CMPUT 329: COMPUTER ORGANIZATION AND ARCHITECTURE II

 Homework \# 1Issue Date: 09 September, 2002
Due Date: 16 September, 2002

CMPUT 329 Honor Code

By turning in the homework solution for grading, I certify that I have worked all the solutions on my own, that I have not copied or transcribed solutions from a classmate, someone outside the class, or from any other source. I also certify that I have not facilitated or allowed any of my classmates to copy my own solutions. I am aware that the violation of this honor code constitutes a breach of the trust granted me by the teaching staff, compromises my reputation, and subjects me to the penalties prescribed in Section 26.1 of the University of Alberta 2002/2003 Calendar.

Edmonton, September, 2002.

StudentID: Name:

Problem 1

Using NERD, DESIGNER, FAILURE, and STUDIED, write a boolean expression that is 1 for successful designers who never studied and for nerds who studied all the time

Problem 2

Use the theorems of switching algebra to simplify each of the following logic functions:
a. $F=W \cdot X \cdot Y \cdot Z \cdot\left(W \cdot X \cdot Y \cdot Z^{\prime}+W \cdot X^{\prime} \cdot Y \cdot Z+W^{\prime} \cdot X \cdot Y \cdot Z+W \cdot X \cdot Y^{\prime} \cdot Z\right)$
b. $F=A \cdot B+A \cdot B \cdot C^{\prime} \cdot D+A \cdot B \cdot D \cdot E^{\prime}+A \cdot B \cdot C^{\prime} \cdot E+C^{\prime} \cdot D \cdot E$
c. $F=M \cdot N \cdot O+Q^{\prime} \cdot P^{\prime} \cdot N^{\prime}+P \cdot R \cdot M+Q^{\prime} \cdot O \cdot M \cdot P^{\prime}+M \cdot R$

Problem 3

Write the canonical sum and product for each of the following logic functions:
a. $F=\sum_{X, Y}(1,2)$
b. $F=\sum_{A, B, C}(2,4,6,7)$
c. $F=X+Y^{\prime} \cdot Z^{\prime}$
d. $F=\prod_{A, B}(0,1,2)$
e. $F=\prod_{W, X, Y}(0,1,3,4,5)$
f. $F=V^{\prime}+\left(W^{\prime} \cdot X\right)^{\prime}$

Problem 4

Use a Karnaugh Map to find the minimal sum-of-products expression for each of the following logic functions:
a. $F=W \cdot X \cdot Z^{\prime}+W \cdot X^{\prime} \cdot Y \cdot Z+X \cdot Z$
b. $F=\left(X^{\prime}+Y^{\prime}\right) \cdot\left(W^{\prime}+X^{\prime}+Y\right) \cdot\left(W^{\prime}+X+Z\right)$
c. $F=A \cdot B \cdot C^{\prime} \cdot D^{\prime}+A^{\prime} \cdot B \cdot C^{\prime}+A \cdot B \cdot D+A^{\prime} \cdot C \cdot D+B \cdot C \cdot D^{\prime}$
d. $F=\sum_{V, W, X, Y, Z}(0,1,2,3,4,5,10,11,14,20,21,24,25,26,27,28,29,30)$
e. $F=\sum_{V, W, X, Y, Z}(0,2,4,6,7,8,10,11,12,13,14,16,18,19,29,30)$
f. $F=\Pi_{V, W, X, Y, Z}(4,5,10,12,13,16,17,21,25,26,27,29)$
g. $F=\sum_{V, W, X, Y, Z}(4,6,7,9,11,12,13,14,15,20,22,25,27,28,30)+d(1,5,29,31)$
h. $F=\prod_{a, b, c, d}(0,2,4,6,) \cdot d(3,8,14)$

