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Abstract Heuristic seach effediveness depends diredly uponthe quality of heuristic
evaluations of states in the search space We show why ordinal correlation is
relevant to heuristic seach, present ametric for assesdng the quality of a static
evaluation function, and apply it to lean feaure weights for a computer chess
program.
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1. I ntroduction

Inspiration for this reseach came while refleding on how evaluation
functions for today’s computer chess programs are usually developed.
Typicdly, evaluation functions are refined over many yeas, based upon
caeful observation of their performance During this time, engine authors
will tweek feaure weights repeaedly by hand in seach of proper balance
between terms. This ad hoc processis used becaise the principal way to
measure the utility of changes to a program is to play many games against
other programs and interpret the results. The processof evaluation function
development would be considerably asgsted by the presence of a metric that
could reliably indicate atuning improvement. But what would such a metric
belike?

The criticd operation of minimax game-tree seaches (Shannon 1950
and all its derivatives (Marsland, 1983 Plad, 1996 is the asking of asinge
question: is position B better than position A? Note that it is not “How much
better?”, but simply “Is it better?”. In minimax, instead of propagating
values one could propagate the pasitions instead, and, as humans do, chocse
between them diredly withou using values as an intermediary.
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Consequently, we need only pairwise comparisons that tell us whether B is
preferableto A. Plausibly, then, the metric we seek will assesshow well an
evaluation function orders positions in relation to ead other, withou pladng
importance on the relative diff erences in the values of the assessed positions
—that is, it will be ordinal in nature.

While at shallow depths some resemblance between pasitions compared
by a minimax-based seach will be evident, this does not had true at the
seach depths typicdly readed today. The positions that are being compared
are frequently completely different in charader, suggesting that our mystery
metric ough to compare pairs of pasitions not merely from locd pockets of
the seach spacebut globally.

Consideration was aso given to harnessng the grea ded of recorded
experience of human chess for developing a static evaluation function.
Reseachers have tried to make their madines play designated moves from
test positions, but we focus on judgments abou the relative worth of
positions, reasoning that if these are corred then strong moves will emerge
as a consequence. But how does one compute a correlation between the
(ordina) human assessment symbadls, given in Table 1, with machine
asesanents? A literature review identified that a statisticd measure known
asKendal’st might be exadly what is neaded.

After a brief overview of prior work
on the automated tuning of static
evaluation functions, we describe

symba  meaning
whiteiswinning

+
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) + white has aclea advantage
Kendall’s t, and our novel algorithm to + white has an edge
implement it efficiently. We then = the pasitionis equal
discuss the materidls used for our ¥ black has an edge
F bladk has aclea advantage

experiments, followed by details of our
software implementation. Experimental
results are provided in Sedion 6. After  tape 1. Symbals for chess position
drawing some conclusions, we suggest  assesament.’

further investigations to the interested

reseacher.
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2. Prior Work

The preaursor of modern machine leaning in games is the work dore by
Samuel (1959 1967). By fixing the value for a chedker advantage, while
letting other weights float, he iteratively tuned the weights of evaluation

1 Two other assssment symbadls, « (the pasition is unclea) and = (a player has pasitiond
compensation for a materia deficit) are also frequently encourtered. Unfortunately, the
usage of these two symbadlsis nat consistent throughou chessliterature. Accordingly, we
ignare pasiti ons labeled with these assesanents.
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function fedures so that the asessnents of predecessor positions becane
more simil ar to the assesgments of succesor pasitions.

Hartmann (1989 developed the “Dap Tap” to determine the relative
influence of various evaluation fedure caegories, or nations, on the
outcome of chess games. Using 62965 postions from grandmaster
tournament and match games, he found that “the most important notions
yield a clea difference between winners and losers of the games'.
Unsurprisingly, the nation of material was predominant; the combination of
other nations cortribute roughy the same propartion to the win as material
did aore. He further concluded that the threshdd for one side to possessa
dedsive advantageis 1.5 pawns.

The DEEP THOUGHT (later DEEP BLUE) team applied least squares fitting
to the moves of the winners of 868 grandmaster games to tune their
evaluation function parameters as ealy as 1987 (Nowatzyk, 2000. They
foundthat tuning to maximize agreanent between their program'’s preferred
choice of move and the grandmaster’s was “nat redly the same thing’ as
playing more strondy. Amongst other interesting observations, they
discovered that conducting deeper seaches while tuning led to superior
weight vedors being readed.

Tesauro (1999 initially configured a neura network to represent the
badkgammon state in an efficient manner, and trained it via tempora
difference leaning (Sutton, 1988. After 300000 self-play games, the
program readed strong amateur level. Subsequent versions also contained
hidden units representing spedalized badckgammon knowledge and used
minimax seach. TD-GAMMON is now aworld-classbadkgammon player.

Bed and Smith (1997 applied tempora difference leaning to determine
piecevalues for a chessprogram that included material, but not positional,
terms. Program versions using weights resulting from five randamized self-
play leaning trials eath won a match versus a sixth program version that
used the conventional weights given in most introductory chesstexts. They
have since extended their read to include piecesquare tables for chess(Bed
and Smith, 199%) and piecevalues for Shog (Bed and Smith, 1999.

Baxter, Tridgell, and Weaver (1998 applied tempora difference leaning
to the leaves of the principal variations returned by alpha-beta searches to
lean feaure weights for their program KNIGHTCAP. Through online play
against humans, KNIGHTCAP's skill level improved from beginner to strong
master. The authors credit this to: the guidance given to the leaner by the
varying strength of its pod of opporents, which improved as it did; the
exploration of the state space forced by stronger opporents who took
advantage of KNIGHTCAP's mistakes; the initializaion of material values to
reasonable settings, locaing KNIGHTCAP's weight vedor “close in
parameter spaceto many far superior parameter settings’.
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Buro (1995 estimated feaure weights by performing logistic regresson
on win/losddraw-classfied Othello positions. The underlying loglinea
model iswell suited for constructing evaluation functions for approximating
winning probabilities. In that application, it was also shown that the
evaluation function based on logistic regresson can perform better than
those based on linea and quadratic discriminant functions. Later, Buro
(1999 presented a much superior approadh, using linea regresson and
positions labeled with the final disc differential to optimize the weights of
thousands of binary pattern fegures.

Kendall and Whitwell (2001) evolved intermediate-strength players from
apopuation of poa players by applying crossover and mutation operators to
generate new weight vedors, whil e discarding veaors that performed poarly.

3. Kendall’s Tau

Concordance, or agreement, occurs where items are ranked in the same
order. Kendall'st isal abou the simil arities and diff erences in the ordering
of ordered pairs. Consider two pairs, (X, ¥;) and (X, Y«). Compare both the x
values andthey values. Table 2 defines the relationship between the pairs.

relationship relationship relationship between
between x, and %, between y; and y (X, ¥i) and (X, Yi)
Xi < X Vi < Yk Concordant
Xi < X Vi > Vi Discordant
Xi > X Vi < Yk Discordant
Xi > X Vi > Vi Concordant
Xi = Xk Yi # Yk extray pair
Xi # X Yi = Yk extrax pair
Xi = Xy Vi = Vi dugicae pair

Table2. Relationships between ordered pairs.

Table 3 contains a grid representing ordered pairs of macine and human
evaluations. The value in eat cdl indicaes the number of correspondng
pairs, blank cdls indicae that no such pairs are in the data set. Sample
machine and human assessments are on the x- and y-axes, respedively.

To compute T for a colledion of ordered pairs, ead ordered pair is
compared against al other pairs. The totd number of concordant pairs is
designated S* (“ S-positive”). Similarly, the total number of discordant pairs
isdesignated S (“ S-negative”).

Consider the table cdl (0.0, =). There are six entries, containing seven
data paints, located strictly below and to its |eft; these are concordant pairs
and so cortribute to S'. The two discordant pairs, strictly below and to its
right, contribute to S™. We do nat consider any cdls from abowe the cdl of
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interest. If we did so, we would end up comparing ead pair of ordered pairs
twiceinsteal of once Finally, the 2 contained in the cdl indicaes that there
are two (0.0, =) data paints; hence the examination of this cdl has produced
7* 2 =14 concordant pairs, and 2 * 2 = 4 discordant pairs.

-16 -11 07 -06 -03 01 00 01 02 03 05 09 13

+
|
[y

HoOHLW W
=
=
N
=
N

|
+
=
=
=

Table 3. (madine, human) assesaments, n= 25.

tisgiven by:
S'-S
I=—
n(n-1/2

The denominator equals the number of unique posgble comparisons between
any two ordered pairs from a coll edion of n ordered pairs.

For the datain Table 3, S"is 162, S is 83, and n, the number of ordered
pairs, is 25. T equals 0.2633 we might also say that the concordance of the
data is 0.2633 Posgble concordance values range from +1, representing
complete agreament in ordering, to -1, representing complete disagreament
in ordering. Whenever there are extra or dugicate pairs, the values of +1 and
-1 are not achievable.

Cliff (1996 provides a more detailed exposition of Kenddl's T,
discussng variations thereof that optionally disregard extra and dudicae
pairs. Cliff labels what we cdl 1 as 1, and uses it most often, nating that it
has the simplest interpretation of the lot.

A straightforward implementation would perform the processill ustrated
above for ead cdl of the table. Our nowel, algorithmicdly superior
implementation all ocaes additional memory space and in successve single
passs through the data, applies dynamic programming to compute tables
containing the number of data pointsthat are:

either on the same row as or below the current cdll;

either on the same column or to the right of the current cdl;

either onthe same column or to the left of the current cdl;

strictly below andto the right of the current cdl;

strictly below and to the left of the current cel.
Then, in afina pass S" and S are computed by multi plying the number of
data paints in the current cdl by the data in the final two tables listed. It is
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also possble to use more passs, but lessmemory, by performing the sweegs
to the left andto theright serially instead of in parall€l.

There is a better-known ordinal metric in common use: Speaman’s p,
aso known as Speaman correlation. In our applicaion, the number of
distinct human asssanents is constant. Therefore, after initia data
processng has identified the unique machine assessnents for memory
allocaion and indexing purposes, T is computed in time linea in the number
of uniqgue madiine asssanents, which is nat posshle for p. Prototype
implementations confirmed that = was significantly quicker to compute for
large data sets.

Not only doest more diredly measure what interests us (“for al pairs of
paositions (A, B), is position B better than paosition A?”), it is aso more
efficient to compute than plausible aternatives. Therefore, we concentrate
ont inthis paper.

4, ChessRelated Components

Many chess programs, or chess engines, exist. Some are commercialy
avail able; most are hobbyst. For our work, we seleded CRAFTY, by Robert
Hyatt (1996 of the University of Alabama. CRAFTY is the best chessengine
choice for our work for several reasons: the source was realily avail able to
us, fadlit ating experimentation; it is the strongest such open-source engine
today; previous reseach has aready been performed using CRAFTY. We
worked with version 19.1 of the program.

4.1 Training Data

To assessthe correlation of T with improved play, we used 649,698 pasitions
from Chess Informant 1 through 85 (Sahowski, 1966. These volumes cover
the important chess games played between January 1966 and September
2002 This data set was seleded becaise it contains a variety of assessd
positions from modern grandmaster play, the assessnents are made by
qualified individuals, it is accesgble in a nonproprietary eledronic form,
and chessplayers aroundthe world are famili ar with it.

We used a 32,768pasition subset for the preliminary feaure weight
tuning experiments reported here.

4.2 Test Suites

Endish chessgrandmaster JohnNunn (1999 developed the Nunnand Nunn
Il test suites of 10 and 20 positions, respedively. They serve as starting
positions for matches between computer chess programs, where the
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experimenter is interested in the engine’s playing skill independent of the
quality of its opening book Nunn seleded positions that are approximately
balanced, commonly occur in human games, and exhibit variety of play. We
refer to these coll edively asthe “Nunn30°.

Don Dailey, known for his work on STARSOCRATES and CILKCHESS
prepared afile of two hunded commonly readed paositions, al of which are
ten ply from the initial position. We refer to these coll edively as the “Dail ey
200'.

5. Software | mplementation

Here we detall some spedfics of our implementation. We discuss baoth
aterations made to CRAFTY and new software written as a platform for our
experiments.

51 Use of Floating-Point Computation

We modified CRAFTY so that variables hdding madiine assesanents are
dedared to be of an diased type rather than diredly as integers. This allows
us to choase whether to use floating-point or integer arithmetic via a
compilation switch. The use of floatingpoint computation provides a
leaning environment where small changes in values can be rewarded. With
these modificdions, CRAFTY is dower, but only by a fador of two to three
on atypicd persona computer. The experiments were performed with this
modified version; however, al test matches were performed with the
original, integer-based evaluation implementation. Further details can be
foundin Sedion 6.

It might strike the reader as odd that we chaose to alter CRAFTY in this
manner rather than scding up all the evaluation function weights. There are
significant pradicd disadvantages to that approach. How would we know
that everything had been scded? It would be easy to miss some value that
needed to be changed. How would we identify overflow issues? It might be
necessry to switch to a larger integer type. How would we know that we
had scded up the values far enougl? It would be frustrating to have to repea
the procedure.

By contrast, the choice of converting to floating-point is safer. Predsion
and overflow are no longer concerns.  Also, by setting the typedef to be a
nonarithmetic type we can cause the compil er to emit errors wherever type
mismatches exist. Thus, we can be more confident that our experiments rest
upona soundfoundition.
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52 Hill Climbing

We implemented an iteration-based leaner, and a hill -climbing algorithm.
Other iteration-based algorithms may be substituted for the hill -climbing
code if desired. Because we are nat working with an analytic function, we
measure the gradient empiricadly.

We multiply Ve, the current weight of a feaure being tuned, by a
number fradionally greaer than one' to get Vign, except when V gyent IS NEE
zero, in which case a minimum distance between Ve and Viygn 1S
enforced. V,q, IS then set to be equidistant from V gy, but in the other
diredion, so that Ve IS bradketed between Vo, and Viign. Two test weight
vedors are generated: one using Vg, the other using Vie,. All other
weights for these test vedors remain the same as in the base vedor. This
procedure is performed for eat weight that is being tuned. For example,
when 11 parameters are being leaned, 1 + 11 * 2 = 23 vedors are examined
per iteration: the base vedor, and 22 test vedors.

The threecomputed concordances related to a weight being tuned (teuren,
Tiow, aNd Trign) are then compared. If all threeare rougHy equal, no changeis
made: we seled Veyrent. If Teurent 1S 10Wer than both 74, and tign, We choose
the V correspondng to the highest 7. If they are in either increasing or
deaeasing order, we use the slope of test paints (Viow, Tiow) and (Vhign, Thigh)
to interpolate a new point. However, to avoid occasiona large swings in
parameter settings, we boundthe maximum change from V e The fina
case occurs When teurent 1S higher than baoth 14, and thign. In this case, we
apply inverse parabdic interpolation to seled the apex of the parabda
formed by the threepaints, in the hope that this will lead us to the highest 1
in the region.

Once this procedure has been performed for al of the weights being
leaned, it is posgble to postprocess the weight changes, for instance to
normali ze them. However, at present we have not foundthis to be necessary.
The chasen values now become the new base vedor for the next iteration.

53 Automation

A substantial amourt of code was written to automate the communication of
work and results between multi ple, distributed instantiations of CRAFTY and
the PostgreSQL database. We implemented placenolder scheduling (Pinchak,
2002 so that leaning could occur more rapidly, and withou human
intervention.

! The tuning experiments reported in this paper used 1.01.
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54 Search Effort Quantum

Traditiondly, reseachers have used seach depth to quantify search effort.
For our leaning algorithm, doing so would not be appropriate: the amourt of
effort required to seach to a fixed depth varies wildly between pasitions,
and we will be comparing the asssanents of these paositions. However,
becaise we did not have the dedicaed use of computational resources, we
could nat use seach time either. Whil e it is known that chessengines tend to
seach more nodes per seand in the endgame than the middegame, this
differenceisinsignificant for our short seaches becaise it is dwarfed by the
overheal of preparing the engine to search an arbitrary position. Therefore,
we chose to quantify search eff ort by the number of nodes visited.

We instructed CRAFTY to seach 16,384 nodes to assss a pasition.
Earlier experiments that diredly cdled the static evaluation or quiescence
seach routines to form assesanents were not succesful. When seaching
1,024 nodks per paosition, we had mixed results. Like the DEEP THOUGHT
tean (Nowatzyk, 2000, we foundthat larger seachesimprove the quality of
leaning The downside is, of course, the additional processor time required
by the learning process

There are pasitionsin our data set from which CRAFTY does nat complete
a 1-ply seach within 16,384 nodes, because its quiescence seach explores
many sequences of captures. When this occurs, no evaluation score is
available to use. Instead of using either zero or the staticdly computed
evaluation (which is not designed to operate withou a quiescence seach),
we chose to throw away the data point for that particular computation of z,
reducing the position court (n). However, the value of t for similar data of
different popuation sizes is not necessarily constant. As fedure weights are
changed, the shape of the seach treefor positions may also change. This can
cause CRAFTY to nat finish a 1-ply seach for a position within the node
limit where it was previously able to do so, or vice versa. When many
transitions in the same diredion occur simultaneoudy, naticedle
irregularities are introduced into the leaning process Ignaing the node
court limitation until the first ply of seach has been completed may be a
better strategy.

55 Performance

Early experiments were performed using idle time on various madhines in
our department. Lately, we have had (nonexclusive) accessto clusters of
personal computer workstations, which is helpful because the task of
computing t for distinct weight vedors within an iteration is trivialy
paralel. Examining 32,768 paositions and computing t takes abou two
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minutes per weight vedor. The cost of computing t is negligible in
comparison, so in the best case, when there are enoughnodes avail able for
the concordances of all weight vedors of an iteration to be computed
simultaneoudy, leaning procedls at the rate of 30iterations per hour.

6. Experimental Results

We demonstrate that concordance between human judgments and macdiine
asessments increases with increasing depth of macdhine seach. This result,
combined with knowing that play improves as seach depth increases
(Thompson, 19832, in turn justifies our attempt to use this concordance as a
metric to tune seleded fedure weights of CRAFTY’s dtatic evaluation
function.

6.1 Concordanceas Machine Search Effort I ncreases

In Table 4 we computed t for depths 1 through7 for n = 649698 positi ons,
performing work equivalent to 211 billi on (10°) comparisons at ead depth.
S"and S are reported in billi ons. As search depth increases, the difference
between S"and S, and therefore 1, also increases. The sum of S" and S™is
not constant becaise at different depths diff erent amourts of extra y-pairs
and dupicate pairs are encourtered.
It isdifficult to predict how close
depth S'/10°0 S/10 T an agreement might be readed

1 110.374 65.298 0.2136 using deeper seaches. Two effeds
g 151;22 jg-ggg g-iggg come into play: diminishing returns
4 141496 36505 0.4975 fro_m addtional seach, and dimin-
5 144168 34726 05186  191NG acaragy of human assess
6 149517 30136 0.5656 ments relative to ever more deeply
7 150.977  29.566  0.5753 seached madine assesanents.

Table 4.t computed for various seach  Particularly interesting is the odd
depths, n = 649,698. even effed on the change in 1 as
depth increases. It has long been
known that seaching to the next depth of an alpha-beta seach requires
relatively much more eff ort when that next depth is even than when it is odd
(Mardand, 1983. Notably, T tends to increase more in predsely these cases.
Similar experiments performed using incressing node courts, and
increasingwall clock time (on a dedicated machine) with a diff erent, small er
data set also gave increasing concordance, but, as expeded, did not exhibit
the staggered rise of the incressing depth seaches. In sum, these
experiments lend credibility to our belief that t is a dired measure of
dedsionquality.
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6.2 Tuning of CRAFTY’s Feature Weights

CRAFTY uses centipawns (hundedths of a pawn) as its evaluation function
resolution, so experiments were performed by playing CRAFTY as distributed
versus CRAFTY with the learned weights rounded to the nearest centipawn.
Eacdh program played ead pasition bath as White and as Black. The fedure
weights we tuned are given alongwith their default valuesin Table 5.

fedure  default value The scding fadors
king safety scding fador 100 were chosen becaise
king safety asymmetry scding factor -40 they ad as control knols
king safety tropism scding fador 100 for many subterms.
blocked pawn scd! ngfacor 100 Bishop and knight were
passd pawn scding fador 100 included b th
pawn structure scding facor 100 Inc u . _eca"se ey
bishop 300 participate in the most
knight 300 common piece imbal-
rook onthe seventh rank 30 ances. Trading a bishop
rook onan open file 24 for a knight is common,
rook kehind a passed pawn 40

so it is important to
include bath to show
that one is nat leaning
to be of a certain weight chiefly because of the weight of the other. We also
included three of the most important positional terms invalving rooks.
Material values for the rook and queen are not included becaise trials
showed that they climbed even more quickly than the bishop and knight do,
yielding no new insights.

Table5. Tuned feaures, with CRAFTY’ sdefault values.

6.2.1 Tuning from Arbitrary Values

Figure 1 ill ustrates the leaning. The 11 parameters were al initiali zed to 50,
where 100 represents bath the value of a pawn and the default value of most
scding fadors. For ease of interpretation, legend contents are ordered to
match up with the verticd ordering of correspondng data at the rightmost
point on the x-axis. For instance, bishop is the topmost value, followed by
knight, then 7, and so on. 1 is measured on the left y-axis in linea scde;
weights are measured on the right y-axis in logarithmic scde, for improved
visibility of the weight trgjedories.

Rapid improvement is made as the bishop and knight weights climb
swiftly to abou 285 after which t continues to climb, albeit more slowly.
We attribute most of the improvement in t to the proper determination of
weight values for the minor pieces. All the materia and paositional weights
are tuned to reasonable values.
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0 100 200 300 400 500 600
iteration
bishop (50 > 204) —— passed pawm af. (50 > 51 - - -
knight {50 5 287 e oo oF B0 o 53
tau (02692 > 0.3909) ------- rook on open file g&ﬂ ->42;
king tropism s.£ (50 = 135) - rook on 7th rank {50 -> 35
pev structure 8.£ (50 > 106) ——--- rok behind passed pawn (50 > 34) —--——-
blocked pavms s.£ (50 > 76) - -~ king safety asymmetry s.E (50> 8) -

Figurel. Changeinweightsfrom50astismaximized.

The scding fadors leaned are more interesting. The king tropism and
pawn structure scding fadors gradually readed, then exceaded CRAFTY’S
default values of 100. The scding fadors for blocked pawns, passed pawns,
and king safety are lower, but not urreasonably so. However, the king safety
asymmetry scding fador dives quickly and relentlesdy. CRAFTY’s default
value for this term is —40, perhaps we shoud have started it at alower value
to speed convergence.

Tables 6 and 7 contain match results of the weight vedors at spedfied
iterations during the leaning ill ustrated in Figure 1. Each side plays eadt
starting position both as White and as Blad, so with the Nunn 30 test, 60
games are played, and with the Dailey 200 test, 400 games are played.
Games reading move 121 were dedared drawn.

The play of the tuned program improves dramaticdly as leaning occurs.
Of interest is the apparent gradual dedine in percentage score for later
iterations on the Nunn 30 test suite. The DEEP THOUGHT team (Nowatzyk,
2000 foundthat their best parameter settings were achieved before reading
maximum agreement with GM players. Perhaps we are aso experiencing
this phenomenon We used the Dailey 200 test suite to attempt to confirm

300

200

S8

190; defnult scaling factor

=100)

vahwe {pavwn.
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that this was a red effed, and foundthat by this measure too, the weight
vedors at iterations 300 and 400were superior to later ones.

Throughou our ex-
perimentation, we have

iteration wins draws losss percentage score

0 3 1 56 5.83
100 3 9 48 1250 found tha@ our tuned
200 14 21 25 4083 fedure weights tend to
300 21 26 13 56.67 perform better on the
400 19 28 13 55.00 Nunn test suite than the
=00 18 26 16 5167  Dailey test suite. Nunris
600 18 23 19 49.17

suite contains positions

Table 6.  Match results (11 weights tuned from 50 \s. of partl.CU|ar Strategw
default weights), 5 minutes per game, Nunn 30test suite. am,j tadi Cd cpmpl exity.

Dailey’ssuiteislargely
more staid, and contains paositions from much ealier in the game. CRAFTY’s
default weights appea to be more comfortable with the latter than the
former.

iteration  wins draws loses percentage score We conclude that the

0 3 13 384 2.38 leaning is able to yield

200 76 128 196 oo ings that perform

300 128 152 120 5100 Comparably to sattings

400 129 143 128 5013 tuned by hand over yeas

500 107 143 150 4463 Of games versus grand-
600 119 158 123 4950 masters.

Table 7. Match results (11 weights tuned from 50 \s.
default weights), 5 minutes per game, Dail ey 200test suite.

6.2.2 Tuning from CRAFTY’s Default Values

We repeded the just-discussed experiment with one change: the feaure
weights start at CRAFTY’s default values rather than at 50. Figure 2 depicts
the leaning. Note that we have negated the values of the king safety
asymmetry scding fador in the graph so that we could retain the logarithmic
scde ontheright y-axis, and also for anather reason, for which seebelow.

While most values remain normal, the king safety scding fador
surprisingly rises to almost four times the default value. Meanwhil e, the king
safety asymmetry scding fador descends even below -10Q The
combination indicates a complete ladk of regard for the opporent’s king
safety, but gred regard for its own. Table 8 shows that this conservative
strategy is by no means an improvement.
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iteration
i ﬂﬁ?fsi 100 > 362) ——— blocked pewns s.£ (100 > 111) - - -
kmgm 0.418(640.51303 —————— pavwn structure u.f.((100->93g e
bishop *273? """" pmsi(loobsg
kmight > 27y o rook behind passed pawn (40 > 36) ———
0 - king safety asym. 8.£ (40 ->-132) —-- -~ ook on Zth rank (30 > 33) -—----
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Figure 2. Changein weights from CRAFTY’s defaults as T is maximized.

The most unuwsua
behaviour of the king

iteration wins draws losses percentage score

25 19 23 18 50.83 .

50 16 31 13 5250  SAety and king safety
75 11 32 17 4500 asymmetry scaing fac
100 14 28 18 46.67 tors deserves spedfic
125 9 23 28 3417  attention. When the
150 8 35 17 4250  other nine terms are

left constant, these two
terms behave similarly
to how they do when
al eleven terms are tuned. In contrast, when these two terms are held
constant, no statigticdly significant performance diff erenceis foundbetween
the leaned weights and CRAFTY’s default weights. When the values of the
king safety asymmetry scding fador are negated as in Figure 2, it becomes
visualy clea from their trgedories that the two terms are behaving in a
codependent manner. More investigation is required to determine the roat
cause of this behaviour.

Table 8. Match results (11 weights tuned from defaults vs.
default weights), 5 minutes per game, Nunn 30test suite.
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7. Conclusion

We have propcsed a new procedure for optimizing static evaluation
functions based upon globally ordering a multiplicity of postions in a
consistent manner. This application of ordina correlation is fundamentally
different from prior evaluation function tuning techniques. We believe it is
worth further exploration, and hope it will lead to a new perspedive and
fresh insights abou dedsion making in game-treeseach.

While our initial results show promise, more work is certainly needed. It
is important to keep in mind that we tuned feaure weights in acordance
with human assessments. Doing so may simply nat be optimal for computer
play. Nonetheless it is worth nating that having reduced the playing ability
of a grandmaster-level program to candidate master strength by significantly
atering severa important feaure weights, the learning algorithm was able to
restore the program to grandmaster strength.

7.1 Refledion

Having identified the anomalous behaviour in Figure 2, it is worth looking
again at Figure 1. The match results suggest that al productive leaning
occurred by iteration 400 at the latest, after which a small but perceptible
dedine appeas to occur. The undesirable codependency between the king
safety and king safety asymmetry scding fadors also appeas to be present
in the later iterations of the first experiment.

Furthermore, our training data is smal enough (n = 32768 that
overfitting is a consideration. Future leaning experiments shoud use more
paositions. This may in turn reduce the search eff ort required per paosition to
tune weights well . Althoughwe are nat certain why larger seaches improve
the qudity of learning, as the amourt of search used per madine assessnent
increases, the amourt of information gathered abou how relative weights
interad aso increases. On the surface then, the improvement is not
illogicd.

While some weights, for instance the positiona rook terms, leaned
nealy identicd values in bath experiments, other feaures exhibited more
variance. For cases such as the king tropism and blocked pawns scding
fadors, it coud be that comparable performance may be adchieved with a
relatively wide range of values.

In our reported experiments, computation of t was dominated by the
seach effort to generate machine assesaments, enough so that the use of
Speaman’'s p (or perhaps even Peason correlation, notwithstanding our
original rationale) may aso have been possble. Maximizing these
aternative metrics could be tried, a least when the training data contains
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relatively few positions. Other optimization strategies, for instance genetic
algorithms, could also be tried.

It was not origindly planned to attempt to maximize t only upon
asessnents at a spedfic level of seach effort. Unfortunately, we
encourtered implementation difficulties, and so reverted to the approach
described herein. We had intended to log the node number or time point
along with the new score whenever the evaluation of a paosition changes.
This would have, withou the use of excessve storage, provided the predse
score at any point throughou the search. We would have tuned to maximize
the integral of © over the period of seach effort. Implementation of this
algorithm would more explicitly reward reading better evaluations more
quickly, improving the likelihoodof tuning feaure weights and perhaps even
seach control parameters effedively.

7.2 Future Directions

Whil e our experiments used chessassesanents from humans, it is possbleto
use assesanents from deeper seaches and/or from a stronger engine, or to
tune a static evaluation function for a different domain. Depending on the
circumstances, merging conseautively-ordered fine-grained assesgnents into
fewer, larger caegories may be desirable. Doing so could even become
necessry shoud the computation of t© dominate the time per iteration, but
this is unlikely unless one uses only negligible seach to form macdine
assesgments.

Elidan et al. (2002 foundthat perturbation of training data could assst in
escgping locd maxima during leaning. Our implementation of t, designed
with this finding in mind, allows noninteger weights to be assgned to eadh
cdl. Perturbing the weights in an adversarial manner as locd maxima are
readied, so that positions are weighted dlightly more important when
generally discordant, and dlightly lessimportant when generally concordant,
could all ow the leaner to continue making progress

It would also be worthwhile to examine paositions of maximum
disagreanent between human and madine assessnents, in the hope that
study of the resulting positions will identify new fedures that are nat
currently present in CRAFTY’s evaluation. Via this process a number of
labeling errors would be identified and correded. However, we do not
beli eve that thiswould materially aff ed the outcome of the learning process

A popuar pastime amongst computer chess hobbyists is to attempt to
discover feaure weight settings that result in play mimicking their favourite
human players. By tuning against appropriate training data, e.g., from
opening monogaphs and analyses pubished in Chess Informant and
elsewhere that are authored by the player to be mimicked, training an



Evaluation Function Tuning via Ordinal Correlation 17

evaluation function to assess paositions similarly to how a particular player
might adually do so shoud now be paossble.

Producers of top computer chesssoftware play many games against their
commercial competitors. They coud use our method to model their
opporent’s evaluation function, then use this model in a minimax (no longer
negamax) seach. Matches then played would be more likely to readh
positions where the two evaluation functions differ most, providing
improved winning chances for the program whose evaluation function is
more acairate, and objed lesons for the subsequent improvement of the
other.

Identifying the most redistic mapping of CRAFTY’s madhine assessments
to the seven human positional asesgments is also of interest. This
information would allow CRAFTY (or agraphicd user interfaceconreded to
CRAFTY) to present scoring information in a human-friendy format
alongside the machine score.
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