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ABSTRACT
Designing multi-processor systems that deliver a reasonable price-performance ra-

tio using off-the-shelf processor and compiler technologies is a major challenge. For an
important class of applications, it is critical to explore fine-grain parallelism to achieve
reasonable performance. In such parallel systems it is essential to efficiently manage
communication latencies, bandwidth, and synchronization overheads. In this paper
we study load balancing strategies for the runtime system of a multi-threaded system.
EARTH (Efficient Architecture for Running Threads) is a multi-threaded programming
and execution model that supports fine-grain, non-preemptive, threads in a distributed
memory environment. We describe the design and implementation of a set of dynamic
load balancing algorithms, and study their performance in divide-and-conquer, regular,
and irregular applications. Our experimental study on the distributed memory multi-
processor IBM SP-2 indicate that a randomized load balancer perform as well as, and
often better than, history based load balancers.

1 Introduction

Multithreading allows the effective management of communication latencies and the effi-
cient implementation of synchronizations in parallel computing and enables the exploration
of fine-grain parallelism [10,19,26]. Coarse-grain parallel systems can tolerate long laten-
cies if the application provides enough parallelism because each task is long enough to
amortize the communication overheads. But coarse-grain systems do not fully exploit par-
allelism in irregular applications. Fine-grain parallelism, on the other hand, allows higher
processor utilization, and thus is more suited for applications that have irregular data ac-
cesses and a dynamic distribution of workload. However most fine-grain parallel systems
are constrained by communication overheads. This article reports an implementation of a
multithreading system that demonstrates the viability of implementing multithreaded mod-
els with existing off-the-shelf distributed memory parallel systems.

According to a recent study, in order to support fine-grain treads efficiently at runtime,
threads should be abundant, balanced, and cheap [22]. Having an abundant number of
active threads on a multi-processor system increases processor utilization, because if one
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thread is delayed, another thread can start execution. A large pool of threads also offers
good potential for load balancing. Economic load balancing is essential in order to adapt
to dynamic application behavior at runtime. Finally, thread creation, termination, synchro-
nization, and context-switching should be cheap to enable this operations to take place
frequently.

The Efficient Architecture for Running THreads (EARTH) is a multi-threaded archi-
tecture and execution model that supports fine-grain, non-preemptive (and non-blocking)
threads. EARTH allows the implementation of a multi-threaded execution model with off-
the-shelf microprocessors in a distributed memory environment [10]. In order to reduce
delays incurred because of transfers between the application level and the operating system
level, EARTH threads operate at the user-level. The EARTH runtime system assumes the
responsibility to provide an interface between an explicitly multi-threaded program and a
distributed memory hardware platform. The runtime system performs thread scheduling,
context switching between threads, inter-node communication, inter-thread synchroniza-
tion, global memory management, and dynamic load balancing.

Communication latencies associated with remote operations pose a challenge to im-
plement fine-grain parallelism in a distributed memory platform. Implementing efficient
communication on EARTH is important because of its fine-grain threaded model, where
the threads can be very short (typically a few hundred s on the IBM SP-2). The EARTH
runtime system seeks to minimize the overheads involved in data communication, synchro-
nization, and load balancing.

Threaded-C Preprocessor

Threaded-C

Linker

C Compiler

ANSI C

RTS Object CodeApplication Object Code

Executable

Fig. 1: Translation Sequence of Threaded-C code

The translation sequence for programs written in Threaded-C is shown in Fig. 1. Threaded-
C programs are first preprocessed into sequential C programs by the Threaded-C prepro-
cessor (etcpre). Each of the threads is transformed into a separate C function, with the
Threaded-C constructs replaced by equivalent C code according to their semantics. The
preprocessed code is compiled to object code with a traditional C compiler. The final ex-
ecutable is obtained by linking the application object code with the runtime system object
code.

EARTH is currently implemented on multiple platforms - network of Sun workstations,
MANNA [10], IBM SP-2 [5], Beowulf [13], and a SUN SMP cluster. All platforms ex-
cept for the Sun SMP cluster are distributed memory implementations. Earlier studies on
EARTH [10] described the implementation of the EARTH model on the MANNA ma-
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chine, which has two processors in each processing node. In this article we report results
of the EARTH implementation on the IBM SP-2 where activities of the EARTH model are
supported by a single processor in each node.

In this paper we present the design of a new randomizing load balancer that performs
well for irregular or recursive workloads. We also report experimental results that allow the
comparison of the new load balancing strategy with a set of existing EARTH load balancers.
In the next section we describe the EARTH multithreading system and its programming
model. In Section 3 we briefly describe the dynamic load balancers implemented in the
EARTH runtime system. Section 4 describes the experimental framework used to study the
performance of these load balancers. The actual performance results and its analysis are
presented in Section 5. We discuss related work in Section 6 and present our conclusions
in Section 7.

2 The EARTH Multithreading System

Applications for the EARTH architecture are written in Threaded-C [23], a multi-threaded
variant of C. Threaded-C can also be used as a compilation target for other parallel lan-
guages [9]. Threaded-C provides constructs for the definition of fine grain, non-preemptive,
non-blocking threads for the specification of data transfers, and for synchronization among
threads. In Threaded-C computations may be composed from arbitrary function call graphs.
Multiple threads can be enabled simultaneously either because data is produced or because
synchronization signals arrive. Alternatively, threads may also be explicitly spawned.
Threaded-C implements a global memory space comprising the local memories on all
nodes in the system.

sync signal

INVOKE/TOKEN

Threaded Function

Fiber

Fig. 2: Arbitrary activation graph allowed by the use of synchronization slots.

A thread is a set of instructions that is executed to completion without suspension or
blocking. To enable context sharing among related threads, these threads are grouped into
larger units called threaded functions [23]. A threaded function can allocate an array of
synchronization slots. Typically each one of the slots in the array is associated with a
different thread and the slot counter is initialized with an initial value. Whenever a syn-
chronization signal for a slot is received, the slot counter is decremented. When the arrival
of a signal causes the counter of a slot to reach zero, the runtime system moves the thread
associated with the slot from the dormant state to the enabled state, and resets the counter
to a pre-specified reset value. The sync slots mechanism provides a unique handle to signal
individual threads and enables the definition of any arbitrary thread activation graph. Fig-
ure 2 illustrates the arbitrary activation graphs that can be constructed using the sync slot
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mechanism. In this figure, a rectangular block represents a threaded function, and a circle
represent a thread. Parallel function calls are shown as solid arcs while dashed arcs between
threads denote the dependencies among threads. For every dependence that is satisfied, a
synchronization signal is sent to the dormant thread. The spawning of threads local to a
function is depicted by the dotted arcs. Figure 3 shows the activation tree for a recursive
implementation of the Fibonacci function.
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Fig. 3: Activation Tree for Fib(4) and a generic activation graph for a Threaded-C program.

The context for a threaded function includes the array of sync slots, the function ar-
guments and the local variables. At any instant of time, only one thread is running on a
processor, though there may be multiple threads belonging to the same application running
on multiple processors. A detailed explanation of the portable Threaded-C language is
given in [23].

2.1 The EARTH Runtime System

The EARTH runtime system (RTS) provides a multi-threaded environment for running
multi-threaded programs efficiently. The core responsibilities of the RTS includes thread-
scheduling, context switching, data communication, synchronization, global memory man-
agement, and dynamic load balancing. The services provided by the RTS that require
inter-node data communication are based on the technique of active messages [27]. An
active message contains data and a pointer to a function that is to be invoked in the des-
tination node when the message is received. For efficiency, and to isolate the interactions
between the network and the rest of the RTS, a limited set of functions is used for inter-node
communication.

2.2 Thread Scheduling

There are two Threaded-C primitives that allow the creation of a threaded function acti-
vation. One of this primitives, INVOKE, specifies the processor that will execute the ac-
tivation while the other, TOKEN, leave the determination of this processor for the runtime
system. The execution of the TOKEN primitive by a running thread causes the creation of a
token. This token is formed by a unique identifier of the threaded function to be executed
and by a set of values for the parameters of the function. Such tokens are the unit of load
balancing in the EARTH system.

The EARTH runtime system maintains two queues — the ready queue (RQ) and
the token queue (TQ) — in each processing node. The RQ contains enabled threads,
while the TQ contains tokens. A thread is associated with an activation frame that is a
data structure containing the values of local variables and parameters associated with a
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threaded function activation. Typically the consumption of a token by a processing node
will lead, eventually, to the enabling of multiple threads. Each of these threads, when
enabled, will run to completion without blocking. However because the threaded function
is formed by multiple threads, the execution of such a function can and will block to wait
for synchronization signals.

Whenever a processor runs out of enabled threads in its RQ, it will fetch a token from its
TQ for execution. This process requires the creation of an activation frame for the threaded
function and the placement of the thread 0 of the function in the RQ. 1 Once the token is
transformed in the actual function activation, it can no longer migrate to other processors.
As a consequence all the threads within a threaded function must execute on the same
processing node [10,15]. Notice that at any given time threads from multiple functions can
be enabled and dormant in a given processor node. Moreover if all threads are dormant, the
RQ will be empty, and the runtime system will fetch a token from the TQ.

The TQ is a DEQUE - a data structure similar to a queue, but operable on both ends.
The TQ behaves locally like a stack to the local node and like a FIFO to the load balancer
that is extracting tokens to send to other nodes. When a node generates a token, the token
is appended to the tail of the TQ (PUSH operation). For local consumption, a token is
extracted from the tail (POP operation). However, tokens are extracted from the head of
the TQ for remote consumption. When tokens are received from remote nodes they are
added to the head of the TQ. The flow of tokens amongst the application, RQ, TQ and
remote nodes is shown in Fig. 4.
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Fig. 4: Internal Queues in the EARTH Runtime System

Maintaining separate queues for migratable threaded functions and threads bound to
the local processing node reduces the amount of memory consumed to store the activa-
tion frames of dormant threaded functions. The TQ design favors the local execution of
tokens produced locally. It also favors the local execution of the tokens produced most
recently. This policy exploits both spatial and temporal locality in the reference to data
structures shared among threaded functions. The policies selected to manipulate the TQ
and the RQ affect the order of execution of the parallel functions and might determine the
amount of parallelism that can be exploited and the amount of memory needed to execute
the program [15].

The migration of functions to other nodes depends on (1) the number of nodes in the
multi-processor system, (2) the time needed to start a threaded function on another node,
(3) the amount of work available to the other nodes, and (4) the efficiency of the dynamic

1The thread 0 of a threaded function is a special thread that is enabled only when the function is first activated
and is used for initialization.
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load balancing mechanism. For instance, a depth-first expansion of a recursive activation
tree should take place locally, whereas breadth-first expansion should be distributed over a
set of nodes. Function frames at higher levels in the activation tree are likely to represent
more work than those in lower levels. Therefore, frames with more work in the activation
tree should migrate to remote nodes to offset the migration costs with the work done on the
remote node. Depth-first expansion on the local node not only reduces token migrations,
but also adds to the locality of the tokens migrated.

3 Dynamic load Balancing in EARTH

A typical load balancer algorithm has four phases - processor load evaluation, load bal-
ancing profitability determination, task selection, and task migration [21]. These phases
requires the establishment of (1) a transfer policy to determine if load should be transferred
to another node; (2) a task selection policy to identify a good candidate for migration; (3)
a destination selection policy to chose a destination to the task that must migrate; and a
(4) information collection policy to decide what load information should be collected, how
often it should be collected and where it should be stored.

The load balancing goal in EARTH is to ensure that all nodes are busy rather than to
evenly distribute tokens among nodes. A node is poor when it has no threads to execute
and no tokens in its token queue. A node that has more then a fixed number of tokens in
its token queue is a rich node. The balancers are implemented in a distributed manner, i.e.
any load distribution information is kept by each node and there is no central authority to
distribute the load. The action of individual load balancers must, over time, ensure that
most of the nodes are busy when there is enough parallelism available in the application.

Balancers can be receiver-initiated (work-stealing), sender-initiated (work-sharing), or
hybrid (symmetric) [21,5]. In receiver-initiated load balancers the overhead of balancing
the load is incurred mostly by poor nodes. Because the load balancing actions are triggered
by change in local state, this approach results in minimum overheads. Sender-initiated load
balancer typically either incur extra overhead for the search for a poor node, or for the re-
transmission of load when the selected destination node is rich. Hybrid balancers combine a
sender and a receiver component to benefit from the advantages from both receiver-initiated
and sender-initiated balancers.

The goal in the EARTH runtime system is to design simple balancers that deliver good
load distribution with minimum overheads. Two types of load balancing messages are ex-
changed among the nodes: (a) a load balancing request is typically served immediately
if the receiving node has surplus tokens, but in some balancers the message might be for-
warded to another node; a response to load balancing request contains a token from a
remote node to be processed in the receiving node. A virtual ring network topology is
adopted in all the balancers with nodes numbered clock-wise. We present a summary de-
scription of the existing load balancing policies in EARTH. For a detailed description of
these policies see [11,5].
Dual: Requests circulate counter-clockwise in the ring, and tokens circulate clockwise. An
idle node generates a request into the ring. When the request reaches a rich node, that node
sends a token back.
Spn: To reduce traffic, a request contains the identification of the node that originated it.
The reply is sent directly to the requester.
Shis: The node that replies to a request attaches its own id to the token. The node that gets
the token “remembers” which node is rich and next time sends a request directly to that
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node. If that fails the request is forwarded along the ring as in Dual.
Snd: When the TQ of a rich node surpass a threshold, it sends a token around the ring.
Poor nodes grab tokens but do not generate requests. If tokens arrive at their generators,
they are taken out of the ring.
His: Each node monitors load balancing messages and builds a list of nodes that are likely
to be poor and rich. If the node becomes poor, it sends a request to the richest node in the
list. Nodes that become reach send tokens to poor nodes.
Range: Similar to Dual and Spn, but when a token request reaches a node, it implies that
all the nodes in the ring between the node that originated the request and the node that
received it are idle. When the node is rich, tokens are sent to the nodes in the far end the
range.
Catapult: Similar to Range, but the tokens are sent to the near end of the range list.

3.1 The Rand Balancer

The Rand balancer is a hybrid randomized load balancer inspired in the supermarket model
proposed for distributed computing [18]. In the receiver mode, load probes are sent to
randomly chosen nodes. The least loaded node is chosen as the destination node for a load
transfer. The balancer assumes a completely connected graph as a logical topology between
the nodes, i.e., messages are sent directly from one node to another without intervention
from the CPU of intermediate nodes. A load threshold is used to limit excessive load
transfers in the sender mode.

A node should send enough load probes to have a reasonable expectation of finding a
poor node, but the load probes should not overload the network. After much experimenta-
tion we decided to use d = (Number of Nodes)/10 +1 load probes. We keep the value of

constant. This number of probes has worked very well for the portable EARTH runtime
system on the IBM SP-2. Its value may need a change on other parallel systems, like the
Fast Ethernet based Beowulf system, where the network latencies and polling overheads
are relatively high.

The sender mode of the Rand balancer is switched on when the number of entries in the
local token queue is greater than twice the number of probes sent. The number of probes
sent, in turn, depends on the number of nodes in the execution. The receiver mode of the
Rand balancer is switched on when the node is idle. A simple task selection policy is used:
the token on the top of the token queue is always selected for migration. This token is
expected to be higher in the activation tree of recursive functions, and thus should carry
more work to the receiving node.

Load information is collected in three ways: load probes, load balancing messages, and
piggy-backed information. When a load probe is acknowledged, the data is stored in the
database. When a load request or load probe is received, we assume that the sender has
zero workload. Local load information is also piggy-backed on outgoing tokens.

4 Experimental Framework

The Threaded-C programs used in our experiments can be classified according to their data
access and workload generation pattern as divide-and-conquer, regular, and irregular al-
gorithms. Most of these programs produce fine-grain threads with very short run-times,
frequent communications and synchronizations, and varying amounts of parallelism that
can be exploited by the runtime system. Therefore it is critical to minimize the load bal-
ancing overheads [5].
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Benchmark Name Problem Domain Type Tokens Threads
Generated executed

Fibonacci (33) Combinatorial Divide and conquer 11405772 17108661
Queen (12) Graph Searching Divide and conquer 9916 24791
TSP (10) Graph searching Divide and conquer 5861 18407
Knary (7,7,2) Computation Trees Divide and Conquer 98040 274516
Matrix Numerical Computation Regular SPMD NA NA
Tomcatv (257) Scientific Computation Regular SPMD 101 304
SPMD (4,4,0) Scientific Computation Regular SPMD 2100 4301
Paraffins (28) Chemistry Irregular 1843 1904

Table 1: The EARTH Benchmark Suite

The benchmark programs used in our experiments, shown in Table 1, are taken from
the EARTH Benchmark Suite (EBS) [25]. The table shows the number of tokens generated
and the number of threads executed for each benchmark. Fibonacci, Queen and the
Traveling Salesperson Problem TSP are typical examples of recursive divide-and-conquer
algorithms. Paraffins generates irregular workload and produces tokens with short exe-
cution time. Matrix (standard matrix multiplication) and Tomcatv are regular scientific
computations, while SPMD models a typical barrier-synchronized application.

The EARTH-SP system realizes the EARTH model on the IBM SP-2 system. The
IBM RS/6000 Scalable POWER Parallel System (SP-2) is a distributed memory multi-
processor [1]. Each processing node is equipped with a 120 MHz POWER2 Super Chip,
128 KB of data cache, 32 KB of instruction cache, at least 64 MB of RAM, and operate with
a 256 bit memory bus. The tb-3 switch provides a network interface with a peak hardware
bandwidth of 150 MB/s in each direction. A detailed descriptions of the benchmarks,
experimental platform, and all our experiments can be found in [11].

5 Performance Results

We used the benchmarks described in Section 4 to evaluate the load balancers described in
Section 3 in the IBM SP2 machine at the Cornell Theory Center. We conducted extensive
experimentations to evaluate the load balancers. In this section we are summarizing the
most important results.

5.1 Summary of Main Results

Some of the most important results from our experiments can be summarized as follows.

Dynamic load balancing is most effective for programs that produce am abundant
number of migratable threads. Abundance of threads is even more important for
irregular or highly recursive programs.

The His, Range, and Rand balancers perform very well for most applications. For
highly recursive or irregular programs the best results were obtained by the Rand
balancer (see Table 2).

The history based His, and the Range balancers perform very well in SPMD style
programs where the load distribution is quite regular and predictable (see Table 3).

8



Dynamic load balancing is essential for good performance. For most applications
the speedup over the Minima balancer — which shuts itself off after an initial (thus
static) distribution of load — was above 18 for execution in 32 nodes (see Table 4).

The overhead for supporting multi-threading in the EARTH model is quite low (ex-
cept for extreme cases such as the recursive Fibonacci — see Table 5).

In order for dynamic load balancing to be successful, some basic conditions must exits:
(1) the application program must have enough parallelism to allow it to be broken down
into a large enough number of small threads to allow the load balancers to work; (2) the
benefit from migrating work to other processors must surpass the cost of executing the load
balancer algorithm itself. Some load balance strategies also depend on the regularity and
predictability of the work load generated across the machine. In this study we analyze how
well the load balancers described in Section 3 perform as these conditions change.

5.2 Comparison of the Balancers

Benchmark Dual Spn Shis Snd His Range Catapult Rand

Fibonacci(33) 1.14 1.14 13.66 — 1.19 1.21 1.2 1.02
Queens(12) 0.24 0.17 4.71 0.171 0.176 0.175 — 0.165
TSP(10) 0.43 0.32 7.8 0.36 0.28 0.29 0.28 0.27
Knary(7, 7,2) 2.13 0.93 24.76 1.037 0.908 0.94 0.95 0.906
Matrix 70.31 49.5 293.8 17.52 12.2 14.66 63.42 16.96
Tomcatv(257) 2.45 1.78 — — 0.54 0.39 — 5.6
SPMD(1,1,0) 0.25 0.16 0.68 0.08 0.11 0.1 0.63 0.15
SPMD(4,4,0) 1.9 0.72 14 0.63 0.86 1.27 13 0.79
Paraffins(28) 7.43 6.55 104 7.54 6.54 6.79 — 6.46

Table 2: Overview of Results. Elapsed times, in seconds, for each benchmark under different load balancing
algorithms. These measurements were obtained in a 32 node run.

Table 2 shows the elapsed times, measured in seconds, for different balancers and
threaded programs. The entries missing in the table are cases in which the load balancer
generates so much network traffic at some point during the execution of the program that it
saturates the network interface buffer. In the implementation of these benchmarks, there is
no throttling to prevent this situation. The same data is normalized into Table 3. For nor-
malization we divide each elapsed time by the shortest elapsed time of any balancer for that
program. Thus, Table 3 actually shows the relative slowdown of each load balancer in re-
lation to the fastest one. To compute a fair average for each application program group, we
assign the longest elapsed time of any of the load balancers that successfully complete the
execution of the program to the load balancers that fail to complete them. In this table D&C
Average is the average for the divide-and-conquer applications, and Reg. Average
is the average for regular applications.

From the data in Tables 2 and 3 we can conclude that although the performances of
the His, Range, and Rand balancers are quite similar, the Rand balancer performs better for
divide-and-conquer programs (the top four programs in the table), and in paraffins, the only
program with irregular data distribution and irregular workload generation in our test set.
As should be expected, load balancers that use load history perform well when executing
programs with regular data distribution and load generation.
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Benchmark Dual Spn Shis Snd His Range Catapult Rand

Fibonacci(33) 1.12 1.12 13.4 — 1.17 1.19 1.18 1.00
Queens(12) 1.45 1.03 28.5 1.04 1.07 1.06 — 1.00
TSP(10) 1.59 1.19 28.9 1.33 1.04 1.07 1.04 1.00
Knary(7, 7,2) 2.25 1.03 27.3 1.14 1.00 1.04 1.05 1.00
D&C Average 1.63 1.09 24.5 4.23 1.07 1.09 7.95 1.00
Matrix 5.76 4.06 24.1 1.44 1.00 1.20 5.20 1.39
Tomcatv(257) 6.28 4.56 — — 1.38 1.00 — 14.4
SPMD(1,1,0) 3.13 2.00 8.50 1.00 1.38 1.25 7.88 1.88
SPMD(4,4,0) 3.02 1.14 22.2 1.00 1.37 2.02 20.6 1.25
Reg. Average 4.55 2.94 17.3 4.45 1.28 1.37 12.0 4.72
Paraffins(28) 1.15 1.01 16.1 1.17 1.01 1.05 — 1.00

Table 3: Normalized elapsed times, and averages for each class of programs and for the entire set of tests.

In both instances of SPMD, a barrier-synchronizing program, the Snd balancer outper-
forms all other balancers. Typically in these applications the number of tokens generated
between consecutive barriers is not much higher than the number of nodes in the system.
Therefore the load balancer does not have many tokens to exchange to balance the load.
Snd does well with these programs because it is quite fast on distributing newly gener-
ated tokens. However the current implementation of the Snd balancer might overflow the
network buffers in applications that generate an abundant amount of tokens.

The Range and Spn are very similar balances and their performance reflects that. The
sender component of the Range balancer sends extra tokens to the far node in the range
list. This policy works reasonably well for low load situations, because the far node is
more likely to be idle than the near node as load state fluctuates very rapidly in low load
situations. However, for high load situations, the impact of the range information is less
significant. The Catapult location policy, i.e., the identification of the node that should
receive extra load is misguided. By always choosing the nearest neighbor to send extra
tokens, the Catapult balancer is likely to shift excess work to another processor instead of
distributing it among a range of idle processors.

The ring topology assumed in theDual balancer severely limits its scalability, its ability
to respond rapidly to fluctuating load situations, and its capability to distribute tokens.
Nonetheless, its simple algorithm makes it useful for applications with threads that run
for a short amount of time. The Shis balancer causes high message traffic, resulting in
poor performance in spite of the use of history information to select nodes to distribute the
load. The poor performance of the His balancer underscores an important principle of load
balancer design: a good and fast decision is better than an optimal but slower one.

5.3 Dynamic Static Load Balancing

In Tables 2 and 3 we compare the performance of the load balancers amongst themselves.
But how important is it that the load be balanced dynamically? Could an initial static dis-
tribution of the load produce similar results? To answer these questions we run the same
set of programs under a minimal balancing policy. The Minima balancer shuts itself off
after initially distributing one token to each node. The results of these experiments are pre-
sented in Table 4. In a run that uses 32 processing nodes, the dynamic balancers produced
a speedup over the static load distribution (Minima) that ranges from 4.30 for Queens(12)
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Benchmark Attribute Spn Snd His Rand Minima

Fibonacci(33) Elapsed Time 1.14 OF 1.19 1.02 23.29
% Reduction 95.12 – 94.91 95.63 0
Speedup 20.50 – 19.65 22.89 1

Queens(12) Elapsed Time 0.167 0.171 0.176 0.166 0.754
% Reduction 77.79 77.34 76.72 78.01 0
Speedup 4.50 4.41 4.30 4.55 1

TSP(10) Elapsed Time 0.32 0.36 0.275 0.269 7.78
% Reduction 95.91 95.34 96.47 96.54 0
Speedup 24.45 21.45 28.35 28.90 1

Knary(7,7,2) Elapsed Time 0.93 1.04 0.907 0.906 24.77
% Reduction 96.26 95.81 96.34 96.34 0
Speedup 26.72 23.88 27.30 27.33 1

SPMD(4,4,0) Elapsed Time 0.72 0.63 0.86 0.79 14.037
% Reduction 94.87 95.50 93.88 94.34 0
Speedup 19.50 22.21 16.34 17.67 1

Paraffins(28) Elapsed Time 6.55 7.54 6.54 6.46 118.8
% Reduction 94.48 93.65 94.49 94.56 0
Speedup 18.13 15.76 18.16 18.40 1

Table 4: Comparison with a no balancer Minima run in a 32 processor machine. Elapsed time is measured in
seconds.

with the His balancer, to 28.9 for TSP(10) with the Rand balancer. Typically the speedup
is around 20 for 32 processors. Our implementation of Queens(12) is throttled, therefore
we may consider that the programmer is doing part of the load balancing, and therefore
the dynamic load balancing is not as important for that program. The results presented in
Table 4 is a remarkable and strong indication of the importance of a good dynamic load
balancer to deliver high performance in a programming model such as EARTH.

5.4 Speedup Curves
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Fig. 5: Performance comparison between Minima, Nop and other Balancers of different balancers

In order to understand how the speed is increasing with the number of processors used
with each load balancer, we performed runs with 1, 2, 4, 8, 16, and 32 processors. The
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speedup over the no load balancer situation are plotted in Figure 5 for the Paraffins(28)
and Queens(12) programs. The gain of performance of the Minima over the no balancer
situation Nop indicates the benefit of a simple initial distribution of work for that program.

5.4.1 Overheads for Supporting a Multi-threaded Environment

The uni-node support efficiency or USE factor [22] is the ratio of sequential execution time
and the elapsed time for one-node parallel execution. An ideal 100% use-factor indicates
minimum overheads imposed by the multi-threaded environment. It also indicates that the
program has enough parallelism to hide the latencies of the multi-threaded operations. A
unity USE factor also indicates good absolute speedup, and the opportunity for efficient
load balancing.

Table 5 shows the absolute and relative speedups, and the USE factor for 32 node exe-
cutions of the complete set of benchmarks. The Rand balancer provides better USE factor
than the His balancer for most of the applications, except for Queens and Tomcatv. For
Queens both the absolute and the relative speedups with the Rand balancer are higher
than their counterparts for the His balancer. As a consequence Rand’s speedup is better for
Queens. However, for Tomcatv Rand delivers lower performance than His.

Benchmark Balancer Absolute Relative USE-
Speedup Speedup factor %

Fibonacci(28) His 0.88 18.49 4.77
Rand 1.03 17.47 5.89

Queens(12) His 25.95 28.74 90.29
Rand 27.47 30.91 88.89

TSP(10) His 28.66 31.31 91.55
Rand 29.21 31.89 91.62

Matrix(1024X1024) His 24.71 26.23 94.18
Rand 17.29 16.77 103.07

Tomcatv(257) His 8.69 13.88 62.63
Rand 0.84 1.37 61.57

Paraffins(28) His 8.73 31.48 27.72
Rand 8.84 31.88 27.74

Table 5: Absolute and Relative speedups for a 32 node run. The USE factor is the Uni-node Support Efficiency,
and is the ratio of absolute speedup to relative speedup.

5.4.2 Distribution of Total Elapsed Time

Figures 6 and 7 display the break-up of the total elapsed time in each processing node
for the Queens(12) program on a run using eight processors. 2 In this experiment less
processors are used, thus the elapsed times are longer than reported in earlier experiments.
The graph in Figure 6 shows the time break-up for the Spn and Snd balancers. For Queens,
the work stealing Spn balancer works best because of the recursive nature of this program.
Quite early in the execution every node has enough work to keep itself busy, and thus no
more load balancer related traffic is generated. In balancers with a sender component, each

2The order of the colors in the legends of these graphs is the reverse of the colors that appear in the bars. In
all graphs the largest portion of the time is spent on thread execution, and the second largest is polling overhead.
The small amounts of time that appear at the very top of each bar are the portions of idle time in each node.
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Fig. 6: A Distribution of Elapsed Time for Queens(12) on 8 nodes for the Spn and Snd balancers.

node that is busy will attempt to do load balancing by either sending tokens, or by sending
load probes (as is the case for the Rand) to other nodes. For instance, the Snd balancer
sends tokens to remote nodes. When all the nodes in the system are rich, these futile
attempts to transfer load waste CPU and network resources. One possible improvement to
the Rand balancer is to detect the situation in which all nodes are rich and disable its sender
component.

The Rand algorithm results in nearly equal distribution of both workload and overheads
on all the nodes, thereby minimizing system-wide idle time and balancer overheads. For a
breakup of the total execution time for the other benchmarks, please refer to [11].

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nodes

Ti
m

e 
(s

ec
on

ds
)

Thread Execution Time
Load Balancing Overhead
Polling Overhead
Total Idle Time
Context Switching Time

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nodes

Ti
m

e 
(s

ec
on

ds
)

Thread Execution Time
Load Balancing Overhead
Polling Overhead
Total Idle Time
Context Switching Time

(a) His (b) Rand

Fig. 7: A Distribution of Elapsed Time for Queens(12) on 8 nodes for the His and Rand balancers.

6 Related Work

Many existing multithreading systems [11,12] are software emulations based on off-the-
shelf hardware and compiler technologies. Software multithreaded systems can be broadly
classified into language and library-based systems. Examples of language-based multi-
threaded systems include EARTH [10], Cilk [7], TAM [6], Concert [14], Java [8] and C+-
[4]. Each of these systems, except for Java, supports non-blocking, non-preemptive threads.
An exception in this category of multithreaded systems is the Java programming language.
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Examples of library-based systems include Nano-threads [2], Ariadne [16], Opus [17],
Structure Thread Library [24], and Active Threads [28].

Cilk is an algorithmic multi-threaded language currently designed for symmetric multi-
processors (SMP’s) [3]. Central to Cilk’s development is the scheduling of multi-threaded
computations using a work-stealing mechanism [3]. The Cilk compiler and runtime sys-
tem jointly play an active role in dynamic load balancing 3. The Cilk runtime system [3]
employs a randomizing, work-stealing scheduler and operates on a double-ended queue
that is similar to the token queue in the EARTH runtime system [10], and also reported in
the ADAM architecture [15]. The generation of two clones for every Cilk procedure is an
application of the work-first principle [7].

The Cilk threading model is very amenable for the solution of divide-and-conquer prob-
lems, and is most suited for fully-strict computations [3]. While the directed-acyclic graph
formed from a Cilk multi-threaded computation allows communications between parent
and child procedures, it does not support communications between threads belonging to
different Cilk procedures that are at the same level in the activation graph. In contrast,
the EARTH threaded model enables the implementation of any arbitrary activation graph
through the exchange of synchronization slot addresses.

The Threaded Abstract Machine project [6] presents an execution model in which the
compiler controls the synchronization, scheduling and storage management. The role of
the compiler in scheduling and management of threads is emphasized to take advantage
of critical processor resources, such as register storage, and to exploit considerable inter-
thread locality. TAM was one of the first multi-threaded systems that were built through
software emulation with minimal hardware support. Load distribution of workload onto
processors is managed by the TAM compiler [20], whereas in EARTH the workload is
dynamically distributed at runtime by the load balancer.

7 Conclusion

We demonstrated that a fine grain multi-threaded system can be implemented with an
standard off-the-shelf processor, memory system and compiler technology of a distributed
memory architecture. Through a combination of clever pre-compiler transformations and a
well-crafted runtime system, the EARTH system delivers non-preemptive,fine-grain multi-
threading at low cost. Our detailed experimental study of various load balancing policies
indicates that a randomized policy delivers good performance on a 32 node parallel system.

Presently the work described in this article is being ported onto the EARTH-Beowulf
system, a Linux platform. Further study of the runtime system performance, particularly
the balancers in a shared memory environment (SMP) is in progress. A logical next step
in designing better load balancers for the EARTH system is the design of adaptive load
balancers; these balancers change balancer policy dynamically at runtime, based on appli-
cation workload, and node availability.

The results presented here help understand the influence of load balancing policies in
the performance of multi-threaded systems. These results should also be applicable to
similar parallel systems based on multi-threading and will hopefully allow future systems
to achieve better performance for a broad range of applications.

3This is unlike EARTH, where dynamic load balancing is a purely runtime system activity.
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