ProbCut:
An Effective Selective Extension of the a3 Algorithm

Michael Buro?!

Paderborn, Germany

Abstract

This article presents a new, game-independent selective extension of the a5 algorithm.
Based on the strong correlation of evaluations obtained from searches at different
depths it is shown how the result of a shallow search can be used to decide with a
prescribed likelihood whether a deep search would yield a value outside the current
search window. In its application to Othello, the technique is shown to be effective
in investigating the relevant variations more deeply. It significantly increased the
playing strength of an already strong brute—force Othello program.

1. Introduction

Human players tell us that a game tree does not have to be searched in its full width
in order to find a good move. Using their experience, they are able to prune in advance
unpromising variations. The resulting game trees are narrow and can be rather deep. By
contrast, the original minimax algorithm searches the entire game tree up to a certain
depth and even its efficient improvement — the a3 algorithm (KNUTH & MOORE (1975))
— 1s only allowed to prune backwards since it has to compute the correct minimax value.

In what follows, a selective extension of the a3 algorithm — ProbCut — will be presen-
ted which gives the common brute—force approach a human touch. However, it is not the
first step in this direction. Besides selective quiescence—search methods, such as the null-
move heuristic (BEAL (1990)), other algorithms have been proposed — for example by
MCALLESTER (1988), PALAY (1985), and RivesT (1988) — which are able to search the
game tree in a best—first manner, but use an amount of memory roughly on the order
of number of nodes searched. This is not practical for programs with a fast evaluation
function running on conventional hardware. ProbCut, however, needs no memory and its
application is not limited to quiescence search. Also, it is effective not only in tactical
positions where one move is clearly superior to all others, such as the “singular extensions”
introduced by ANANTHARAMAN ET AL. (1990).

A technique with aims similar to ProbCut is used in the checkers program CHINOOK.
SCHAEFFER ET AL. (1992) described their approach, casually, in a footnote: CHINOOK
performs forward cuts in positions with a material deficit in which a shallow search does not
show an escape. ProbCut is a generalization of this method in that it is game independent
and does not rely on parameters to be chosen by intuition. It was tested by incorporating it
in the author’s already strong Othello program LOGISTELLO? and increased the program’s
playing strength considerably.

1University of Paderborn, Department of Mathematics and Computer Science, 33095 Paderborn, Ger-
many, Email: buro@uni—-paderborn.de

2A description of LOGISTELLO is given by Buro (1994).

2. Probabilistic forward cuts

The selective extension presented here permits excluding probably irrelevant subtrees
from being searched deeply. The time so saved is used to analyze the relevant variations
more deeply, given some constant available search time. Figure 1 shows an outline of the
negamax aff algorithm computing a position’s value from the point of view of the side to
move. For clarity, a global variable pos is assumed to contain all positional information.
The modification is based on the following idea: in order to evaluate a position using a
deep search of depth d, the position can first be examined by a shallow search of depth
d" < d. The result v’ can then be used to estimate the true value v and to decide with a
prescribed likelihood whether v lies outside the current (alpha,beta) window. If so, the
position is not searched more deeply and the right-hand bound is returned. Otherwise,
the search is performed to depth d, yielding the true value. Here, a shallow search has
been invested but relative to the deep search the effort involved is negligible.

A natural way to estimate v by means of v’ is to use a linear model of the form
v=a-v +b+e with a,b € IR and a normally—distributed error variable ¢ with mean
0 and variance o%. If the evaluation function is relatively stable, it can be expected that
a~1,b~0,and o is small, that is the accuracy of the unbiased estimator © = a - v' + b

int AlphaBeta(int height, int alpha, int beta)
{

int i, max, val;

POSDELTA delta;

if (Leaf(&pos, height)) /* leaf-position? */
return Eval(&pos); /* yes => evaluate it */

/* location of the selective extension */

max = alpha; /* initialize maximum */
for (i=0; i < pos.movenum; i++) { /* forall moves ... */
Move(&pos, pos.move[i], &delta); /+* make move and save */
/* changes in delta */

val = -AlphaBeta(height—l, -beta, -max); /* negamax */
Undo (&pos, &delta); /* restore old pos */
if (val > max) {
if (val >= beta) return val; /* cutoff */
max = val; /* new maximum */
}

b

return max;

¥

Figure 1: A negamax implementation of the af algorithm

of v is high. By using the following equivalences it can be tested whether v > 3 holds
with a given probability:

V>0 = +e>p < (0-p0)]c>—¢/o.

Since —e/o is normally—distributed with mean 0 and variance 1 (and distribution function
®), it follows that v > 3 holds with probability of at least p if and only if (0 — 3)/o >
®~!(p). This condition is equivalent to v’ > (®~1(p) - o + 8 — b)/a. Analogously, it can
be shown that v < a holds with probability of at least p if and only if v/ < (—=®~(p) -
o + a — b)/a. Thus, the only matter of interest is whether v’ is greater or less than a
value which depends on a, (3, and the constants a, b, o, and p by a simple relation. This
observation immediately leads to the implementation of the ProbCut extension shown in
Figure 2. Nodes at height d (=D) are first evaluated by means of a zero-window search
of depth d' (=DP) to decide whether v < alpha or v > beta with probability of at least p.
In this case, the corresponding bound is returned.

3. Determination of the parameters

If the game tree is searched with depth d” > d, then the brute—force depth achieved by
the new algorithm is d” — (d — d'). On the other hand, the maximum depth is not greater
than d” 4 (d — d') if the same time is used which the plain o algorithm needs for a depth
d" search, since here depth d” is searched completely, too. Choosing a large value for
PERCENTILE leads to the original search behaviour up to a small time overhead due to the

#define PERCENTILE 1.5 /* i.e. p ca. 0.93 */
#define DP 4 /* depth of shallow search */
#define D 8 /* check height x/

int AlphaBeta(int height, int alpha, int beta)
{

if (height == D) {
int bound;

/* v >= beta with prob. of at least p? yes => cutoff */
P pry

bound = round((+PERCENTILE * sigma + beta - b) / a);
if (AlphaBeta(DP, bound-1, bound) >= bound) return beta;

/* v <= alpha with prob. of at least p? yes => cutoff */
bound = round((-PERCENTILE * sigma + alpha - b) / a);

if (AlphaBeta(DP, bound, bound+1) <= bound) return alpha;
b

Figure 2: The ProbCut extension

shallow searches, because there are only very few forward cuts. In the other extreme case,
there are many (erroneous) cuts — the depth—d” search then degenerates into a search
with depth d” — (d — d'). Hence, a playing strength similar to that of the non-selective
program can be expected in this case, too, provided iterative deepening is used.

Before the parameters a, b and o can be estimated by a linear regression, the search
depths d and d" must be chosen. If the difference d — d' is large, the variance of the error
variable is large and this reduces the number of cuts. On the other hand, the difference must
not be too small, because it is a measure of the savings that are achievable. Furthermore,
while choosing d one has to take into account that this depth will be reached in tournament
games and a sufficiently large number of evaluation pairs can be determined in a reasonable
time. Experiments finally led to the choices d = 4 and d = 8 for LOGISTELLO. It turned
out that the variance of the error variable increases with the number of discs on the board,
which is a natural measure of time in Othello. Therefore, the parameters a,b and o were
estimated for each game phase. In order to do this, evaluation pairs (v’, v) were determined
from positions which occurred exactly at the depth at which the test with the shallow
search take place. In preceding tests it turned out that, under tournament conditions,
the selective search normally reaches depth 13 or 14 in the opening and midgame phases
on a Sun SPARC-10/M30 workstation in contrast to depth 11 or 12 formerly achieved
by the brute—force program. Thus, positions reached from tournament positions at depth
6 by a normal af search were used to estimate the parameters. Figures 3 and 4 show
ca. 2,000 evaluation pairs® with the corresponding parameters and linear approximation at
28 and 44 discs, respectively. The goodness of fit is not only visually obvious but also the
regression’s coefficient of determination — #* — of about 0.97 indicates that only some
3% of the variance in the data is ascribable to the random error. Therefore, the linear
model is clearly suitable.

16 '

" @ = 1.036
b = —0.009

- 6 = 0.542

2 = 0.971

—16

I I R
-16—-12 -8 -4 0 4 8 12 16
U/

Figure 3: Relation between v and v’ at 28 discs

3LOGISTELLO’s evaluation function approximates the log odds of winning — log,(P/(1 — P)) — with
a resolution of 0.0001. For instance, value 2 stands for winning probability P = 0.88.

4

v a = 0.956
b = —0.067

- & = 0.884

2 = 0.963

—16 I I I I I I
~16-12 -8 —4 0 4 8 12 16

v’
Figure 4: Relation between v and v’ at 44 discs

It remains to choose PERCENTILE suitably. For this purpose, some tournaments between the
non-selective and versions of the selective program were played, where it is understood that
all program versions are selective in their quiescence search. Starting with 35 balanced
opening positions? with twelve discs, each game and its return game was played under
normal tournament conditions — 30 minutes per player per game — with a view of
selecting the value of PERCENTILE with the highest winning score. Table 1 shows the
tournament results from the point of view of the selective programs.

The current version of LOGISTELLO searches selectively using PERCENTILE = 1.5. In
order to gain a further impression of ProbCut’s effectiveness, Table 2 lists some statistics
about 12—ply searches at various stages of the game averaged over 50 random positions
from LOGISTELLO’s opening book. Surprisingly, in the opening and midgame phases the
accuracy and the speed—up are greater than in endgame phase. In many positions the
large speed—up enables the selective program to search the relevant lines one or two ply

PERCENTILE Result Winning
(® x 100%) (Win—Draw—Loss) Percentage
1.20 (88.5%) 41 —6—23 62.9%
1.35 (91.2%) 45— 2 — 23 65.7%
1.50 (93.3%) 50 — 4 — 16 74.2%
1.65 (95.1%) 47-4-19 70.0%
1.80 (96.4%) 49 —-1-20 70.7%
2.00 (97.7%) 39—-6-25 60.0%

Table 1: Tournament results: selective vs. non-selective (reported from the point of view
of the selective version).

4LOGISTELLO’s 10-ply evaluation of these positions lies in the range [—0.2, 4+0.2] which corresponds
to winning probabilities in the range [0.45, 0.55].

Disc | Brute-Force Std. ProbCut(1.5) Std. Speed— | Same Same
| Avg. node # Dev. Avg. node # Dev. Up Move Value
12 5,012,649 1,375,003 752,169 237,304 6.6 100% 84%
20 11,013,030 5,248,987 | 1,823,702 1,229,339 6.0 90% 72%
28 9,264,054 5,055,533 | 1,446,873 1,001,035 6.4 100% 90%
36 4,132,991 1,606,994 768,182 424,531 5.4 94% 84%
44 778,925 518,429 181,976 108,519 4.3 84% 78%

Table 2: Comparison of 12 ply searches (50 at each number of discs investigated). The
‘Speed-Up’ is the ratio of the number of nodes visited; ‘Same Move’ states the percentage
of cases in which both versions selected the same move; ‘Same value’ refers to the frequency
with which both versions reported the same root—position value.

more deeply than the brute—force version, since the average mid-game branching factor
for ProbCut searches estimated from Table 2 is less than 3.3. Clearly, the incorporation of
ProbCut allows to find decisive moves earlier.

The considerable increase of LOGISTELLO’s playing strength can also be gauged by
inspecting the result of a tournament between the selective program with 30 minutes
thinking time and the non—selective program having 60 minutes per game. For this tour-
nament, the facility enabling the machine ‘to think in it’s opponent’s time’ was disabled.
The unequivocal result was 41 — 8 — 21, a winning percentage of 64.3%.

4. Discussion

In this article an easy to implement and memory efficient selective extension of the of3
algorithm — ProbCut — has been presented which has led to a significant increase of
playing strength of a former brute—force Othello program. The idea elaborated in this
contribution is that of estimating values returned by deep searches by means of shallow
search results so as to reach an early decision whether the deep values fall outside the
current search window with a stated probability. Necessary for a successful application of
ProbCut is a relatively stable evaluation function or a quiescense search. These properties
ensure a small variance of the difference between the true and the estimated evaluation.
This makes it possible to cut whole subtrees with confidence very often. ProbCut’s applic-
ability is wider than that of the game of Othello, since all game programs with a brute—force
kernel tend to examine bad moves to an unmerited depth.

Being aware of the improvements already achieved, one idea to increase the playing
strength further is as follows: One weakness of the presented approach is that the depths
d" and d are constant. As a result, the average branching factor even when using ProbCut
tends to creep up to that without this improvement, and no more further improvements
can be expected in comparison with the plain af algorithm by increasing the search depth.
To overcome this defect, it is suggested to increase d — d’ moderately dependent on the
step of the iterative deepening process in order to prune subtrees of increasing depth to
keep the average branching factor small.

5. Acknowledgements

I wish to thank all Othello programmers whose programs gave (and give) LOGISTELLO
a hard life. Many discussions with these other program’s authors favourably influenced
my work. Furthermore, thanks go to Warren D. Smith who pointed out the “CHINOOK
footnote” after reading my thesis (BURO (1994)) and to the referees for their helpful
remarks.

6. References

ANANTHARAMAN, T., CampBELL, M.S., Hsu, F.—H. (1990). Singular Fxtensions: Adding
Selectivity to Brute—Force Searching, ICCA Journal, Vol. 11, No. 4, pp. 135-143. Republished
(1990) Artificial Intelligence, Vol. 43, pp. 99-109.

BEAL, D.F. (1990). A Generalized Quiescence Search Algorithm, Artificial Intelligence, Vol. 43,
pp- 85-98.

Buro, M. (1994). Techniken fiir die Bewertung von Spielsituationen anhand von Beispielen,
Ph.D. thesis, University of Paderborn, Germany.

KnuTH, D.E., Moorg, R.W. (1975). An Analysis of Alpha—Beta Pruning, Artificial Intelli-
gence, Vol. 6, pp. 293-326.

MCcALLESTER, D.A. (1988). Conspiracy Numbers for MinMaz Search, Artificial Intelligence,
Vol. 35, pp. 287-310.

PavLay, A.J. (1985). Searching with Probabilities, Pitman Publishing, Originally (1983) pub-
lished as Ph.D. thesis, Carnegie—Mellon University.

RivesT, R.L. (1988). Game Tree Searching by MinMaxz Approximation, Artificial Intelligence,
Vol. 34, No. 1, pp. 77-96.

SCHAFEFFER, J., CULBERSON, J., TRELOAR, N., KNIGHT, B., Lu, P., SzZaFrRON, D. (1992).
A World Championship Caliber Checkers Program, Artificial Intelligence, Vol. 53, pp. 273-289.

