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Target systems
Sovereign (Sun JDK-based) Just-in-Time (JIT) Compiler

zSeries (S/390)
OS/390, Linux
Resettable, shareable

pSeries (PowerPC)
AIX 32-bit and 64-bit
Linux

xSeries (x86 or IA-32)
Windows, OS/2, Linux, 4690 (POS)
IA-64 (Itanium, McKinley) Windows, Linux

C and C++ Compilers
zSeries OS/390
pSeries AIX

Fortran Compiler
pSeries AIX



Key Optimizing Compiler Components

TOBEY (Toronto Optimizing Back End with Yorktown)
Highly optimizing code generator for S/390 and PowerPC targets

TPO (Toronto Portable Optimizer)
Mostly machine-independent optimizer for Wcode intermediate language
Interprocedural analysis, loop transformations, parallelization

Sun JDK-based JIT (Sovereign)
Best of breed JIT compiler for client and server applications
Based very loosely on Sun JDK



Inside a Batch Compilation

C++ Front 
End

TPO

C Front End

TOBEY
Back End

C source C++ source

Wcode Wcode

Wcode Wcode

Wcode

Fortran 
Front End

Wcode++

Object Code

Other Front 
Ends

Wcode
Scalarizer

Wcode

Fortran source Other source



TOBEY Optimizing Back End

Project started in 1983 targetting S/370
Later retargetted to ROMP (PC-RT), Power, Power2, PowerPC, 
SPARC, and ESAME/390 (64 bit)
Experimental retargets to i386 and PA-RISC
Shipped in over 40 compiler products on 3 different platforms with 8 
different source languages
Primary vehicle for compiler optimization since the creation of the 
RS/6000 (pSeries)
Implemented in a combination of PL.8 ("80% of PL/I") and C++ on 
an AIX reference platform 



Inside TOBEY
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TPO (Toronto Portable Optimizer)

Project started in 1994 as an interprocedural optimizer for RS/6000
Shipped first as an interprocedural optimizer for the OS/390 C 
compiler in 1996
Later shipped as part of C, C++ and Fortran compilers on AIX, the 
C++ compiler on OS/390 and as a linker enhancement on OS/400
Key optimization driver for the ASCI Blue and White projects and 
PowerPC SPEC benchmark performance
Provides OpenMP explicit parallel support and automatic loop 
parallelization on RS/6000
Being adapted to optimize large scale commercial software such as 
DB2,Oracle and SAP
Implemented in C++ on an AIX reference platform



Inside TPO Compile Time Optimization
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Loop Optimization
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Inside an Link-time Compilation
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Inside TPO Link Time Optimization
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Selected TPO Optimizations

Interprocedural constant propagation, pointer alias analysis and 
dead code elimination
Partially invariant code motion
Forward and backward store motion
Partial constant propagation
Redundant condition elimination
Code and data partitioning
Loop partitioning



Some Compiler Changes for Power4

Instruction scheduling for dispatch
Register-conctrained modulo scheduling
Avoid microcoded and some cracked instructions
Generate stream touch instructions
Eliminate small branch sequences using CA bit
Tune loop optimization for 8 prefetch buffers
Procedure and loop code alignment
Use static branch prediction override with PDF
Inline pointer glue and set BH for virtual and pointer calls
Bias CR allocation to get same source/target for CR logic



Platform Neutral Improvements

Profile directed interprocedural optimization
Profiling and specialization of function pointer calls
F90 MATMUL/TRANSPOSE improvements
Interprocedural loop optimization
Profile directed outlining



Results:  Regatta vs. Competition

SPECint2000 SPECfp2000
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PA-8700 750MHz
SPARC 900MHz
Itanium 800MHz
Pentium 2.2GHz
Alpha 1.0GHz
Power4 1.3GHz
Power4 + compiler

+21%

+12%

* Note: Power4 measurements NOT official 



2002 Performance Plan

Themes
Middleware performance (DB2)
Practical SP Performance
Continuing Power4 and follow-on support

Optimization Priorities
Low Level Optimization and Code Generation
Loop Transformations
Array Analysis
Interprocedural Optimization
C++ Optimization



2002 Optimization Highlights

Shrink wrapping
Loop fusion, distribution and index-set splitting
Loop unrolling for machine balance and bandwidth utilization
Interprocedural register allocation
Superblock scheduling
Profile-driven commoning and code motion
Array data flow analysis and privatization
Optimization of C++ exceptions, virtual dispatch and templates
Data dependence analysis for complex indexing
Interprocedural type-based analysis



Sovereign Java Architecture
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Sovereign JIT Compilation Cycle
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Inside the Sovereign JIT
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Bytecode Optimization
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Quadruple Optimization
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Instruction-Level Parallel Optimization (IA-64)
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