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aAbstra
t Kotani [2℄ determined the part of the state spa
e of the Japanese Oshi{Zumo game in whi
h pure strategies are suÆ
ient for winning. This pa-per 
ompletes the analysis by 
omputing and dis
ussing a Nash{optimalmixed strategy for this game.1. Introdu
tionIn this arti
le the Japanese game Oshi{Zumo is analyzed. Moves in thisgame 
onsist of simultaneous a
tions by two players who otherwise have
omplete information about the 
urrent game state. In general, su
hgames 
an be represented by a 
olle
tion of payo� matrix pairs whoseentries de�ne the expe
ted amount paid to the players in 
ase the re-spe
tive a
tion pair was 
hosen. It is well known that not knowing theopponent's a
tion already makes it ne
essary to 
onsider mixed strate-gies and that so 
alled Nash{ optimal mixed strategies exist for anymatrix game [3℄. A simple example is the Ro
k{Paper{S
issors gamein whi
h Ro
k beats S
issors, S
issors beats Paper, and Paper in turnbeats Ro
k. The Nash{optimal strategy pi
ks ea
h of the a
tions withprobability 1/3.In what follows, we �rst introdu
e the Oshi{Zumo game. It is more
omplex than Ro
k{Paper{S
issors, but 
onsiderably simpler than otherpopular in
omplete information games su
h as poker and bridge. In fa
t,we will show how to 
ompute a Nash{optimal strategy within se
ondson ordinary PC hardware. We then highlight interesting properties ofa Nash strategy and 
on
lude the paper by dis
ussing how the optimalplayer performs against reasonable, but sub{optimal strategies.2. The GameOshi{Zumo | meaning \the pushing sumo (wrestler)" | is playedby two players who both start o� with N 
oins. At the beginning of a



2 50 50[50,4,�℄{Oshi{Zumo starting position { 
ode (50; 50; 0)46 48Position after move (4,2) { 
ode (46; 48; 1)Figure 1. Oshi{Zumo positions and their triple representationgame a sumo wrestler is positioned at the 
enter of a one{dimensionalplaying �eld whi
h 
onsists of 2K + 1 lo
ations (Figure 1). Moves areplayed by se
retly 
hoosing a number of 
oins less or equal to the amount
urrently available to the respe
tive player, but at leastM . The bids arethen revealed and the highest bidder pushes the wrestler one lo
ationtowards the opponent's side. If the bids are equal, the wrestler doesnot move. Both bids are dedu
ted and the game pro
eeds until themoney runs out or the wrestler is pushed o� the playing �eld. The�nal position of the wrestler determines the winner: if he is lo
ated atthe 
enter, the game result is a draw. Otherwise, the player in whosehalf the wrestler is lo
ated loses the game. We 
all this parameterizedgame an [N;K;M ℄{Oshi{Zumo game. In this paper we only 
onsiderthe minimal bids M = 0 and M = 1 and de
lare a game over if bothbids are 0. As before, the winner is determined by the 
urrent wrestlerposition.3. Computing a Nash{Optimal StrategyCertain Oshi{Zumo positions possess pure winning strategies. Forexample, all positions, in whi
h the opponent has no money left and thewrestler position is suÆ
iently advan
ed, 
an be won by simply biddingone 
oin for the remainder of the game. Kotani determined all su
hpositions for the standard [50; 3; 1℄ game in [2℄. The following table listssome more interesting [50; 4; 0℄ positions that 
an be won by the �rstplayer with a pure strategy:(n; n; 1) : 1 � n � 11 [bid 1℄ (n; n+ 1; 2) : 1 � n � 12 [bid 1℄(50; n;�4) : 1 � n � 16 [bid n℄ (49; n;�4) : 1 � n � 16 [bid n℄All su
h positions 
an be 
omputed by dynami
 programming for smallvalues ofN andK be
ause the size of the state spa
e is only a polynomial



Solving the Oshi{Zumo Game 3maximize Z su
h thatfor all M � j � n2 : Z � n1Xi=M Ai;jxi;for all M � i � n1 : xi � 0; andn1Xi=M xi = 1
minimize Z su
h thatfor all M � i � n1 : Z � n2Xj=M Ai;jyj ;for all M � j � n2 : yj � 0; andn2Xj=M yj = 1Figure 2. Linear programs for determining Nash{optimal mixed strategies.(N + 1)2 � (2 �K + 3) in the parameters. First, we 
ompute the payo�sPi for both players at the boundary positions:P1(0; 0; k) = �P2(0; 0; k) = sign(k); for�K � k � KP1(n;m;�(K + 1)) = �P2(n;m;�(K + 1)) = �1; for 0 � n;m � NThen we sear
h for positions with pure winning or drawing strategies,or ones that lose for sure no matter what. A position is won for playerA if there exists an a
tion su
h that for all a
tions of the opponent theexpe
ted payo� for A is 1. De
laring a position drawn or lost requiresthat all su

essor position values are known. We repeat this pro
essuntil we do not �nd any new position values.A Nash{optimal strategy 
an be 
omputed similarly. Starting againwith assigning values to the boundary positions, we iterate through allpositions with unknown expe
ted payo� until we �nd one for whi
h allsu

essor values have been established. At this time we make use ofthe fa
t that optimal strategies f(i; xi) j M � i � n1g and f(j; yj) jM � j � n2g for players \Max" and \Min" 
an be found by solving twolinear programs (LPs) (Figure 2). \Max" has move 
hoi
esM; : : : n1 and\Min" has a
tions M; : : : ; n2. xi and yj denote the respe
tive a
tionprobabilities. Matrix element Ai;j de�nes the payment for \Max" ifa
tion pair (i; j) is 
hosen. Be
ause Oshi{Zumo is a zero{sum game,\Min" re
eives the negated amount. Z denotes the expe
ted payo� for\Max." This pro
edure eventually halts and 
omputes the expe
tedpayo�s and mixed strategies for all positions.We de
ided to not only 
reate a table 
ontaining expe
ted payo�s |whi
h would be suÆ
ient for 
omputing values for all positions | butalso to store the move distributions to speed up later game play andmove analyses. Only one distribution needs to be 
omputed and storedfor ea
h position be
ause the move distribution for the se
ond player inposition (n;m; k) is identi
al to that of the �rst player at (m;n;�k).



44. Implementation IssuesIn our �rst implementation we adopted Mi
hel Berkelaar's open sour
esoftware pa
kage \lpsolve." Unfortunately, the solver ran into numeri-
al problems whi
h 
aused it to either give up on instan
es or reportingin
orre
t solutions. Implementing eÆ
ient LP solvers is by no meanseasy. In order to over
ome the numeri
al problems we de
ided to repla
e
oating point by rational arithmeti
 in lpsolve | whi
h turned out to bemore 
ompli
ated than expe
ted. Finally, we took the simpler LP solver
ode from [4℄ and 
ombined it with GMP| the GNU arbitrary pre
isionarithmeti
 library | by repla
ing the 
oat/double data types by GMP'srational number C++ 
lass. Solving LPs using rational arithmeti
 takesmu
h longer than using 
oating point values, even if the denominatorsare bounded. In order to speed up the Oshi{Zumo solver we thereforeimplemented a two phase approa
h: whenever the fast LP solver re-ported problems or produ
ed in
onsistent results, we would start theslow solver based on rational arithmeti
. We bounded denominators by108 and normalized rational numbers whenever this limit was ex
eeded.Test runs on Oshi{Zumo games manageable by the 
oating point basedsolver indi
ated that the results obtained by rational arithmeti
 only dif-fered by a negligible amount. On a Pentium{3/1GHz notebook, solvingthe standard [50; 3; 1℄ game takes just 12 se
onds. The C++ sour
e 
ode
an be downloaded from http://www.
s.ualberta.
a/~mburo/sumo.tgz.5. A Nash{Optimal Oshi{Zumo StrategyIn what follows we 
on
entrate on the [50; 3; 0℄ and [50; 3; 1℄ versions ofthe game and highlight interesting properties of their respe
tive Nash{optimal strategies. We start by looking at the move distributions for thestarting position:M = 0 position=(50; 50; 0) value= 0:0bids: 0 1 2 3 4 5 6 7 8 9 10prob: .083 .077 .088 .083 .092 .088 .097 .092 .099 .094 .101M = 1 position=(50; 50; 0) value= 0:0bids: 1 2 3 4 5 6 7 8 9prob: .139 .053 .146 .060 .152 .067 .156 .068 .156Apparent is an \odd{even" e�e
t in whi
h higher and lower bid prob-abilities alternate. This probability pattern o

urs in many positions.Why it o

urs is an open problem.The smallest positions with randomization requirement are (5; 2;�3)for M = 0 and (6; 3;�3) for M = 1. The move distributions are asfollows:



Solving the Oshi{Zumo Game 5M = 0position = (5; 2;�3)value1 = �0:5bid1: 1 2prob: .5 .5bid2: 0 2prob: .5 .5
M = 1position = (6; 3;�3)value1 = �0:5bid1: 1 3prob: .5 .5bid2: 1 3prob: .5 .5In 5271 
ases of the 23409 possible [50; 3; 0℄ positions, and in 4057 
asesfor M = 1, more than one move has to be 
onsidered. To illustrate how
omplex the move de
ision 
an be, we present two positions with a highnumber of holes in the move distribution:M = 0 position = (17; 34; 3) value1 = 0:047bid1: 0 2 3 4 5 6 7 8 10 12 14 17prob: .482 .015 .008 .017 .016 .020 .022 .026 .069 .087 .107 .126bid2: 1 2 3 4 5 6 7 17prob: .066 .065 .086 .080 .082 .082 .058 .476M = 1 position = (20; 32; 3) value1 = 0:333bid1: 1 2 3 5 6 7 9 11 12 14 17 18 20prob: .369 .004 .038 .050 .007 .038 .125 .069 .048 .039 .080 .030 .096bid2: 2 3 4 5 6 9 10 11 12 20prob: .136 .021 .079 .029 .059 .016 .188 .091 .043 .333Given su
h 
omplex distributions the question arises how well humanplayers 
an play Oshi{Zumo.6. How Good is Optimal?Playing any mixed or pure strategy against a Nash{optimal playerresults in an expe
ted payo� no better than the expe
ted value E of agame between two Nash players. On the other hand, the expe
ted valueof any pure strategy that pi
ks a
tions from the set an optimal strategy
onsiders, is exa
tly E when playing against the Nash{optimal player.This follows from the fa
t that all a
tions with non{zero probabilityhave the same expe
ted value. Therefore, the Nash{optimal solutionis far from optimal with respe
t to exploiting simple (pure) strategies,su
h as playing Ro
k all the time in a sequen
e of Ro
k{Paper{S
issorsgames. In Ro
k{Paper{S
issors the Nash strategy 
annot win anythingagainst any other strategy in the long run. However, in more 
omplexgames | su
h as Oshi{Zumo or poker | it 
an, be
ause not all a
tionshave non{zero probability in all situations.A player who just memorizes one move from a Nash{optimal strategyfor ea
h position does not lose money against a Nash{player in the longrun. How mu
h does a player lose who o

asionally plays moves not



6M = 0random 0..# �:97882random Nash range �:035random 1..min(6,#) �:31884random 1..min(5,#) �:16971random 1..min(4,#) �:05115random 1..min(3,#) �:00292random 1..min(2,#) +:0006451 �:002765if #�2 2 else 1 �:00156
M = 1random 1..# �:98216random Nash range �:0105random min(2,#)..min(6,#) �:3533random min(2,#)..min(5,#) �:21524random min(2,#)..min(4,#) �:05683random min(2,#)..min(3,#) �:00372if #�2 2 else 1 +:00039if #�3 3 elif #�2 2 else 1 �:02987Figure 3. The average payo� of various simple move sele
tion algorithms playing200,000 [50; 3;M ℄ games against a Nash{optimal strategy. # denotes the 
urrentnumber of 
oins left for the heuristi
 player.played by a Nash{player and how well do simple hand{
rafted strategiesplay? To answer these questions we wrote a program that played a largenumber of games between a Nash{optimal strategy and several simplemove sele
tion algorithms. Figure 3 presents the tournament results. Asexpe
ted, the 
ompletely random player loses almost every game. Theplayer that randomly 
hooses bids in the interval formed by the minimaland maximum Nash bid performs mu
h better and loses only about 0.035units per game for M = 0 and 0.01 for M = 1. Simply 
hoosing movesin a small �xed interval also leads to good results and shows how easyit is to look good against a Nash player. Also some fairly simple purestrategies perform surprisingly well.A more interesting question is therefore how to adapt to players andexploit their weaknesses while minimizing the risk of being exploited.We think that using games simpler than say poker but harder thanRo
k{Paper{S
issors as test domains 
an shed light into this interestingproblem, whi
h appears to be the last remaining hurdle on the wayto poker programs stronger than human players [1℄. Oshi{Zumo is asuitable 
andidate be
ause its Nash{optimal strategy is non{trivial, but
an be 
omputed qui
kly.7. A
knowledgmentThanks go to Darse Billings for helpful dis
ussions 
larifying questionson Nash{optimal strategies.
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