An Overview of NECI’s Generic Game Server

Michael Buro & Igor Durdanovié

(micligord)@research.nj.nec.com

NEC Research Institute
4 Independence Way
Princeton NJ 08540, USA

Abstract. We give a high level description of our Generic Game Server
(GGS) and its accompanying client software. The system is based on a
flexible communication architecture and provides a rich set of features
unseen in traditional game servers — such as a wide variety of board
games and game setups and fair game modes for both standard and ran-
dom starting positions. Moreover, the task of adding new game services
and GUIs is eased by reusable server and client software components.

Keywords: Internet Game Server, Client Software, GUI.

1 Introduction

In this paper we present NECI’s Generic Game Server (GGS) and its underly-
ing communication architecture. GGS’s game features are unique: in addition to
usual game server functionalities like chat and rating systems, for each game it
supports all common game clock modes, a wide variety of game setups, and fair
game modes for standard and random starting positions. Furthermore, all parts
of GGS are licensed under the GNU Public License [9] — giving programmers free
access to the source code, which speeds up the development of new services. Cur-
rently, GGS offers Amazons [6], Checkers, Chess, Hex, Go, Othello, and Phutball
[7] services. Additional services for turn—based games and graphical user inter-
faces for them can be implemented in a matter of hours due to reusable software
components for communicating moves, saving/restoring adjourned games, rating
updates, displaying boards on GUIs etc.

GGS is a loosely coupled network of services and clients built around a central
server. In the context of game servers its main advantages compared to the
traditional “one server, one game” approach are

— A central connection point for everybody which allows people with the same
interests (e.g. machine learning in games) to exchange ideas even though
they might try their ideas on very different games.

— Messaging, news, tournament director and other services that each game
server implements in one way or the other can be extracted into a separate
services which serve all game services, thus simplifying client software even
further.

— The central server does not specify any service-client or client-client proto-
col. Rather it just provides a communication medium, leaving each service
to implement and enforce its own client protocols. However, services should
cooperate on designing a protocol for intra—service communication (e.g. tour-
nament director).

In what follows, we provide a bottom up view of GGS: first the underlying com-
munication architecture is described. Then we give an overview of the game
service features and the available client software. An outlook on future improve-
ments regarding scalability and additional services concludes the paper.

2 GGS’s Communication Architecture

GGS is a loosely coupled network of multiplexors, services, and clients which are
all connected to a central server (Fig. 1) that accepts/sends and relays text mes-
sages using the TCP protocol. The central server serves the following purposes:

— it provides a central connection point for all clients and services.
— it performs authentication of clients and services.
— it allows clients and services to communicate with each other.

Multiplexors were introduced to get around operating system limitations, which
restrict the number of simultaneously open file descriptors, and to provide a
TCP—tunnel in case the central server is located behind a firewall. Theoretically,
the central server augmented with one thousand multiplexors could accommo-
date over one million clients and services simultaneously. However, at one point,
this will lead to a communication bottleneck. The upcoming release will address
this problem.

The communication between the central server, clients, and services can ei-
ther be raw or compressed by the standard gzip or bzip2 protocols. Secure con-
nections to the central server can be established by using a SSL proxy server.
To ease the communication between clients and services, the central server pro-
vides alias and variable mechanisms allowing each user to tailor its front-end
to his/her taste. In addition, the central server supports the concepts of groups
and channels. The group mechanism is used to group clients by their function-
ality and administration level (client, service, sysadmin). The creation of groups

raw, gzip, bzip2
I
LAY

I, e
, ‘\ AN (CIient) Service
d AU | -
\

Y
Service s
y'e
. \
= <«—{Mux A 4
Client
. Central
. Server
>
<« Mux
<+

Fig. 1. Client—Service-Server Architecture

and assignment of clients to them is restricted to system administrators. The
channel mechanism is a convenient way for several clients to talk to each other
simultaneously resembling chat room functionality. Users can freely create and
destroy, join and leave channels, which can be either public or private. Finally,
the central server gives clients access to user statistics, news and help files.

Services connect to the central server like any other client and they behave
like servers in every other aspect, i.e. they serve clients. Except for a thin pro-
tocol between the central server and services that incrementally keep services
updated about clients connecting to or leaving the network, the central server
does not enforce any particular protocol between services and clients. Every
service can implement its own set of commands, groups, channels, aliases, and
variable mechanisms.

3 Game Services

Currently, GGS provides service and client software for the following turn—based
board games: Amazons, Checkers, Chess, Hex, Go, Othello, and Phutball. On
the service side, all software is written in C++. The common service functions
— such as communication with the central server, game handling, storing and
retrieving of game transcripts, storing of player variables, and rating updates —
are implemented as a library. Adding a new board game service is as simple as
implementing a small abstract C++ interface which defines hooks to the game
specific service parts. The same is true for the graphical user interface GGSA.
Written in Java for allowing cross—platform operation, it follows the same object
oriented philosophy: the game specific details are encapsulated on top of the base
functionality that each GGS graphical client provides. As a result, new (game)
services can easily be added as long as they do not require substantially different
functionality compared to the services we already have implemented.

3.1 Unique Features

When designing the game services, we focused on ensuring a fair and competitive
playing environment and on providing a rich variety of game modes. Further-
more, we strived for keeping the communication protocol and game transcript
format simple and generic. These considerations led to the following service fea-
tures, which mostly are unique to GGS. Each game service supports

the Glicko rating system [4] which also models rating variability,

a universal clock that can emulate all common game clocks including the
Fisher, Bronstein, and byoyomi mode,

a common format for archiving games,

— different board sizes/shapes (Fig. 3), and

fair game handling.

We feel that using random starting positions has advantages over the traditional
fixed position approach. For instance, players do not have to worry about opening

preparation. Moreover, starting in a single position makes perfect information
games unfair if the game value is different from zero. A prominent example is
Hex, where it can be shown that the first player wins, or the second player if the
swap rule is used. A forthcoming paper will be devoted to this topic. In it we
will describe the komi and synchro game modes we have implemented in GGS,
which ensure fair games for both fixed and random starting positions.

3.2 Client Software & Resources
The following client software is included in the GGS source tree:

— A simple C++ Othello client for connecting Othello programs to GGS.

— A generic C++ client currently supporting Amazons, Checkers, and Othello.
GGSA — the GGS Applet for all game services (Fig. 2,3). Runs in every
browser.

A wrapper interface for connecting standard—i/o driven game programs.

Chris Welty has written following Windows software for GGS:

— LION - a Windows Othello GUT for GGS (binary only)

— ODK - (Othello Development Kit) A collection of C++ classes for connect-
ing Othello programs to GGS.

— TD - a global tournament director for all game services.

Utilizing these clients and wrappers we have connected our strong Othello pro-
grams Logistello [2] and Kitty, our Amazons program AmsBot, Robert Hyatt’s

e AU wiesasawsow
GGS Service Othello

25 Flrgnugo |othello: 2 GGS
ant +igor + .58 2045 corn 2110 007 8 RO .chat
ant+ kitty + .59 2783 lynx 2762 kitty s8r24 R 0 |*/ams
corn Ll+Tynx Amazons: 0 */cks
crafty +mic Checkers: 0 */cs
fly +patzer |Chess: O */g0
g3 +scorp+ |Go: O */hex
gnugo +scorpion Hex: 0 */os
igor +titatat

kitty | |+viper

18/Apr/2001

- new /service commands: tdtype <td.id> <match.type>, tdabort <match.id>,
tdbreak <match.id>; break & abort do not work on tournament games.
- new /service command: continue - will search stored games for one that
can be continued and will start match.
2/May/2001
- For info about upcoming Amazons tournament t /ams help Jenazon

** To REGISTER: give your name & email to an admin (type: group _admin)
** GUIs & Clients Chelp gui), Secure Socket Layer Chelp ssl)

—— Formula remark: You have to check if the request is for a saved match first!
If the request is for a saved match, the rest of the request is not defined!
(have a Took at kitty/Tynx for example ...)

sent: f mic

: finger

login : mic

dblen : 100.0 = 956 / 956

passw : fool123

name : Michael Buro
info : http://www.neci.nj.nec.com/homepages/mic
email : mic@research.nj.nec.com
since : Wed 27 Jun 2001 10:52:48 EDT
idle : 00:00:00, on Tine : 00:00:31
host : 138.015.162.020 othello
sock 1 24 @ 42455 S(308/308) R(0/0) E(0/0)
bell o+t +tc +tg -n -nc -ng -ni -nn m
verbose: +news -ack -help -faq
vt100
GGS -~ || fingerl mic

Fig. 2. GGSA’s main window showing user and game lists and GGS’s response to
“help” and “finger” commands.

Window Game

Window Game

v

igor 1720

v

igor 1720

88kr22

o
IS

210 (22 2)
pass
[5
to all =

©

> igor 1720
+0:14:35

> igor 1720
+0:14:35

10kr
10 % 00 00

<< <]2]]

Window Game

Window Game

> igor 1720

10kr

(84 60)
[5
to all =

igor 1863
+0:14:39
J7-G7-G2 0.0

> igor 1863

24-C4-G8 0.0

10
(14 86)

<42
to all

Al

Window Game

A B CDEF G H I

> igor 2156
+0:14:20
113 0.0

1515
ply 16 PO/O

<[<J>]]
to all

Window Game

igor 1720
+0:14:55
E2 0.0

> igor 1720

F1 0.0

5
ply 9
ESE &

to all

Al

Al

Fig. 3. GGSA screen snapshots of non-standard starting positions (Othello, Chess,
and Checkers) and positions from the opening (Amazons, Go, and Hex).

freeware Chess program Crafty [5], and GnuGo [8] to GGS. The GGS software
and documentation is available at [1,3]. GGS itself can be reached by telnet or
the GUIs at multiplexor ports 4000 and 5000 of external.nj.nec.com.

4 Qutlook

In case GGS really takes off, we realize that the central server and services
— depending on their popularity — would eventually become communication
bottlenecks. Therefore, we plan a more distributed and scalable architecture for
the next release of GGS, in which a central server gate performs load—balancing
when redirecting connecting clients to a network of central servers. The concept
of distributed servers may not be crucial for low—bandwidth applications such
as the turn-based game services or instant messaging and news tickers that we
intent to implement. However, it is essential for file sharing and for multiplayer
real-time game services, which we plan to support as well.

Besides providing a wide range of services, the acceptance of a service net-
work largely depends on the user interface. In this regard the current situation
is less than optimal as the applet GGSA currently only supports the English
language, still requires expert GGS knowledge, and suffers from buggy and in-
complete browser Java implementations. To alleviate this situation we intend to
port GGSA to the cross—platform C++ graphics toolkit Qt [10], which provides
a uniform, Unicode capable interface under Microsoft Windows, the X-Window
system, and soon Mac OS-X, while allowing to run code natively.

References

1. Michael Buro. GGSA homepage.
http://www.neci.nj.nec.com/homepages/mic/ggsa. Web site.

2. Michael Buro. Logistello homepage.
http://www.neci.nj.nec.com/homepages/mic/log.html. Web site.

3. Igor Purdanovi¢. GGS homepage.
http://www.neci.nj.nec.com/homepages/igord/gsa-ggs.htm. Web site.

4. Mark E. Glickman. The Glicko system.
http://math.bu.edu/people/mg/papers/gdescrip.ps. Paper.

5. Robert Hyatt. Crafty download.
ftp://ftp.cis.uab.edu/pub/hyatt/. FTP site.

6. Play By Email Server. Amazons rules.
http://www.gamerz.net/pbmserv/amazons.html. Web site.

7. Play By Email Server. Phutball rules.
http://www.gamerz.net/pbmserv/phutball.html. Web site.

8. GNU Software. GnuGo homepage.
http://www.gnu.org/software/gnugo/gnugo.html. Web site.

9. GNU Software. GPL FAQ.
http://www.gnu.org/copyleft /gpl-faq.html. Web site.

10. Troll Technologies. Qt homepage.

http://www.trolltech.com. Web site.

