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Abstract—While there are mature performance monitoring, pro-
filing and instrumentation tools to help understanding the dynamic
behaviour of general-purpose GPU applications, the abstract
programming models of graphics applications have limited the de-
velopment of such tools for graphics. This paper introduces Vulkan
Vision (V-Vision), a framework for collecting detailed GPU execu-
tion data from Vulkan applications to guide hardware-informed
improvements. A core contribution of V-Vision is providing out-of-
the-box data collection for capturing complete dynamic warp and
thread execution traces. V-Vision also provides analyses for the
follow purposes: identifying and visualizing application hotspots
to guide optimization, characterizing application behaviour and
estimating the effect of architectural modifications. This paper
demonstrates the potential for these analyses in applications that
utilize the recent ray-tracing extension in Vulkan and describes
new insights about the applications and the underlying hardware.

Index Terms—Vulkan, Ray Tracing, Profiling, Instrumentation

I. INTRODUCTION

Performance and quality of real-time graphics applications
— such as gaming, augmented and virtual reality — have a
direct impact on end-user experience and thus are considered
as a key differentiator in several markets, including gaming
consoles, mobile devices, and high-end desktops. To achieve
high performance, the process of translating a scene description
into an image on a screen has been long standardized in
graphics Application Programming Interfaces (APIs) — such
as Direct3D, and OpenGL [1], [2] — as a monolithic GPU
kernel, referred to as a graphics pipeline. Characterizing the
performance bottlenecks of a graphics pipeline is challenging
because the graphics programming model is hardware agnostic
making it more obscure than a low-level programming model
such as Compute Unified Device Architecture (CUDA) [3].
CUDA application developers benefit from numerous program
characterization tools using profiling and instrumentation [4]–[6].
The infrastructure for graphics applications is less developed
but the need to create high quality and performant GPU code
remains.

Recently developed, low-level graphics APIs, such as
Vulkan [7] and Metal [8] enable efficient graphics pipeline
implementations. A graphics pipeline consists of multiple
programmable stages, known as shaders. Data movement and
manipulation across these stages is defined abstractly by the

TABLE I: LANDSCAPE OF GRAPHICS PROFILING.

Tool Open
Source

Shader
Instru-
menta-
tion

Automatic
Profiling

Target
Specific

API

NSight
Graph-
ics [10]

No No Yes Yes DirectX
OpenGL
Vulkan

Intel
GPA [11]

No No Yes Yes DirectX
OpenGL
Vulkan
Metal

PIX [12] No No Yes No DirectX

Strengert
et al. [13]

Yes Yes No No OpenGL

V-Vision Yes Yes Yes No Vulkan

API and the flow varies according to the implementations. Code
and code generation quality for programmable shaders are a
key contributor to the performance of a graphics pipeline.

In comparison to traditional software, where call graph traces
reveal the flow of execution, the implicit data and control
flow in a graphics pipelines is obscure to application and
system developers. Inscrutability is compounded by recent
extensions, such as ray tracing, with more complex pipelines.
Thus, system developers have less support to improve per-
formance in a graphics pipeline. The programmable shaders
significantly influence performance, yet the run-time behaviour
(e.g. execution trace, control flow, hotspots) of these shaders is
not provided. There is a need for instrumentation tools to analyze
graphics pipelines. The efficacy of instrumentation has been
recognized in the compute domain of GPUs that use APIs such
as CUDA [3], and OpenCL [9]. No existing framework facilitates
shader instrumentation for graphics applications profiling, as
shown in Table I. This paper introduces V-Vision, an open-
source framework to capture fine-grained GPU execution data,
independently of vendor-specific compilers.

The Vulkan API is a widely adopted graphics and compute
API that minimizes driver overhead. This API elides default
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error checking and instead offers an optional validation layer
to provide debugging capabilities. Validation layers support
analysis and instrumentation of Standard Portable Intermediate
Representation (SPIR-V) shader code. SPIR-V is a vendor-
independent pre-compiled intermediate representation for device
code required by Vulkan [14]. The existing support for SPIR-V
instrumentation provides only error checking and the printf
debugging extension. V-Vision extends the instrumentation
infrastructure to support generic application profiling.

V-Vision extends the instrumentation framework with a set of
ready-to-use instrumentation primitives, instrumentation utilities,
and instrumentation analytics.

Instrumentation primitives fall into two groups: (1) unique-
identification primitives, and (2) buffer-update primitives.
Unique-identification primitives reveal accurate and fine-grained
shader runtime behaviour and relate it to static data generated
from the SPIR-V shader, such as the Control Flow Graph (CFG)
. Buffer-update primitives provide alias and race-free write
operations to the instrumentation StorageBuffer. The instrumen-
tation utilities specify program points to emit instrumentation
primitives at and the values to provide to the utilities. The
utilities provided by V-Vision produce both runtime and static
data which are combined to produce a characterization of
pipeline execution, such as dynamic instruction execution counts
(hotspots).

The output of instrumentation utilities are consumed by the
analytics in V-Vision to characterize runtime behaviour and
identify performance bottlenecks, such as serialized indirect
function calls. The analytics include simulating improvements
to performance bottlenecks, such as thread compaction to reduce
the impact of serialization [15]. Lastly, the analyses produce
visualizations within the shader code to streamline refactoring
to solve performance issues.

The contributions of this paper are:
1) V-Vision, a framework for graphics shader instrumentation

in Vulkan applications. It extends Vulkan validation layer
instrumentation capabilities to enable meaningful perfor-
mance and behaviour-centric instrumentation. V-Vision
is open source under MindInsight at https://gitee.com/
mindspore/mindinsight.

2) A set of instrumentation utilities enabling automatic out-
of-the-box instrumentation.

3) An analysis of raytracing applications using V-Vision.
The rest of this paper is organized as follows: in Section II

provides necessary background. Section III explains the architec-
ture of V-Vision. In Section IV, we discuss the instrumentation
primitives provided in V-Vision. In Section V, we charac-
terize ray-tracing Vulkan applications using instrumentation
utilities. Section VI evaluates V-Vision’s overhead and compares
binary and Intermediate Representation (IR) instrumentation.
Section VII discusses related work. Finally, we conclude in
Section VIII.

II. BACKGROUND

GPU Execution Model: Graphics applications are naturally
parallel because each stage in the graphics pipeline is executed

over a multi-dimensional buffer of independent elements al-
lowing each element to be evaluated by its own thread. For
example, each pixel in the frame is independent allowing
them to be evaluated by separate threads running in parallel.
Threads are grouped into warps, where threads in each warp
execute in lockstep on different data on Single Instruction,
Multiple Data (SIMD) hardware units. This execution paradigm
reduces instruction fetching, decoding, and scheduling over-
heads and enables coalesced memory accesses. Control flow
divergence reduces the efficiency of Single Instruction, Multiple
Thread (SIMT) execution due to threads becoming inactive in
portions of the execution path. In the worst case of divergence,
the execution of threads in a warp is completely serialized. The
utilization of SIMD hardware units can be assessed using SIMT
efficiency, the average percentage of active threads per warp.

OpenGL Shading Language (GLSL) and SPIR-V Vulkan
requires SPIR-V for each programmable shader stage and the
driver is responsible for just-in-time compiling SPIR-V to
machine code. SPIR-V is generated by compiling OpenGL
Shading Language (GLSL) shaders, although other shader
languages can also be compiled to SPIR-V. GLSL specifies
the builtin variables and functions available within each shader
stage. Vulkan validation layers must account for the builtins
that are unique to each shader stage.

Ray Tracing in GPUs: Ray tracing is a computationally
expensive workload that improves the visual quality of graph-
ics applications. Only recently, real-time ray tracing became
possible on modern GPUs [16], [17]. In anticipation of GPU
vendors supporting real-time ray tracing, ray-tracing interfaces
have been standardized in modern graphics APIs [1], [7].
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Fig. 1: Ray-tracing pipeline in Vulkan ray-tracing extension.

The Vulkan ray-tracing pipeline, shown in Figure 1, is
executed by all threads in a warp. It is distinct from the raster
graphics pipeline that consists of vertex, tessellation, geometry,
and fragment shaders. The ray-tracing pipeline is recursive and
nonlinear — unlike the linear execution of the raster graphics
pipeline. Other details have been omitted to simplify the
discussion.

Execution of the ray-tracing pipeline begins at the ray
generation shader 1 . The ray generation shader creates new
rays and traces them through a scene of 3D objects by invoking
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traceRay 2 . A traceRay call translates by a mixture of
compiler transformations and hardware acceleration into the
flow described next.

First, traceRay performs traversal and intersection 3 .
Traversal and intersection takes a ray definition and traverses the
acceleration structure (AS) to determine ray collisions. An object
may be defined with an axis aligned bounding box (AABB) that
encloses a procedural shape. If a collision with an AABB is
detected, then an intersection shader is invoked by traceRay
4 . Other objects, composed of triangles, may invoke an any-

hit shader upon collision 5 . The condition 6 , checks whether
all intersections have been processed. In the case that there
are remaining intersections, steps 3 , 4 , 5 are repeated.
In the case that all intersections have been processed, then
there are two cases: at least one collision occurred and the
closest-hit shader is invoked; or there were zero intersection and
the miss shader is invoked. The miss and closest-hit shaders
may perform a recursive call to traceRay 7 . Ray collisions
trigger a lookup in the Shader Binding Table 8 , to determine
what shader, if any, is associated with the collision.

In ray tracing, usually each thread traces a different ray. When
executing traceRay, rays allocated to threads within the same
warp may hit different objects and execute different shaders.
The result is divergent indirect function calls that implement the
flow of execution. Fully divergent indirect function calls, where
each thread in a warp executes a different shader, serializes
the execution of these functions. If recursion occurs within the
called shader, SIMT utilization can be further impacted.

III. V-VISION ARCHITECTURE

V-Vision provides programming interfaces to perform auto-
mated shader instrumentation prior to execution, and to analyze
the corresponding output data. V-Vision further provides builtin
functionality for common instrumentation and analysis tasks.
This section details V-Vision’s architecture, interface, execution
and out-of-the-box features.

Vulkan Validation Layers: Vulkan performs error checking
and other debugging capabilities in validation layers. Validation
layers are intermediaries between Vulkan applications and the
driver and require no code modification or recompilation [18].

Validation layers support use cases such as in-game over-
lays [19], and game traces captured with the gfxreconstruct
layer [20]. These examples are possible because validation
layers transparently compose with any, standards-conforming,
Vulkan application across major operating systems and GPU
architectures. Validation layers therefore support profiling any
Vulkan application as no changes are required from the
application developer.

Tool Architecture: V-Vision extends the standard Vulkan
validation layer that provides error checking and printf. Fig-
ure 2 depicts V-Vision’s architecture, interface and execution-
flow. V-Vision’s contributions are identified with stars. Vulkan
validation layers intercept and modify the host-code APIs 1
and device-code SPIR-V kernels 2 . Transformations of the
device code performs dynamic error checking and supports
debugging with the debugPrintfEXT builtin [21] 3 . By

extending the instrumentation framework, V-Vision supports
generic application profiling.

V-Vision’s instrumentation primitives 4 systematically ad-
dress challenges in instrumenting a graphics pipeline. As detailed
in Section IV, these primitives are categorized into two group:
unique-identification primitives, and buffer-update primitives.
Instrumentation passes generate primitives to record per-warp
values, such which threads in a warp are active, and per-thread
values, such as a thread’s value of a variable. These primitives
support customization of variables and program points that are
instrumented.

V-Vision provides ready-to-use utilities 5 built using the
instrumentation primitives: i) SIMT Efficiency: measure active
threads at every basic block in graphics pipeline; ii) Divergence
Characterization: measure respective impacts of control-flow,
indirect function call and early-return divergence. iii) Indirect
Function Call Paths: reveal all execution traces leading to
indirect function calls; and iv) Execution Trace: complete warp
and thread execution traces throughout the graphics pipeline;
These utilities are exposed as flags 6 . The utilities can be used
by application developers and hardware designers to expose
bottlenecks, such as poor SIMT Efficiency due to serialized
indirect function call execution, and opportunities to improve
them, such as thread compaction or shader refactoring.

Execution Flow: The workflow of V-Vision is shown
in Figure 2 through the black arrows that represent the order
of events. The dotted boxes represent the components of a
Vulkan validation layer performing instrumentation and the
boxes marked with a star are novel contributions of V-Vision.
Removing all the dotted boxes results in the operation mode
of a Vulkan application without validation. The flow begins
with the execution of Vulkan API calls 7 . Next, the validation
layer intercepts the application’s device-buffer creation to add
a StorageBuffer — a readable and writable type of storage
that is visible anywhere in the graphics pipeline — where the
instrumentation data will reside 8 . The validation layer receives
the SPIR-V source for every shader module that the Vulkan
application creates 9 . The validation layer triggers V-Vision’s
SPIR-V automatic-instrumentation pass. This pass adds the
desired instrumentation, according to the instrumentation utility,
to each SPIR-V module source, thus creating new writes to the
storage buffer 10 . Thereafter, events outside of the validation
layer occur: a graphics pipeline is created as a sequence of
shaders 11 , the pipeline is compiled into a GPU-specific

binary 12 , and the pipeline is run on the GPU 13 . The last
event is providing the instrumentation data to the analyses in
V-Vision 14 .

Instrumentation Analytics: V-Vision provides analytics that
consume the results of instrumentation utilities into feedback
and visualizations 15 : i) SIMT Efficiency: compute the SIMT
Efficiency of shaders and graphic pipeline by reconstructing
warp behaviour; ii) Divergence Characterization: characterize
control-flow, indirect-function-call and early-return divergence
by analyzing inactive threads; iii) Thread Compaction: upper-
bound of thread compaction benefit when applied to indirect
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Fig. 2: V-Vision Architecture, Interface, and Execution Flow. The stars in the figure mark which modules are a novel contribution.
The dotted boxes in Execution Flow represent the steps when using a validation layer for instrumentation.

function calls based on an oracle’s knowledge [15], [22];
iv) Indirect-Function-Call Paths: enables the study of the SIMT
efficiency of ray generation traceRay by reconstructing
runtime thread paths; v) Execution Hotspots: visualize graphics
pipeline hotspots based on dynamic instruction execution
counts using program source code information; vi) Warp and
Thread Execution Traces: study work allocation on thread and
warp granularities by tracing execution; and vii) Inline Data
Representation: present data inline at the point it was captured
from in GLSL source. This paper demonstrates the insights that
are revealed by applying V-Vision to applications implementing
Vulkan ray-tracing pipeline in Section V.

IV. INSTRUMENTATION PRIMITIVES

In general, there are common problems with instrumentation
utilities, such as complicated logic to parse variable-size data and
inefficient utilization of the instrumentation buffer. This section
outlines V-Vision’s primitives that mitigate these challenges
and details their operation. The instrumentation primitives
are provided by V-Vision for developers to create their own
instrumentation utilities.

Buffer Updates Primitives: The core of V-Vision’s auto-
instrumentation is ThreadUpdate, shown in Figure 3 using
GLSL. ThreadUpdate safely writes an entry to the Storage-
Buffer, denoted as buf in the figure. Line 2 atomically adds
the number of words to write, stored in entry_size, to a
special location in the StorageBuffer, buf[1].

1 void ThreadUpdate(uint arg1, ...) {
2 uint i = atomicAdd(buf[1], entry_size);
3 if (i + entry_size >= buf.len())
4 return;
5 buf[i + 0] = thread_work_id;
6 buf[i + 1] = instrumentation_id;
7 buf[i + 2] = arg1;
8 ...
9 buf[i + 2 + k] = <arg k>;

10 ...
11 }

Fig. 3: GLSL representation of ThreadUpdate primitive in V-Vision. The
ThreadUpdate primitive appends an entry to the StorageBuffer, buf, for each
thread that invokes it.

The variable i receives the value of buf[1] before
entry_size is added to it. The if statement on lines 3-
4 checks whether the write will overflow the buffer, and if it
will, aborts the write. The number of words written is updated
before the function is aborted to determine how many words the
instrumentation could write. This mechanism allows V-Vision
to report if the StorageBuffer was too small, and exactly how
large it should be. Line 5 writes unique work identifier that
is assigned to the thread, for example the LaunchID of the
thread in ray tracing. Line 6 writes the identifier assigned to the
instrumentation callsite that is used to lookup the instrumentation
type and entry size. Lines 7-10 represent writing the arguments
passed to the ThreadUpdate function, the exact number
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of which may vary. This primitive is called ThreadUpdate
because every thread that executes it will append a new entry
in the StorageBuffer.

1 void WarpUpdate(uint arg1, ...) {
2 if(subgroupElect())
3 ThreadUpdate(arg1,...);
4 }

Fig. 4: GLSL representation of WarpUpdate primitive. The WarpUpate primitive
appends an entry to the storage buffer for each warp that invokes it.

The next primitive provided by V-Vision, WarpUpdate,
writes an entry in the StorageBuffer for each warp that executes
it. A GLSL representation of WarpWrite is shown in Figure 4.
The if statement on line 2 differentiates WarpUpdate from
ThreadUpdate using the GLSL builtin subgroupElect.
The builtin will return true for the lowest-numbered thread
in a warp, and false for all other threads. Thus, calling
ThreadUpdate only if subgroupElect is true, results
in one entry being written to the buffer. A special case
of WarpUpdate is to compose it with the GLSL builtin
subgroupBallot(true) to measure how many threads
are active. subgroupBallot(true) evaluates the predicate
true for all active threads in the warp. Thus, a bitmask is
recorded that has the property: biti is set iff threadi is active.

Unique-Identification Primitives: The unique identification
primitives in V-Vision allow execution to be traced in control-
flow, inter-procedurally and across pipeline stages.
Unique Warp ID: GLSL provides an abstract interface that
differs from GPGPU APIs, such as CUDA, that provide a
programming model that closely matches the hardware. GLSL
is designed to develop shaders in isolation that will be connected
by the compiler. Each shader type has rules for what data it is
allowed to access.

An issue in analyzing the generated instrumentation data is
the lack of attribution from the instrumentation data to the warp
that created it. Two insights can lead to the creation of a mapping
to allow for correct attribution for data created throughout the
graphics pipeline: (1) every shader type has a thread-work
id that is unique to each thread and always available within
its respective shader stage; (2) any thread that will be active
anywhere in a shader module, must also be active at the shader-
module entry point. Based on these insights, V-Vision provides
a primitive that generates a warp id enabling the creation of a
mapping from thread-work id to warp id.

The GLSL representation of the primitive CreateWarpId
is shown in Figure 5. This primitive is executed by every
thread in a warp. In line 2 each thread creates a copy of
warp_id. The subgroupElect call in line 3 returns true to
the lowest-numbered thread in the warp and returns false to all
others. The only thread that executes line 4 receives the current
next available id, stored in position zero of the StorageBuffer,
and increments it atomically. Thus, each warp receives a
unique id. The GLSL builtin subgroupBroadcastFirst
on line 5 is a synchronization point with two distinct functions.

1 void CreateWarpId() {
2 uint warp_id = 0;
3 if(subgroupElect())
4 warp_id = atomicAdd(buf[0],1);
5 warp_id =subgroupBroadcastFirst(warp_id);

6 ThreadUpdate(warp_id);
7 }

Fig. 5: GLSL representation of V-Vision’s instrumentation primitive Create-
WarpId. The primitive creates a warp id and every thread in the warp writes it
to the buffer. buf[0] is a dedicated location in the StorageBuffer for creating
warp ids.

When invoked by the lowest-numbered thread’s value of
warp_id it broadcasts this value to all other threads. When
invoked with zero by all other threads, it returns the unique
warp_id broadcasted by the the lowest-numbered thread.
Thus, after line 5 all the threads in the warp have the same
value in their local warp_id. In line 6 each thread calls
ThreadUpdate to write the value of warp_id to the
StorageBuffer. ThreadUpdate also writes the thread-work
id of each thread, and thus enables the creation of a complete
mapping from thread-work id to warp id. An alternative use
of this instrumentation is determining how the driver assigns
thread-work ids to warps. In a ray-tracing application, it
revealed an 4 × 8 zig-zag assignment rather than a linear
assignment.
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Fig. 6: V-Vision’s layout of StorageBuffer containing runtime instrumentation
data and SPIR-V metadata used to complement the runtime data.

Unique SPIR-V Operation ID: Figure 6 shows the or-
ganization of the data created by V-Vision. In the Storage-
Buffer 1 , Words Written 2 is the number of words that
the instrumentation primitives write when ThreadUpdate
or WarpUpdate are called. V-Vision reports this value to the
user if it exceeds the capacity of the StorageBuffer. The user
may then rerun the application with a larger buffer. Warp ID
Count is atomically incremented by CreateWarpId to assign
each warp a unique id. Buffer entries 3 are appended to the
buffer by ThreadUpdate and WarpUpdate. The inst id
value identifies which instrumentation call site produced the
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data. thread-work id identifies each thread and payload contains
the customizable entry data.

V-Vision improves the utilization of the StorageBuffer by
only writing runtime data. Statically-known data, represented as
SPIR-V metadata 4 can be of two types: static entry data 5
is associated with the instrumentation call sites using inst
id; program structure 6 records the control flow graph and
information about individual basic blocks. With millions of
entries written per frame, this distinction between static and
runtime data prevents duplication in recording and leads to
efficient profiling. For example, entries in the storage buffer
have variable sizes. Instead of recording the size of the entry
in the runtime entry, this size is obtained through a lookup in
the SPIR-V metadata. Program structure data is included in
instrumentation utilities on an as-needed basis. For example,
the graphics pipeline hotspot analysis needs the number of
instructions in each basic block; and tracking thread paths that
lead to indirect function calls requires the shader module CFG.

1 /* execution count = 22072 histo=32:22072*/
2 WarpUpdate(subgroupBallot(true));
3 if(gl_LaunchIDNV.z != 0){
4 /* execution count = 11036 histo=32:11036*/
5 WarpUpdate(subgroupBallot(true));
6 ...
7 }

Fig. 7: Data captured from V-Vision’s SIMT Efficiency instrumentation utility.
Presented as inline comments in the GLSL representation of the shader.

The instrumentation callsite ids support a visualization of
analyses in V-Vision. OpLine is an SPIR-V debug instruction
designed to encode file information throughout the SPIR-V mod-
ule. V-Vision repurposes OpLine to present data throughout
the GLSL representation of each shader by transforming line
directives into GLSL comments. The result, shown in Figure 7, is
warp-execution trace information presented as inline comments.
Lines 1 and 4 show the total number of warps that executed
each instrumentation call along with histograms of the number
of active threads in each warp. This inline presentation leverages
code understanding when examining the profile data.

V. RAY-TRACING INSIGHTS

This section applies utilities and analyses provided by
V-Vision to Vulkan ray-tracing applications. The insights are
organized into insights for hardware, compiler, and application
developers respectively.

A. Methodology

The data for each case study was collected on an NVIDIA
Turing 1660Ti with beta driver version 451.79 that supports the
VK_RAY_TRACING_KHR extension. Table II shows the frames
captured in each application studied and, where applicable, the
3D object from Casual Effects [24]. Except for ChameleonRT,
frames are captured using NSight Graphics 2020.3 C++ capture.
For ChameleonRT, NSight Graphics failed to create a capture.
Instead, the first frame of running ChameleonRT on Hairball

TABLE II: FRAMES STUDIED AND THE APPLICATION THEY WERE CAPTURED
FROM. 3D OBJ FILES WERE ONLY REQUIRED FOR CHAMELEON RT.

Frame Application 3D Obj

Hairball ChameleonRT [23] Hairball [24]
Sponza ChameleonRT [23] Sponza [24]
Sky Quake II RTX [25]
Window Quake II RTX [25]
Cornell Box RayTracingInVulkan [26]
Reflective Ball RayTracingInVulkan [26]
Robot VK_RAYTRACE [27]

and Sponza models was instrumented. For all measurements,
each frame is executed 5 times. All experiments are combined
in a list and executed once, the list is scrambled before the next
execution. This method ensures that temporary variations in the
execution environment that are not under control will increase
the variability of the measurements but not insert biases. The
frames captured from Quake II RTX, Sky and Window, each
execute the ray-tracing pipeline 5 times: Primary Rays, Direct
Rays, Reflection Refraction 1, Reflection Refraction 2, Indirect
Rays.

B. Hardware Insights

Thread Compaction: Thread compaction is a proposed
hardware modification to increase SIMT efficiency by repacking
threads [15]. Thread compaction may create warps composed
only of inactive threads that do not need to execute. A relevant
analysis question is how much thread compaction can be used
to improve ray tracing for each frame.

Figure 9 presents an example of the instrumentation for
Thread Compaction, V-Vision’s instrumentation utility that
tracks the dynamic thread paths executing traceRay. Using
the instrumentation on line 5 to capture the threads executing the
traceRay call on line 6, the analysis counts how many times
each thread executes that inner-loop call. The instrumentation
on line 11 captures threads exiting the inner loop. The analysis
builds a thread path — a bit vector with a bit for each execution
of traceRay — for each thread. A one in the thread path
indicates that the thread is active for that execution. Examining
all thread paths, the analysis counts the number of threads active
for each traceRay execution. The estimation for the maximum
compaction is the ceiling of the number of the number of threads
active for a given execution of traceRay divided by the warp
size. A more realistic estimate limits thread compaction to a
number of consecutive warps, the number of warps included is
the compaction window.

Figure 8 presents the % warps compacted — rendered inactive
through receiving all inactive threads — for each frame. The
majority of the warps in Robot process rays that hit a skybox.
These warps are very coherent and do not benefit much from
compaction. Window and Sky perform both deterministic tracing
and random tracing. Warps executing random path tracing
benefit from thread compaction. The divergence in Cornell Box,
Reflective Ball, Hairball and Sponza is significantly improved
with two warps in a compaction window, increasing the window
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Fig. 8: Impact of Thread Compaction on number of warp executions of traceRay. Windows are composed of consecutive warps.

1 for (num_samples < MAX_SAMPLES){
2 ray = get_ray();
3 for(num_bounces < MAX_BOUNCES){
4 // PreTraceRay for traceRay 0
5 WarpUpdate(subgroupBallot(true));
6 traceRay(ray, ..., payload);
7 if(payload.missed)
8 break;
9 }

10 // Sync Point for traceRay 0
11 WarpUpdate(subgroupBallot(true));
12 }

Fig. 9: Pseudocode for global-illumination style ray-generation shader with
instrumentation for Thread Compaction analysis.

size has diminishing benefits. This analysis illustrates how
V-Vision estimates the potential for compaction, but it does
not take into consideration work assignment or the memory
subsystem. Thread compaction requires register migration
between threads leading to additional hardware dedicated to
relaying thread ids.

C. Compiler Insights

1 if (cond){
2 TraceRay(...);
3 }
4 //Pre-volta sync point

Fig. 10: Pseudocode that triggers thread independent scheduling on NVIDIA’s
Turing architecture.

Fig. 11: Evidence of independent thread scheduling in ray tracing. Execution
count of ray generation shader exit normalized to entry execution count.

In the NVIDIA Turing and Volta architectures, each thread
has its own Program Counter (PC) — in earlier GPUs all threads

in a warp had the same PC. Per-thread PCs allow Independent
Thread Scheduling (ITS) whereby threads no longer execute a
GPU kernel in lockstep. V-Vision’s visualizations reveal that
divergent traceRay calls, as shown in Figure 10, trigger ITS.
Inactive threads in line 2 do not wait at the join point in line 4.
ITS causes warp execution to split whereby multiple PCs are
executing concurrently. The entrypoint of the graphics pipeline
must be executed exactly once by each warp. Under the effects of
ITS, the exit of the graphics pipeline may be executed multiple
times. ITS can be quantified by comparing how many times
the entrypoint and exit were executed. Figure 11 shows the
exit execution count in gray, and entrypoint execution count
in black. The exit count is normalized relative to the entry
execution count to quantify how split the warp execution is.
Control-flow divergence inherent in random path tracing triggers
ITS, as evidenced by Cornell Box, Reflective Ball, Hairball,
Sponza, Window (Indirect), and Sky (Indirect).

D. Application Insights

1) SIMT Efficiency: SIMT efficiency is the percentage of
active threads across all basic-block executions. It measures
the utilization of a SIMD GPU hardware. The low SIMT
efficiency in ray tracing is due to unpredictable control flow,
such as rays executing different shaders, and poor work
assignment due to variation in ray bounces [28]. Existing GPU
instrumentation frameworks capture SIMT efficiency of GPGPU
ray tracers. However, capturing this metric in a graphics pipeline
is challenging because of restrictions between shader stages.
V-Vision’s primitives overcome challenges and is able to track
the execution across indirect function calls and shader modules.

Fig. 12: SIMT efficiency of profiled frames.

Figure 12 reports the SIMT Efficiency of each pipeline
invocation. The frames from RayTracingInVulkan, Cornell Box
and Reflective Ball exhibit similar SIMT Efficiency despite
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many differences in the frames themselves. In the Cornell Box
scene, rays bounce multiple times because they are trapped in the
box. Each bounce triggers control-flow divergence. Reflective
Ball has fewer bounces but many divergent intersections based
on material (reflection, refraction, opaque) lowering the SIMT
Efficiency. The impact of geometry on SIMT efficiency is
observed in Hairball and Sponza, both from ChameleonRT.
With many thin hairs, Hairball triggers many incoherent ray
bounces, thus lowering SIMT Efficiency when compared to
Sponza. While the first three pipeline invocations of Window
and Sky have high SIMT Efficiency because their effects are
deterministic, the subsequent pipeline invocations, Direct and
Indirect, perform random path tracing reducing SIMT Efficiency.
Random path tracing in Quake II RTX has higher SIMT
Efficiency than the other path tracers because it only performs
1 ray bounce per thread, compared to 3 in VK_RAYTRACE,
16 in RayTracingInVulkan and 5 in ChameleonRT, limiting the
divergence.

Comparing Figure 11 to Figure 12 indicates that in general
low SIMT efficiency is related to ITS. However, Robot, Sky
Direct and Window Direct do not conform to this pattern. In
Robot, for some warps, all the rays hit a skybox while, in
other warps, the rays hit geometry. For the ones that hit the
skybox, there is little work to do. In warps processing rays that
hit geometry there is significant divergence that leads to ITS,
resulting in the difference between entry and exit executions
in Figure 11. The frame execution has low SIMT Efficiency,
as shown in Figure 12, because the warps that do most of the
work have high divergence. ITS occurs in both the Direct and
the Indirect pipelines of Sky and Window because of a branch
that tests if a surface is facing away from the Sun. The effect is
more pronounced in the Indirect pipeline because of a random
ray bounce before the branch.

2) Divergence Characterization: There are three sources of
divergence: i) threads that complete the ray-tracing pipeline and
remain idle while the rest of the warp continues to execute;
ii) divergent indirect function calls when rays hit different
objects; and iii) control-flow divergence caused by branch
instructions.

When a warp executes an instruction, each inactive thread
accounts for an inactive instruction-execution slot. V-Vision’s
Divergence Characterization analysis reports the total number
of such slots for each divergence factor. To do so, it uses
the program basic-block data to count the number of inactive
instruction slots for each inactive thread. In the example of
instrumentation in Figure 13 the chit function is the closest
hit shader. Each of the instrumentation calls in lines 3, 9, 13,
and 16 record a bit mask indicating the active threads at that
execution point. Threads active in line 9 cause early-return
divergence. Instrumentation calls, such as the one in line 3,
inserted in every shader trace the individual execution of every
thread. Whenever a thread becomes inactive at the entry point of
a given shader executed by the warp, there is indirect-function-
call divergence. The instrumentation calls in lines 13 and 16
captures the start and end of the traceRay execution trace

1 void chit() {
2 // Shader Entrypoint
3 WarpUpdate(subgroupBallot(true));
4 }
5
6 void main() {
7 if (cond){
8 // Early Return
9 WarpUpdate(subgroupBallot(true));

10 return;
11 }
12 // Pre-traceRay
13 WarpUpdate(subgroupBallot(true));
14 traceRay(...);
15 // Post-traceRay
16 WarpUpdate(subgroupBallot(true));
17 }

Fig. 13: Simplified GLSL representation of instrumentation to characterization
factors contributing to SIMT divergence.

respectively. An inactive thread that has not been captured as
either an early-return divergence or as indirect-function-call
divergence must be inactive due to control-flow divergence.

Fig. 14: Characterization of factors contributing to SIMT Divergence.

Figure 14 presents the divergence characterization. In Cornell
Box, Reflective Ball, and Robot the control-flow divergence is
caused by the varying ray path lengths in the tracing loops and
by variations in material types that lead to different actions
upon collision. Invocations of the intersection and any-hit
shaders lead to indirect-call divergence. For instance, when
rays collide with spheres in Reflective Ball, the intersection
shader invocations lead to many divergent indirect function
calls. Miss and closest-hit shaders cause much less divergence
because they are invoked at most once per traceRay call.
Thus, indirect-function-call divergence is less significant for
other frames. Variable number of ray bounces account for the
early-return divergence in Hairball and Sponza. Sky and Window
Reflect 1 and 2 have high early-return divergence because of
checks for collisions with reflective materials. The effect is less
pronounced in Window Reflect 1 because part of the frame is
reflective material.

3) Ray-Tracing Hotspot Detection: The behaviour of the
ray-tracing pipeline is complex, involving cycles and recursion,
and difficult to reason about. The same visual effects in the
ray-tracing pipeline may be implemented in different shader
stages. Architecture-specific complexities, such as ITS, further
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complicates writing shaders. Visualizing hotspots that may be
the result of geometry or other runtime factors, allows the
developer to focus their refactoring efforts.

V-Vision’s instrumentation utility, SIMT Efficiency, records
a static mapping from instrumentation callsite id to the PC’s of
all instructions in the basic block. The utility also captures the
number of active threads in each dynamic basic-block execution.
The number of runtime threads is added to the totals of each
instruction in the basic block to create the dynamic instruction
count.

Figure 15 presents the dynamic instruction execution counts
of each PC normalized to the maximum for Reflective Ball
and Robot. Each color in the figure represents a shader in the
ray-tracing pipeline. The intersection shader of Reflective Ball
dominates the execution of the pipeline because all objects in the
scene are spheres. The closest-hit shader is more complicated
than in the closest-hits of other frames due to reflection and
refraction effects. A pseudorandom number generator dominates
the dynamic instruction count of Robot. Each ray requires 16
iterations of a loop to create the random direction. As most
rays in Robot miss geometry, the random direction must be
recomputed for nearly every ray. If the geometry becomes larger,
then more rays would collide with it and perform more bounces
before requiring a new pseudorandom number. This hotspot is
a clear example of a bottleneck that occurs in the presence of
a specific scene configuration.

4) Warp and Thread Lifetimes: Imbalanced work allocation
degrades GPU performance because threads that complete their
work first become inactive. The same principle applies to warps
that are scheduled in groups. Imbalanced thread assignment is
also a problem in path-tracing on GPGPUs [28]. The GPGPU
solution of fixing work assignment with work-coarsening does
not translate to graphics where frame latency is a key measure.
Work assignment is also unpredictable because it is impacted
by the geometry of the scene.

Execution Trace is a V-Vision’s instrumentation utility that
provides complete per-thread and per-warp execution traces.
The lifetime of a thread or warp is defined as the number of
basic blocks executed and can be derived from the execution
traces. Figure 16 shows the thread and warp lifetimes for both
the Hairball and Sponza frames. A large bump centered around
path length of 530 is present in Sponza but not in Hairball. This
bump is caused by Sponza being an enclosed space, trapping
rays into a higher number of consecutive bounces. Rays that
bounce off of Hairball’s geometry and then miss, account for
the higher incidence of path lengths in the range from 100 to
200 basic blocks. The wider range of thread path lengths causes
a wider range of warp path lengths in Hairball. In comparison,
Sponza has a very compressed range of warp paths due to being
an enclosed space. Both scenes have a bump where rays are
traced up to the maximum bounce depth. These results show
that geometry has a strong effect on work assignment at the
thread and warp level.

5) Ray Generation Thread Paths: The ray-generation shader
generates rays and invokes traceRay to perform traversal and

intersection, known to be expensive and to benefit from hardware
acceleration [16]. Variable number of bounces and conditional
calls based on material type influence the behaviour of the
ray-tracing pipeline [28]. Understanding the effect of material
type and geometry offers opportunities for optimizations, such
as value specialization.

The thread paths generated by the Thread-Compaction utility
offer insights into application design. Each thread receives a
thread path, a bitmask representing the runtime invocations
of traceRay. The number of unique bitmasks indicates the
potential for divergence in executing expensive traceRay calls.
Accumulating the frequencies of thread paths reveals threads’
proclivities for number of bounces or visual effects over their
complete execution.

TABLE III: UNIQUE PATH COUNT AND TOP 3 FREQUENCIES OF INDIVIDUAL
PATHS GENERATED BY THREAD COMPACTION UTILITY.

Frame Path
Count

1st
Highest

2nd
Highest

3rd
Highest

Cornell Box 126 49.11% 2.93% 0.99%
Reflective Ball 129 26.49% 16.1% 5.27%
Robot 51 89.79% 4.93% 2.61%
Hairball 10 27.64% 17.34% 16.16%
Sponza 9 45.74% 14.91% 12.57%
Sky Primary 1 100.0% 0 0
Sky Reflect 1 2 98.67% 1.33% 0
Sky Reflect 2 2 99.99% 0.01% 0
Sky Direct 4 47.09% 43.89% 5.39%
Sky Indirect 4 53.72% 39.21% 3.63%
Window Primary 1 100.0% 0 0
Window Reflect
1

2 73.8% 26.2% 0

Window Reflect
2

2 99.31% 0.69% 0

Window Direct 4 71.07% 26.43% 1.57%
Window Indirect 4 55.29% 41.41% 1.73%

Table III shows the total number of unique thread-paths
and the top 3 frequencies of individual paths. The thread
paths that miss geometry are very significant when present.
The frequencies 49.11% in Cornell Box, 16.1% in Reflective
Ball, and 89.79% in Robot are due to rays missing geometry.
Reflective Ball has many different material types and thus
executes many thread paths. For instance, reflection requires a
different ray than refraction while opacity does not need any
rays. Excluding the rays that miss, variable ray bounce lengths
cause a high path count of 126 for Cornell Box, each path
having a low frequency. The Reflect 1 pipeline invocation in
Window differs from Reflect 1 in Sky due to a conditional
Return statement that quits when the object collided with is
not reflective. The Window frame contains a section of floor and
wall that accounts for the 26% of threads taking a different path.
Sky has no reflective material so all threads take the Return
statement. ChameleonRT has fewer unique paths due to not
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Fig. 15: Hotspots for Reflective Ball and Robot frames, normalized to maximum dynamic instruction execution count.

using different material types and tracing fewer rays per thread
than RayTracingInVulkan.

The paths leading to traceRay calls are influenced by
application and scene design. Implementing complicated visual
effects and geometry increases the variation of runtime behaviour.
Separating ray tracing into different pipeline invocations, as in
the case of Quake II RTX, reduces variance. When present, the
skybox causes threads to take the same short path and creates
an opportunity to introduce better work balancing.

VI. THE COST OF INSTRUMENTATION

Architecture-specific data, such as register allocation, cannot
be captured using SPIR-V instrumentation because SPIR-V is
not bound to an architecture. Conversely, SPIR-V instrumenta-
tion has the advantage that it is supported across architectures
and vendors. SPIR-V instrumentation may impact performance
due to the intangible effect it has on downstream compilers.
However, manual high-level instrumentation is successful in
improving performance in production games, so there is value
in timing and performance data [29].

Figure 17 presents the frame latency and memory overheads of
the respective utilities to produce the results in Section V. Each
utility may generate multiple outputs. For example, SIMT Effi-
ciency creates the dynamic instruction count, graphics pipeline
hotspots visualization, and full SIMT Efficiency analysis. The
overheads range from 14× to 1502× increased latency over
no instrumentation. In the worst case of SIMT efficiency for
Reflective Ball, the complete execution time is 100 seconds.
This performance degradation is reasonable because program
behaviour cannot otherwise be captured. Instrumentation and
analysis happen offline during design of architecture or code
generation solutions, therefore this execution time is manageable.
Figure 17 also illustrates that analysis contributes significantly
more overhead than the instrumentation itself. Execution Trace
and SIMT Efficiency collect the same amount of data but have
vastly different overheads. The most data produced by the

instrumentation is 566 MB which is 9.4% of the available
memory of the 1660Ti.

VII. RELATED WORK

Proprietary tools: NSight Graphics collects samples of the
graphics pipeline SASS binary being executed and accumulates
hardware performance counters [30]. Similar to NSight Graphics,
Intel GPA is uses vendor-specific hardware performance counters
to characterize application performance on Intel Graphics
Hardware [11]. Microsoft Pix is a graphics profiling tool that
achieves cross-vendor support by leveraging the debugging
capabilities of a single graphics API [12]. In comparison
to these tools, V-Vision provides fine-grained data from the
code executing on the GPU with a commensurately higher
overhead. Thus, V-Vision may complement the proprietary
tools in situations where performance bottlenecks occur in
the graphics pipeline itself. V-Vision sets itself apart as an
open-source framework for developing studies, such as Thread
Compaction, which require precise execution data.

NVBit [4] uses library injection to create wrapper functions
for CUDA driver calls to perform on-the-fly instrumentation.
NVBit instruments SASS allowing it perform analyses, such
as register allocation, that are impossible for V-Vision at
the SPIR-V level. V-Vision provides instruction primitives
to overcome graphics instrumentation challenges similar to
NVBit’s abstraction of SASS instructions that overcome binary
instrumentation challenges.

Zeroploit implements value-specialization for DirectX using
IR instrumentation [31]. Zeroploit observes, with manual instru-
mentation, that many common shader operations produce a value
of 0. V-Vision’s instruction primitives can collect frequencies
of a given value to automatically detect such opportunity in
existing games using Vulkan.

Open source tools: Strengert et al. developed a debugging
tool for OpenGL applications that instruments shaders based on
user guidance [13]. Their tool uses library injection which
allows for modification of a shader before it is executed
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Fig. 16: Thread and Warp lifetimes for Hairball and Sponza, normalized to
maximum path count. Other frames omitted for brevity.

with a custom source-to-source transpilation. Their approach
is geared towards providing values from variables indicated
by the user. This limits the tool, in its current form, to
not support capturing general information, such as the SIMT
efficiency. V-Vision’s goal is not shader debugging as that
is already fulfilled by the debugPrintfEXT GLSL builtin.
V-Vision leverages existing compiler infrastructure for SPIR-V
instrumentation, so implementing auto-instrumentation is more
productive than in a custom transpiler.

SIMT Divergence: Existing research in improving SIMT
efficiency in path-tracing on GPGPUs judge their success
based on MRays per second or Frames Per Second [22], [32].
Damani et al. study improving SIMT efficiency by introducing
speculative reconvergence and note that the relationship between

Fig. 17: Top: Overhead of data collection and analysis for each mode. Bottom:
Device data overhead for each mode.

SIMT efficiency and performance is dependant on factors like
work creation cost [28]. To this end, Damani et al. use the
nvprof [6] profiler to collect hardware performance counters
which sample an applications SIMT efficiency. V-Vision allows
developers to relate SIMT Efficiency to performance in their
case.

VIII. CONCLUSION

V-Vision is a framework for performing graphics applications
profiling through automatic instrumentation without requiring
the application source. V-Vision contributes SPIR-V instrumen-
tation primitives that are used to construct instrumentation
utilities. The instrumentation utilities produce static and dynamic
data which are both consumed by analyses which return
meaningful application performance data. V-Vision uncovered
architecture specific behaviour, such as NVIDIA’s independent
thread scheduling, when executing applications implementing
the recent ray-tracing extension to Vulkan. V-Vision is also
capable of estimating the upper-bound benefit of hardware
changes, such as performing thread compaction, for ray-tracing
applications. In this paper, we focus on control-flow divergence
issues that plague ray tracing. However, V-Vision is not limited
to studying control-flow as the instruction primitives readily map
to applications such as value and memory-access divergence.
V-Vision’s compatibility with any Vulkan application will allow
developers to glean new insights, and create their own utilities
and analyses using the framework presented.
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APPENDIX

A. Abstract
V-Vision source code and documentation is available at https:

//gitee.com/mindspore/mindinsight with support for the recent
vk_KHR_Ray_Tracing_Pipeline extension.

Our artifact provides a workflow to automatically apply
V-Vision to Vulkan applications. Our artifact also provides the
Windows binaries for frames used in the insights sections as
well as instructions and scripts to reproduce the frames. Using
the artifact on an NVIDIA RTX GPU with beta drivers, all the
case studies can be regenerated. The artifact also provides the
ability to apply V-Vision on non-RTX GPUs to rasterization
applications. Finally, the artifact includes the reference data
used to generate the figures in the manuscript as well as the
source-code for V-Vision.

B. Artifact Checklist
• Program: Quake II RTX, ChameleonRT, RayTracingInVulkan,

VK_RAYTRACE. Scripts provided to fetch and build for Win-
dows 10.

• Compilation: NVIDIA Driver 451.79. Driver needs to support
VK_NV_ray_tracing and VK_KHR_ray_tracing

• Transformations: Auto-instrumentation SPIR-V passes.
• Binary: Included for Windows 10. Source code and scripts for

building on Linux (tested on Ubuntu 18.04) and Windows.
• Run-time environment: Scripts for complete workflow provided

and tested for Windows(Windows 10). Scripts for workflow
verification available and tested for Linux (Ubuntu 18.04).

• Hardware: For ray-tracing case studies, RTX GPU required.
For other studies, any Vulkan-capable GPU required.

• Execution: Overhead introduced by V-Vision varies, but longest
wall-clock time observed for a single frame is 100 seconds.

• Output: All the data for the SIMT Efficiency, Divergence
Characterization, Independent Thread Scheduling Study, Pipeline
Hotspots, TraceRay Thread Paths Study, Thread Compaction
Study, and Thread and Warp lifetimes is produced. Using the
graphing scripts, this data can reproduce all the figures in the
manuscript. In addition, heatmap visualizations are produced.

• How much disk space required (approximately)?: 12 GB for
frames, 2 GB for code.

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approx-
imately)?: 8 hours

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.4281460

C. Description
1) How Delivered: V-Vision with support for finalized

Vulkan ray-tracing specification is available from MindInsight:
https://gitee.com/mindspore/mindinsight. The artifact, requiring
outdated drivers supporting VK_KHR_ray_tracing, avail-
able from Zenodo: https://doi.org/10.5281/zenodo.4281460.

2) Hardware Dependencies: GPU must be compatible
with Vulkan. GPU must support VK_NV_ray_tracing or
VK_KHR_ray_tracing extension for ray-tracing studies.

3) Software Dependencies: To reproduce case studies, ap-
plications required: Quake 2 Rtx, ChameleonRt, RayTracingIn-
Vulkan, VK_RAYTRACE.

NVIDIA Driver version that supports
VK_NV_ray_tracing or VK_KHR_ray_tracing

D. Installation

1) Download from https://gitee.com/mindspore/mindinsight
2) Follow README instructions to clone and build.

E. Experiment Workflow

To execute experiment execute python3 run.py
config-file. Available config files:

1) data_run.ini configuration for regenerating case studies.
2) overhead_run.ini configuration for regenerating overhead

data.
3) sanity.ini configuration for experiment on vkcube which

works on any vulkan-capable GPU.
4) sanity_linux.ini configuration for experiment on vkcube

with linux paths.
5) visualizations_run.ini configuration for generating ray-

tracing visualizations.

The configuration file defines which V-Vision mode to execute
and also how to find and invoke application. For each run of
the experiment, the order of the applications and modes are
scrambled to avoid potential bias in the data.

F. Evaluation and Expected Result

To evaluate the artifact it is sufficient to run the experimental
workflow and then graph the results. A script graph_all
is provided for Linux and Windows to automate producing
the graphs. The case study data based on program behaviour,
Thread Compaction, should match exactly if executed on the
same GPU with the same Driver version. The other case studies
may experience a very minuscule variance but this should not
even be visible. If executed on a different GPU then studies
that assess hardware utilization (SIMT Efficiency, Divergence
Characterization) may report different values due to architectural
differences (such as having RTCores).

G. Experiment Customization

The configuration files provides support for executing an
arbitrary set of V-Vision modes on an arbitrary set of different
Vulkan applications. The configuration files and workflow are
cross-platform and differ only in the file paths provided by the
user for the local install locations. An exhaustive list of the
options available is included in the artifact README.

The graphs generated require domain-specific knowledge,
such as properly naming the Quake II RTX pipeline invocations
for their respective purposes. Therefore, the graphing scripts
require some very minor code changes to support new applica-
tions.

H. Notes

It is highly recommended to use Windows 10 to regenerate
case study results as a VVision binary is provided as well as
scripts to fetch and build the applications.
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I. Methodology

Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/

artifact-review-badging
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