstructed areas where cavalry

might prove more useful than, say, artillery. Using a portfolio of estimators is an option

worth considering.

Adaptive game AI can use our model to evaluate newly generated behaviors or to

rank high-level game plans according to their chances of military success. Because the

model parameters can be learned from past scenarios, the evaluation will be more objective

and stable to unforeseen circumstances when compared to functions created manually by a

game designer. Moreover, learning can be controlled through the selection of training data,

and it is very easy to generate map- or player-dependent parameters. For example, one set of

parameters can be used for all naval battles, and another set for siege battles against the

elves. However, for good results we advise acquiring as many battles as possible, preferably

tens or hundreds.

Other use cases for accurate combat prediction models worth considering include

game balancing and testing. For example, if a certain unit type is scarcely being used, it can

help us decide if we should boost one of its attributes or reduce its cost as an extra incentive

8

for players to use it.

7 References

[Bakkes 08] Bakkes, S. and Spronck, P. Automatically Generating Score Functions for

Strategy Games. In Game AI Programming Wisdom 4, ed. Rabin, S., 647-658. Charles River

Media.

[Barriga 17] Barriga, N., Stanescu, M., and Buro, M. 2017. Combining Scripted Behavior

with Game Tree Search for Stronger, More Robust Game AI. In Game AI Pro 3:Collected

Wisdom of Game AI Professionals, ed. Rabin, S., XXX-YYY. CRC Press.

[Lanchester 16] Lanchester, F.W., 1916. Aircraft in warfare: The dawn of the fourth arm.

Constable limited.

[Stanescu 13] Stanescu, M., Hernandez, S.P., Erickson, G., Greiner, R. and Buro, M., 2013,

October. Predicting Army Combat Outcomes in StarCraft. In Ninth Annual AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE).

[Stanescu 15] Stanescu, M., Barriga, N. and Buro, M., 2015, September. Using Lanchester

attrition laws for combat prediction in StarCraft. In Eleventh AIIDE Conference.

[UAlbertaBot 16] UAlbertaBot github repository, maintained by David Churchill. 2016.

https://github.com/davechurchill/ualbertabot

[Wetzel 08] Wetzel, B. The Engagement Decision. In Game AI Programming Wisdom 4, ed.

Rabin, S., 443-454. Charles River Media.

8 Biography

Marius Stanescu is a Ph.D. candidate at the University of Alberta, Canada. He completed his

MSc in Artificial Intelligence at University of Edinburgh in 2011, and was a researcher at

the Center of Nanosciences for Renewable & Alternative Energy Sources of University of

Bucharest in 2012. Since 2013, he is helping organizing the AIIDE StarCraft Competition.

Marius’ main areas of research interest are machine learning, AI and RTS games.

Nicolas A. Barriga is a Ph.D. candidate at the University of Alberta, Canada. He earned

B.Sc., Engineer and M.Sc. degrees in Informatics Engineering at Universidad Técnica

Federico Santa María, Chile. After a few years working as a software engineer for Gemini

and ALMA astronomical observatories he came back to graduate school and he is currently

working on state and action abstraction mechanisms for RTS games.

Michael Buro is a professor in the computing science department at the University of

Alberta in Edmonton, Canada. He received his PhD in 1994 for his work on Logistello - an

Othello program that defeated the reigning human World champion 6-0. His current research

interests include heuristic search, pathfinding, abstraction, state inference, and opponent

modeling applied to video games and card games. In these areas Michael and his students

have made numerous contributions, culminating in developing fast geometric pathfinding

algorithms and creating the World's best Skat playing program and one of the strongest

StarCraft: Brood War bots.

9

