
Minimum Register Instruction Sequence Problem:
Revisiting Optimal Code Generation for DAGs

R. Govindarajan , H.Yang , J. N. Amaral , C. Zhang , G. R. Gao

Supercomputer Education & Research Centre Electrical and Computer Engineering Dept. of Computing Science
Dept. of Computer Science & Automation University of Delaware University of Alberta

Indian Institute of Science Newark, DE 19716 Edmonton T6G 2E8
Bangalore, 560 012, INDIA Delaware, U.S.A. Alberta, CANADA

govind@csa.iisc.ernet.in hyang,czhang,ggao @capsl.udel.edu amaral@cs.ualberta.ca

Abstract

We revisit the optimal code generation or evaluation or-
der determination problem — the problem of generating an
instruction sequence from a data dependence graph (DDG).
In particular, we are interested in generating an instruction
sequence that is optimal in terms of the number of regis-
ters used by the sequence . We call this MRIS (Minimum
Register Instruction Sequence) problem.
We developed an efficient heuristic solution for the MRIS

problem based on the notion of instruction lineage. This so-
lution facilitates the sharing of registers among instructions
within a lineage and across lineages by exploiting the struc-
ture of a DDG. We implemented our solution on a produc-
tion compiler and measured the reduction in the number of
(spill) loads and (spill) stores and the wall-clock execution
time for the SPEC95 floating point benchmark suite. On av-
erage our method reduced the number of loads and stores
by 11.5% and 15.9 %, respectively, and decreased the total
execution time by 2.5%.

1 Introduction

The objective of the the optimal code generation prob-
lem [1, 24] — also known as the evaluation order determi-
nation problem [30] — is the generation of an instruction
sequence for a data dependence graph (DDG). In particu-
lar, we are interested in generating an instruction sequence
that uses a minimum number of registers. We call this

MRIS (Minimum Register Instruction Sequence) problem:

Given a data dependence graph , derive an in-
struction sequence for that is optimal in the
sense that its register requirement is minimum.

The MRIS problem is related to but different from the
conventional problem formulation of instruction scheduling

[1, 11, 12, 18, 29] and register allocation [1, 6, 7, 10, 18, 20,
22, 28]. We highlight these differences in Section 5.
Our study of the MRIS problem is motivated by the chal-

lenges faced by modern processor architectures. For ex-
ample, a number of modern superscalar processors support
out-of-order instruction issue and execution [27]. Out-of-
order (o-o-o) instruction issue is facilitated by a runtime
scheduling hardware and by the register renaming mecha-
nism. An o-o-o processor has a larger number of physical
(i.e., not architected) registers at its disposal for register re-
naming at runtime. Recent studies [16, 26] indicate that
compilers for o-o-o issue processors should emphasize re-
ducing the number of register spills over exposing instruc-
tion level parallelism. Reducing register spills reduces the
number of loads and stores executed and is important:

from a performance viewpoint in architectures that ei-
ther have a small cache or a large cache miss penalty;

from a power dissipation viewpoint, as the contribution
of load/store instructions consume a significant portion
of the power budget.

As another argument to why the MRIS problem is rele-
vant, consider Intel’s IA-64 architecture [4] where a vari-
able sized register window is allocated in the register stack
for each function, and register spilling is automatically per-
formed by the register stack engine (RSE). In that architec-
ture the problem faced by the local register allocator is to
minimize the number of registers allocated to avoid unnec-
essary spilling by the RSE, and not to optimize the use of
a fixed number of registers. Lastly, in code generation for
fine-grain multithreaded architectures [9], it is often more
important to minimize the number of registers used in a
thread in order to reduce the cost of thread context switch.
In this paper we present a simple and efficient heuris-

tic method to address the MRIS problem. The proposed
method is based on the following:

Instruction lineage formation: The concept of instruc-
tion lineage evolves from the notion of instruction
chains [13] which allows the sharing of a register
among instructions along a (flow) dependence chain
in a DDG. However, the instruction lineage approach
more accurately models the register requirement than
an instruction chain (as will be discussed in Section 5).

The notion of a lineage interference that captures the
must overlap relation between the live ranges of lin-
eages even before the lineages are scheduled, which
facilitates sharing registers across lineages.

We implemented our heuristic approach in the SGI
MIPSpro compiler suite and evaluated our approach on the
SPEC95 floating point benchmarks. For comparison we
also measured the performance of a baseline version (base)
of the compiler that performs traditional compiler optimiza-
tions, but does not optimize the instruction sequence. As
the emphasis of our work is on sequencing the instructions
to reduce the register requirements and spill code, we mea-
sured the number of loads and stores graduated in each
benchmark under each version of the compiler. We also re-
port wall-clock execution time. The results are summarized
as follows.

Our heuristic approach reduces the number of loads
and stores executed on the average by 11.5% and
13.9% respectively (compared with a baseline version
of the compiler).

The heuristic method also results in an average execu-
tion time improvement of 2.5% on the SPEC95 float-
ing point benchmarks.

The heuristic method performs competitively, in terms
of execution time, compared to a combined instruc-
tion scheduling/register allocation algorithm. The pro-
posed heuristic approach also results in a marginal re-
duction (2.8% and 1.7%, respectively) in the number
of loads and stores.

The rest of the paper is organized as follows. In the
following section we motivate the MRIS problem with the
help of an example. In Section 3, we present our heuris-
tic solution to the MRIS problem. Experimental results are
discussed in Section 4. Related work and conclusions are
presented in Sections 5 and 6.

2 Motivating Example

In this section we use an example to motivate the MRIS
problem and illustrate our solution to it. Consider the com-
putation represented by a data dependence graph (DDG) 1

1Since our focus in this paper is on register allocation, we consider only
flow dependences in our DDG. Other dependences due to memory (such

shown in Figure 1(a). Two possible instruction sequences
for this DDG are also shown in the figure along with the
live ranges of the variables – (for simplicity, we as-
sume that all the variables are dead at the end of the basic
block). For the instruction ordering shown in Figure 1(b)
we have four variables simultaneously live in statements
and , therefore four registers are required. However, with
the sequencing shown in Figure 1(c) only three variables
are simultaneously live and therefore we may use only three
registers. In this particular example, the minimum register
requirement is three. Hence the sequence shown in Fig-
ure 1(c) is a minimum register sequence.

(b) Instruc tion Sequenc e 1 (c) Instruc tion Sequenc e 2

h

a

b c d e

gf

a : s1 = ld [x];

h : s8 = s6 * s7;

d : s4 = s1 - 4;

e : s5 = s1 / 2;

g : s7 = s4 - s5;

c : s3 = s1 * 8;

f : s6 = s2 * s3;

b : s2 = s1 + 4;

s1

s2

s3

s4

s5

s6

s7

s1

s4

s5

s7

s6

s3

s2

(a) DDG

a : s1 = ld [x];

h : s8 = s6 * s7;

c : s3 = s1 * 8;

e : s5 = s1 / 2;

b : s2 = s1 + 4;

f : s6 = s2 * s3;

d : s4 = s1 - 4;

g : s7 = s4 - s5;

Figure 1. Motivating Example

The input for the MRIS problem is a DDG that defines
only a partial order among instructions. By restricting our
attention to acyclic DDGs we do not consider any loop car-
ried dependencies. We identify nodes (instructions) in the
DDG that can share the same register (i.e., use the same reg-
ister as destination) in a legal sequence. Although a com-
plete answer to this question is hard to determine, the data
dependence in the DDG does provide a partial answer. For
instance, in the DDG of Figure 2(a), since there is a data
dependency from node to node , and there is no other
node that uses the value produced by node , we can defi-
nitely say that in any legal sequence, the register associated
with node can be shared by . Similarly nodes and can
share the same register. Can nodes and share the same
register? The answer is no, as, in any legal sequence, the
values produced by these instructions must be live simulta-
neously so that the computation of can take place.
Another interesting question is whether nodes and

can share the same register. The data dependence in the
DDG neither requires their live ranges to definitely overlap
(as in the case of nodes and) nor implies that they def-
initely will not overlap (as in the case of nodes and).
Hence to obtain a minimum register instruction sequence,
one must order the nodes in such a way that the live ranges
of and do not overlap, and thus they can share the same
register. In the following subsection, we outline our first
approach which uses efficient heuristics to arrive at a near-
optimal solution to the MRIS problem.

as store–load dependences), while important from a scheduling viewpoint,
do not influence register allocation and hence need not be considered for
computing the register requirements.

3 Lineage Based Instruction Sequencing

In this section, we present our heuristic approach to find
a minimum register sequence for a given acyclic DDG.

3.1 Overview of Our Approach

Our approach to the MRIS problem uses the notion of
instruction lineages that is derived from the notion of chains
introduced in [13]. If a node in a DDG has one or more
descendents, it produces a value and thus must be assigned
a register. If we have a sequence of instructions in the DDG

where is the descendent of , is
the descendent of , etc., then we can form a lineage of
these instructions in such a way that all the instructions in
the lineage can share the same register. That is, the register
assigned to is passed on to (’s heir) which is passed
on to , and so on. Due to the data dependency between
pairs of instructions in the lineage, any legal sequence will
order the instructions as , , , . Hence, if the live
range of the variable defined by ends at , then can
definitely share the same register allocated to .

h

a

b c d e

gf

h

a

b c d e

gf

L2 L3

L4L1

(b) Augmented DDG (a) Orig ina l DDG

L2 = [c , f);
L3 = [e, g , h);
L4 = [d , g);

L1 = [a , b , f, h);

(c) Lineage Interferenc e
Graph

Figure 2. Data Dependence Graph for the Mo-
tivating Example

What if has more than one descendent? In order for
to use the same register that used, we must ensure that

the other descendents of are scheduled before . Thus
the selection of one of the descendents of to be the heir
of the register creates scheduling constraints among the de-
scendents of . Such sequencing constraints are explicitly
represented in the augmented DDG by directed sequencing
edges from each descendent node to the selected heir. For
instance, the DDG for the motivating example is shown in
Figure 2(a). The definition of the lineage
creates scheduling constraints between the descendents of
as shown by dotted arrows in Figure 2(b). In Section 3.2 we
introduce a simple but efficient heuristic to select the heir
among multiple descendents.
It is clear that all the nodes in a lineage share the same

register. But can two lineages share the same register? To
determine the interference between two lineages, we have to
determine whether the live ranges of the lineages overlap in

all legal instruction sequences. The live range of an instruc-
tion lineage is the concatenation of the live ranges of all the
values defined by the instructions in the lineage. If the live
ranges of two lineages overlap in all legal sequences, then
the lineages cannot share the same register. However if they
do not overlap in at least one of the legal sequences, then
we may be able to schedule the lineages in such a way that
they share a register. Given the DDG and the partial order-
ing of instructions, how do we determine whether or not the
live ranges of two lineages will or will not overlap? We ad-
dress this in Section 3.3. Based on the overlap relation we
construct a lineage interference graph.
This lineage interference graph is colored using tradi-

tional graph coloring algorithms [7] to compute the num-
ber of registers required for the DDG. We refer to this
number as the Heuristic Register Bound (HRB). Once we
color the lineage interference graph, we apply a modified
list scheduling method that uses this coloring as a guide-
line to generate an instruction sequence that uses the min-
imum number of registers. Our heuristic-based algorithm
produces a near-optimal solution for the MRIS problem.

3.2 Lineage Formation

First we define the notion of an instruction lineage.

Definition 3.1 An instruction lineage is a sequence of
nodes such that there exist arcs ,

, , in the DDG. Further in the above
lineage, is the heir of , is the heir of and so on.

A node may have many descendents, but it has at most a
single heir. Because the heir is always the last descendent
to be scheduled (it is the last use of the value produced by
its parent), in an acyclic scheduling, the live range of the
nodes in a lineage will definitely not overlap with each other
and hence all the nodes in the lineage can share the same
register. To ensure that the heir is the last use of the value
produced by its parent, we introduce sequencing edges in
the DDG.We need a sequencing edge from each descendent
of a node to the chosen heir, as shown in Figure 2(b).
If the introduction of sequencing edges were to make the

graph cyclic, then it would be impossible to sequence the in-
structions represented in the DDG. Hence some care should
be taken in the selection of a heir. During the formation
of the instruction lineages, we use a simple height priority
to choose the heir of each node. The height of a node is
defined as follows:

if has no descendents
for descendents()

The heights of the nodes in the DDG of Figure 2(a) are:

During the lineage formation, if a node has multiple
descendents, then we choose a descendent node with the
smallest height. If multiple descendents have the same
height, the tie is broken arbitrarily. In order to ensure that
cycles are not introduced in the lineage formation process,
our approach recomputes the height of each node after intro-
ducing a set of sequencing edges between the descendents
of a node.
The last node in a lineage is the last one to use the

value in the register (defined by) assigned to that
lineage. The last node might belong to another lineage
or it might be a store instruction that does not need a regis-
ter. Therefore the last node does not share its register with
the other nodes in the lineage. We emphasize this property
of the last node by representing a lineage as a semi-open
interval . In the DDG of Figure 2,
the four lineages are , , , and .
Lastly, in forming lineages, we ensure that the live range of
each node (except the sink nodes) is included in exactly one
of the lineages.
The Lineage Formation algorithm is essentially a depth-

first graph traversal algorithm, identifying a heir for each
node (using the height priority). In cases where a node has
multiple descendents, sequencing edges are introduced, and
the heights of all nodes in the DDG are recomputed. The
detailed algorithm is presented in [14].

Lemma 3.1 The introduction of sequencing edges during
lineage formation does not introduce any cycle in the aug-
mented DDG.

The reader is referred to [14] for a proof of this and other
lemmas/theorems.

3.3 Lineage Interference Graph and Heuristic
Register Bound

In defining the live range of a lineage we use the fact that
each instruction has a unique position in the sequence of
instructions.

Definition 3.2 For a lineage , if and
are at positions and , respectively, in an instruction

sequence, then the live range of the lineage starts at
and ends at .

While identifying lineages with non-overlapping live
ranges, the instruction sequence is not yet fixed, and as a
consequence, the live ranges of different lineages are all
floating. In this context, determining whether two lives
ranges must necessarily overlap in any instruction sequence
can be accomplished using the following condition. Note
that the live range of a lineage is always contiguous, and
once the first instruction in a lineage is listed, the lineage’s
live range is active until the position of the last node of the
lineage in the instruction sequence.

Theorem 3.1 The live ranges of two lineages
and definitely

overlap if there exist directed paths from to and from
to in the augmented DDG.

Consider the lineages and
in our motivating example in Figure 2(b). Node can reach
node through the path , and node can reach
node through the path . Therefore,
the live ranges of these two lineages must overlap. Similarly
the live range of lineage overlaps with , overlaps
with , overlaps with , and overlaps with .
Next we construct a lineage interference graph which

is an undirected graph, where the vertices represent the lin-
eages. Two vertices are connected by an interference edge
only if the live ranges of the lineages represented by them
definitely overlap. The lineage interference graph can be
colored using a heuristic graph coloring algorithm [7]. We
refer to the number of colors required to color the interfer-
ence graph as the Heuristic Register Bound (HRB). The lin-
eage interference graph for themotivating example is shown
in Figure 2(c). Its HRB is 3.

3.4 Lineage Fusion

In this section we discuss an optimization that helps to
reduce HRB. After the lineages are formed as described in
Section 3.2, pairs of lineages that satisfy the following con-
dition can be fused into a single lineage:

Definition 3.3 Two lineages and
can be fused into a single lineage if:

i. there exists a directed path from to ;

ii. there is no directed path from to ;

When lineages and are fused together, a sequenc-
ing edge from to is inserted in the DDG, the lineage

and are removed from the lineage set, and a new lin-
eage is inserted in
the lineage set. The last node of the first lineage, , does
not necessarily uses the same registers as the other nodes in
the new lineage. Fusing two lineages and causes
the respective nodes and in the interference graph to be
combined into a single node, say . Every edge incident on
or is now incident on . Lineage fusion might result in

additional interference edges which need to be added to the
lineage interference graph.
Lineage fusion helps to reduce the number of partially

overlapping live range pairs, and thereby reduces the regis-
ter requirements. It accomplishes this by fusing the two lin-
eages corresponding to the partially overlapping live ranges
into one, and forcing an instruction sequence order on them.
Lineage fusion is applied after lineage formation and before
the coloring of the lineage graph. Therefore the interference
graph to be colored after lineage fusion has fewer vertices.

3.5 Instruction Sequence Generation

Coloring the lineage interference graph associates a reg-
ister with each lineage. For example, the register assign-
ment for the nodes in our motivating example is:

Our sequencing method is based on the list scheduling
algorithm. Refer to [14] for the detailed algorithm. It uses
the register allocation information obtained by coloring the
lineage interference graph. The sequencing method lists
nodes from a Ready List based on height priority and on
the availability of registers assigned to them. The sequenc-
ing algorithm uses the augmented DDG with sequencing
edges. The availability of register needs to be checked only
if node is the first node in its lineage. Otherwise, the pre-
decessor of would pass the register assigned to it, which
would be free when is ready to be listed.
Unfortunately, the above sequencing algorithm could re-

sult in a deadlock due to two reasons. First, the order of
listing of two nodes belonging to two different lineages that
are assigned the same color may result in a deadlock. We
refer to these deadlocks caused by wrong ordering of nodes
as avoidable deadlocks. The second kind of deadlocks re-
ferred to as unavoidable deadlocks are caused due to the
underestimation of HRB.
Applying the sequencing algorithm to our motivating ex-

ample, first we list node . If lineage fusion is not used, the
scheduling of node causes nodes , , and to be added to
the Ready List. Since register is available, either node
or node can be listed next. There is no criterion to choose
or and therefore the tie is broken arbitrarily. Unfortu-

nately, if node is listed before , a cycle of dependences
is created because node cannot be scheduled before node
(scheduling node will release the register currently

used by to). On the other hand, in order to schedule
we must first schedule , but cannot be scheduled before
because must be the last use of assigned to . This is
an avoidable deadlock that can be solved by lineage fusion.
If lineage fusion is employed, lineages and are

fused together and a scheduling edge from node to node
is added to the graph. Thus after node is listed (using
), only nodes and can be listed. Suppose that node

is listed next (using). Now the only available register is
. Hence we list node . The nodes , , , , and are

then listed in that order. This instruction sequence requires
only three registers as shown in Figure 1(c).
Unfortunately even with the application of lineage fu-

sion, unavoidable deadlocks occur when the HRB com-
puted by coloring the lineage interference graph is lower
than the actual number needed. In this case there does not
exist a legal instruction sequence that uses HRB or fewer
registers. We overcome the deadlock problem by gradually

increasing the HRB by 1. We estimate the performance of
our heuristic approach in Section 4.

4 Experimental Results

In this section, we describe our experimental framework,
and present the experimental results.

4.1 Experimental Framework

We implemented the instruction sequencing algorithm
described in Section 3 in the SGI MIPSpro compiler suite, a
set of highly-optimizing compilers for Fortran, C, and C++
on MIPS processors.
The base compiler performs several optimizations in-

cluding copy propagation, dead-code elimination, if-
conversion, loop unrolling, cross-iteration optimization, re-
currence breaking, instruction scheduling, and register al-
location. It also implements an integrated global-local
scheduling algorithm [15] that is invoked before and after
register allocation. Subsequently a global register alloca-
tion based on graph coloring [8, 6] followed by local reg-
ister allocation, and a postpass scheduling are performed in
the base compiler.
Our heuristic register bound based algorithm, described

in Section 3, is used to optimize the instruction sequence
at the basic block level. This local optimization is applied
only to basic blocks that require spill code under the ini-
tial local register allocation. After the instruction sequence
is optimized, the local register allocation is invoked on the
new instruction sequence. We refer to this version of the
compiler as the HRB approach
The performance of the HRB optimized version is evalu-

ated against the baseline version. We also measure the HRB
approach against an optimized version of theMIPSpro com-
piler which includes a combined instruction scheduling and
register allocation algorithm. This version is referred to as
the Optimized MIPSpro version.
We performed our experiments on a Silicon Graphics O2

machine with a 300 MHz MIPS R12000 processor, 32 KB
instruction cache, 32 KB data cache, and 1MB secondary
unified instruction/data cache. We configured the register
file to use 32 integer registers, and 16 floating point regis-
ters. We report results for the benchmarks in the SPEC95
Floating Point suite. We measured the wall-clock time for
the execution of each benchmark under the IRIX 6.5 op-
erating system with the machine running in a single user
mode. As the emphasis of our work is on sequencing the in-
structions to reduce the register requirements and spill code,
we used the R12000 hardware counters and the perfex
tool to measure the number of loads and stores graduated in
each benchmark under each version of the compiler. Since
the baseline and HRB versions of the compiler are identi-
cal except for the instruction reordering at the basic block

Benchmark Loads Stores Execution Time
Baseline HRB Reduc. Baseline HRB Reduc. Baseline HRB Improv.
(in Billions) (%) (in Billions) (%) (in seconds) (%)

tomcatv 10.08 8.51 15.5 4.3 3.42 20.5 429 426 0.7
swim 10.17 8.04 20.9 4.26 3.08 27.7 338 333 1.5
su2cor 7.47 7.04 5.7 3.29 2.87 12.8 248 247 0.4
hydro2d 10.17 10.17 0 3.39 3.39 0 800 812 -1.5
mgrid 21.06 20.63 2.1 1.92 1.48 22.6 373 378 -1.3
applu 16.29 13.69 15.9 7.77 6.84 11.9 503 490 2.6
turb3d 20.61 17.91 13.1 16.51 13.98 15.3 381 366 3.9
apsi 7.23 6.31 12.8 4.05 3.19 21.1 191 188 1.6
fpppp 58.42 44.51 23.8 23.40 23.50 0.4 332 279 16.0
wave5 5.70 5.26 7.7 4.18 3.84 8 230 228 0.9
mean 16.7 14.2 11.8 7.3 6.56 13.9 382 375 2.5

Table 1. Comparison between the HRB approach and the baseline version of the compiler.

level, the reduction in the number of loads/stores executed
in each benchmark program correspond to the number of
spill loads/stores reduced by the HRB approach.

4.2 Reduction in Loads/Stores

Table 1 shows the number of loads and stores gradu-
ated and the execution time for each benchmark, when com-
piled using the HRB approach and with the baseline com-
piler. The percentage reduction in the number of loads for a
benchmark for the HRB sequencing is computed as follows:

When compared with the baseline compiler, our HRB ap-
proach reduced the number of loads by as much as 24%,
and the number of stores by as much as 28%. Further, the
average reduction in loads is 11.8% and stores is 13.9%.
The reduction of loads and stores is significant and very en-
couraging considering the arguments about out-of-order ex-
ecution and power consumption laid out in the introduction.

4.3 Improvements in Execution Time

Next, we present the comparison on the total (wall-
clock) execution time for all benchmarks between the HRB
approach and the baseline compiler. The improvement over
the baseline is as high as 16% for the fpppp benchmark.
On average the reduction in the spill code required by the
lineage based algorithm results in an improvement of 2.5%
over the baseline version of the compiler. The two excep-
tions are hydro2d and mgrid. A possible explanation
for this is that the reordering of instructions performed by
the HRB approach creates resource conflicts that cannot be
resolved by the dynamic scheduler of the R12000.

4.4 Comparison with the Optimized Version

Lastly, we compare our HRB approach with the opti-
mized implementation in the MIPSpro compiler in terms
of graduated loads and stores and execution time in Table 2.
The HRB approach results in less loads and stores than the
optimized version. The execution times of the two versions
are comparable. In all but one case, the HRB approach
has a slightly lower execution time than the optimized com-
piler. The increase in the execution time for mgrid might
be caused by an interference between the HRB instruction
reordering and the out-of-order issuing mechanism of the
R12000. These results are encouraging, considering that the
HRB sequencing did not use resource constraints. We ex-
pect that using resource constraints in the sequencing phase
of the HRB approach will further improve its performance.

5 Related Work

Instruction scheduling [11, 18] and register allocation [1,
6, 7, 10, 18, 20, 22, 28] are important phases in a high
performance compiler. The ordering of these phases and
its implications on the performance of the code generated
have been studied extensively for in-order issue superscalar
processors and Very Long Instruction Word (VLIW) pro-
cessors. In such processors it is often necessary to expose
enough instruction-level parallelism even at the expense of
increasing the register pressure and, to some extent, the
amount of spill code generated. Integrated techniques that
try to minimize register spills while focusing on exposing
parallelism were found to perform well [5, 3, 17, 19, 21].
All of the above approaches work on a given instruction
sequence and attempt to improve register allocation and/or
instruction schedule. In contrast ourMRIS approach, gener-
ates an instruction sequence from a DDG where the precise
order of instructions is not yet fixed.

Benchmark Loads Stores Execution Time
MIPSpro HRB Reduc. MIPSpro HRB Reduc. MIPSpro HRB Improv.
(in Billions) (%) (in Billions) (%) (in seconds) (%)

tomcatv 8.80 8.51 3.33 3.61 3.42 5.4 430 426 0.9
swim 8.40 8.04 4.25 3.08 3.08 0.0 333 333 0.0
su2cor 7.04 7.04 0.0 2.87 2.87 0.0 248 247 0.4
hydro2d 10.17 10.17 0.0 3.39 3.39 0.0 812 812 0.0
mgrid 20.63 20.63 0.0 1.48 1.48 0.0 367 378 3.0
applu 13.66 13.69 0.28 6.41 6.84 6.78 493 490 0.6
turb3d 19.18 17.91 6.66 14.15 13.98 1.17 373 366 1.9
apsi 6.64 6.31 5.03 3.52 3.19 9.33 191 188 1.6
fpppp 46.32 44.51 3.92 24.11 23.50 2.56 291 279 4.1
wave5 5.52 5.26 4.8 4.07 3.84 5.57 230 228 0.9
mean 14.6 14.2 2.8 6.67 6.56 1.7 377 375 0.7

Table 2. Comparison between the HRB approach and the MIPSpro optimized version

The Minimum Register Instruction Sequence (MRIS)
problem studied in this paper is different from the tradi-
tional register allocation problem [1, 6, 7, 10, 18, 20]. The
input to the MRIS problem is the partial order specified by
a DDG instead of a totally ordered sequence of instructions.
Although the absence of a total order of instructions makes
the MRIS problem harder, it also enables the generation
of an instruction sequence that requires less registers. The
MRIS problem is also quite different from the traditional in-
struction scheduling problem [1, 11, 12, 18, 29]. In the tra-
ditional instruction scheduling problem, the main objective
is to minimize the total time (length) of the schedule, taking
into account the execution latencies of each operation (in-
struction) in the DDG and the availability of function unit
resources. This is in contrast to the MRIS problem, where
only the true dependence constraints are observed.
The MRIS problem is closely related to the optimal code

generation (OCG) problem [1, 24, 23]. An important differ-
ence between traditional code generation methods and our
MRIS problem is that the former emphasizes reducing the
code length (or schedule length) for a fixed number of reg-
isters, while the latter minimizes the number of registers.
The unified resource allocator (URSA) method deals

with function unit and register allocation simultane-
ously [2]. The method uses a three-phasemeasure–reduce–
assign approach, where resource requirements are mea-
sured and regions of excess requirements are identified in
the first phase. The second phase reduces the require-
ments to what is available in the architecture, and the final
phase carries out resource assignment. More recently, they
(Berson, Gupta and Soffa) have used register reuse dags for
measuring the register pressure [3]. A register reuse dag
is similar to a lineage discussed in this paper. They have
evaluated register spilling and register splitting methods for
reducing the register requirements in the URSA method.
Lastly, the lineage formation and the heuristic list

scheduling methods proposed in this paper are major im-
provements over, respectively, the chain formation and the
modified list scheduling method discussed in [13]. The
chain formation method allocates, at least conceptually, one
register for each arc in the DDG, and must cover all arcs.
That is, it must include each def-use, not just def-last-use,
in a chain. Hence, the instruction lineage approach more
accurately models the register requirement. Secondly, the
lineage formation overcomes an important weakness of in-
struction chains, namely allocating more than one register
for a node. Further, a number of heuristics have been in-
corporated into the sequencing method to make it more ef-
ficient and obtain near-optimal solutions.

6 Conclusions

In this paper we address the problem of generating an in-
struction sequence for a computation that is optimal in terms
of the number of registers used by the computation. This
problem is motivated by requirements of modern proces-
sors. We proposed a heuristic solution that uses lineage for-
mation, lineage interference graph and a modified and effi-
cient list schedulingmethod. We evaluated the performance
of our heuristic method by implementing it on the MIP-
Spro production compiler, and on SPEC95 floating point
benchmarks. Our experimental results demonstrate that our
instruction reordering method which attempts to minimize
the register requirements, reduces the number of loads and
stored executed, on the average, by 11.5% and 13.9% re-
spectively. This reduction also results in an execution time
improvement of 2.5% on the average. Lastly, our heuristics
method performs competitively compared to a combined in-
struction scheduling/register allocation algorithm.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles,
Techniques, and Tools. Addison-Wesley Publishing Co., Reading,
MA, corrected edition, 1988.

[2] D. Berson, R. Gupta, and M. L. Soffa. URSA: A Unified ReSource
Allocator for registers and functional units in VLIW architectures.
In Proc. of the Conf. on Parallel Architectures and Compilation
Techniques, PACT ’98, Paris, France, June 27–29, 1998.

[3] D. Berson, R. Gupta, and M. L. Soffa. Integrated instruction
scheduling and register allocation techniques. In Proc. of the
Eleventh International Workshop on Languages and Compilers for
Parallel Computing, LNCS, Springer Verlag, Chapel Hill, NC, Aug.
1998.

[4] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir. In-
troducing the IA-64 Architecture. IEEE Micro 20(5): 12-23, 2000.

[5] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating regis-
ter allocation and instruction scheduling for RISCs. In Proc. of the
Fourth Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 122–131, Santa Clara, CA,
Apr. 8–11, 1991.

[6] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph
coloring register allocation. ACM Trans. on Programming Lan-
guages and Systems 16(3): 311–321, May 1994.

[7] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E.
Hopkins, and P. W. Markstein. Register allocation via coloring.
Computer Languages, 6:47–57, Jan. 1981.

[8] F. C. Chow and J. L. Hennessy. The priority-based coloring ap-
proach to register allocation. ACM Trans. on Programming Lan-
guages and Systems 12(4): 501–536, Oct. 1990.

[9] Advanced Topics in Dataflow Computing and Multithreading.
G. R. Gao, L. Bic and J-L. Gaudiot. (Editors) IEEE Computer Soci-
ety Press, 1995.

[10] L. George and A. W. Appel. Iterated register coalescing. In Conf.
Record of the 23rd ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 208–218, St. Petersburg, FL, Jan.
21–24, 1996.

[11] P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling
for a pipelined architecture. In Proc. of the SIGPLAN ’86 Symp. on
Compiler Construction, pages 11–16, Palo Alto, CA, June 25–27,
1986.

[12] J. R. Goodman and W-C. Hsu. Code scheduling and register al-
location in large basic blocks. In Conf. Proc., 1988 Intl. Conf. on
Supercomputing, pages 442–452, St. Malo, France, July 4–8, 1988.

[13] R. Govindarajan, C. Zhang, and G.R. Gao. Minimum reg-
ister instruction scheduling: A new approach for dynamic
instruction issue processors. In Proc. of the Twelfth In-
ternational Workshop on Languages and Compilers for Par-
allel Computing, San Diego, CA, Aug. 1999. (available at
http://csa.iisc.ernet.in/ govind/lcpc99.ps)

[14] R. Govindarajan, H. Yang, J.N. Amaral, C. Zhang, and G.R. Gao.
Minimum register instruction sequence problem: Revisiting opti-
mal code generation for DAGs Technical Memo #36, Computer Ar-
chitecture and Programming Systems Lab., University of Delaware,
Newark, DE, 1999.

[15] S. Mantripragada, S. Jain, and J.ehnert. A New Framework for In-
tegrated Global Local Scheduling In Intl. Conf. on Parallel Archi-
tectures and Compilation Techniques, pp. 167-174, 1998.

[16] Madhavi G. Valluri and R. Govindarajan. Evaluating register al-
location and instruction scheduling techniques in out-of-order issue
processors. In Proc. of the Conf. on Parallel Architectures and Com-
pilation Techniques, PACT ’99, Newport Beach, CA, Oct. 1999.

[17] R. Motwani, K.V. Palem, V. Sarkar, and S. Reyan. Combining
register allocation and instruction scheduling. Technical Report,
Courant Institute of Mathematical Sciences, New York University,
New York, NY, 1996.

[18] S.S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1997.

[19] B. Natarajan and M. Schlansker. Spill-free parallel scheduling of
basic blocks. In Proc. of the 28th Ann. Intl. Symp. on Microarchi-
tecture, pages 119–124, Ann Arbor, MI, Nov. 29–Dec.1, 1995.

[20] C. Norris and L. L. Pollock. Register allocation over the Program
Dependence Graph. In Proc. of the ACM SIGPLAN ’94 Conf. on
Programming Language Design and Implementation, pages 266–
277, Orlando, FL, June 20–24, 1994.

[21] S. S. Pinter. Register allocation with instruction scheduling: A new
approach. In Proc. of the ACM SIGPLAN ’93 Conf. on Program-
ming Language Design and Implementation, pages 248–257, Albu-
querque, NM, June 23–25, 1993.

[22] M. Poletto and V. Sarkar Linear scan register allocation ACM Trans.
of Programming Langauges and Systems, 1998.

[23] T.A. Proebsting and C.N. Fischer Linear-time, optimal code
scheduling for delayed-load architectures. In Proc. of the ACM SIG-
PLAN ’91 Conf. on Programming Language Design and Implemen-
tation, pages 256–2671, Toronto, Canada, June 1991.

[24] R. Sethi. Complete register allocation problems. SIAM Jl. on Com-
puting, 4(3):226–248, Sep. 1975.

[25] R. Sethi and J. D. Ullman. The generation of optimal code for arith-
metic expressions. Jl. of the ACM, 17(4):715–728, Oct. 1970.

[26] R. Silvera, J. Wang, G. R. Gao, and R. Govindarajan. A register
pressure sensitive instruction scheduler for dynamic issue proces-
sors. In Proc. of the Conf. on Parallel Architectures and Compila-
tion Techniques, PACT ’97, pages 78–89, San Francisco, CA, Nov.
1997.

[27] J.E. Smith and G. Sohi. The microarchitecture of superscalar pro-
cessors. Proc. of the IEEE, 83(12):1609–1624, Dec. 1995.

[28] O. Traub, G. Holloway, and M.D. Smith. Quality and speed in
linear-scan register allocation. In Proc. of the ACM SIGPLAN
’98 Conf. on Programming Language Design and Implementation,
pages 142–151, Montreal, Canada, June 1998.

[29] H. S. Warren, Jr. Instruction scheduling for the IBM RISC
System/6000 processor. IBM Jl. of Research and Development,
34(1):85–92, Jan. 1990.

[30] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs and C. M.
Geschke. The Design of an Optimizing Compiler American Elsevier
Publishing Co., New York, NY, 1975.

