
Java: Is it viable for High
Performance Computing?

Bob Blainey
March 26, 2002

Strengths of Java

Support for platforms ranging from servers to embedded devices
Object-oriented
Portable: write once, run everywhere
Language support for multithreaded programming
Automatic memory management (garbage collection)
Dynamic binding
Language support for error checking and structured exception
handling
Large set of standard libraries
Majority of introductory programming classes are now taught in
Java

Challenges in Java Performance

Inherited from OO programming: virtual method dispatch, space
overhead of objects, interfaces
Run-time checks (null pointer, array index out of bounds, dynamic
typing)
Impact of precise exceptions on optimization and path length
Garbage collection overhead and memory usage
Synchronization costs
Lack of true multidimensional arrays (numerical computing)
Bitwise reproducibility of results (floating point)
Run-time binding (affects everything above!)

Java: More Missing Pieces for HPC

Complex arithmetic
Need integrated support to avoid excessive object creation
Operator overloading to allow transparent complex/double computations

Floating point standard
Too strict, need to allow fast floating point with acceptable if not bitwise
identical results
e.g. fused multiply-add instruction not permitted

Parallel programming
No support for parallel regions, loops, barriers, etc.
No support for SPMD programming model

Faster Java Native Interface
Needed to utilize vast collection of legacy code

Array Layout

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2]

A[0]

A[1]

A[2]

A[3]

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

Java

Fortran, C

Array Layout

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2]

A[0]

A[1]

A[2]

A[3]

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

Java

Fortran, C
Java Array
Package

Array Package for Java
Combining Fortran90 performance and functionality with Java
safety and flexibility of array layout.

using dense storage internally.
operations on arrays and array sections.
no JVM change needed, 100% pure Java.
extensive checks for various exceptions (out of bounds, non-conforming arrays,
invalid array shape).
internal array layout not exposed - more efficient representations may be used.

A class for each elemental data type and rank, e.g. doubleArray2D,
complexArray3D, intArray1D.
More info:

http://www.jcp.org/jsr/detail/83.jsp
http://www.alphaworks.ibm.com/tech/ninja

Ref: Moreira, Midkiff, Gupta, Artigas, Snir, Lawrence. High performance
numerical computing in Java. IBM Systems Journal, March 2000.

Exception Checks: What's the Problem?

n1: a = b.f; // null pointer exception check.
n2: x = y * z;
n3: c = 1/x; // arithmetic exception (divide by zero) check.

Exception Checks: What's the Problem?

 try {
n1: a = b.f; // null pointer exception check.
n2: x = y * z;
n3: c = 1/x; // arithmetic exception (divide by zero) check.
 } catch (NullPointerException e) {
 System.out.println(x);
 e.printStackTrace();
 } catch (ArithmeticException e) {

Exception Checks: What's the Problem?

 try {
n1: a = b.f; // null pointer exception check.
n2: x = y * z;
n3: c = 1/x; // arithmetic exception (divide by zero) check.
 } catch (NullPointerException e) {
 System.out.println(x);
 e.printStackTrace();
 } catch (ArithmeticException e) {

Cannot move n1 after n2 or n3, in spite of no data
dependence.

Exception Checks: What's the Problem?

 try {
n1: a = b.f; // null pointer exception check.
n2: x = y * z;
n3: c = 1/x; // arithmetic exception (divide by zero) check.
 } catch (NullPointerException e) {
 System.out.println(x);
 e.printStackTrace();
 } catch (ArithmeticException e) {

Exceptions are precise in Java.
nice language feature - robustness, portability.
bad for performance.

Why Should You Care?

Potentially excepting instructions (PEIs) are very common in Java
programs.

e.g., read/write of fields of objects, arrays loads and stores, method calls, object
allocations, type casts.

Precise exceptions introduce many false dependences.
to ensure program state at exception point is "correct".
to ensure the "correct" exception is thrown.

This hampers optimizations that reorder instructions, like instruction
scheduling, instruction selection across PEI, loop transformations,
parallelization.
Can lead to bad performance.

Basic Intuition

Program state that needs to be preserved (for correct execution)
when exception is thrown is often quite small.

print an error message and exit.
throw away results from exception throwing computation and fall back to some
default approach.

Runtime exceptions should be thrown rarely.
optimize program for the case when exception is not thrown.

Overcoming Exception Sequence Dependences

Generate two sets of code.
Optimized code:

completely ignores exception sequence dependences.
may throw an "incorrect" exception.

Compensation code:
executes only if optimized code throws an exception.
intercepts the exception, and throws the correct exception.
does not require any check-pointing in the optimized code to recover the
correct exception - very low overhead in the expected case.

Array Access: Exception Checks

Consider standard dot-product matrix-multiply:

for (int i=0; i<m; i++)
for (int j=0; j<p; j++)
for (int k=0; k<n;k++)

C[i][j] += A[i][k]*B[k][j];

Each iteration requires 6 null-pointer checks (C, C[i], A, A[i], B,
B[k]) and 6 index checks (i and j for C, i and k for A, k and j for B).
The possibility of exceptions prevents any iteration reordering.

Safe Region Creation

if ((C != null) && (A != null) && (B != null) &&
(m-1 < C.size(0)) && (n-1 < C.size(1)) &&
(m-1 < A.size(0)) && (p-1 < A.size(1)) &&
(p-1 < B.size(0)) && (n-1 < B.size(1))) {

for (i=0; i<m; i++)
for (j=0; j<n; j++)

for (k=0; k<p; k++)
C[i,j] = C[i,j] + A[i,k] * B[k,j] ;

} else {

for (i=0; i<m; i++)
for (j=0; j<n; j++)

for (k=0; k<p; k++)
C[i,j] = C[i,j] + A[i,k] * B[k,j];

}

versioning test

safe region: no
exception checks

unsafe region: with
exception checks

Need for Alias Disambiguation

if ((C != null) && (A != null) && (B != null) &&
(m-1 < C.size(0)) && (n-1 < C.size(1)) &&
(m-1 < A.size(0)) && (p-1 < A.size(1)) &&
(p-1 < B.size(0)) && (n-1 < B.size(1))) {

for (i=0; i<m; i++)
for (j=0; j<n; j++)

for (k=0; k<p; k++)
C[i, j] = C[i, j] + A[i, k] * B[k, j] ;

}

versioning test

safe region: no
exception checks

Can apply loop transformations for locality enhancement or
parallelization in safe region only if array C is not aliased
with A or B.

Key Property of Java

Pointers - object references only:
p = new Object();
p = new int[100];

Cannot have statements like:
q = & x;
q = & p[i];

Therefore, two variables (objects) dereferenced via Java pointers
cannot overlap partially: must be either identical or non-overlapping.

Two Java 1D arrays / Array package objects cannot overlap partially.

Alias Disambiguation via Versioning
if ((C != null) && (A != null) && (B != null) &&
 (m-1 < C.size(0)) && (n-1 < C.size(1)) &&
 (m-1 < A.size(0)) && (p-1 < A.size(1)) &&
 (p-1 < B.size(0)) && (n-1 < B.size(1))) {

 if (C.data != A.data && C.data != B.data) {
 for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 for (k=0; k<p; k++)
 C'[i, j] = C'[i, j] + A'[i, k] * B'[k, j] ;
 } else {
 for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 for (k=0; k<p; k++)
 C[i, j] = C[i, j] + A[i, k] * B[k, j] ;
 }
}

safe, alias-free region: can
apply loop transformations

introduce new symbols
with more precise alias
information.

500x500 MATMUL on RS/6000 590

1.6 5.6

30.4
51.6

100.9

209.8

248.3

plain
check-opt

blocking
outer unroll

scalar repl
with fma

ESSL (F90)
0

50

100

150

200

250

300
M

FL
O

PS

Ref: Moreira, Midkiff, Gupta. From flop to megaflops: Java for technical
computing. ACM TOPLAS 2000.

Complex numbers in Java

Java has no complex primitive data type.
Solution: standard Complex class (Java Grande).

Treating complex numbers as objects results in too much overhead.
Example: dot product
Complex[] a,b; Complex s;
for (i=0; i<n; i++)
s.assign(s.plus(a[i].times(b[i])));

generates 2n temporary Complex objects!

Semantic Expansion of Complex Class

Complex class declared final.
Most methods (like plus, minus, times) expanded to operate directly
on complex values rather than objects.
Complex value converted lazily into object if object-oriented
operation (not semantically expanded) performed on it.
Synergy with semantic expansion of Array package: get benefits of
true multidimensional arrays of complex values.

Ref: Wu, Midkiff, Moreira, Gupta. Efficient handling of complex numbers
in Java. ACM Java Grande 1999.

Escape Analysis

Generalizing the idea of optimizing object creation and
management
Focus on objects that do not escape a given scope such as method
or thread of creation. An object escapes if there may be some
reference to it outside the scope.
A method-local object can be allocated on the method stack:

inherently more efficient than heap allocatation
storage automatically reclaimed when method exits
in many cases, method-local objects can be allocated to machine registers

A thread-local object need not be locked for mutual exclusion in
synchronized method/statement.

Ref: Choi, Gupta, Serrano, Sreedhar, Midkiff. Escape analysis for Java.
OOPSLA 1999.

Object Inlining

Going a step further in escape analysis leads us to the idea of
object inlining
If an object is reachable exclusively via some other unique object,
then the objects can be coalesced into a single object.

Leads to more efficient space utilization
Pervasive application of object inlining leads to a systematic reduction in
memory management (garbage collection) overhead

Requires escape analysis to determine whether an object reference
is reachable from another object or from some local reference

Some Performance Coding Practices

Replace field and array references with locals where possible
 Minimizes null pointer and array bound checks explictly

Avoid synchronization where possible
Language facilities make it easy to apply too much synchronization
Consider rewriting synchronized methods as a synchronized wrapper (callable from outside
the object) and an unsynchronized body (callable from other synchronized methods on this
object)
"Coarsen" locks where possible by piggybacking on other object locks or combining adjacent
synchronized code

 Try to avoid false sharing
eg. PowerPC reservation granule is 128 bytes - don't pack shared data any closer than that

Use the largest heap you can to minimize garbage collection effects
Can increase average pause time (and therefore response time)
Heap size can determine garbage collection algorithm used (eg. generational vs. mark &
sweep)

Scope references to objects as tightly as possible
Object space may be recycled more quickly

IBM JDK Architecture
Java Application

JIT
Compiler

Native
Code

Byte
Code

Java Virtual
Machine

PowerPC S/390 IA-32 IA-64
Linux
AIX32
AIX64
OS/400

Linux
OS/390

Linux
Win32
OS/2
4690

Linux
Win64

Java
Compiler

(javac, jikes)
MMI

IBM JIT Compilation Cycle

Execution

Native
Code

Interpreter

Recompilation
Controller

Sampler

method
queue

Compiler

Code
samples

Data
samples

Recompile hot
method

Class
Loader

Recompile
invalid code

Byte codeMMI
Transfer

Interpreter
Method invocation counts
Conditional path info
Loop detection

Fast startup
Class & method resolution
Class initialization

Sampler/Compiler
Hot methods
Common parameters

Good code for warm methods
Best code for hot methods
Specialized hot methods

Compiled
code

Inside the IBM JIT

Java
Bytecode

Bytecode
Optimization

Quadruple
Optimization

Native Code
Generation

DAG (SSA)
Optimization

Quadruple
Generation

ILP
Optimization

(IA64)

Instruction Scheduling
Register Allocation

Bytecode Optimization

Java
Bytecode

Class Flow
Analysis

Guarded
Devirtualization

Method
Inlining

JSR Inlining

Field
Privatization

Dataflow
Optimization

NULL check elimination
Field privatization
Type flow analysis
Array check elimination

Quadruple Optimization

Quads
Code

Straightening

Dataflow
Optimization

Copy Propagation
Dead Store Elimination
Redundant Class Init
Class Flow Analysis Architecture

Transfer

Escape
Analysis

Check
Elimination

Redundancy
Elimination

DAG
Optimization

Late
Architecture

Transfer

Impact
Analysis

Induction Variables
Loop Versioning
Loop Striding

ILP
Optimization

Busy Code Motion

Lazy Code Motion

IA64 Native
Code

Instruction-Level Parallel Optimization (IA-64)

Quad
PDG

Register
Pressure
Analysis

Hyperblock
Selection and
Generation

Critical Path
Reduction

Instruction
Parallelization

Control Speculation
Data Speculation
Exception Speculation

Predicate-aware
Register

Allocation

Generate
Native Code

(Bundle
Formation)

IF Conversion
Predicate Analysis

Questions and Answers

