
An (incomplete) Survey of Compiler
Technology at the IBM Toronto
Laboratory

Bob Blainey
March 26, 2002

Target systems
Sovereign (Sun JDK-based) Just-in-Time (JIT) Compiler

zSeries (S/390)
OS/390, Linux
Resettable, shareable

pSeries (PowerPC)
AIX 32-bit and 64-bit
Linux

xSeries (x86 or IA-32)
Windows, OS/2, Linux, 4690 (POS)
IA-64 (Itanium, McKinley) Windows, Linux

C and C++ Compilers
zSeries OS/390
pSeries AIX

Fortran Compiler
pSeries AIX

Key Optimizing Compiler Components

TOBEY (Toronto Optimizing Back End with Yorktown)
Highly optimizing code generator for S/390 and PowerPC targets

TPO (Toronto Portable Optimizer)
Mostly machine-independent optimizer for Wcode intermediate language
Interprocedural analysis, loop transformations, parallelization

Sun JDK-based JIT (Sovereign)
Best of breed JIT compiler for client and server applications
Based very loosely on Sun JDK

Inside a Batch Compilation

C++ Front
End

TPO

C Front End

TOBEY
Back End

C source C++ source

Wcode Wcode

Wcode Wcode

Wcode

Fortran
Front End

Wcode++

Object Code

Other Front
Ends

Wcode
Scalarizer

Wcode

Fortran source Other source

TOBEY Optimizing Back End

Project started in 1983 targetting S/370
Later retargetted to ROMP (PC-RT), Power, Power2, PowerPC,
SPARC, and ESAME/390 (64 bit)
Experimental retargets to i386 and PA-RISC
Shipped in over 40 compiler products on 3 different platforms with 8
different source languages
Primary vehicle for compiler optimization since the creation of the
RS/6000 (pSeries)
Implemented in a combination of PL.8 ("80% of PL/I") and C++ on
an AIX reference platform

Inside TOBEY

Wcode-to-XIL
Translator

Wcode

Early
Optimization

Late
Optimization

Instruction
Scheduling

and Register
Allocation

Early Macro
Expansion

Simple
Optimization

Late Macro
Expansion

Fast Register
Allocation

Final
Assembly

OPT(2)OPT(0)

OPT(2)

OPT(2)

OPT(0)

OPT(0)

Value Numbering
Redundancy Elimination
Reassociation
Dead Store Elimination

Value Numbering
Commoning/Code Motion
Dead Code Elimination

Local Commoning
Control Flow
Straightening

TPO (Toronto Portable Optimizer)

Project started in 1994 as an interprocedural optimizer for RS/6000
Shipped first as an interprocedural optimizer for the OS/390 C
compiler in 1996
Later shipped as part of C, C++ and Fortran compilers on AIX, the
C++ compiler on OS/390 and as a linker enhancement on OS/400
Key optimization driver for the ASCI Blue and White projects and
PowerPC SPEC benchmark performance
Provides OpenMP explicit parallel support and automatic loop
parallelization on RS/6000
Being adapted to optimize large scale commercial software such as
DB2,Oracle and SAP
Implemented in C++ on an AIX reference platform

Inside TPO Compile Time Optimization

DecodeDecode

IntraproceduralIntraprocedural
OptimizationsOptimizations

CollectionCollection

EncodeEncode

Wcode
from FE

Wcode
to BE

Control Flow Analysis
Constant Propagation
Copy Propagation
Alias Analysis
Dead Store Elimination

Store Motion
Redundant Condition Elimination
Loop Normalization
Loop Unswitching
Loop Unrolling

LoopLoop
OptimizationsOptimizations

Loop Fusion
Loop Distribution
Unimodular Trans
Unroll-and-jam

Scalar Replacement
Loop Parallelization
Loop Vectorization
Code Motion and Commoning

Control or
Alias Changed?

Loop Optimization

Scalar
Optimization

Loop Nest
Canonization

High Level
Transformations

Parallel Loop
Outlining

Low Level
Transformations

Parallel Loops

Serial
Loops

Control Flow Optimization
Data Flow Optimization
Loop Normalization

Aggressive Copy Propagation
Maximal Loop Fusion

Loop Nest Partitioning
Loop Interchange
Loop Unroll and Jam
Loop Parallelization

Inner Loop Unrolling
Loop Vectorization
Strength Reduction
Redundancy Elimination
Code Motion

All information subject to change without notice

Inside an Link-time Compilation

TPO
OTHER LINK
INFORMATION

TOBEY

Wcode partitions

Object Files

Linker

Object files Libraries

Executable or shared library

Inside TPO Link Time Optimization

Symbol
Resolution

Call Graph
Completion

Backward
Alias

Analysis

Inlining

Data
Coalescing

Function
Partitioning

Forward
Data-flow
Analysis

Backward
Data-flow
Analysis

Alias
Closure

parameter & global def/use
backward properties

copy and constant propagation
pointer alias analysis
dead code elimination

closure of context sensitive
pointer alias relationships

invariant code motion
common subexpression elimination
loop optimization

LEVEL(2)

LEVEL(1)

LEVEL(0)

Selected TPO Optimizations

Interprocedural constant propagation, pointer alias analysis and
dead code elimination
Partially invariant code motion
Forward and backward store motion
Partial constant propagation
Redundant condition elimination
Code and data partitioning
Loop partitioning

Some Compiler Changes for Power4

Instruction scheduling for dispatch
Register-conctrained modulo scheduling
Avoid microcoded and some cracked instructions
Generate stream touch instructions
Eliminate small branch sequences using CA bit
Tune loop optimization for 8 prefetch buffers
Procedure and loop code alignment
Use static branch prediction override with PDF
Inline pointer glue and set BH for virtual and pointer calls
Bias CR allocation to get same source/target for CR logic

Platform Neutral Improvements

Profile directed interprocedural optimization
Profiling and specialization of function pointer calls
F90 MATMUL/TRANSPOSE improvements
Interprocedural loop optimization
Profile directed outlining

Results: Regatta vs. Competition

SPECint2000 SPECfp2000
0

200

400

600

800

1000

1200

PA-8700 750MHz
SPARC 900MHz
Itanium 800MHz
Pentium 2.2GHz
Alpha 1.0GHz
Power4 1.3GHz
Power4 + compiler

+21%

+12%

* Note: Power4 measurements NOT official

2002 Performance Plan

Themes
Middleware performance (DB2)
Practical SP Performance
Continuing Power4 and follow-on support

Optimization Priorities
Low Level Optimization and Code Generation
Loop Transformations
Array Analysis
Interprocedural Optimization
C++ Optimization

2002 Optimization Highlights

Shrink wrapping
Loop fusion, distribution and index-set splitting
Loop unrolling for machine balance and bandwidth utilization
Interprocedural register allocation
Superblock scheduling
Profile-driven commoning and code motion
Array data flow analysis and privatization
Optimization of C++ exceptions, virtual dispatch and templates
Data dependence analysis for complex indexing
Interprocedural type-based analysis

Sovereign Java Architecture
Java Application

JIT
Compiler

Native
Code

Byte
Code

Sovereign
Java Virtual
Machine

PowerPC S/390 IA-32 IA-64
Linux
AIX32
AIX64
OS/400

Linux
OS/390

Linux
Win32
OS/2
4690

Linux
Win64

Java
Compiler

(javac, jikes)
MMI

Sovereign JIT Compilation Cycle

Execution

Native
Code

Interpreter

Recompilation
Controller

Sampler

method
queue

Compiler

Code
samples

Data
samples

Recompile hot
method

Class
Loader

Recompile
invalid code

Byte codeMMI
Transfer

Interpreter
Method invocation counts
Conditional path info
Loop detection

Fast startup
Class & method resolution
Class initialization

Sampler/Compiler
Hot methods
Common parameters

Good code for warm methods
Best code for hot methods
Specialized hot methods

Compiled
code

Inside the Sovereign JIT

Java
Bytecode

Bytecode
Optimization

Quadruple
Optimization

Native Code
Generation

DAG (SSA)
Optimization

Quadruple
Generation

ILP
Optimization

(IA64)

Instruction Scheduling
Register Allocation

Bytecode Optimization

Java
Bytecode

Class Flow
Analysis

Guarded
Devirtualization

Method
Inlining

JSR Inlining

Field
Privatization

Dataflow
Optimization

NULL check elimination
Field privatization
Type flow analysis
Array check elimination

Quadruple Optimization

Quads
Code

Straightening

Dataflow
Optimization

Copy Propagation
Dead Store Elimination
Redundant Class Init
Class Flow Analysis

Architecture
Transfer

Escape
Analysis

Check
Elimination

Redundancy
Elimination

DAG
Optimization

Late
Architecture

Transfer

Impact
Analysis

Induction Variables
Loop Versioning
Loop Striding

ILP
Optimization

Busy Code Motion

Lazy Code Motion

IA64 Native
Code

Instruction-Level Parallel Optimization (IA-64)

Quad
PDG

Parallelism-aware
Register

Allocation

Hyperblock
Selection and
Generation

Critical Path
Reduction

Instruction
Parallelization

Control Speculation
Data Speculation
Exception Speculation

Generate
Native Code

(Bundle
Formation)

IF Conversion
Predicate Analysis

