On the Maximum Length of Huffman Codes

Michael Buro
Universitat—-GH Paderborn, FB 17 Mathematik—Informatik
Postfach 1621, W-4790 Paderborn, Germany

Abstract

In this paper the maximum length of binary Huffman codes is investigated dependent on
the two lowest probabilities of encoded symbols. Furthermore, the structure of full binary
trees with a given number of leaves, a limited depth, and maximum external path length is
examined to get an improved upper bound on the external path length of Huffman trees.

Keywords: Huffman Code, Code Length, External Path Length.

1 Introduction

Huffman codes which were introduced in [1] encode symbols by means of their probabilities to
minimize the expected code word length. In order to find a binary Huffman code for a given prob-
ability distribution, a binary tree is built from a forest initially consisting of unconnected vertices
which are associated with the symbols of the alphabet and are labeled with the corresponding
probabilities. In each step of the procedure two roots with the lowest probabilities are connected
to a new vertex which is labeled with the sum of the probabilities of its children. Finally, the
paths from the root of the Huffman tree to the leaves describe the code words of the symbols. In
what follows, upper bounds on the length of Huffman code words and on the sum of all code word
lengths are investigated.

2 Upper bounds

First, an upper bound on the length of Huffman code words is derived by means of the two lowest
probabilities of the encoded symbols. As an immediate consequence we get an upper bound on
the external path length of a Huffman tree, that is the sum of all path lengths from leaves to the
root. Finally, this upper bound is improved by considering trees with limited depth and maximum
external path length.

Theorem 2.1
Given a source alphabet consisting of b > 1 symbols, let (py, ..., ps) be a discrete probability
distribution with probabilities greater than zero and p; < p;4q forall 1 <7 < b —1. Then
no code word of a corresponding binary Huffman code is longer than

)J’ b~ 1}, where ® = 1+2\/5.

d+1
»® + po

min { |logg (

Proof
Clearly, a full binary tree (i.e. a tree with vertices which have two children or none) with
b leaves has depth at most b — 1. To show the other inequality we label each vertex of the
Huffman tree with the corresponding probability and prove first that ¢ > pi Fiyq + poF}
holds for the root label ¢ of a Huffman subtree with depth ¢. Here the F;’s are the Fibonacci
numbers, i.e. Fo =0, Fy =1, and Fy19 = F;4q + F; for ¢ > 0.

qq 2 prlig1 + p2ty 70
Tl \I t+1
T /!
4 g3 2 p1ly+pabin @ 2 8 i
/ N 7/ \
/ A\ 7 N\
,/ AN NI TN
// T3 \\ \\\’//
7/ Vs

Figure 1: Huffman subtree with depth ¢ + 1

The proof is by induction on ¢. Obviously, for t = 0 and £ = 1 the inequality holds since each
probability is not less than p; and each sum of two probabilities is not less than py + ps. In
order to show the induction step we examine a Huffman subtree T" with depth £+ 1 (Figure 1).
The induction hypothesis states g3 > p1 Fy + p2Fi—1 and g4 > p1 Fypq + p2 Iy since 15 and Ty
are Huffman subtrees with depth ¢ — 1 and £, respectively. Furthermore, g1 > p1 I} + paFi—1
holds since otherwise 1" is not a Huffman subtree because in this case the expected code word
length can be lowered by exchanging T and Ts. This proves ¢ = ¢1 + ¢4 > p1Figo + p2Fiyr.

Now we are able to show ¢ < Uog¢(p1%‘:_;2)] by means of the “closed form” expression

for the Fibonacci numbers which is proved for instance in [2]: I} = (&' — (—=®)~%)/+/5.
The root of a Huffman tree has label 1. Hence, 1 > pyFy41 + poFy. Assuming ¢ > 1 a few
transformations yield

d+1
t < logg(V5+pa/®—pi /%) —loge (p1®+p2) < 2—logg(p1®+p2) = logg (7)

1P+ p2
Since the inequality also holds for £ < 1 and ¢ is an integer, the result is shown.

|

In the case that we only know a lower bound p > 0 on the minimum probability p; we immediately
obtain min{|—logg p|, b — 1} as an upper bound on the maximum length of a code word. For
example, given p; > 0.2+ 107%, no Huffman code word is longer than 32.

Corollary 2.2

In terms of the notation above, the external path length of a Huffman tree is at most

Proof

®+1
in<|l ——)b, (b+2)(b—1)/2¢.
min {loga (—="—-) b, (0+2)(b=1)/2}
The Huffman tree has b leaves and each length of a path from a leaf to the root is bounded
by [logq)(pl%%m)} On the other hand, a tree with b leaves has maximum external path

length if and only if it is degenerated, that is a list like tree T} in Figure 2 (see Theorem 2.4
for a proof). A degenerated tree with b leaves has external path length (b+2)(b— 1)/2.

O

U3

U1

U4

T Ty 13

Figure 2: Example trees

The usual technique to encode a sequence of symbols by the use of a Huffman code is to count
the symbols in order to estimate their probabilities. For this method the statements above can
be adapted: Given a sequence of length n over an alphabet with b > 1 symbols, let ny > 1 and
ny > ny be the two lowest frequencies. Then the statements of Theorem 2.1 and Corollary 2.2
hold for p; = ny/n and py = ny/n, and the maximum length of a code word can be bounded for

instance by min{_logq,(%g—ﬂlzl”, b — 1} or simply by min{|logg n|, b —1}.

In what follows, a better upper bound on the maximum external path length of Huffman trees
is derived. The idea is to examine the structure of full binary trees with a given number of leaves
and a limited depth which have maximum external path length. Figure 2 shows some examples:
Ty and T, are trees with five leaves. They have maximum external path length in the case that
the depth is limited by t > 4 and t = 3, respectively. On the other hand, 7’3 is not maximum for a
depth limit ¢ > 4 since the external path length can be increased by shifting the subtree under vy
to vy and then shifting the remaining subtree under v3 to vy. Let F; denote the property that the
external path length of a tree with depth at most t can not be increased by first shifting subtrees
on the same depth and then shifting down a subtree. Clearly, a maximum tree with depth not
greater than ¢ has property F. In order to prove the converse we first give an equivalent condition

for F; which can be tested easily.

Lemma 2.3
Given a full binary tree 7" with depth at most ¢, let (a;)!_, be the leaf distribution of 7', i.e.
a; is the number of leaves on depth ¢. Then T has property F; if and only if the following
conditions hold:
i)0<a; <2forall0<i<t—1
ii) If there is an i < ¢ with a; = 2 then a; =0 for all i < j < t.

Proof
If i) is violated, i.e. there is an ¢ with a; > 3, a small subtree with leaves on depth i and
root on depth ¢ — 1 can be shifted down to the third leaf on depth i — possibly after moving
another subtree rooted on depth ¢ — in order to increase the external path length. If ii) is

not met, we can analogously shift a subtree to get a small tree with two leaves on depth i
which then can be shifted down to depth j. Conversely, if a subtree can be shifted down
and i) is true then ii) can not hold. To show this let the subtree be rooted on depth i and
be moved to depth 7 > i. If the maximum depth of leaves in the subtree is at most j then
i) or ii) is violated. Otherwise, there is a subtree with root v on depth j — 1 which can be
moved to depth j. Clearly, among the two children of v there are one or two leaves or none.
In each case we get a contradiction to i) or ii).

a

Theorem 2.4
In the set of full binary trees with b leaves and depth at most ¢ a tree has maximum external
path length if and only if conditions i) and ii) of Lemma 2.3 are met. Furthermore, the leaf
distribution of a tree with maximum path length is unique.

Proof
Of course, a tree with depth limit ¢ and maximum external path length has property Fj.
Therefore, conditions i) and ii) of Lemma 2.3 are valid. Next we show that the leaf distribu-
tion is unique if i) and ii) hold. This proves the other implication and the second statement
since a maximum tree has property FEj.

Let T" be a full binary tree with depth at most ¢, b leaves, and property F;. We show
by induction on t that its leaf distribution is unique. The case ¢ = 0 is trivial. Suppose
now that the leaf distribution is unique for depths less than t. If b < ¢ then 'I" has depth
less than ¢ and the leaf distribution is unique according to the induction hypothesis (7 is
degenerated). In the other case (b > t) T has a shape like the tree in Figure 3 up to shifting
subtrees on the same depth with ¥ = max{r € IN | 2" +¢ — r < b}, where IN denotes the set
of integers greater than zero: Clearly, if k = ¢ then T is complete and its leaf distribution
is unique. Otherwise, we use conditions i) and ii) to show that 7" has depth ¢, a; = 1 for all
0<i<t—k, and a; > 2*. Since T} has depth at most k < ¢ and has property Ej, the leaf
distribution of 1} is unique and consequently the leaf distribution of ', too.

e 7" has depth ¢. Otherwise i) or ii) is violated because then there are at least two leaves
with maximum depth ¢ < ¢ and at least two more leaves with equal depths not greater
than 3.

t—k
VAR 7 \\
PN /
’ \ / N k
/ \ / N
7/ \ 7 \\
2 ST P &) N
)/ \\ / N
_________ I 4
2k leaves

Figure 3: Shape of a maximum tree

e There are no other subtrees with more than one leaf rooted on depth less than t — k. If
1" is such a tree then we shift subtrees from 1" to 1% or 1 on the same depth until each
leaf of T" has depth less than ¢ and not greater than the minimum depth of leaves in T}
and T5. Again i) or ii) is violated.

e There are at least 2% leaves with depth t. If this is not true then in 77 and 75 there are
respectively less than 2% and at least two leaves since the number of leaves in 1, and 7,
is at least 2% + 1. This follows from b > 2% +¢ — k. Shifting subtrees from 7 to T} like
above yields the desired contradiction.

|

Based on Theorem 2.4 the following recursive function quickly computes the maximum external
path length of full binary trees with a given number of leaves and a depth limit:

Function MAX-LENGTH

Input: t,b€IN (b< 29
Output: Maximum external path length of a full binary tree with b leaves and depth < ¢

if b <t then return (b+2)(b—1)/2
else begin
k= [loga(b -)]
if 2k+1—(k+1) <b—t thenk:=k+1
return 25k + (t — k)(2b—t + k +1)/2 + MAX-LENGTH(k,b — 2% —t + k + 1)

end

Corollary 2.5
Function MAX-LENGTH is correct and has unit—cost time complexity O(log(b —t)).

Proof

The correctness is an immediate consequence of the proof of Theorem 2.4:

If b < ¢, a maximum tree is degenerated and has external path length 6(b—1)/2+b—1
= (b+2)(b—1)/2. In the other case, k = max{r € IN | 2" —r < b —t} is computed
using [log,(b—1)| < k < |logy(b—t)] + 1 which follows immediately. In order to find &
exactly the algorithm tests whether 28+ — (k41) < b—1 holds. The maximum external path
length is the sum of the external path length of the complete subtree [2t], the degenerated
initial part [(t — k)(t — k — 1)/2], and the remaining subtree [(b— 2% — (t — k — 1))(t — k) +
MAX-LENGTH(k,b— 2%~ (t—k—1))]. It remains to prove that the function terminates. But
this is clear since k£ > 1 holds and, therefore, the difference b — t is lowered by each function
call. Moreover, a short calculation shows that after a function call b — ¢ is not greater than
(0" —t")/2] + 1, where b’ and t' denote the variables b and ¢ of the caller. Thus, the time
complexity of function MAX-LENGTH is O(log(b — t)).

a

Now Theorem 2.1 and function MAX-LENGTH can be combined to get an improved upper bound
on the external path length of Huffman trees:

e First, the maximum depth of a Huffman tree is determined using Theorem 2.1 and

e then the maximum external path length of full binary trees with this depth limit is computed

by function MAX-LENGTH.

35000 '
30000
25000
20000
15000 —
10000 -
5000 -
0 T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65

Theorem 2.1 & MAX-LENGTH
Corollary 2.2 - -~ -

loggn

Figure 4: Bounds on the external path length (b= 256)

It is clear that the result is not greater and often less than the upper bound stated in Corollary 2.2.
Figure 4 illustrates the behavior of the two bounds, where n denotes the length of the encoded
sequence over an alphabet consisting of 256 symbols.

3 Conclusion

In the explanations above, upper bounds on the maximum length of Huffman code words and
the maximum external path length of Huffman trees have been derived taking into account the
lowest probabilities and the lowest frequencies of encoded symbols, respectively. As a next step
one could try to find an approximation to the maximum external path length which is computed
by function MAX-LENGTH, or to use more properties of Huffman trees to improve the given
bounds.

References

[1] Huffman, D. A.: A Method for the Construction of Minimum—Redundancy Codes,
Proceedings of the IRE 40 (1952), pp. 1098-1101

[2] Knuth, D. E.: The Art of Computer Programming. Vol. 1: Fundamental Algorithms,
Addison-Wesley (1973)

