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Strengths of Java

Support for platforms ranging from servers to embedded devices
Object-oriented
Portable: write once, run everywhere
Language support for multithreaded programming
Automatic memory management (garbage collection)
Dynamic binding
Language support for error checking and structured exception 
handling
Large set of standard libraries
Majority of introductory programming classes are now taught in 
Java



Challenges in Java Performance

Inherited from OO programming: virtual method dispatch, space 
overhead of objects, interfaces
Run-time checks (null pointer, array index out of bounds, dynamic 
typing)
Impact of precise exceptions on optimization and path length
Garbage collection overhead and memory usage
Synchronization costs
Lack of true multidimensional arrays (numerical computing)
Bitwise reproducibility of results (floating point)
Run-time binding (affects everything above!)



Java:  More Missing Pieces for HPC

Complex arithmetic
Need integrated support to avoid excessive object creation
Operator overloading to allow transparent complex/double computations

Floating point standard
Too strict, need to allow fast floating point with acceptable if not bitwise 
identical results
e.g. fused multiply-add instruction not permitted

Parallel programming
No support for parallel regions, loops, barriers, etc.
No support for SPMD programming model

Faster Java Native Interface
Needed to utilize vast collection of legacy code
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Array Package for Java
Combining Fortran90 performance and functionality with Java 
safety and flexibility of array layout.

using dense storage internally.
operations on arrays and array sections.
no JVM change needed, 100% pure Java.
extensive checks for various exceptions (out of bounds, non-conforming arrays, 
invalid array shape).
internal array layout not exposed - more efficient representations may be used.

A class for each elemental data type and rank, e.g. doubleArray2D, 
complexArray3D, intArray1D.
More info:

http://www.jcp.org/jsr/detail/83.jsp
http://www.alphaworks.ibm.com/tech/ninja

Ref: Moreira, Midkiff, Gupta, Artigas, Snir, Lawrence. High performance
numerical computing in Java. IBM Systems Journal, March 2000. 



Exception Checks: What's the Problem?

       
n1:        a = b.f;     //  null pointer exception check.   
n2:        x = y * z;
n3:        c = 1/x;    //  arithmetic exception (divide by zero) check.  
        



Exception Checks: What's the Problem?

       try {
n1:        a = b.f;     //  null pointer exception check.      
n2:        x = y * z;
n3:        c = 1/x;    //  arithmetic exception (divide by zero) check.    
        } catch (NullPointerException e) {
          System.out.println(x);
          e.printStackTrace(); 
        } catch (ArithmeticException e) {
          ....
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Exception Checks: What's the Problem?

       try {
n1:        a = b.f;     //  null pointer exception check. 
n2:        x = y * z;
n3:        c = 1/x;    //  arithmetic exception (divide by zero) check.
        } catch (NullPointerException e) {
          System.out.println(x);
          e.printStackTrace(); 
        } catch (ArithmeticException e) {
          ....

Exceptions are precise in Java.
nice language feature - robustness, portability.
bad for performance.



Why Should You Care?

Potentially excepting instructions (PEIs) are very common in Java 
programs.

e.g., read/write of fields of objects, arrays loads and stores, method calls, object 
allocations, type casts.

Precise exceptions introduce many false dependences.
to ensure program state at exception point is "correct".
to ensure the "correct" exception is thrown.

This hampers optimizations that reorder instructions, like instruction 
scheduling, instruction selection across PEI, loop transformations, 
parallelization. 
Can lead to bad performance.



Basic Intuition

Program state that needs to be preserved (for correct execution) 
when exception is thrown is often quite small.

print an error message and exit.
throw away results from exception throwing computation and fall back to some 
default approach.

Runtime exceptions should be thrown rarely.
optimize program for the case when exception is not thrown. 



Overcoming Exception Sequence Dependences

Generate two sets of code.
Optimized code:

completely ignores exception sequence dependences.
may throw an "incorrect" exception.

Compensation code:
executes only if optimized code throws an exception.
intercepts the exception, and throws the correct exception.
does not require any check-pointing in the optimized code to recover the 
correct exception - very low overhead in the expected case.



Array Access: Exception Checks 

Consider standard dot-product matrix-multiply:

for (int i=0; i<m; i++)
for (int j=0; j<p; j++)
for (int k=0; k<n;k++)

C[i][j] += A[i][k]*B[k][j];

Each iteration requires 6 null-pointer checks (C, C[i], A, A[i], B, 
B[k]) and 6 index checks (i and j for C, i and k for A, k and j for B).
The possibility of exceptions prevents any iteration reordering.



Safe Region Creation

if ((C != null) && (A != null) && (B != null) &&
(m-1 < C.size(0)) && (n-1 < C.size(1)) &&
(m-1 < A.size(0)) && (p-1 < A.size(1)) &&
(p-1 < B.size(0)) && (n-1 < B.size(1))) {

for (i=0; i<m; i++)
for (j=0; j<n; j++)

for (k=0; k<p; k++)
C[i,j] = C[i,j] + A[i,k] * B[k,j] ;

} else {

for (i=0; i<m; i++)
for (j=0; j<n; j++)

for (k=0; k<p; k++)
C[i,j] = C[i,j] + A[i,k] * B[k,j];

}

versioning test

safe region: no
exception checks

unsafe region: with
exception checks



Need for Alias Disambiguation

if ((C != null) && (A != null) && (B != null) &&
(m-1 < C.size(0)) && (n-1 < C.size(1)) &&
(m-1 < A.size(0)) && (p-1 < A.size(1)) &&
(p-1 < B.size(0)) && (n-1 < B.size(1))) {

for (i=0; i<m; i++)
for (j=0; j<n; j++)

for (k=0; k<p; k++)
C[i, j] = C[i, j] + A[i, k] * B[k, j] ;

}

versioning test

safe region: no
exception checks

Can apply loop transformations for locality enhancement or
parallelization in safe region only if array C is not aliased 
with A or B. 



Key Property of Java

Pointers -  object references only:
p = new Object();
p = new int[100];

Cannot have statements like:
q = & x;
q = & p[i];

Therefore, two variables (objects) dereferenced via Java pointers 
cannot overlap partially: must be either identical or non-overlapping. 

Two Java 1D arrays / Array package objects cannot overlap partially. 



Alias Disambiguation via Versioning
if ((C != null) && (A != null) && (B != null) &&
     (m-1 < C.size(0)) && (n-1 < C.size(1)) &&
     (m-1 < A.size(0)) && (p-1 < A.size(1)) &&
     (p-1 < B.size(0)) && (n-1 < B.size(1))) {

   if (C.data != A.data  &&  C.data != B.data) {
      for (i=0; i<m; i++) 
         for (j=0; j<n; j++)
            for (k=0; k<p; k++)
               C'[i, j] = C'[i, j] + A'[i, k] * B'[k, j] ;
   } else {
      for (i=0; i<m; i++) 
         for (j=0; j<n; j++)
            for (k=0; k<p; k++)
               C[i, j] = C[i, j] + A[i, k] * B[k, j] ;
   }
} 

safe, alias-free region: can
apply loop transformations 

introduce new symbols 
with more precise alias
information.
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Ref: Moreira, Midkiff, Gupta. From flop to megaflops: Java for technical
computing. ACM TOPLAS 2000.



Complex numbers in Java 

Java has no complex primitive data type. 
Solution: standard Complex class (Java Grande).

Treating complex numbers as objects results in too much overhead.
Example: dot product
Complex[] a,b; Complex s;
for (i=0; i<n; i++)
s.assign(s.plus(a[i].times(b[i])));

generates 2n temporary Complex objects!



Semantic Expansion of Complex Class

Complex class declared final.
Most methods (like plus, minus, times) expanded to operate directly 
on complex values rather than objects.
Complex value converted lazily into object if object-oriented 
operation (not semantically expanded) performed on it.
Synergy with semantic expansion of Array package: get benefits of 
true multidimensional arrays of complex values.  

Ref: Wu, Midkiff, Moreira, Gupta. Efficient handling of complex numbers 
in Java. ACM Java Grande 1999.



Escape Analysis

Generalizing the idea of optimizing object creation and 
management
Focus on objects that do not escape a given scope such as method 
or thread of creation.  An object escapes if there may be some 
reference to it outside the scope.
A method-local object can be allocated on the method stack:

inherently more efficient than heap allocatation
storage automatically reclaimed when method exits
in many cases, method-local objects can be allocated to machine registers

A thread-local object need not be locked for mutual exclusion in 
synchronized method/statement.

Ref: Choi, Gupta, Serrano, Sreedhar, Midkiff. Escape analysis for Java.
OOPSLA 1999.



Object Inlining

Going a step further in escape analysis leads us to the idea of 
object inlining
If an object is reachable exclusively via some other unique object, 
then the objects can be coalesced into a single object. 

Leads to more efficient space utilization
Pervasive application of object inlining leads to a systematic reduction in 
memory management (garbage collection) overhead

Requires escape analysis to determine whether an object reference 
is reachable from another object or from some local reference



Some Performance Coding Practices

Replace field and array references with locals where possible
 Minimizes null pointer and array bound checks explictly

Avoid synchronization where possible
Language facilities make it easy to apply too much synchronization
Consider rewriting synchronized methods as a synchronized wrapper (callable from outside 
the object) and an unsynchronized body (callable from other synchronized methods on this 
object)
"Coarsen" locks where possible by piggybacking on other object locks or combining adjacent 
synchronized code 

 Try to avoid false sharing 
eg. PowerPC reservation granule is 128 bytes - don't pack shared data any closer than that

Use the largest heap you can to minimize garbage collection effects
Can increase average pause time (and therefore response time)
Heap size can determine garbage collection algorithm used (eg. generational vs. mark & 
sweep)

Scope references to objects as tightly as possible 
Object space may be recycled more quickly



IBM JDK Architecture
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IBM JIT Compilation Cycle

Execution

Native
Code

Interpreter

Recompilation
Controller

Sampler

method
queue

Compiler

Code 
samples

Data 
samples

Recompile hot 
method

Class 
Loader

Recompile
invalid code

Byte codeMMI
Transfer

Interpreter
Method invocation counts
Conditional path info
Loop detection

Fast startup
Class & method resolution
Class initialization

Sampler/Compiler
Hot methods
Common parameters

Good code for warm methods
Best code for hot methods
Specialized hot methods

Compiled
code



Inside the IBM JIT
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Bytecode Optimization
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Quadruple Optimization
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Instruction-Level Parallel Optimization (IA-64)
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Questions and Answers


