
Performance Programming with IBM Performance Programming with IBM
pSeries CompilerspSeries Compilers

March 27, 2002
Bob Blainey
blainey@ca.ibm.com

Agenda

Part 1
PowerPC Architecture
pSeries processors
AIX performance tools
Performance libraries
Performance coding
Q&A

Part 2
Review of pSeries compiler products
Tutorial on performance controls
Programming for performance
A peek inside the compiler
A closer look at Power 4 optimization
Q&A

PowerPC Architecture: Registers
32 General Purpose Registers (64 bits wide)

Used for address and integer computation
Note that some compliant implementations have 32-bit GPRs

32 Floating Point Registers (64 bits wide)
Used for floating point computation

64-bit Count Register (CTR)
Used for loop control and indirect branching

64-bit Link Register (LR)
Used for subroutine call-return and indirect branching

32-bit Condition Register (CR)
Normally accessed as 8 4-bit condition fields (eq,gt,lt,ov) to compute and branch on conditions

32-bit Exception Register (XER)
Contains overflow and carry information.
Also used for string copy assist instructions

32-bit Floating Point Status and Control Register (FPSCR)
Contains floating point control information (rounding mode, exception enable)
Also contains exception status information

PowerPC Architecture: Instruction Summary

Branch Processor
branch and branch conditional

relative and absolute forms (24 bit unconditional, 16 bit conditional)
branch and link form (set LR to IAR+4): used for calls

branch conditional to LR, branch conditional to CTR
used for indirect calls, switches, etc

condition register logic and manipulation
Floating Point Processor

load/store
single and double forms
base-displacement (16-bit), base-index and base-update forms

arithmetic (single and double)
move, negate, absolute value, negative absolute value
add, substract, multiply, divide
multiply-add, multiply-subtract, negative multiply-add, negative multiply-subtract
convert to single, convert to/from integer

compare ordered and unordered
FPSCR manipulation

PowerPC Architecture: Instruction Summary
(continued)

Fixed Point Processor
load/store

base-displacement (16-bit), base-index and base-update forms
byte, halfword, word and doubleword widths
sign extend and zero load forms (except byte)
byte reverse forms
multiple and string forms

load-and-reserve and store-conditional
atomic load/store used for test-and-set, compare-and-swap

sync, eieio: enforce instruction ordering, flush stores for SMP
arithmetic:

add, subtract: register and immediate forms, carrying, non-carrying and extended
multiply: register and immediate forms, low and high word and doubleword forms
divide: word and doubleword, signed and unsigned forms

compare: register and immediate, signed and unsigned
trap instructions: word and doubleword, register and immediate
logic: and, or, xor, eqv, nand, andc, sign-extend, count-leading-zeroes
rotate and shift

PowerPC Architecture: Optional Instructions

PowerPC architecture evolved from the Power and Power 2 architectures
Some new instructions added (single precision floating point, 64 bit, synchronization, cache
control)
Some instructions removed (some string forms, load/store pair)

Architecture needed to accommodate existing implementations so certain
instructions marked as optional.
Optional instructions are implemented on all modern pSeries processors,
including RS64, Power 3 and Power 4.

Store floating point as integer word: used for float-to-int32 conversion
Square root double and single
Estimate instructions

Float reciprocal estimate single
Float reciprocal square root estimate (double)
Used to seed inline expansions of divide, square root

Floating point select (conditional assignment)

AIX Performance Tools
Monitoring tools

ps: Report on running processes including resource usage
topas: General purpose system performance monitor
iostat: Disk I/O performance monitor (also includes CPU usage)
vmstat: Virtual memory and CPU usage monitor
truss: System call and signal monitor

Tuning tools
fdpr: Binary optimizer based on profile feeback
schedtune: Tune process and thread scheduling
vmtune: Tune virtual memory subsystem and filesystem parameters

CPU performance tools
gprof: Provides a function level application execution profile based on sampling
xprofiler: GUI-based profiler similar to gprof - also provides source line execution profile
tprof: System or application level sampling profiler - can also monitor kernel activity
alstat: Monitor alignment exceptions
emstat: Monitor instruction emulation

More info
http://www.redbooks.ibm.com/redbooks/SG246039.html

Performance Libraries

Engineering and Scientific Subroutine Library (ESSL)
ESSL has over 400 high-performance subroutines specifically tuned for pSeries
Parallel ESSL has over 100 high-performance subroutines designed for SP systems up to 512
nodes
BLAS, ScaLAPACK and PBLAS compatibility
Linear Algebraic Equations, Eigensystem Analysis, Fourier Transforms, Random Numbers
http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/essl.html

Math Acceleration Subsystem (MASS)
High performance versions of a subset of Fortran intrinsic functions (also callable from C/C++)
Sacrifices a small amount of accuracy for increased speed
Scalar and vector versions available
http://techsupport.services.ibm.com/server/mass?fetch=home.html

Modular I/O (MIO) Library
Application-level analysis and tuning of sequential I/O
http://www.research.ibm.com/actc/Opt_Lib/mio/mio_doc.htm

General Performance Coding Guidelines

Minimize stride of data access
Reformat multidimensional data
Reorder loop nests
Copy strided data where there is reuse
Try to limit the step of indirect addressing (eg. sort indices)

Make optimal use of data prefetch facilities
Split loops when too many streams are being referenced
Use CACHE_ZERO for store streams

Avoid cache and TLB set associativity conflicts
Realign or copy data to avoid referencing data whose addresses differ by a large power of 2

Data cache blocking
To exploit reuse, block computations where possible to ensure that referenced data resides in
the largest on-chip cache (L1 on POWER3, L2 on POWER4)

Unroll loops
Creates larger opportunity for code scheduling
Can balance computation for superscalar execution, increasing computational intensity

Keep code as simple as possible

eServer pSeries at a glance

RS64

POWER4

POWER3

RS64 (Pulsar, SStar) Microarchitecture
Systems: pSeries 620 Model 6F1 (up to 4w), pSeries 660 Model 6M1 (8w), pSeries 680 (up to
24w)
4-way superscalar processor

one load/store unit (LSU), one floating point unit (FPU), two fixed point units (FXUs)
5-stage pipeline
simple branch prediction with very fast branch mispredict recovery (often free)
in-order execution, 2-way multithreaded (SStar)

On-chip 128K 2w L1 instruction and data caches
On-chip L2 cache control with support for up to 8MB (16MB) of off-chip L2 cache
RS64 III

34 million transistors, 140 mm2 die
1.8V 0.22 micron copper CMOS 7S process
14.4 GB/s L2 bandwidth

RS64 IV
44 million transistors, 128 mm2 die
1.6V 0.18 micron copper SOI CMOS 8S process
19.2 GB/s L2 bandwidth

More info
http://www.research.ibm.com/journal/rd/446/borkenhagen.html

RS64 IV (SStar) Overview

POWER3 Microarchitecture
Example systems with POWER3 processor

pSeries 640 Model B80 (4w), SP High Node (up to 16w)
8-way superscalar processor

2 LSUs, 2 FPUs, 3 FXUs, 1 BRU
In-order dispatch and completion, out-of-order execution

On-chip 64K 128w L1 data cache, 32K 128w L1 instruction cache
Up to 8MB off-chip L2 cache
128 entry 2w TLB
Automatic instruction and data prefetch (up to 4 streams)
Power 3

15 million transistors, 270 mm2 die
2.5V 0.25 micron CMOS 6S2 process
6.4 GB/s L2 bandwidth

Power 3-II
23 million transistors, 163 mm2 die
0.22 micron copper CMOS 7S process
6.4 GB/s L2 bandwidth

More info
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power3wp.html
http://www.redbooks.ibm.com/redbooks/SG245155.html

FPUFPU

DCMMUDCMMUBIUBIU

LD/STLD/ST

DataData
CacheCache

IFU2IFU2
IFU1IFU1

IPUIPU FXUFXU
BIUBIU
22InstructionInstruction

CacheCache

Power 3-II Overview

Three fixed point units
Two units implement single cycle operations
One unit for complex, multi-cycle instructions

Two floating point units

Double precision data path
Three cycle latency, one cycle throughput
Each unit contains divide and square root sub-units
24 real and 32 virtual rename buffers

Two load / store units
Each unit calculates one load or store / cycle
Loads processed speculatively
16 entry store queue

Branch unit
2048 entry branch history table
128 x 2 entry branch target cache
Four pending predicted branches

Execution Core

From Instruction Cache

4
instructions

12
instructions

Queue Queue Queue Queue

Completion Buffer (32 Instructions) Four instructions per cycle
completed (in order)

 Four instruction per cycle dispatch
 (in order)

 Eight Instruction execution
 (out of order)

Instruction Buffer

Dispatch
Buffer

(3)

Fixed
Point
Unit

Load/
Store
Unit

Floating
Point
Unit

Branch
Unit

(2) (2)

Decode-to-completion bandwidth

0
100
200
300
400
500
600
700
800

St
re

am
 M

em
or

y
Ba

nd
w

id
th

 (M
B/

s)

DEC
4000/4100

5/400

HP
C180

SGIOrigin
200
195MHz

Sun
Ultra

Enterprise
6001

POWER3
w/ASCI
Node
(est.)

Memory
Subsystem

POWER3

L2
Cache

Private

L2 Bus

6XX
Bus

16 Bytes
1.6 GB/sec
 @ 100MHz

32 Bytes
6.4 GB/sec
 @ 200MHz

1MB-16MB

Performance data as of 9/97, as reported in corporate websites and other public sources; except IBM data, which is estimated.

POWER3 System Level Bandwidth

POWER4 Microarchitecture
Example systems with POWER4 processor

pSeries 690 (up to 32w)
8-way superscalar processor

2 LSUs, 2 FPUs, 2 FXUs, 1 branch unit (BRU), 1 condition register logic unit (CRLU)
15 to 20 stage pipelines
Dynamic branch address and direction prediction
Out-of-order execution of instruction groups

2 cores per chip (1 core in HPC models)
On-core 64K direct-mapped L1 instruction cache, 32K 2w L1 data cache
On-chip 1.5MB 8w L2 cache (shared by two cores)
On-chip L3 cache control supporting off-chip 32MB 8w L3 cache
Support for 4KB and 16MB page sizes
Automatic instruction and data prefetch (up to 8 streams, delayed ramp-up)
POWER4

170 million transistors, 400 mm2 die
1.6V 0.18 micron copper SOI CMOS 8S process
100 GB/s L2-L1 bandwidth, 35 GB/s L2-L2 bandwidth, 10GB/s L3-L2 bandwidth

More info
http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html
http://www.redbooks.ibm.com/redbooks/SG247041.html

POWER4 Core

POWER4 Pipeline

POWER4 Chip

POWER4 Multi-Chip Module (MCM)

POWER4 MCM Interconnect

Key POWER4 System Attributes
Memory System

L3 is interleaved across MCM on 512 Byte boundaries
Memory is interleaved across MCM on 512 Byte boundaries
4-way interleaving requires matched memory cards on the MCM
Peak BW is 27.7 GB/s per direction per MCM (measured at L3)
Peak DRAM BW is 25.6 GB/s * 2 ports per MCM (measured at DDR SDRAMs)

CPU Performance
1100 MHz or 1300 MHz available
Out of order

max of ~200 instructions in flight
Superscalar

up to 5 instructions per cycle
two floating-point multiply-add units

Aggressive hybrid branch prediction
Max sustainable FP performance about 75% of peak: L2-contained DGEMM, with compiler-generated code
(due to limited rename resources)
L1 Dcache

2-way associative
FIFO replacement policy
write-through

Unique Features of POWER4 & p690

Shared L2 cache
Shared L3 cache
Interleaved memory
Hardware Prefetch
Multiple Page Size support

Shared L2 cache

The L2 cache has plenty of bandwidth for two cores
Sharing the L2 increases the L2 miss rate

fixed capacity
fixed associativity

What to do?
select blocking factors for about 512 kB blocks per process
can block to approximately 1.4MB per process on HPC models
fiddle with offsets to minimize conflict misses

Shared L3 cache

The L3 cache is a front-side cache
L3 reduces latency for non-prefetchable accesses

good for gather/scatter kernels
good for store-dominated kernels

L3 BW roughly matches memory BW for prefetchable kernels
Fixed Associativity: 8-way
What to do?

pay careful attention to offsets and conflicts

Interleaved Memory

Memory is interleaved 4 way within MCM
only if 2 memory cards match in size

Each MCM is associated with a contiguous quarter of the total
address range

each page is interleaved within an MCM
consecutive pages can be on any MCM

Multiple Page Sizes

AIX currently provides random page placement for small pages
local page placement AIX 5.1D
"first touch" policy

Large pages are currently accessible through a System V shared
memory segment interface

256 MB contiguous segments
Local placement of large pages AIX5.1D

same policy as for small pages
no page-to-page contiguity forced

Fixed pool of pinned large pages (boot option)

Hardware Prefetch

POWER4 has hardware prefetch on sequences of load misses
ascending or descending
8 streams
12 stream filter

Ramped Initialization
L2 to L1 prefetches
L3 to L2 prefetches
Memory to L3 prefetches

New dcbt variant starts a stream immediately
Prefetch helps small page performance
Prefetch works better with large pages

amortize slow startup

Coding for Hardware Prefetch: Bisection

* single stream example
sum = 0.0
do i=1,N

sum = sum + a(i)
end do

* bisect to increase number
* of streams
sum1 = 0.0
sum2 = 0.0
do i=1,N/2

sum1 = sum1 + a(i)
sum2 = sum2 + a(i+N/2)

end do
sum = sum1 + sum2

Bisecting uniprocessor DAXPY

Various Offsets
0

1

2

3

4

5

6

7

8

9

Th
ou

sa
nd

s
M

B/
s

2-stream 4-stream

Single MCM 1p Large Page DAXPY Performance

Coding for Prefetch: Fission

Hardware can prefetch up to 8 streams
Hardware can monitor up to 12 streams
If there is no re-use, splitting loops to reduce number of streams to
8 or less can improve throughput
If there is any re-use, don't do this!

Effect of Hardware Data Prefetch on Large Page
DAXPY Bandwidth

1p 4p 8p
0

5

10

15

20
G

B/
s No Prefetch

Prefetch

Coding for Prefetch: STREAM

The POWER4 hardware prefetch engine prefetches load-miss
streams, not store-miss streams
Store miss performance can be boosted in several ways

load the data before storing
not great since the L1 cache is write-through

data cache block touch for store (dcbtst)
also pollutes L1 cache (quirk of implementation)

data cache block zero (dcbz)
avoids store miss from L2 entirely
seems more effective with large pages

STREAM Benchmark Tuning

standard
pf_by_load

dcbz
large page

large page & dcbz
0

1

2

3

4

5

6

7

8

Th
ou

sa
nd

s
M

B/
s

Copy Scale Add Triad

Single MCM STREAM Performance

Key POWER4 Features from a Compiler Perspective

Very long floating point pipelines, no bypasses
Aggressive out-of-order execution
Deep instruction fetch and decode pipeline - microcoding and
cracking
16M page support
8 prefetch buffers, stream touch instructions
Store-through L1 D-cache
FIFO L1 D-cache
L2 cache shared between two cores
Excellent dynamic branch prediction, new branch annotations
Dedicated execution unit for CR logic

Compiler Improvements for POWER4

Instruction scheduling for dispatch
Register constrained modulo scheduling of single block inner loops
Avoid microcoded and some cracked instructions
Generate stream touch instructions
Optimize store streams with dcbz
Allocate boolean variables to condition register bits
Optimize dependent conditional branches using CR logic
Eliminate small branch sequences using CA bit
Tune loop optimization for 8 prefetch buffers
4 word procedure and loop alignment
Use static branch prediction override with PDF
Inline glue and use CTR cache for pointer calls
Bias CR allocation to get same source/target for CR logic

* Note: Not all optimizations included in current compiler release

SPEC CPU2000 Results: Regatta vs. Competition

SPECint2000 SPECfp2000
0

200

400

600

800

1000

1200

PA-8700 750MHz
SPARC 900MHz
Itanium 800MHz
Pentium 2.2GHz
Alpha 1.0GHz
Power4 1.3GHz
Power4 + compiler

+21%

+12%

* Measurements not done using official SPEC run rules

Questions & Answers

IBM Compiler Products for pSeries

Latest versions
C for AIX, Version 5.0.2
VisualAge C++ for AIX, Version 5.0.2
VisualAge C++ for AIX, Version 6.0 beta
XL Fortran for AIX, Version 7.1.1

Older, supported versions
XL Fortran for AIX, Version 7.1.0
VisualAge C++ Professional for AIX, Version 4.0 (until 12/02)

XL Fortran version 7.1.1

Fortran 77/90/95 compiler with many extensions
32 and 64 bit support for serial and SMP
OpenMP 1.0 support (OpenMP 2.0 coming ...)
Support for TotalView, xldb, IBM distributed debugger and
dbx/pdbx
Snapshot directive for debugging optimized code
Portfolio of optimizing transformations

Comprehensive path length reduction
Whole program analysis
Loop optimization for parallelism, locality and instruction scheduling
Tuned support for all pSeries processors

More info: www.software.ibm.com/ad/fortran

C for AIX version 5.0.2

ANSI C89 compliant compiler (C99 coming soon)
32 and 64 bit support for serial and SMP
Full support for OpenMP 1.0 (participating in OpenMP 2.0
definition)
Support for TotalView, xldb, IBM distributed debugger and
dbx/pdbx
Snapshot directive for debugging optimized code
Runtime memory debug support
Portfolio of optimizing transformations

Similar to Fortran support but includes tuned optimizations for C pointers and
systems coding styles

More info: www.software.ibm.com/ad/caix

VisualAge for C++ for AIX version 5.0.2

Fully compliant ANSI98 C++ compiler
32 and 64 bit support
Batch compiler for traditional build environments and maximal
optimization
Integrated graphical development environment including remote
debug and performance visualization
Support for TotalView, xldb, IBM distributed debugger and
dbx/pdbx
Portfolio of optimizing transformations

Subset of transformations available in Fortran and C but has tuned support for
all processors
Much more coming soon

More info: www.software.ibm.com/ad/vacpp

VisualAge C++ for AIX 6.0 beta

Enhanced optimization for Power4 (-qarch=pwr4, -qtune=pwr4)
Support for -qhot option (loop optimizations)
Support for -qipa (interprocedural analysis), -O4 and -O5 options
(C++)
More info (and download):
http://www.ibm.com/software/ad/vacpp/news/v6beta.html

Tutorial on Performance Controls

Compiler options
Optimization level
High order transformations
Interprocedural analysis
Profile directed feedback
Target machine specification
Floating point options
Program behaviour
Diagnostic options

Directives and pragmas
Assertive
Prescriptive

Optimization Levels

-O2 -O3 -O4 -O5-qnoopt

Fast compile

Full debug support

More extensive optimization

Some precision tradeoffs

Low level optimization

Partial debug support

Interprocedural optimization

Loop optimization

Automatic machine tuning

Example: Simple Matrix Multiply

DO I = 1, N1
 DO J = 1, N3
 DO K = 1, N2
 C(I,J) = C(I,J) + A(K,I) * B(J,K)
 END DO
 END DO
END DO

 lwz r7,156(SP)
lwz r10,12(r9)
subfi r9,r10,-8
mullw r10,r10,r11
rlwinm r8,r8,3,0,28
add r9,r9,r10
add r8,r8,r9
lfdx fp3,r7,r8
fmadd fp1,fp2,fp3,fp1
add r5,r5,r6
add r4,r4,r5
stfdx fp1,r3,r4
lwz r4,STATIC_BSS
lwz r3,44(r4)
addi r3,1(r3)
stw r3,44(r4)
lwz r3,112(SP)
addic. r3,r3,-1
stw r3,112(SP)
bgt __L1

__L1:
lwz r3,160(SP)
lwz r9,STATIC_BSS
lwz r4,24(r9)
subfi r5,r4,-8
lwz r11,40(r9)
mullw r6,r4,r11
lwz r4,36(r9)
rlwinm r4,r4,3,0,28
add r7,r5,r6
add r7,r4,r7
lfdx fp1,r3,r7
lwz r7,152(SP)
lwz r12,0(r9)
subfi r10,r12,-8
lwz r8,44(r9)
mullw r12,r12,r8
add r10,r10,r12
add r10,r4,r10
lfdx fp2,r7,r10

Matrix Multiply inner loop code with -qnoopt
38 instructions, 31.4 cycles per iteration

Matrix Multiply inner loop code with -qnoopt
Necessary instructions

lwz r7,156(SP)
lwz r10,12(r9)
subfi r9,r10,-8
mullw r10,r10,r11
rlwinm r8,r8,3,0,28
add r9,r9,r10
add r8,r8,r9
lfdx fp3,r7,r8
fmadd fp1,fp2,fp3,fp1
add r5,r5,r6
add r4,r4,r5
stfdx fp1,r3,r4
lwz r4,STATIC_BSS
lwz r3,44(r4)
addi r3,1(r3)
stw r3,44(r4)
lwz r3,112(SP)
addic. r3,r3,-1
stw r3,112(SP)
bgt __L1

__L1:
lwz r3,160(SP)
lwz r9,STATIC_BSS
lwz r4,24(r9)
subfi r5,r4,-8
lwz r11,40(r9)
mullw r6,r4,r11
lwz r4,36(r9)
rlwinm r4,r4,3,0,28
add r7,r5,r6
add r7,r4,r7
lfdx fp1,r3,r7
lwz r7,152(SP)
lwz r12,0(r9)
subfi r10,r12,-8
lwz r8,44(r9)
mullw r12,r12,r8
add r10,r10,r12
add r10,r4,r10
lfdx fp2,r7,r10

Matrix Multiply inner loop code with -qnoopt
Necessary instructions Loop control

lwz r7,156(SP)
lwz r10,12(r9)
subfi r9,r10,-8
mullw r10,r10,r11
rlwinm r8,r8,3,0,28
add r9,r9,r10
add r8,r8,r9
lfdx fp3,r7,r8
fmadd fp1,fp2,fp3,fp1
add r5,r5,r6
add r4,r4,r5
stfdx fp1,r3,r4
lwz r4,STATIC_BSS
lwz r3,44(r4)
addi r3,1(r3)
stw r3,44(r4)
lwz r3,112(SP)
addic. r3,r3,-1
stw r3,112(SP)
bgt __L1

__L1:
lwz r3,160(SP)
lwz r9,STATIC_BSS
lwz r4,24(r9)
subfi r5,r4,-8
lwz r11,40(r9)
mullw r6,r4,r11
lwz r4,36(r9)
rlwinm r4,r4,3,0,28
add r7,r5,r6
add r7,r4,r7
lfdx fp1,r3,r7
lwz r7,152(SP)
lwz r12,0(r9)
subfi r10,r12,-8
lwz r8,44(r9)
mullw r12,r12,r8
add r10,r10,r12
add r10,r4,r10
lfdx fp2,r7,r10

Matrix Multiply inner loop code with -qnoopt
Necessary instructions Loop control Address computation

lwz r7,156(SP)
lwz r10,12(r9)
subfi r9,r10,-8
mullw r10,r10,r11
rlwinm r8,r8,3,0,28
add r9,r9,r10
add r8,r8,r9
lfdx fp3,r7,r8
fmadd fp1,fp2,fp3,fp1
add r5,r5,r6
add r4,r4,r5
stfdx fp1,r3,r4
lwz r4,STATIC_BSS
lwz r3,44(r4)
addi r3,1(r3)
stw r3,44(r4)
lwz r3,112(SP)
addic. r3,r3,-1
stw r3,112(SP)
bgt __L1

__L1:
lwz r3,160(SP)
lwz r9,STATIC_BSS
lwz r4,24(r9)
subfi r5,r4,-8
lwz r11,40(r9)
mullw r6,r4,r11
lwz r4,36(r9)
rlwinm r4,r4,3,0,28
add r7,r5,r6
add r7,r4,r7
lfdx fp1,r3,r7
lwz r7,152(SP)
lwz r12,0(r9)
subfi r10,r12,-8
lwz r8,44(r9)
mullw r12,r12,r8
add r10,r10,r12
add r10,r4,r10
lfdx fp2,r7,r10

Optimization Level -O2 (same as -O)

Comprehensive low-level optimization
Global assignment of user variables to registers
Strength reduction and effective usage of addressing modes
Elimination of unused or redundant code
Movement of invariant code out of loops
Scheduling of instructions for the target machine
Some loop unrolling and pipelining

Partial support for debugging
Externals and parameter registers visible at procedure boundaries
Snapshot pragma/directive creates additional program points for
storage visibility
-qkeepparm option forces parameters to memory on entry so that
they can be visible in a stack trace

Matrix Multiply inner loop code with -O2

lfdux fp0,r12,r8
__L1:

lfdux fp1,r31,r7
lfdu fp2,8(r30)
fmadd fp0,fp1,fp2,fp0
bdnz __L1
stfd fp0,0(r12)

strength reduction
update-form loads

hardware assisted
loop control

load/store of "C"
moved out of loop

3 instructions, 3.1 cycles per iteration

Matrix Multiply inner loop code with -O2 -qtune=pwr3

lfdux fp2,r31,r7
lfdu fp1,8(r30)
bdz __L2

__L1:
fmadd fp0,fp2,fp1,fp0
lfdux fp2,r31,r7
lfdu fp1,8(r30)
bdnz __L1

__L2:
fmadd fp0,fp2,fp1,fp0

pipelined
execution

3 instructions, 2.9 cycles per iteration

Optimization Level 3 (-O3)

More extensive optimization
Deeper inner loop unrolling
Better loop scheduling
Additional optimizations allowed by -qnostrict
Widened optimization scope (typically whole procedure)
No implicit memory usage limits (-qmaxmem=-1)

Some precision tradeoffs
Reordering of floating point computations
Reordering or elimination of possible exceptions (eg. divide by
zero, overflow)

Matrix Multiply inner loop code with -O3 -qtune=pwr3
__L1:

fmadd fp6,fp12,fp13,fp6
lfdux fp12,r12,r7
lfd fp13,8(r11)
fmadd fp7,fp8,fp9,fp7
lfdux fp8,r12,r7
lfd fp9,16(r11)
lfdux fp10,r12,r7
lfd fp11,24(r11)
fmadd fp1,fp12,fp13,fp1
lfdux fp12,r12,r7
lfd fp13,32(r11)
fmadd fp0,fp8,fp9,fp0
lfdux fp8,r12,r7
lfd fp9,40(r11)
fmadd fp2,fp10,fp11,fp2
lfdux fp10,r12,r7
lfd fp11,48(r11)
fmadd fp4,fp12,fp13,fp4
lfdux fp12,r12,r7
lfd fp13,56(r11)
fmadd fp3,fp8,fp9,fp3
lfdux fp8,r12,r7
lfdu fp9,64(r11)
fmadd fp5,fp10,fp11,fp5
bdnz __L1

unrolled by 8

dot product accumulated in
8 interleaved parts (fp0-fp7)
(combined after loop)

3 instructions, 1.6 cycles per iteration
2 loads and 1 fmadd per iteration

Tips for getting the most out of -O2 and -O3

If possible, test and debug your code without optimization before using -O2
Ensure that your code is standard-compliant. Optimizers are the ultimate
conformance test!

In Fortran code, ensure that subroutine parameters comply with aliasing rules
In C code, ensure that pointer use follows type restrictions (generic pointers should be char*
or void*)
Ensure all shared variables and pointers to same are marked volatile

Compile as much of your code as possible with -O2.
If you encounter problems with -O2, consider using -qalias=noansi or
-qalias=nostd rather than turning off optimization.
Next, use -O3 on as much code as possible.
If you encounter problems or performance degradations, consider using -qstrict
or -qcompact along with -O3 where necessary.
If you still have problems with -O3, switch to -O2 for a subset of
files/subroutines but consider using -qmaxmem=-1 and/or -qnostrict.

High Order Transformations (-qhot)

Supported for Fortran (and for C and C++ in 6.0 beta)
Specified as -qhot[=[no]vector | arraypad[=n]]
Optimized handling of F90 array language constructs (elimination of
temporaries, fusion of statements)
High level transformation (eg. interchange, fusion, unrolling) of loop nests to
optimize:

memory locality (reduce cache/TLB misses)
usage of hardware prefetch
loop computation balance (typically ld/st vs. float)

Optionally transforms loops to exploit vector intrinsic library (eg. reciprocal, sqrt,
trig) - may result in slightly different rounding
Optionally introduces array padding under user control - potentially unsafe if not
applied uniformly

Matrix multiply inner loop code with -O3 -qhot
-qtune=pwr3
__L1:

fmadd fp1,fp4,fp2,fp1
fmadd fp0,fp3,fp5,fp0
lfdux fp2,r29,r9
lfdu fp4,32(r30)
fmadd fp10,fp7,fp28,fp10
fmadd fp7,fp9,fp7,fp8
lfdux fp26,r27,r9
lfd fp25,8(r29)
fmadd fp31,fp30,fp27,fp31
fmadd fp6,fp11,fp30,fp6
lfd fp5,8(r27)
lfd fp8,16(r28)
fmadd fp30,fp4,fp28,fp29
fmadd fp12,fp13,fp11,fp12
lfd fp3,8(r30)
lfd fp11,8(r28)
fmadd fp1,fp4,fp9,fp1
fmadd fp0,fp13,fp27,fp0
lfd fp4,16(r30)
lfd fp13,24(r30)
fmadd fp10,fp8,fp25,fp10
fmadd fp8,fp2,fp8,fp7
lfdux fp9,r29,r9
lfdu fp7,32(r28)
fmadd fp31,fp11,fp5,fp31
fmadd fp6,fp26,fp11,fp6
lfdux fp11,r27,r9
lfd fp28,8(r29)
fmadd fp12,fp3,fp26,fp12
fmadd fp29,fp4,fp25,fp30
lfd fp30,-8(r28)
lfd fp27,8(r27)
bdnz __L1

unroll-and-jam 2x2
inner unroll by 4
interchange "i" and "j" loops

2 instructions, 1.0 cycles per iteration
balanced: 1 load and 1 fmadd per iteration

Vectorization Example

SUBROUTINE VD(A,B,C,N)
REAL*8 A(N),B(N),C(N)
DO I = 1, N
A(I) = C(I) / SQRT(B(I))

END DO
END

Vectorization Example pseudocode (slightly edited
-qreport output) with -O3 -qhot -qarch=pwr3

SUBROUTINE vd (a, b, c, n)
3| IF (n > 0) THEN
4| CALL __vrsqrt_630(a,c,&n)
3| @CIV0 = 0
Id=3 DO @CIV0 = @CIV0, n-1

! DIR_INDEPENDENT loopId = 0
4| a(@CIV0 + 1) = b(@CIV0 + 1) * a(@CIV0 + 1)
5| ENDDO

ENDIF
6| RETURN

END SUBROUTINE vd

Source Source Loop Id Action / Information
File Line
---------- ---------- ---------- ------------------------------------

0 4 Vectorization applied to statement.

Tips for getting the most out of -qhot

Try using -qhot along with -O2 or -O3 for all of your code. It is designed to have
neutral effect when no opportunities exist.
If you encounter unacceptably long compile times (this can happen with
complex loop nests) or if your performance degrades with the use of -qhot, try
using -qhot=novector, or -qstrict or -qcompact along with -qhot.
If possible, report long compile times or poor generated code to IBM through
your service representative. If that doesn't work, feel free to contact me.
If necessary, deactivate -qhot selectively, allowing it to improve some of your
code.
Read the transformation report generated using -qreport (Fortran only for now).
If your hot loops are not transformed as you expect, try using assertive
directives such as INDEPENDENT or CNCALL or prescriptive directives such
as UNROLL or PREFETCH.

Interprocedural Analysis (-qipa)

Supported for Fortran and C (and C++ in 6.0 beta)
Can be specified on the compile step only or on both compile and
link steps ("whole program" mode)
Whole program mode expands the scope of optimization to an
entire program unit (executable or shared object)
Specified as -qipa[=level=n | inline= | fine tuning]

level=0: Program partitioning and simple interprocedural optimization
level=1: Inlining and global data mapping
level=2: Global alias analysis, specialization, interprocedural data flow
inline=: Precise user control of inlining
fine tuning: Specify library code behaviour, tune program partitioning, read
commands from a file

Interprocedural analysis in depth

level=0
automatic recognition of standard libraries (eg. ANSI C, Fortran runtime, ESSL)
localization of statically bound variables and procedures
partitioning and layout of code according to call affinity

expansion of backend optimizer scope
level=1

procedure inlining
partitioning and layout of static data according to reference affinity

level=2
whole program alias analysis

disambiguation of pointer references and calls, refinement of call side effect information
aggressive intraprocedural optimizations

value numbering, code propagation and simplification, code motion (into conditions, out of
loops), redundancy elimination

interprocedural constant propagation, dead code elimination, pointer analysis
procedure specialization (cloning)

Tips for getting the most from -qipa
When specifying optimization options in a makefile, remember to use the compiler driver (cc,
xlf, etc) to link and repeat all options on the link step:

LD = xlf
OPT = -O3 -qipa
FFLAGS=...$(OPT)...
LDFLAGS=...$(OPT)...

-qipa works when building executables or shared objects but always compile 'main' and
exported functions with -qipa.
It is not necessary to compile everything with -qipa but try to apply it to as much of your
program as possible.
When compiling and linking separately, use -qipa=noobject on the compile step for faster
compilation.
Ensure there is enough space in /tmp (at least 200MB) or use the TMP_DIR variable to specify
a different directory.
The "level" suboption is a throttle. Try varying the "level" suboption if link time is too long.
-qipa=level=0 can be very beneficial for little cost.
Look at the generated code. If too few or too many functions are inlined, consider using
-qipa=[no]inline

Target Machine Options

-qarch
Restricts the compiler to generate a subset of the Power or PowerPC
instruction set
Specified as -qarch=isa where isa is one of:

com (default): Code can run on any RS/6000 - implies -qtune=pwr2
auto: Code may take advantage of instructions available only on the
compiling machine (or similar machines)
ppc: Code follows PowerPC architecture - implies -qtune=604 (32 bit) or
-qtune=pwr3 (64 bit)
pwr3: Code can run on any Power 3 - implies -qtune=pwr3
Lots of others: pwr, pwr2, 604, pwr4, ...

Target Machine Options (continued)

-qtune
Bias optimization toward execution on a given machine
Does not imply anything about the ability to run correctly on a given machine - only affects
performance
-qtune=auto generates code that is automatically tuned for the compiling machine (or similar
machines)
Specified as -qtune=machine where machine is one of auto, 604, pwr2, p2sc, pwr3, pwr4,
rs64c, etc.

-qcache
Defines a specific cache/memory geometry
Defaults are set through -qtune
Specified as -qcache=level=n:cache_spec, where cache_spec includes:

type=i|d|c: cache type (instruction/data/combined)
line=lsz:size=sz:assoc=as: line/cache size and set associativity
cost=c: cost (in cpu cycles) of a miss

Mainly useful when using -qhot or -qsmp

Getting the most out of target machine options

Try to specify with -qarch the smallest family of machines possible that will be
expected to run your code correctly.

-qarch=com will generate code that runs anywhere but will have slower integer divides and
multiplies and will be unable to exploit single precision floating point
-qarch=ppc is better if you don't need to run on Power or Power2 but this will inhibit generation
of sqrt or fsel, for example
-qarch=ppcgr is a bit better, since it allows generation of fsel but still no sqrt
To get sqrt, you will need -qarch=pwr3. This will also generate correct code for Power 4.

Try to specify with -qtune the machine where performance should be best.
If you are not sure, try -qtune=pwr3. This will generate code that should generally run well on
most machines.

Before using the -qcache option, have a look at the options sections of the
listing (using -qlist) to see if the current settings are satisfactory. If you do
decide to use -qcache, use -qhot or -qsmp along with it.

The -O4 and -O5 macro options

Optimization levels 4 and 5 automatically activate several other
optimization options as a package
Optimization level 4 (-O4) includes:

-O3
-qhot (needs 6.0 beta for C/C++)
-qipa (needs 6.0 beta for C++)
-qarch=auto
-qtune=auto
-qcache=auto

Optimization level 5 (-O5) includes everything from -O4 plus:
-qipa=level=2

Profile Directed Feedback

Profile directed feedback (PDF) is a two-stage compilation process that allows
the user to provide additional detail about typical program behaviour to the
compiler.

Compile with
-qpdf1

Source
code Instrumented

executable

Compile with
-qpdf2

Profile
data

Sample
runs

Optimized
executable

Profile Directed Feedback (continued)
Stage 1 is a regular compilation (using an arbitrary set of optimization options) with the -qpdf1
option added.

the resulting object code is instrumented for the collection of program control flow and other data
The executable or shared object created by stage 1 can be run in a number of different
scenarios for an arbitrary amount of time
Stage 2 is a recompilation (only relinking is necessary with Fortran 7.1.1 or C/C++ 6.0) using
exactly the same options except -qpdf2 is used instead of -qpdf1.

the compiler consumes previously collected data for the purpose of path-biased optimization
code layout, scheduling, register allocation
(in XLF 7.1.1, C/C++ 6.0) inlining decisions, partially invariant code motion, switch code generation, loop
optimizations

PDF should be used mainly on code which has rarely executed conditional error handling or
instrumentation
PDF usually has a neutral effect in the absence of firm profile information (ie. when sample
data is inconclusive)
However, always use characteristic data for profiling. If sufficient data is unavailable, do not
use PDF.

Other Performance Options

-qcompact: specified as -q[no]compact
Prefers final code size reduction over execution time performance when a
choice is necessary
Can be useful as a way to constrain -O3 optimization

-qsmallstack (Fortran 8.1, C/C++ 6.0)
Tells the compiler to compact stack storage (may increase heap usage)

-qinline: specified as -qinline[+names | -names] or -qnoinline
Controls inlining of named functions - usable at compile time and/or link time
Synonymous with -qipa=inline and -Q

-qunroll: specified as -q[no]unroll
Independently controls loop unrolling (implicitly activated under -O2 and -O3)

-qinlglue: specified as -q[no]inlglue
Inline calls to "glue" code used in calls through function pointers (including
virtual) and calls to functions which are dynamically bound
Pointer glue is inlined by default for -qtune=pwr4

Other Performance Options (continued)
-qtbtable

Controls the generation of traceback table information:
-qtbtable=none inhibits generation of tables - no stack unwinding is possible
-qtbtable=small generates tables which allow stack unwinding but omit name
and parameter information - useful for optimized C++

This is the default setting when using optimization
-qtbtable=full generates full tables including name and parameter information -
useful for debugging

-q[no]eh (C++ only)
Asserts that no throw is reachable from compiled code - can improve execution
time and reduce footprint in the absence of C++ exception handling

-q[no]unwind (Fortran 8.1, C/C++ 6.0)
Asserts that the stack will not be unwound in such a way that register values
must be accurately restored at call points - usually true in C and Fortran and
allows the compiler to be more aggressive in register save/restore

Other Performance Options (continued)

-qlargepage (Fortran 8.1, C/C++ 6.0, Power 4 only)
Hint to the compiler that the heap and static data will be allocated from large
pages at execution time (controlled by environment variable in AIX 5.1D)
Compiler will divert large data from the stack to the heap
Compiler may also bias optimization of heap or static data references

More Target Machine Options
-q64, -q32: Generate code for 64 bit (4/8/8) or 32 bit (4/4/4)
addressing model

-q64 generates code with incompatible object formats on AIX V4 and AIX V5. If
your code needs to run on both, build two executables or two libraries.

-qsmp: Generate threaded code for a shared-memory parallel
machine

Supported in Fortran and C (and C++ in 6.0)
Specified as -qsmp[=[no]auto:[no]omp:[no]opt:fine tuning]
auto instructs the compiler to automatically generate parallel code where
possible without user assistance
omp instructs the compiler to observe OpenMP 1.0 language extensions for
specifying explicit parallelism
opt instructs the compiler to optimize as well as parallelize. The optimization is
equivalent to -O2 -qhot by default. The default setting is -qsmp=opt.
fine tuning includes control over thread scheduling, nested parallelism and
locking

Getting the most out of -qsmp

Test your programs using optimization and preferably using -qhot in a
single-threaded manner before using -qsmp (where practical).
Always use the "_r" or reentrant compiler invocations when using -qsmp.
By default, the runtime will use all available processors. Do not set the
PARTHDS or OMP_NUM_THREADS variables unless you wish to use fewer
than the number of available processors.
If using a machine or node in a dedicated fashion, consider setting the SPINS
and YIELDS variables (suboptions of XLSMPOPTS) to 0.
-qsmp implies an optimization level of at least -O2. When debugging an
OpenMP program, try using -qsmp=noopt (without -O) to make debugging
information produced from the compiler more precise.
If you encounter apparent memory overrun errors with -qsmp, your thread stack
size may be too small. This sometimes happens with Fortran 90 code due to
temporary storage allocated by the compiler. Use the STACK suboption of
XLSMPOPTS to modify the thread stack size.

Floating Point Options

-qfloat
Precise control over the handling of floating point calculations
Defaults are almost IEEE 754 compliant
Specified as -qfloat=subopt where subopt is one of:

[no]fold: enable compile time evaluation of floating point calculations - may
want to disable for handling of certain exceptions (eg. overflow, inexact)
[no]maf: enable generation of multiple-add type instructions - may want to
disable for exact compatibility with other machines but this will come at a
high price in performance
[no]rrm: specifies that rounding mode may not be round-to-nearest (default
is norrm) or may change across calls
[no]hsflt: allow various fast floating point optimizations including
replacement of division by multiplication by a reciprocal
[no]rsqrt: allow computation of a divide by square root to be replaced by a
multiply of the reciprocal square root

Floating Point Options (continued)

-qflttrap
Enables software checking of IEEE floating point exceptions
Usually more efficient than hardware checking since checks can be executed
less frequently
Specified as -qflttrap=imprecise | enable | ieee_exceptions
-qflttrap=imprecise: check for error conditions at procedure entry/exit, otherwise
check after any potentially excepting instruction
-qflttrap=enable: enables generation of checking code, also enables exceptions
in hardware
-qflttrap=overflow:underflow:zerodivide:inexact: check given conditions
In the event of an error, SIGTRAP is raised - as a convenience the -qsigtrap
option will install a default handler which dumps a stack trace at the point of
error

Program Behaviour Options

-q[no]strict
Default is -qstrict with -qnoopt and -O2, -qnostrict with -O3, -O4, -O5
-qnostrict allows the compiler to reorder floating point calculations and
potentially excepting instructions

-qalias (Fortran)
Specified as -qalias=[no]std:[no]aryovrlp:others
Allows the compiler to assume that certain variables do not refer to
overlapping storage
std (default) refers to the rule about storage association of reference
parameters with each other and globals
aryovrlp (default) defines whether there are any assignments between
storage-associated arrays - try -qalias=noaryovrlp for better
performance your Fortran 90 code has no storage associated
assignments

Program Behaviour Options (continued)

-qalias (C, C++)
Similar to Fortran option of the same name but focussed on overlap of storage
accessed using pointers
Specified as -qalias=subopt where subopt is one of:

[no]ansi: Enable ANSI standard type-based alias rules (ansi is default when
using "xlc", noansi is default when using "cc")
[no]typeptr: Assume pointers to different types never point to the same or
overlapping storage - use if your pointer usage follows strict type rules
[no]allptrs: Assume that different pointer variables always point to
non-overlapping storage - use only in selected situations where pointers
never overlap
[no]addrtaken: Assume that external variables do not have their address
taken outside the source file being compiled

Why the big fuss about aliasing?

The precision of compiler analyses is gated in large part by the apparent effects
of direct or indirect memory writes and the apparent presence of direct or
indirect memory reads.
Memory can be referenced directly through a named symbol, indirectly through
a pointer or reference parameter, or indirectly through a function call.
Many apparent references to memory are false and these constitute barriers to
compiler analysis.
The compiler does analysis of possible aliases at all optimization levels but
analysis of these apparent references is best when using -qipa since it can see
through most calls.
Options such as -qalias and directives such as disjoint, isolated_call, CNCALL
and INDEPENDENT can have pervasive effect since they fundamentally
improve the precision of compiler analysis.

Program Behaviour Options (continued)

-qassert (Fortran, C)
Specified as -qassert=[no]deps | itercnt=n
deps (default) indicates that some loop has a memory dependence or
conflict from iteration to iteration. Try -qassert=nodeps for improved
performance when no loops in a file carry a dependence.
itercnt modifies the default assumptions about the expected iteration
count of loops (normally 10).

-qintsize (Fortran): Define the default size of INTEGER variables
Specified as -qintsize=1|2|4|8
When using -q64, try -qintsize=8 for improved performance

-qignerrno (C,C++) - Specified as -q[no]ignerrno
Indicates that the value of errno is not needed by the program
Can help in optimization of math functions such as sqrt.
This is the default with -O3.

Program Behaviour Options (continued)

-qdatalocal
-qdatalocal[=vars]: Specifies that the definitions of all or just the named variables will be
statically bound - access to statically bound variables may be faster

-qdataimported
-qdataimported[=vars]: Specifies that the definitions of all or just the named variables might
be dynamically bound

-qproclocal
-qproclocal[=funcs]: Specifies that the definitions of all or just the named functions will be
statically bound - calls to statically bound functions are faster than dynamic or unknown

-qprocimported
-qprocimported[=funcs]: Specifies that the definitions of all or just the named functions will be
dynamically bound

-qprocunknown
-qprocunknown[=funcs]: Specifies that the definitions of all or just the named functions have
unknown linkage

Note that the usage of -qipa when linking automatically detects the linkage of all
variables and functions, obviating the need for these options

Program Behaviour Options (continued)

-q[no]libansi (C, C++)
Specifies that calls to ANSI standard functions will be bound with conforming implementations
When linking with -qipa, this options is not necessary.

-ma (C, C++)
Directs the compiler to generate inline code for calls to the alloca function.

-qproto (C)
Asserts that procedure call points agree with their declarations even if the procedure has not
been prototyped.
Useful for well behaved K&R C code.

-qro,-qroconst (C,C++)
Directs the compiler to place string literals (-qro) or constant values (-qroconst) in read-only
storage

-qaggrcopy={ovrlap|noovrlap} (C, C++)
Specify whether aggregate assignments may have overlapping source and target locations
Default is ovrlap with "cc", noovrlap with "xlc"

Diagnostic Options

-qlist
Instructs the compiler to emit an object listing
The object listing includes hex and pseudo-assembly representations of the generated code
along with traceback tables and text constants

-qreport (Fortran)
Specified as -qreport [=smplist]
Instructs the high level optimizer to emit a report including pseudo-Fortran along with
annotations describing what transformations were performed (eg. loop unrolling, automatic
parallelization)
Also includes information about data dependences and other inhibitors to optimization

Diagnostic Options (continued)

-qinitauto
Directs the compiler to emit code that initializes all automatic (stack) variables to a given value
-qinitauto=XX initializes bytes with the value given in hex
-qinitauto=XXXXXXXX initializes words with the value given in hex

-qcheck=[nullptr|bounds|divzero]
Inserts runtime checks (traps) for null pointer access, array bounds violations and/or divide by
zero

-qextchk
Generates additional symbolic information to allow the linker to do cross-file type checking of
external variables and functions
Requires the linker -btypchk option to be active

Directives and Pragmas

OpenMP 1.0 - supported in C and Fortran (and C++ in 6.0)
Legacy SMP directives and pragmas

Most of these are superceded by OpenMP - use OpenMP where possible
Assertive directives (Fortran)

ASSERT, INDEPENDENT, CNCALL, PERMUTATION
Assertive pragmas (C)

isolated_call, disjoint, independent_loop, independent_calls, iterations, permutation,
execution_frequency, leaves

Embedded Options
#pragma options and #pragma option_override in C
@PROCESS in Fortran

Prescriptive directives (Fortran)
PREFETCH, UNROLL

Prescriptive pragmas (C)
sequential_loop

Assertive Directives (Fortran)

ASSERT (ITERCNT(n) | [NO]DEPS)
Same as options of the same name but applicable to a single loop - much more
useful

INDEPENDENT: Asserts that the following loop has no loop carried
dependences - enables locality and parallel transformations
CNCALL: Asserts that the calls in the following loop do not cause
loop carried dependences
PERMUTATION (names)

Asserts that elements of the named arrays take on distinct values on each
iteration of the following loop - may be useful in sparse codes

Assertive Pragmas (C)

isolated_call (function_list) asserts that calls to the named functions
do not have side effects
disjoint (variable_list) asserts that none of the named variables (or
pointer dereferences) share overlapping areas of storage
independent_loop is equivalent to INDEPENDENT
independent_calls is equivalent to CNCALL
permutation is equivalent to PERMUTATION
iterations is equivalent to ASSERT(ITERCNT)
execution_frequency (very_low) asserts that the control path
containing the pragma will be infrequently executed
leaves (function_list) asserts that calls to the named functions will
not return (eg. exit)

Prescriptive Directives (Fortran)

PREFETCH
PREFETCH_BY_LOAD (variable_list): issue dummy loads to cause the given variables to be
prefetched into cache - useful on Power machines or to activate Power 3 hardware prefetch
PREFETCH_FOR_LOAD (variable_list): issue a dcbt instruction for each of the given
variables.
PREFETCH_FOR_STORE (variable_list): issue a dcbtst instruction for each of the given
variables.

CACHE_ZERO
Inserts a dcbz (data cache block zero) instruction with the given address
Useful when storing to contiguous storage (avoids the L2 store miss entirely)

UNROLL
Specified as [NO]UNROLL [(n)]
Used to activate/deactivate compiler unrolling for the following loop.
Can be used to give a specific unroll factor.

Prescriptive Pragmas (C)

sequential_loop directs the compiler to execute the following loop in a single
thread, even if the -qsmp=auto option is specified

Compiler Friendly Programming

Compiler-friendly programming idioms can be as useful to performance as any
of the options or directives
Do not excessively hand-optimize your code (eg. unrolling, inlining) - this often
confuses the compiler (and other programmers!) and makes it difficult to
optimize for new machines
Avoid unnecessary use of globals and pointers - when using them in a loop,
load them into a local before the loop and store them back after.
Avoid breaking your program into too many small functions. If you must use
small functions, seriously consider using -qipa.
Use register-sized integers (long in C/C++ and INTEGER*4 or INTEGER*8 in
Fortran) for scalars. For large arrays of integers, consider using 1 or 2 byte
integers or bitfields in C or C++.

Compiler Friendly Programming (continued)

Use the smallest floating point precision appropriate to your computation. Use
'long double', 'REAL*16' or 'COMPLEX*32' only when extremely high precision
is required.
Obey all language aliasing rules (try to avoid -qassert=nostd in Fortran and
-qalias=noansi in C/C++)
Use locals wherever possible for loop index variables and bounds. In C/C++,
avoid taking the address of loop indices and bounds.
Keep array index expressions as simple as possible. Where indexing needs to
be indirect, consider using the PERMUTATION directive.
Consider using the highly tuned MASS and ESSL libraries rather than custom
implementations or generic libraries

Fortran programming tips

Use the '[mp]xlf90[_r]' or '[mp]xlf95[_r]' driver invocations where possible to
ensure portability. If this is not possible, consider using the -qnosave option.
When writing new code, use module variables rather than common blocks for
global storage.
Use modules to group related subroutines and functions.
Use INTENT to describe usage of parameters.
Limit the use of ALLOCATABLE arrays and POINTER variables to situations
which demand dynamic allocation.
Use CONTAINS only to share thread local storage.
Avoid the use of -qalias=nostd by obeying Fortran alias rules.
When using array assignment or WHERE statements, pay close attention to the
generated code with -qlist or -qreport. If performance is inadequate, consider
using -qhot or rewriting array language in loop form.

C/C++ Programming Tips

Use the xlc[_r] invocation rather than cc[_r] when possible.
Always include string.h when doing string operations and math.h when using
the math library.
Pass large class/struct parameters by address or reference, pass everything
else by value where possible.
Use unions and pointer type-casting only when necessary and try to follow ANSI
type rules.
If a class or struct contains a 'double', consider putting it first in the declaration.
If this is not possible, consider using -qalign=natural
Avoid virtual functions and virtual inheritance unless required for class
extensibility. These are costly in object space and function invocation
performance.
Use 'volatile' only for truly shared variables.
Use 'const' for globals, parameters and functions whenever possible.
Do limited hand-tuning of small functions by defining them as 'inline' in a header
file.

Power 4 Optimization Technology
Architecture-neutral and -specific code paths

tuning for arch=ppc and arch=pwr4
Precise machine model for scheduling (-O2+)

new instruction scheduler with more detailed modelling capability
tuned through extensive experimention on early h/w

New loop transformations for deep pipelines (-O3+)
more precise loop unrolling and pipelining

New aggressive branch optimizations (-O2+)
branch pattern replacement
utilization of branch hints (eg. using profile feedback)

Optimized usage of hardware-expanded instructions
eg. load/store update, mtcr, lm/stm

Optimized prefetch buffer allocation (-qhot)
utilization of prefetch stream start instructions
loop nest fusion and partitioning to optimize # streams

All information subject to change without notice

Questions?

