
Automated GPU Grid Geometry Selection for
OpenMP Kernels

Taylor Lloyd
University of Alberta
Edmonton, Canada
tjlloyd@ualberta.ca

Artem Chikin
University of Alberta
Edmonton, Canada
artem@ualberta.ca

Sanket Kedia
IIT Kharagpur

Kharagpur, India
kedia.sanket@cse.iitkgp.ernet.in

Dhruv Jain
IIT Kharagpur

Kharagpur, India
dhruvjaincse@iitkgp.ac.in

José Nelson Amaral
University of Alberta
Edmonton, Canada

jamaral@ualberta.ca

Abstract—Modern supercomputers are increasingly using
GPUs to improve performance per watt. Generating GPU code
for target regions in OpenMP 4.0, or later versions, requires
the selection of grid geometry to execute the GPU kernel.
Existing industrial-strength compilers use a simple heuristic
with arbitrary numbers that are constant for all kernels. After
characterizing the relationship between region features, grid
geometry and performance, we built a machine-learning model
that successfully predicts a suitable geometry for such kernels and
results in a performance improvement with a geometric mean of
5% across the benchmarks studied. However, this prediction is
impractical because the overhead of the predictor is too high.
A careful study of the results of the predictor allowed for the
development of a practical low-overhead heuristic that resulted
in a performance improvement of up to 7 times with a geometric
mean of 25.9%. This paper describes the methodology to build
the machine-learning model, and the practical low-overhead
heuristic that can be used in industry-strong compilers.

Index Terms—GPUs, heterogeneous computing, OpenMP, Ma-
chine Learning, Grid Geometry

I. INTRODUCTION

GPUs are composed of tens to hundreds of streaming
multiprocessors (SMs), each capable of executing thousands
of threads in parallel. A shared program kernel is executed by
many threads at once, in a data-parallel fashion. When execut-
ing a kernel on a GPU, threads are grouped into thread blocks.
All threads within a thread-block execute on a single SM,
and are therefore able to perform cooperative tasks and share
intermediate results. By contrast, threads in different thread-
blocks cannot communicate directly. The number of thread
blocks and the number of threads per block are collectively
referred to as a grid geometry and both must be specified when
initiating a kernel execution. Languages such as Open Multi-
Processing (OpenMP) abstract details of the parallelism model
and leave the mapping of parallel constructs up to compilers
and dynamic runtimes [4]. The goal of determining an efficient
mapping of parallelism to hardware in a portable fashion is
well-studied [9, 13]. Adding a new dimension to the task, the
compiler/runtime must determine the best grid geometry for
each OpenMP target region. A target region typically
consists of parallel loops; existing production runtimes, such
as the one used by Clang/LLVM 4.x-capable compiler [1], use
a simple heuristic to select the grid geometry for each region.1

1This simple heuristic is also used by a commercial industrial-strength
compiler.

Threads per Block

0
200

400
600

800
1000

log_2(Blocks)
0246810121416

Ti
m

e
 (

m
s)

5

10

15

20

25

LLVM Selection

Optimal Value

Fig. 1: Execution time of kernel 21, as a function of the
number and size of blocks. The best discovered point is 9.8x
faster than the LLVM selection.

For Nvidia GPUs, the runtime sets the total number of
threads to the number of iterations of the parallel loop, and the
number of threads per block, arbitrarily, to 128. This simple
selection, which works reasonably well but can result in large
queues of thread-blocks, is referred to as the LLVM selection
in this paper. This paper demonstrates that the compiler’s
current strategy produces geometries that achieve reasonable
performance for OpenMP code that is well-structured for
GPU execution. However, the LLVM selection fails to extract
performance from OpenMP kernels that exhibit amounts of
parallelism that do not optimally map to GPU execution.
Such kernels are common and represent a typical case of a
CPU programmer converting existing OpenMP code to use
accelerator offloading. A good compiler must be able to
produce efficient code even when the program is poorly
written.

The simple, sometimes inefficient, selection mechanism in
two industrial-strength compilers indicates that the task of
determining GPU grid geometry for OpenMP target regions
is a problem worth investigating. An extensive empirical study
of the relationship between grid geometry and performance
for the set of all compilable C/C++ OpenMP benchmarks in
the SPEC ACCEL [6] and Unibench [10] benchmark suites

1

revealed that the performance of an individual benchmark can
be improved by up to 9.8 times, as shown in Figure 1 with
a possible geometric mean of 36% across all the benchmarks
studied.

This problem is intuitively well-suited for a predictive-
modelling approach where a collection of static and dynamic
features are extracted from the target region, and a predictor
is constructed to output the grid geometry that results in good
performance. A random decision forest model successfully
predicted the grid geometry and delivered a geometric mean
speedup of 5% over to the LLVM selection. However, a
closer examination of this predictor revealed that it is not
practical because it must extract features at program runtime,
immediately before kernel launch. The issue is that the time
needed to evaluate the features and run the predictor negates
any improvement achieved by the use of more efficient grid
geometry. 2

A careful inspection of the random-forest predictor de-
cisions revealed that it exposed choices that can be made
analytically. Studying the grid geometry space and the model’s
predictions, we discovered an effective and inexpensive heuris-
tic that can be used in an industrial-strength compiler to select
grid geometry for GPU-intended target regions. This new
heuristic has the virtue of being simple, but its discovery
had eluded several experienced compiler designers both in
industry and in the open-source compiler community.

This new low-overhead heuristic led to speedups of up to
7× over the LLVM selection, with a geometric mean for
the performance improvement of 25.9% for the entire set of
benchmarks across SPEC ACCEL and Unibench.

This paper makes the following contributions:
1) An exhaustive characterization across the space of possi-

ble grid geometries on a variety of benchmarks in order
to understand its effects on performance.

2) An analysis of the efficacy of existing heuristics in
the OpenMP 4.x implementation for LLVM/Clang, by
comparing to an exhaustive search over possible grid
geometries.

3) Description of a methodology to apply machine learning
to the problem of grid geometry selection. The result
is substantially improved kernel execution time, but
impractical prediction overhead.

4) A low-overhead heuristic suitable for production com-
pilers with superior performance compared to the best
machine-learning prediction model investigated.

II. DATA COLLECTION

To understand how GPU grid geometry affects the per-
formance of OpenMP 4.x programs, we gather performance
data at various grid geometry configurations. We evaluate the
compiler’s current heuristic, and analyze the data for trends
that may lead to a better approach. Performance data can also
be combined with features extracted statically and dynamically

2When assessing the use of learning approaches in code generation, it
is important to ensure that the run-time prediction overhead was taken into
account in the reporting of results because sometimes it is overlooked.

0 5 10 15 20

1

10

Benchmark

Sp
ee

du
p

Fig. 2: Improvement available with the best discovered grid
geometry versus the LLVM selection.

from kernels to produce a dataset for training machine learning
models.

We examine 23 kernels taken from 11 OpenMP C/C++
benchmarks. Benchmark applications are taken from the SPEC
ACCEL [6] and Unibench [10] benchmark suites. Data col-
lection was conducted on a workstation machine with an Intel
i7-4770 CPU with 32GB of RAM, running CentOS 6.7. To
collect kernel execution times, we use the CUDA 8 drivers
and runtime and a Nvidia Titan X Pascal with a locked clock
frequency. Reported times are averaged over 5 executions. On
each run, for each of the possible grid geometry configurations,
all benchmarks are executed in an interleaved fashion, before
switching to the next grid configuration. The grid geometry
space can be represented as a (t, b) tuple, where t is the
number of threads per block and b is the number of blocks.
Due to architectural constraints, t can vary between 1 and
1024 threads, while b can vary between 1 and 216 blocks.
These ranges yield 216 × 210 = 226 possible combinations,
which are far too many to actually execute. However, because
warps are executed simultaneously, it makes little sense to
execute with a number of threads that does not perfectly
fill a warp. Therefore, the search space can be limited to
216 × 25 = 221 combinations, which is still too large. We test
only block counts in powers of 2, yielding 17×32 = 544 total
combinations per benchmark. This approach makes a trade-off:
potentially missing the true optimal grid geometry in between
the test points to complete the search in a reasonable amount
of time.

The last challenge for data collection was the sheer amount
of time required. Locating near-optimal geometry involves
spending many cycles executing benchmarks using extremely
poor configurations, resulting in each data collection taking
more than a week of compute time.

2

128 256 384 512 640 768 896 1,024
1

1.05

1.1

1.15
E

xe
cu

tio
n

Ti
m

e
R

at
io

32 64 96 128 160 192 224 256
1

1.01

1.02

1.03

Threads per Block

E
xe

cu
tio

n
Ti

m
e

R
at

io

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23

Fig. 3: Minimum Execution Time at set threads per block /
Minimum Execution Time. Each line represents 22 of the 23
benchmarks in a leave-one-out manner.

A. Best Discovered Grid Geometry Performance Relative to
Compiler Default

An analysis of the collected data allows for a comparison
with the simple heuristic currently used to determine the
limits in the potential speedup that a change to this heuristic
could yield. Figure 2 shows the percentage improvement for
each benchmark, over the LLVM selection, when the best
discovered grid geometry is used. Speedups are presented on
a log scale, to present equivalent speedups and slowdowns as
equally-sized bars. Choosing a better grid geometry can yield
up to 9.8x improvement, with a geomean of 36% potential
improvement across all tested benchmarks. The negative im-
provement seen in a few of the benchmarks is an artifact of the
coarse-grained search used to reduce the data collection time:
the course-grain search simply did not test a grid geometry that
was as performant as the one currently chosen by the compiler.
In these cases the performance difference is marginal (within
≈ 5%).

B. Threads Per Block

A relevant question is: Is there an optimal number of threads
per block? A way to answer this question is to plot the
execution time for a range of threads-per-block values for the
programs available for the study and then to select the best
value. However, this approach has the drawback that it would
be using the same set of programs both to set a parameter and
then to measure performance. To avoid this methodological
flaw, the exploration for the best thread-per-block parameter

20 23 26 29 212 215
100

101

102

103

Blocks

E
xe

cu
tio

n
Ti

m
e

R
at

io

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23

Fig. 4: Minimum Execution Time given 96 threads per block
/ Minimum Execution Time. Average is weighted by the
minimum execution time of each benchmark.

2−1 22 25 28 211 214 217
21

212

223

234

Ideal Blocks

L
oo

p
Tr

ip
C

ou
nt

Best Discovered Kernel Configuration
LLVM Selection

Fig. 5: Number of blocks minimizing execution time given 96
threads per block / Loop Tripcount for each benchmark.

uses a leave-one-out strategy: each fold is formed by 22 of
the 23 benchmarks. The execution time for each program for
all combinations of number of blocks and threads-per-block
for each benchmark is determined by exploration. Figure 3
plots for each fold (identified by the benchmark left out in the
legend) the ratio between the sum of the minimum execution
time for the benchmarks in the fold for a given threads-per-
block value and the sum of the minimum overall execution
time. Thus Figure 3 plots the overhead of using a given
threads-per-block value over the best execution time found by
the search. For most benchmarks, the overhead is minimized at
either 64 or 96 threads per block, with performance degrading
in both directions. Kernel 18 is a notable outlier that requires
explanation.

Based on the results from this exploration, the number of
threads per block to be used to evaluate benchmark 6 should
be 64, for benchmark 18, it should be 32, and for all other

3

benchmarks 96 threads per blocks should be used. These
numbers ensure that information from the benchmark used
for evaluation is not used to obtain the prediction. However,
to obtain a model to find the number of blocks (SectionII-C) a
single value for the number of threads per block is used, and
the most common one from Figure 3 is 96.

SIMD Operations in Kernel 18: Kernel 18 makes use of
the omp simd directive, marking a loop to be parallelized
using SIMD units within each thread. Current GPUs do not
have SIMD units, so compilers currently attempt to emulate
SIMD operations. If a target region contains a SIMD clause,
the code generator used by Clang currently sets aside a warp
of threads to be used as a large SIMD unit. Because of the
dedicated warp, Kernel 18 is penalized for running with 32
threads per warp.

C. Number of Blocks

Next the model must predict the total number of blocks.
Figure 4 shows the overhead of forcing 96 threads per block
and varying the block count for each kernel. Each kernel has a
distinct minima, showing that some factor that varies by kernel
affects the ideal block count.

The heuristic used in LLVM calculates the number of blocks
as a linear function of the loop tripcount – the number of
parallel loop iterations to be executed. To investigate the
validity of that assumption, Figure 5 plots, for each bench-
mark, the number of blocks required to minimize execution
time when 96 threads per block are created, versus the loop
tripcount. The plot also shows a line for the LLVM heuristic,
assuming 96 threads per block instead of the original 128. If
the LLVM heuristic’s assumptions were optimal, we would
expect a straight line from the bottom left to the top right
of the plot. While there is indeed a weak linear relationship,
there is clearly still some hidden variable, leaving room for
a machine-learning model to discover this relationship and
improve performance.

III. MODELING WITH MACHINE LEARNING

Multiple applications of automated learning to parallel sys-
tems and complier technologies appear in the literature(e.g. [3,
9, 11, 13]). Tuning of compile-time and launch-time kernel
parameters of GPGPU code in particular has attracted a lot of
research attention in light of GPUs’ popularity [5, 7, 12].

Our initial goal is to model the performance of a GPU
kernel generated for a target region as a function of the
selected grid geometry. The method is to use offline supervised
learning to create a machine learning model that captures static
and dynamic kernel characteristics in an attempt to generate a
prediction of the optimal grid geometry. The model uses the
dataset acquired through the exhaustive exploration of the grid
geometry space for each kernel to train the predictor and is
evaluated using leave-one-out cross-validation. To the best of
our knowledge, our work is the first to investigate automatic
selection of Grid Geometry in the context of OpenMP GPU
kernels.

0 5 10 15 20

1

10

Benchmark

Sp
ee

du
p

Best Discovered Speedup
Random Forest Speedup

Fig. 6: Speedup over the LLVM selection for the Random
Forest Model Predictor grid configuration not including the
prediction overhead. This performance cannot be realized in
practice. Results are shown on a log scale to present equivalent
speedups and slowdowns as equivalently-sized bars.

A. Finding Additional Features

Given only a weak linear relationship between the loop
tripcount, used by the LLVM selection, and the ideal number
of blocks (described in section II-C), we investigate the use of
additional features which may impact grid geometry. We intro-
duce simple static analysis techniques to generate additional
features, with the goal of further characterizing such kernels.
The following features either capture a hardware resource that
limits potential occupancy (known at compile-time) or certain
code characteristics that would affect GPU utilization.

Stack Frame Size: A sufficiently large stack frame might
mean that only one thread block at a time may be scheduled
for execution on a given Streaming Multiprocessor (SM) .

Register Count: The per-thread register count affects how
many blocks can be scheduled to run on a single SM due to
a fixed register file size.

Directive and Clause Use: Separating kernels based on
which OpenMP constructs they employ is a way to classify
different behavior. We restrict this feature to count only the
clauses that may affect inter-thread cooperation within thread-
blocks.

Code Size Estimate: We built a simple static analysis
approximating the number of instructions executed per loop
iteration to capture the amount of work performed by a given
thread.

Total Work Estimate: This feature estimates the overall
amount of work to be done by a given kernel (size estimate
× tripcount) .

B. Random Forest Model

Attempts to build a linear-regression model were not suc-
cessful. Therefore, we turn to ensemble approaches. Random

4

Forests are an ensemble learning method that can be used for
both classification and regression. They are a combination of
tree predictors such that each tree depends on the values of
a random vector sampled independently and with the same
distribution for all trees in the forest. In this methodology, the
model is designed to predict the execution time of a kernel
based on a given grid geometry and the features already used
for the linear regression model. For each kernel, execution
times were obtained for all 544 thread-block combinations.
Thus there is a total of 22 ∗ 544 = 11968 training data points
and 544 test points (corresponding to each kernel not used for
training). The implementation used is based on Breiman and
Cutler’s Random Forests for Classification and Regression [2].

At prediction time, the model is queried for the predicted
execution time at every thread and block combination mea-
sured in the data exploration. The threads per block and block
count that correspond to the shortest expected execution time
are then selected for kernel launch.

C. Machine Learning Predictor Performance

Figure 6 shows the speedup over the LLVM selection for
all the 23 kernels when using the best predicted grid geometry
by this random forest model. The graph also displays the
optimum speedup achievable through grid geometry, as shown
in Figure 2. For data shown in this graph, the predictor is used
to obtain both number of threads and number of threads per
block that will be used for kernel launch. The performance
obtained with these predictions ranges from 3.5× slower to
6.4 times faster, with a geomean speedup of 5% across all
benchmarks. This result likely indicates that the model was
able to discover relationships between program features that
correlate with the kernel’s performance.

IV. PRODUCTION HEURISTIC

The random forest model successfully predicted the grid
geometry and outperformed the existing compiler heuristic,
substantially for some benchmarks. However, the time taken to
perform that prediction at runtime dwarfed the actual execution
time of most benchmarks. With the small workloads used for
the grid-geometry space exploration, prediction time would
exceed the runtime of many benchmarks.

Having constructed a model that could improve perfor-
mance, but with impractical overhead, we first attempt to cre-
ate simpler models that could replicate the prediction accuracy
but with lower overhead. The accuracy of a new linear model
was too low. Either the relations are truly non linear or the
feature set, combined with a limited number of benchmark
kernels, was insufficient to build a reasonably accurate linear
relationship between the grid configuration parameters and
execution time.

Next we examined the dataset, with the goal of figuring out
the insights the random forest model had derived. Inspection
revealed some intriguing relationships. A loop iteration is the
smallest parallelizable unit of work. However, the product
of threads per block and blocks that minimizes execution

GetGeometry (device, kernel):
if kernel.Parallelism ≤ device.SMCount then

/* Short-Loop Kernels */
threads = 1;
blocks = kernel.Parallelism;

else
threads = device.ThreadsPerBlock;
threadLimit = device.ThreadLimit /
device.ThreadsPerBlock;

regLimit = device.RegisterLimit /
(kernel.Registers * device.ThreadsPerBlock);

sharedLimit = device.SharedMemLimit /
kernel.SharedMem;

blocksPerSM = min(threadLimit, regLimit,
sharedLimit, device.BlockLimit);

maxBlocks = blocksPerSM * device.SMCount;
kernelBlocks = kernel.Parallelism / threads;
if kernelBlocks ≥ maxBlocks then

/* Long-Loop Kernels */
blocks = maxBlocks;

else
/* Ideal-Loop kernels */
blocks = kernelBlocks;

end
end
return (threads, blocks)

Fig. 7: Final Heuristic Algorithm

time is often larger than the loop trip-count. Thus, counter-
intuitively, some threads must be assigned zero work in this
situation. For some benchmarks, the time is minimized at the
first exploration point where all threads are assigned work, but
for others, execution time is minimized when there are many
more threads. Finally, when the loop trip count becomes too
large, this relationship breaks down, and fewer threads/loop
iteration are required.

When execution time is minimized by using more threads
than loop iterations, at least some warps are partially empty,
because OpenMP loop iterations are first assigned to blocks,
and then to threads within a block. These partially empty
warps are less affected by traditional GPU performance prob-
lems such as branch divergence and non-coalesced memory
accesses [14]. However, using the GPU in this manner is
extremely inefficient — the speedup over correct resource
utilization is only ≈ 1%, which is negligible.

Based on these insights, the kernels studied can be divided
into three classes, to be handled separately by a new compiler
heuristic:

1) Short-Loop Kernels - Kernels that use a small amount
of parallelism are likely not well suited for GPU execu-
tion. Such kernels tend to be naively translated from
parallel code written for CPUs and do not consider
the unique characteristics of the GPU architecture. The
heuristic can improve the overhead of such benchmarks

5

by creating blocks of 1 thread each, and distributing
work across SMs to treat the GPU more similarly to a
large multi-core system. Because blocks of size 1 use
so few resources on each SM, they don’t suffer as much
from the resource-wasting problem described earlier.
These kernels are detected when the loop trip count is
less than or equal to the number of available SMs. For
these kernels we use 1 thread per block and a number
of blocks equal to the loop trip count. When detected
by the runtime, the OpenMP specification dictates that
offloading must be performed if an accelerator is present
in the system; thus, preventing the runtime from making
a choice to forego GPU execution of programs ill-suited
to it. In the future, the OpenMP 5 standard will allow for
the compiler/runtime to implement such computational
device selection strategies with the new concurrent
directive.

2) Ideal-Loop Kernels - Kernels that can use an appre-
ciable fraction of the GPU are already well-handled by
the existing heuristic. No substantial performance gains
can be found here because the grid selected is already
relatively optimal.
These kernels have a loop trip count that is larger than
the number of SMs available on the GPU (28 for our
Nvidia Titan X Pascal). For these kernels, the heuristic
prescribes 96 threads per block, and the number of
blocks is

⌈
tripcount

96

⌉
blocks.

3) Long-Loop Kernels - Kernels with loop trip counts
vastly higher than the GPU can execute simultaneously
generate massive queues of blocks, preventing oppor-
tunistic work. By limiting the number of blocks executed
to the maximum executable by the device, the queuing
overhead can be reduced substantially.
These kernels can be identified at runtime by inspecting
both the maximum number of blocks the GPU can
execute for this kernel, and inspecting the loop trip count
provided by the kernel. If the loop trip count exceeds the
product of threads per block and number of blocks, then
a kernel falls into this class. For these kernels, the new
heuristic prescribes the use of 96 threads per block, and
the setting of the number of blocks to the maximum
that can be simultaneously loaded on the device without
queuing.

Formalizing the features considered by the heuristic, a GPU
device descriptor should specify the following properties:

• SMCount The number of streaming multiprocessors
available on the device.

• ThreadLimit The maximum number of threads an SM
can hold simultaneously.

• RegisterLimit The maximum number of 32-bit registers
an SM can hold.

• SharedMemLimit The maximum amount of shared
memory available on an SM.

• BlockLimit The maximum number of blocks an SM can
hold.

0 5 10 15 20

1

10

Short Ideal Long

Benchmark

Sp
ee

du
p

Best Discovered Speedup
Heuristic Speedup

Fig. 8: Speedup for our modified heuristic over the LLVM
selection. This performance can be realized in practice. Results
are shown on a log scale.

• ThreadsPerBlock An experimental value, the ideal
threads per block for this device.

Section II-B determined that 96 threads per block is the
prediction for most benchmarks. However to use a proper
methodology, the evaluation of the heuristic uses the threads-
per-block value predicted by the fold that excluded the bench-
mark that is been evaluated.

The heuristic also requires a kernel descriptor that contains
the following properties:

• Registers The number of registers required per thread by
a kernel.

• SharedMem The amount of shared memory required per
block by a kernel

• Parallelism The number of parallel work units (typically
loop iterations) in a kernel

The heuristic pseudocode is shown in Figure 7. The algorithm
uses distinct strategies to generate grid geometry for all three
kernel classes. It meaningfully captures all of the kernels
that we studied and accounts for the behaviours observed by
making efficient use of resources. A key insight is to avoid
the drastic over provisioning required to truly minimize kernel
execution time. An evaluation of this new heuristic against
the LLVM selection is shown Figure 8. The kernels on the
left have long loops, the kernels on the right have short loops
and the ones on the middle have ideal loops. Results range
from 39% slower to 7 times faster, with a geomean speedup
of 25.9%. The methodology in the evaluation is identical to
the one used for data collection presented in Section II.

The speedup comes from the kernels with long or short
loops because the kernels with ideal loops are already well-
optimized for GPUs by the LLVM selection. Performance
improvements are observed in the class of kernels that are
poorly written for execution in GPUs, where the heuristic

6

Benchmark LLVM ML Model Final Heuristic Best-Discovered Configuration

Grid Geometry Grid Geometry Speedup Grid Geometry Speedup Grid Geometry Speedup

S-1 (128,1) (96,256) 1/1.380 (1,10) 1/1.047 (64,8) 1.064
S-2 (128,1) (96,1024) 1/23.784 (1,10) 1.930 (32,2) 2.371
S-3 (128,4) (96,512) 1.005 (64,8) 1.005 (64,4096) 1.006
S-4 (128,4) (96,512) 1.002 (64,8) 1.002 (64,512) 1/1.005
P-5 (128,4) (96,2048) 1.004 (64,8) 1.006 (32,256) 1.018
P-6 (128,8) (96,256) 1.002 (64,16) 1.005 (32,4096) 1.028
P-7 (128,8) (96,1024) 1/1.030 (64,16) 1.003 (96,128) 1.107
P-8 (128,8) (96,1024) 1/1.028 (64,16) 1.000 (96,128) 1.111
P-9 (128,8) (96,1024) 1/1.001 (64,16) 1.004 (32,2048) 1.019

P-10 (128,16) (96,512) 1/1.009 (64,32) 1/1.000 (96,128) 1.047
P-11 (128,16) (96,256) 1/1.015 (32,64) 1.022 (512,32) 1.029
S-12 (128,24) (96,512) 1/2.386 (64,48) 1.001 (32,128) 1/1.055
P-13 (128,64) (96,512) 1/1.002 (64,128) 1.008 (64,128) 1.001
P-14 (128,64) (96,1024) 1.002 (64,128) 1.003 (160,128) 1.003
P-15 (128,64) (96,2048) 1/1.010 (96,256) 1.001 (320,32) 1.004
S-16 (128,79) (96,512) 1/1.316 (64,156) 1/1.002 (192,64) 1/1.054
S-17 (128,79) (96,512) 1/1.259 (64,156) 1.003 (160,64) 1/1.041
S-18 (128,256) (96,512) 1/1.001 (64,448) 1/1.648 (256,128) 1.045
S-19 (128,1024) (96,256) 3.009 (64,448) 3.014 (128,128) 3.147
P-20 (128,8192) (96,512) 3.877 (64,448) 4.261 (256,128) 4.630
S-21 (128,10157) (96,512) 1/1.026 (64,448) 1.041 (96,128) 1.617
P-22 (128,32768) (96,512) 8.554 (64,448) 7.541 (384,128) 9.779
S-23 (128,125986) (96,1024) 1.502 (64,448) 1.675 (384,1024) 1.598

TABLE I: Grid Geometry (threads-per-block, blocks) selected for each benchmark by the LLVM selection, our ML model,
our proposed heuristic, and exhaustive search. Speedup is shown relative to the LLVM selection. Slowdowns are shown as
reciprocals for clarity. Thread-Per-Block values for the the Final Heuristic selected using leave-one-out strategy as described
in II-B. S-x are kernels from SPEC ACCEL benchmarks, P-x are kernels from Polybench benchmarks.

causes threads to be separated across SMs. The long-loop
kernels generally see large performance improvements, with
few slowdowns. The proposed heuristic’s goal is to avoid
block queuing. Future algorithms may be able to separate
and identify cases where block queuing is desirable. The
improvement enabled by our algorithm consists of covering a
greater variety of possible programs. A singular approach that
can both capture performance of the general well-optimized
case and edge-cases is of great value: compilers must deal
with programs written by expert and non-expert programmers.
A good compiler should deliver better performance for all
types of programs, whereas existing compilers only did well
for coincidentally well-sized programs. Capturing classes of
programs with less fitting amounts of parallelism available is
especially important because they represent a likely outcome
of a naive port of existing CPU-parallel OpenMP code to
accelerator offloading with OpenMP 4.x.

While the notion of maximizing device occupancy is a well-
established idiom and a default NVIDIA suggestion, existing
industrial-strength compiler implementations have neglected to
take it into account. That is a strong argument for applying
these insights in the context of automatic generation of GPU
code from high-level programming models. The low computa-
tional complexity makes the runtime overhead of the heuristic
negligible and its simplicity allows programmers predictable
performance. Since the time of writing, our proposed grid-

selection mechanism has been implemented and enabled in a
commercially available compiler.

The grids chosen for each kernel, and the associated
speedups are shown in Table I.

A. Edge-Case: OpenMP SIMD

Our proposed heuristic matches, or exceeds, the perfor-
mance of the existing heuristic on 22 of 23 kernels, and is
within 10% of the best discovered performance on 19 of
23 kernels. Performance was substantially degraded for one
kernel. Benchmark 18 makes use of the omp simd construct,
which, according to the specification, directs OpenMP im-
plementations to implement the following loop using SIMD
vector units. The selection of threads per block, using the
leave-one-out strategy described in Section II-B, indicates 32
threads to be the value most likely to maximize performance.
SIMD execution on a GPU is emulated using additional
dedicated warps of threads, because current GPUs do not have
SIMD units. As an artifact of the code-generation scheme,
the SIMD region is serialized, leading to poor performance.
Until GPUs incorporate SIMD units, code-generation for the
simd pragma in GPU code will remain a crutch that leads to
inefficient code. Still, to maximize performance, the correct
strategy is to allocate extra warps to accommodate the SIMD
construct code generation. To generalize this insight, more
code that utilizes SIMD constructs is needed.

7

B. Implications of Volta

The Volta architecture introduces several changes that would
require minor adjustments to the heuristic approach presented
in this paper [8]. Pascal generation cards, which have been
used in this work, have SMs that can issue an instruction
for 64 threads per cycle. This number gives insight to the
discovery made during grid geometry search space exploration
that experimentally deemed 96 threads per block to be a
reasonable choice for most OpenMP kernels we have en-
countered. By slightly over prescribing the number of threads
per block to the number of threads that can be issued an
instruction each cycle, a sufficient amount of latency-hiding
can be achieved without suffering the excessive scheduling
overhead. In Volta, individual SMs have higher core counts
and can issue an instruction to double the number of threads
per cycle. While we expect our insights to scale similarly to
the new architecture, a new set of experiments, similar to
the ones performed in section II, is required to derive the
ThreadsPerBlock value for Volta.

V. CONCLUSION

Finding a heuristic that can perform well on a diverse set
of programs can be a challenging task that requires extensive
analysis. Machine learning has been recently gaining traction
as a tool in the compiler researcher’s toolbox that can model
characteristics of program behavior. Despite strengths in cap-
turing unknown relationships to produce meaningful predic-
tions, using machine learning to model program performance
has drawbacks. Collecting sufficient programs to successfully
predict performance can be far more difficult than to invent
a heuristic that achieves the same result. Moreover, when
the model uses features that are only available at runtime,
the collection of these features and the execution of the
model may incur unacceptable overhead. This paper addresses
the problem of tuning the GPU grid geometry for kernels
generated from OpenMP 4.x programs that use accelerator
offloading constructs. Because prediction must happen at
runtime, even a successfully tuned model proved unusable
because the predictor time often exceeded kernel execution
time. Generation of a superior grid geometry by the machine-
learning model yielded useful insights that led to the creation
of a very practical heuristic. This hybrid approach of machine
learning as a means to inform or guide researchers shows
that predictive models can not only be used to directly make
decisions, but also to aid the creation of heuristics through
expert knowledge.

ACKNOWLEDGEMENTS

This research was supported by the IBM Canada Software
Lab Centre for Advanced Studies (CAS) and by the Na-
tional Science and Engineering Research Council (NSERC) of
Canada through their Collaborative Research and Development
(CRD) program and through the MITACS research internship
program.

REFERENCES

[1] C. Bertolli, S. F. Antao, G.-T. Bercea, A. C. Jacob, A. E. Eichen-
berger, T. Chen, Z. Sura, H. Sung, G. Rokos, D. Appelhans,
et al. Integrating GPU support for OpenMP offloading directives
into Clang. In Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM). ACM, 2015.

[2] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[3] K. E. Coons, B. Robatmili, M. E. Taylor, B. A. Maher,
D. Burger, and K. S. McKinley. Feature selection and policy
optimization for distributed instruction placement using rein-
forcement learning. PACT ’08. ACM, 2008.

[4] L. Dagum and R. Menon. OpenMP: an industry standard API
for shared-memory programming. IEEE Computational Science
and Engineering, 01 1998.

[5] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos. Auto-tuning a high-level language targeted to gpu
codes. In 2012 Innovative Parallel Computing (InPar), 05 2012.

[6] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman,
S. Che, M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-
M. W. Hwu, H. Li, M. S. Müller, W. E. Nagel, M. Perminov,
P. Shelepugin, K. Skadron, J. Stratton, A. Titov, K. Wang,
M. van Waveren, B. Whitney, S. Wienke, R. Xu, and K. Ku-
maran. SPEC ACCEL: A Standard Application Suite for
Measuring Hardware Accelerator Performance. Springer In-
ternational Publishing, 2015.

[7] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP
programming and tuning for GPUs. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10. IEEE
Computer Society, 2010.

[8] Nvidia. NVIDIA TESLA V100 GPU ARCHITECTURE.
http://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf. Accessed: 2018-01-01.

[9] M. F. P. O’Boyle, Z. Wang, and D. Grewe. Portable mapping
of data parallel programs to opencl for heterogeneous systems.
In Code Generation and Optimization (CGO). IEEE, 2013.

[10] D. Rolls, C. Joslin, and S.-B. Scholz. Unibench: a tool for
automated and collaborative benchmarking. In International
Conference on Program Comprehension (ICPC), pages 50–51.
IEEE, 2010.

[11] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle.
Towards a holistic approach to auto-parallelization: Integrating
profile-driven parallelism detection and machine-learning based
mapping. In Programming Language Design and Implementa-
tion (PLDI). ACM, 2009.

[12] M. Vollmer, B. J. Svensson, E. Holk, and R. R. Newton. Meta-
programming and auto-tuning in the search for high perfor-
mance gpu code. In Proceedings of the 4th ACM SIGPLAN
Workshop on Functional High-Performance Computing, FHPC
2015. ACM, 2015.

[13] Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-
cores: A machine learning based approach. In Principles and
Practice of Parallel Programming (PPoPP). ACM, 2009.

[14] P. Xiang, Y. Yang, and H. Zhou. Warp-level divergence
in GPUs: Characterization, impact, and mitigation. In High
Performance Computer Architecture (HPCA), pages 284–295.
IEEE, 2014.

8

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

	Introduction
	Data Collection
	Best Discovered Grid Geometry Performance Relative to Compiler Default
	Threads Per Block
	Number of Blocks

	Modeling with Machine Learning
	Finding Additional Features
	Random Forest Model
	Machine Learning Predictor Performance

	Production Heuristic
	Edge-Case: OpenMP SIMD
	Implications of Volta

	Conclusion

