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A case study, dense matrix multiply, is used to intro-
duce an analytical methodology to predict the performance
of the percolation model on the Hybrid TechnologyMulti-
Threaded (HTMT) architecture. HTMT introduces a per-
colation program and executionmodel that (1) is explicitly
multi-threaded; (2) incorporates global memory address
space; and (3) explicitly exposes the HTMT memory hier-
archy to the programmer. The percolation model extends
dynamic prefetching to allow the management of contexts
that include data, program instructions, and control states.
An analytical study of our algorithm and the percola-

tion process is used to determine the number of operations
that are performed in each memory region and the amount
of data that is exchanged between regions. Current esti-
mates for the processing power, network performance and
storage capacity in each memory region are injected into
the analytic study to predict the performance of this algo-
rithm on HTMT. The resulting calculations indicate that
with current design parameters, it is possible to multiply
dense matrices of dimensions in 16.2
seconds, resulting in an estimation of 1.1 petaFLOPS.

1 Introduction
This paper presents an analytical performance predic-

tion for the implementation of Cannon’s matrix multi-
ply algorithm in the Hybrid Technology Multi-Threading
(HTMT) architecture [8]. The HTMT subsystems are
built from new technologies: super-conducting proces-
sor elements (called SPELLs [5]), a network based on
RSFQ (Rapid Single Flux Quantum) logic devices (called
CNET [16, 17]), “Processor In Memory” (PIM) technol-
ogy [10], a high-performance optical packet switched net-
work (called Data Vortex [3], optical holographic storage
devices (called HRAM [13]), and fine grainmulti-threaded
computing technology [9].
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The development of the percolationmodel is dominated
by two characteristics that distinguish HTMT: (1) the la-
tency to fetch data or code from the next level in the mem-
ory hierarchy is in the order of tens of thousands of cy-
cles of the fastest processors in the machine; (2) process-
ing is distributed across the memory hierarchy, enabling
the execution of data transformations closer to the storage
devices. This programming model is being developed to
help the programmer exploit and tolerate these architec-
tural characteristics [7, 6, 14]. Percolation establishes the
following guiding principles: (1) the instructions of a pro-
gram segment must be paired with the data required by
those instructions before they are shipped to the vicinity of
the fastest processors in the machine; (2) the programmer
has a view of a global address space for the entire architec-
ture, but data movements should be coded explicitly and
should use split phase transactions to prevent processors
from wasting cycles while waiting for long latency oper-
ations to complete; (3) the program explicitly divides the
computation into threads and ensures that a statement that
requests a long latency operation is placed in a separate
thread from the statements that depend on the results of
the operation.

2 The HTMT Architecture
For a detailed description of the HTMT architecture we

suggest that the reader review the Caltech HTMT web site
and the links therein [8]. Figure 1 presents a simplified
view of the HTMT architecture. The super-conducting
processors (SPELLs), their associated cryostatic memory
(CRAM), and the RSFQ based network (CNET) are in the
center of the figure. We often refer to this center region
as the cryostatic region because the super-conducting el-
ements require it to be kept at a very low temperature.
Outside the cryostatic region are the SRAMmemory mod-
ules and the corresponding processors in memory (SPIM).
The ring outside the SPIM area represents the data vortex
that is an optical interconnection network used for com-
munication between the SRAM region and the DRAM
region. The DRAM region outside of the data vortex is
also formed by memory modules associated with proces-
sors in memory (DPIM). Not represented in the figure are
the holographic storage devices, the farms of disks and the
tape robots that will be used for massive storage of data.
This figure represents four SPELLs with the proportional
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Figure 1. A simplified view of the processing and memory regions in the HTMT architecture.

number of SPIM and DPIM modules. The final configura-
tion of the HTMT machine is expected to have up to 4096
SPELLs.

Observe in Figure 1 that any DPIM module commu-
nicates with any SPIM module through the data vortex,
and that the DPIM and the SPIM modules communicate
among themselves using the data vortex. Also any two
SPELLs can communicate with each other through the
CNET. However a given SPELL can only communicate
directly with a local set of SPIM modules. The latencies
for communication between the DRAMs and the SRAMs
and between the SRAMs and CRAMs are handled by the
percolation process, while the latencies for communica-
tion across the CNET to access remote CRAM modules
are mainly handled by EARTH-style two level threads with
split phase synchronization operations [9].

3 The Percolation Model
Considering the machine model presented in Figure 1

the percolation process starts in the DRAM region. Data
and code are selected and prepared in that region and sent
to the SRAM region. Under the percolation model of
execution, the entire computation is explicitly threaded.
A unit formed by the data plus the code is designated a
parcel, therefore the function that specifies such a unit is
called a parcel threaded function. Because of the way the
machine is laid out with the fast processors in the center
and the memory modules with higher storage capacity in
the outside, we call the movement of parcels towards the
fast processors inward percolation and the movement of
parcels towards the large memory storage units outward
percolation. The base percolation model can be illustrated
by examining the exchange of parcels between the SRAM
and the CRAM regions as illustrated in the steps listed in

Figure 2.
The linear listing of events in Figure 2 might induce

the idea that the percolation is a sequential process. It
is not! New data transformations might take place in the
DRAM while the previously transformed data is used by
the SRAM/CRAM processors. A pipeline structure can be
coded to allow the SPELLs to process blocks of data while
the SRAM replies to requests for more data or stores away
results from previous computations. Depending on the ap-
plication some of the events above might be not necessary.
For instance in many applications it is not necessary to per-
colate results outward to the SRAM after every execution
of in the CRAM.
The programming language used to express the perco-

lation model is an extension of Portable Threaded-C, a
fine grain explicitly multi-threaded language [7, 15]. The
HTMT program execution model is described in [6]. A
complete specification of HTMT-C can be found in [2].

4 A Programming Example in HTMT-C
Consider the problem of multiplying two large, dense

matrices on HTMT. Assume the matricesA and B
are initially stored in HRAM in row first order, we wish to
compute and store their product, the matrix C, in HRAM,
also in row first order.
HTMT is a shared memory architecture, but its program

model encourages explicitly controlling the movement of
data between the memory levels to overcome the high la-
tencies penalty otherwise incurred. A key strategy is to
maximize the re-use of any data that has been moved into
the core of the machine. This goes hand-in-handwith min-
imizing the amount of data that is copied from the DRAM
to the SRAM and on into the CRAM. This strategy corre-



BASEPERCOLATION
1. Data transformations are performed in DRAM;
2. The transformed data percolates inward to SRAM;
3. while SRAM parcel retiring condition not true;
4. A parcel threaded function becomes enabled in SRAM;
5. Data is split in smaller pieces (and transformed again) in SRAM;
6. The transformed data percolates inward to CRAM;
7. The code of percolates inward to CRAM;
8. while CRAM parcel retiring condition not true;
9. is executed in a SPELL;
10. More data is requested from SRAM;
11. Results are percolated outward to SRAM;
12. is retired from CRAM;
13. Results are arranged in larger blocks (and transformed) in SRAM;
14. Results are percolated outward to DRAM;
15. Dual transformations are performed in the outward percolated data in DRAM

Figure 2. Outline of steps in the base percolation process.

sponds to maximizing the computation to communication
ratio in massively parallel processors.

The percolation of the data from the outside layers of
HTMT into its cryostatic core is more easily controlled if
we divide the matrices into blocks, and the blocks them-
selves into sub-blocks. Specifically, matrices A, B, and C
of dimension are divided in blocks of dimen-
sion ; each block is divided into sub-blocks of
dimension . Thus we have .
If we denote the th block ofC by (likewise forA
and B), then the computation of requires ,
block multiplications according to:

(1)

Each block multiplication is performed by SPELLs,
logically organized as a grid, using Cannon’s algorithm [4,
11]. Cannon’s algorithm is a well-known algorithm for
matrix multiplication on a distributed memory machine.
We have adopted it in this case because it requires a mini-
mal amount of temporary space within the CRAM and be-
cause the uniform communication pattern makes efficient
use of the CNET.

Each matrix block is further divided into sub-
blocks of size . To compute the multiplication of

by , the SPELL in position of the grid
must receive the sub-blocks and , where

(2)

and is the addition module .

Note that after Cannon’s algorithm is used to perform
the block multiplication in the grid of SPELLs, the SPELL

stores a partial result for the sub-block .

There is no need to percolate this partial result outward
until an entire row of blocks of and an entire column of
blocks of have percolated to the SPELLs and have been
multiplied.

4.1 Percolation from DRAM into SRAM

Figure 3 illustrates the data transformation that each
DRAM must perform in order to obtain the desired data
layout to start the percolation process. If we consider that
the matrix represented in Figure 3 is matrix A, the data
transformation is the one for SPELL . From equa-
tions 2, for and , SPELL must receive the
sub-blocks . On
the bottom of Figure 3 we represent the vector that is
formed by the data transformation. The sub-blocks are ag-
gregated in SRAM according to the SPELL that is their
destination, and not according to their membership to a
block. Therefore there is no formation of a monolitic block
in SRAM at any time.

We assume that both matrices A and B are read into
the DRAM from the HRAM in a row first order. It is not
necessary for any DRAM to store the entire matrix at a
time. For each row of blocks, the DRAM only has to read
one row of sub-blocks from HRAM, as illustrated in Fig-
ure 3. This reading is performed in lines 5-8 of the algo-
rithm presented in Figure 4. Each DRAM PIM only needs
to percolate one sub-block from each block of the matrix.
The position of this sub-block is the same in all blocks
of the matrix. The for loop starting in line 9 in Figure 4
spans over the blocks in this row. The data corresponding
to each sub-block is copied into the SRAM buffer for A
by the for loops in lines 10-12. See [1] for the BDATA-
TRANSFORMATION algorithm that is very similar to the A
transformation, except that the elements of B are stored in
a column first order within a sub-block in the Bbuffer. The
time complexity of each data transformation is dominated
by the time to copy the rows of sub-blocks in the tempo-
rary buffer in line 8. Thus each data transformation takes
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Figure 3. Data transformation performed in the DRAM corresponding to SPELL (2,3) in matrix A to
obtain the desired data layout for percolation.

ADATATRANSFORMATION
1.
2.
3. if
4. then
5. for to
6. do for to
7. do for to
8. do
9. for to
10. do for to
11. do for to
12.
13.

Figure 4. Algorithm for the Data Transformation of Matrix in the CRAM.

time
steps for matrices of dimension .

4.2 Communication andComputation Interleav-
ing

Figure 5 summarizes the computation to produce one
sub-block of C in a SPELL. We want allow significant
overlap between the steps of the computation to reduce
the execution time. If we consider that the SPELL com-
putation units work independently of the communication
of data among the CRAMs, we can interleave the multipli-
cation of two rows of sub-blocks of A with two columns
of sub-blocks of B to produce a pipeline effect.
The multiplication of a sub-block in an odd column of

A by a sub-block in an odd row of B is interleaved with
the multiplication of a sub-block in an even column of
A and an even row of B. To implement this interleaving
we reserve space for three sub-blocks or A and three sub-
blocks of B in each CRAM. While data is received in one
sub-block, data is transmitted from a second one, and the
data from the third sub-block is used in the current com-
putation. Because we interleave sub-block multiplications
that contribute to the result of the same C sub-block, only
one such C sub-block is required in each CRAM. There-
fore the data storage requirement in each CRAM is seven
sub-blocks. See [1] for the multi-threaded algorithm that
implements the computation interleaving and for the algo-
rithm that implements the percolation of sub-blocks from
SRAM to CRAM.



1. for to
2. do Percolate sub-blocks of A and B inward to CRAM
3. for to
4. doMultiply sub-block of A by sub-block of B
5. Shift sub-blocks to neighbors
6. Percolate sub-block of C outward to SRAM

Figure 5. Outline of the computation to generate one sub-block of C in a SPELL.
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Figure 6. Data movements and exchange of synchronization signals among neighboring SPELLs
in the grid.

5 Performance Estimation

Table 1 lists the complexity of each one of the algorithm
phases for a single execution of that phase. To obtain over-
all execution time we need to consider the portion of time
spent in each phase, hardware performance for each phase,
the number of times that each phase has to be performed
and the overlapping among phases.

Since CRAM has the tightest constraint, we will first
determine . Assuming CRAM system software and user
code consumes 180 Kbytes of the 1 Mbyte CRAM, we
set to be as large as possible while allowing seven sub-
blocks to be resident in an CRAM as described in Sec-
tion 4.2. The largest such that words fit in the avail-
able CRAM is

The number of sub-blocks per block, , is determined by
the amount of memory available in the SRAM associated
with each SPELL. The algorithm described in Section ??
requires 3 blocks per SRAM, and we are assuming that
the system software, including RTS, OS and user program
space uses 4 Mbytes. The largest that allows
words to fit in SRAM is

Hardware Parameter Value
CRAM size 128 Kwords
SRAM size 32 Mwords
DRAM size 512 Mwords
DRAM access time /word
SRAM access time /word
CRAM access time /word
Number of FPU/SPELL 5
SPELL FPU Cycle
Vortex port Bandwidth 10 Gwords/s
CRAM-SRAM Bandwidth 64 Gwords/s
CNET bandwidth 16.7 Gwords/s

Table 2. Hardware parameters assumed for
the design point for the year 2007

Table 2 summarize the hardware parameters pertinent
to our performance estimation. A detailed discussion of
this parameters is provided in [1]. For instance, our defini-



Algorithm Phase Complexity
Data transformation in DRAM word accesses
DRAM to SRAM percolation word transfers
SRAM to CRAM percolation word transfers
Sub-block Multiplication in SPELL FLOPS
Sub-block Shift in CRAM word transfers per SPELL pair

Table 1. Complexity in terms of amount of information exchanged of operations performed for each
phase of the computation.

tion of average access time in, say the DRAM, is

(3)

where CPA is the number of cycles per access, WPA is the
number of words read/written in one access 1.

If we let be the total execution time of the dense ma-
trix multiply algorithm in the HTMTmachine, and we con-
sider that the task at hand is the multiplication of matrices
of dimension , where is a positive integer 2,
then

(4)

where is the DRAM data transformation time,
is the time required for the inward percolation of a block
from DRAM to SRAM, is the time required for the
inward percolation of a sub-block from SRAM to CRAM,

is the time required to compute a sub-block multipli-
cation in the SPELL, is the time to exchange the sub-
blocks of matrices A and B among the SPELLs, is
the time for the outward percolation of a sub-block from
CRAM to SRAM, and is the time for the outward
percolation of a block from SRAM to DRAM. If we as-
sume that and , and that

, then equation 4 simplifies to 3:

(5)

The values for each of the components of equation 5,
using and , are presented in Table 3. The

1According to the roadmap in [12], for the 2007 design point, we have
CPA = 7 and a clock rate of 450 MHz for the DRAM PIM.

2In section 4 we described the percolation process to multiply matri-
ces of dimension , the multiplication of matrices of dimensions

will require multiplications of size . Except for
the first one, the data transformations in DRAM are overlapped with the
remaining of the percolation process.

3See [1] for the justification that the time required for a sub-block
multiplication in the SPELLs, is larger than the time required for a
sub-block shift in the SPELLs, .

Time Expression Value

0.94 s

Table 3. Execution time components.

dominant components are the times required for the data
transformations in DRAM, , and the time required to
compute the sub-block multiplication in the SPELL, .
For a fixed number of SPELLs and fixed block sizes, is
determined by , and for a fixed number of FPUs
per SPELL, is determined by the average cycle time of
a SPELL floating point unit, . Therefore considering
all other parameters constant, we have

(6)

Thus the performance, expressed in petaFLOPs, is given
by:

The graph in Figure 7 plots the performance for the
blocking matrix multiply percolation algorithm expressed
in petaFLOPS as a function of the average execution time
in the SPELL floating-point units, expressed in /FLOP,
for , and for two different values for the av-
erage access time in the DRAM, expressed in /word.
For the hardware parameters in Table 2,

ns , /FLOP, and , this model
predicts performance of 1.1 petaFLOPS for the HTMT ar-
chitecture.
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Figure 7. Performance, measured in
petaFLOPS, in function of the SPELL
Floating Point Unit cycle, , and of the
DRAM PIM access time .
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