
A Hardware-Based Longest Prefix Matching
Scheme for TCAMs

Soraya Kasnavi and Vincent C. Gaudet
Department of Electrical and Computer Engineering

University of Alberta
Edmonton, AB, T6G 2V4

Email: kasnavi, vgaudet@ece.ualberta.ca

Paul Berube and José Nelson Amaral
Department of Computer Science

University of Alberta
Edmonton, AB, T6G 2E8

Email: berube, amaral@cs.ualberta.ca

Abstract—Ternary Content Addressable Memory
(TCAM) is a popular device for hardware based lookup
table solutions due to its high speed. However TCAM devices
suffer from slow updates, high power consumption and low
density. In this paper we present a novel Hardware-based
Longest Prefix Matching (HLPM ) technique for pipelined
TCAMs to increase TCAM efficiency. Our HLPM provides very
simple and fast table updates, with no TCAM management
requirements, as well as potentially decreasing the power
consumption and area requirements for a TCAM. Up to 30%
power savings for matching entries, compared to previously
designed TCAMs, is reported.

I. INTRODUCTION

As a basic task of a Network Processor, Internet routing
must employ a very fast routing mechanism to maintain
required high throughputs. Internet routers forward incoming
packets to their next hop by consulting their routing lookup
tables (LUT). A routing lookup table stores the routing
information for Internet Protocol (IP) prefixes rather than
for exact IP addresses. In CIDR (Classless Inter Domain
Routing) Prefixes can have any length and multiple prefixes
might match with an IP address. A routing LUT requires
performing a Longest Prefix Matching (LPM) and forwarding
the corresponding information of the longest matching prefix
of an IP address to the router.
Content Addressable Memory (CAM) is one of the hard-

ware solutions to perform fast IP forwarding lookups. A CAM
is a fully associative memory storing 0s and 1s and capable of
searching a specific pattern of data in all its entries in parallel.
A Ternary CAM (TCAM) is capable of storing don’t care
states in addition to 0s and 1s. Thus a TCAM is suitable
for storing IP prefixes with different lengths, by filling the
least significant bits with don’t care values. A TCAM stores
prefixes according to their lengths and a priority encoder
resolves the longest matching prefix. TCAM-based tables
have advantages over software-based methods in terms of the
number of lookups needed and the control logic simplicity, but
the need to maintain a sorted list makes updates slow. On the
other hand, TCAM devices are expensive and power greedy
due to charging and discharging long lines of memory with
large capacitance.

Currently, TCAMs are being used for several different ap-
plications such as IP forwarding [1], packet classification [2],
ATM switches [3], sorting and searching [4] and image pro-
cessing [5]. All these increasing applications serve to increase
the complexity of table lookup operations, driving further
demand for low power-high throughput TCAMs.
We propose a pipelined TCAM with a novel Hardware-

based Longest Prefix Matching (HLPM) solution to provide
simple and fast updates, decrease the TCAM area requirements
and save power through smart search operations. This paper
is organized as follows. Section II gives a background on
LPM solutions for CAM-based lookup tables. Section III
describes the general features and functions of the proposed
HLPM scheme. The performance of our TCAM is evaluated
in Section IV. Finally, Section V concludes the paper.

II. LPM BACKGROUND

Usually, finding the longest prefix match (LPM) during
TCAM lookups requires maintaining the prefixes in a sorted
length order which makes worst case updates very slow. For
example, an insertion of a new entry in a TCAM storing N
prefixes might result in moving (shifting) O(N) TCAM entries
to create an empty space for the new insertion. This slow
update is undesirable due to possibility of 100s to 1000s of
updates per second in today’s forwarding tables [6].
The routing table update delay is one of the key elements

of routing lookup efficiency beside the lookup speed, power
consumption and memory footprint. Several solutions have
been proposed to decrease the routing table update delay such
as reserving some empty entries between sets of different
length prefixes. This leads to under-utilization of the TCAM
space while the worst case complexity of updates remains the
same. Since there is no need to sort the prefixes in a segment,
the TCAM can reserve some empty space in the middle. Then
an empty space can be provided anywhere with no more than
L/2 shifts (L represents possible prefix lengths. e.g. L = 32
for IPv4 prefixes) [7]. However, the TCAM space management
overhead and non-uniform update delays reduce the TCAM
efficiency. These problems worsen with 128-bit IPv6 due to
the much longer possible prefix lengths.



Some applications avoid TCAM sorting requirements by
manipulating the data before storing it. For example, in IP
prefix caches implemented by TCAMs, the LUT is expanded
to avoid multiple matches for correct cache results [8]. But not
all applications have such a convenient solution to the problem.
Many TCAM vendors employ a simple sorting technique and
live with an O(N) worst-case update time solution.
Storing prefix lengths is a simple and fast solution for

LPM but it results in at least a 70% increase in the TCAM
memory requirement [4]. On the other hand, binary CAMs,
with no built-in mask circuits, can use this extra information
to mask data as well as finding the LPM [9]. Faster updates are
obtained at the cost of slower search times and lower memory
density. Figure 1 depicts an example of searching 10100 in the
table using the design in [9] for a 5-bit addressing scheme. A
prefix is represented by a binary prefix entry and a binary
mask entry. Mask entries are sequences of ones followed by
zeros, such that the number of consecutive ones represent the
length of the prefix and zeros stand for don’t cares. Horizontal
AND circuits mask each prefix entry and vertical OR circuits
in the mask column find the longest length among all matching
entries. A second search of the longest length in the mask
column resolves the position of the LPM.

LPM

10XXX

1010X 0111

1 0 0 0

Prefix Column Mask Column

11 01

Vertical OR

1

1

1

100 1

001

Horizontal AND

1

10

Fig. 1. Binary CAM with mask features presented in [9].

All existing LPM solutions: (1) have long worst-case update
delays, (2) slow down the lookup speed, (3) need complicated
table management and maintenance or (4) require a great
amount of extra area. The Hardware-based Longest Prefix
Matching (HLPM) technique proposed in this paper provides
a simple, fast and scalable LPM solution with very small
increase in area as well as potentially reducing the power
consumption.

III. ARCHITECTURE
This paper describes our proposed HLPM for a four stage

pipelined TCAM applicable to IPv6, but the technique is
scalable to any pipelined TCAM. Figure 2 shows our four-
stage pipelined TCAM with an extra SRAM stage named:
Length Column. Every entry in each stage is 32-bits wide to
provide the 128 bits required by IPv6 prefixes. HLPM stores
the binary coded lengths of prefixes in their ending stages
in the Length Column. Thus 5 extra storage bits per entry
are required for IPv6 prefixes (in a four-stage pipeline, 32
bits each). For example 00011 is stored in the corresponding
Length Column entry of a prefix with size 35, because the

prefix ends in the second stage, and there are only 3 bits in
that stage. Same value will be stored for 3, 67 and 99 bit
prefixes. However with no sorting requirement for the prefixes,
new prefixes can be inserted in any TCAM entry, regardless
of the prefix length.

X X X X

X

X

X X X X

X

5 bitsStage 1 Stage 2 Stage 4Stage 3

Prefix Length

00101

11001

LPM

Length Column

I

II

III 11011

Fig. 2. The proposed Four-Stage Pipelined TCAM.

Pipelined TCAM devices save power by lowering the power
consumption for non-matching entries. A 29% decrease in
power consumption (compared to conventional TCAMs) is
reported for a five stage TCAM, providing 144 ternary bits
for IPv6, due to pipelining [10]. When a pattern is searched at
each stage of the pipeline, only those entries that matched
the key in the previous segments are searched, saving the
power that would be required to search remaining bits of
non-matching entries. The fact that very few entries in the
TCAM actually match the data leads to dramatic decrease
in power consumption. However, TCAM searches consume
fixed power for different length matching prefixes. In CIDR
prefixes can vary in size from 0 to 127 (IPv6) and many
prefixes might match with an address. On the other hand, since
short prefixes cover more addresses, there is higher probability
of searching for a short prefix in a LUT than a long one.
Our HLPM technique saves power not only on non-matching
entries through pipelining, but also on short prefixes which are
more likely to be searched.

A. TCAM Search Operation
IP prefixes are formed as sequences of data bits (either 0s

or 1s) followed by don’t care bits (the number of 1s and
0s represents the length of each prefix). Since don’t cares
match with both zeros and ones, a TCAM search may result
in multiple matching entries with an address. Figure 2 shows
an example of multiple matching entries. Entries I,II and III
are three matching prefixes with different lengths for a given
address. Searching the IP address in the first stage results in
matches in all those entries. These matches lead to further
searching of the IP address in the following stages of the
pipeline in those three entries. There is no need to search
the rest of entry II, simply because the rest of the bits of
that entry are don’t cares and will always match. Thus, if the
last bit of an entry in one stage of the pipeline stores a don’t
care value, there is no need to search the rest of the entry in
the following stages. In our example, second stage searches
are necessary only for entries I and III. On the other hand,
after the fourth stage of the pipeline, it is clear that entry II



is not the longest matching prefix due to the fact that prefix
II ended in the first stage of the pipeline. These observations
lead us to simplify the LPM in our TCAM. Since several
matching prefixes might end in the same stage, a second level
search is necessary to find the LPM from those entries (e.g.
entry I and III in Figure 2), by using the information stored in
the Length Column. Avoiding unnecessary searches for short
matching prefixes reduces power consumption in comparison
with previously reported pipelined TCAMs [10]. Meanwhile,
since not all matching prefixes require the second level search
(e.g. entry II), we achieve further power saving compared
to previous designs such as [9]. However, in order to find
out if a prefix ends in one stage of the pipeline or not, the
last cell of the TCAM in each stage should be modified.
This modification is described in Section III-B. Section III-
C describes the Second Level Search which resolves the LPM
of matching entries ending in the same stage.

B. TCAM Entry Modification
Figure 3 shows a TCAM entry in one stage of the pipeline.

The last cell is modified by adding two extra transistors (M1
and M2) which are controlled by the complementary bits of
the data stored in the cell. A normal search operation of the
entry includes searching for a don0t care in the last cell
in parallel with the conventional searching for a match or
a miss-match between the data stored in the entry and the
input pattern. The extra circuits for the last cell are similar to
the normal search circuits. A very short match line, shown
by MLx in Figure 3, is precharged to logic high in the
precharge state. In the evaluation phase, the last cell searches
for a don’t care which corresponds to storing 00 in the last
TCAM cell. If the cell stores a don’t care, the paths from
ML to ground are closed but the path from MLx to ground
is open. MLx discharges, and the output senses a logic high.
Although search operations of ML and MLx are similar, MLx
evaluation is much faster, consumes less power, and does not
require complicated sensing circuits due to very short length
of MLx. The general evaluation of the entry is described in
Table I. However, smart sensing and precharging circuits such
as [11], precharge the ML/MLx only for matching entries,
resulting in further power savings.

clk clk

Precharge−Control
Circuit

M2

M1

cellcell
TCAMTCAM

SL1SL0 SL1SL0

Match Line (ML)
MLx Output

Circuit
Sensing 

Precharge 

SL1SL0

Fig. 3. A Modified TCAM Entry.

C. Second Level Search
The second level search resolves the LPM for matching

prefixes ending in one stage. Figure 4 depicts the length

TABLE I
ENTRY EVALUATION.

ML MLx Search the Next Stage?
High High Y es
Low High No
High Low No
Low Low No

column in detail. The Second Search Signal(0) is the result
of the last stage of the pipelined TCAM. SSS(0) is set only
for matching prefixes requiring a second level search. In the
example given in Figure 2, the second search signal is set only
for entries I and III. Since the length column stores the binary
lengths of prefixes in their ending stages (5 bits long), the
entry storing the max value is the longest matching prefix.
We adopted a 5-stage pipelined Bit−Serial approach to find
the max length. At each stage if a second search is required
(SSS(i) = 1), one bit of the data in the corresponding entry
of the Length Column is evaluated. If there is only one data
equal to ’1’ among all entries, that entry is the max of all.
But if no entry has a ’1’ or more than one entries store 1s,
those entries should be searched in their next stages as well.
Thus the SSS signal for the next stage of those entries will
be set (SSS(i + 1) = 1). However, after the fourth stage, if
the max is not yet resolved (two entries similar in 4 MSBs),
the one whose last bit is a ’1’ is definitely the max. Thus the
pipeline is actually a four stage pipeline.

0

1

1

1

0

1

Entry III

Entry II

Entry I
0

1

1

1 10

0 0 1

0 1 1

SRAM
cell

SSS (0)

SSS (i) SSS(i+1)

Data (i)

Length Column

SSS (i) :
Data (i) : Data at stage i

Second Search Signal at stage i

Fig. 4. Length Column.

However, the simple length-column pipeline can be clocked
faster (e.g.it can be sensitive to rising and falling edges of the
clock) than the TCAM pipeline or a digit serial approach can
be used to provide short latency.

IV. SIMULATIONS AND PERFORMANCE EVALUATION

To evaluate the power savings obtained by HLPM, we
simulated the HLPM using real lookup tables and IP traces
of three distributing routers (not edge nor core). Because IPv6
is not yet broadly used, traces from real IPv6 traffic are not
available. Instead we simulated the HLPM performance for a
two-stage pipelined TCAM storing 32 bit IPv4 prefixes. Since
IPv4 prefixes are mostly 16 to 24 bits wide, we stored prefixes
with less than 20 bits in the first stage.



TABLE II
SIMULATION RESULTS FOR REAL TRACES.

ISP1 ISP2 ISP3
LUT Short Prefixes % 28 27 28

Referenced Short Prefixes % 80 72 75
Second Level Search % 25 40 28
Power Savings % 30 27 28

TABLE III
SIMULATION RESULTS FOR MERGED LUTS.

ISP1 ISP2 ISP3
LUT Short Prefixes % 31 28 30

Referenced Short Prefixes % 79 92 75
Prefix Compaction % 92 91 93
Second Level Search % 24 55 19
Power Savings % 30 34 28

Table II shows the results for the three traces (ISP1, ISP2
and ISP3). We found that less than 30% of measured prefixes
stored in the LUT are short (have less than 20 bits). But more
than 70% of the incoming IP addresses match these short
prefixes. Second level searches are only required for a portion
of the matching prefixes. This is achieved through the new
search mechanism described in Section III. Since most of the
IP lookups match with a short prefix, the pipelined design
saves power by avoiding unnecessary searches in the second
stage. The power savings estimates reported in Table II are in
comparison with a standard full length TCAM processing the
same traces.
Since low power TCAM designs use most of the power

for matching entries [11], this power reduction directly affects
the total TCAM power consumption. The HLPM architecture
should be even more power-effective for IPv6 prefixes that
have wider prefix length variation.
To evaluate the HLPM performance for a worst case situa-

tion, we compacted the real LUTs by eliminating all redundant
prefixes. This computation reduced the tables to almost 10%
of their original ones. Table III shows the results for the
compacted tables. As expected, more second level searches
are required, but the HLPM architecture is still very effective
to conserve power.
Beside being power efficient, the HLPM architecture has

the following advantages:
1) HLPM resolves the LPM without requiring LUT man-
agement or maintenance or sorting of the entries in the
TCAM. Table updates require a single update operation.

2) HLPM is simple and scalable with TCAM width. The
second level search does not change if the TCAM has
more or less 32-bit stages. The first level search, as
described in III-A, is also independent of the TCAM
size. Thus the extra area and the complexity of HLPM
remains the same if the TCAM size is scaled.

3) HLPM is efficient in extra storage area requirements.
For example, a conventional TCAM needs 100x128 bits
of extra storage to reserve only one empty entry for
only 100 different IPv6 prefixes. This area is equal to

the storage area of the 5th stage (5 bit entries) for a
5K entry TCAM with the proposed HLPM. Since the
Length Column requires only 5 SRAM bit per entry
SRAM rather than 32 CAM bit per entry, the total area
of our TCAM is approximately 20% less than similar
designs [9].

V. CONCLUSION
A novel Hardware-based Longest Prefix Matching (HLPM)

for TCAM-based lookup tables is proposed in this paper.
The technique is applied to pipelined TCAMs and aims at
further decrease in power consumption compared to previ-
ously reported pipelined TCAM designs, by saving power for
matching short prefixes.
The HLPM is a two level search. The first level resolves

the LPM of prefixes ending in different stages by searching
for a don’t care in the last bit of each stage. A very simple
cell modification is presented in this paper to perform the first
level search. The second level resolves the LPM of multiple
prefixes ending in one common stage of the pipeline by finding
themax value of the coded lengths of prefixes in the last stage
of the pipeline.
Our HLPM provides very fast table updates (no worst-case

delays) with no table maintenance/management requirements.
It also saved area compared to other fast table update solutions.
Up to 30% power reduction for IPv4 matching prefixes is
reported.

REFERENCES
[1] M. A. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and

taxonomy of ip address lookup algorithms,” IEEE Network, vol. 15,
pp. 8–23, Mar./Apr. 2001.

[2] P. Gupta and N. McKeown, “Algorithms for packet classification,”
IEEE/ACM Trans. Networking, vol. 15, pp. 24–32, Mar./Apr. 2001.

[3] K. J. Schultz and P. G. Gulak, “CAM-based single-chip shared buffer
ATM switch,” in IEEE International Conference on Communications
(ICC’94), vol. 2, New Orleans, LA, May 1994, pp. 1190–1195.

[4] S. Sharma and R. Panigrahy, “Sorting and searching using ternary
CAMs,” in 10th Symposium on High Performance Interconnects, Stan-
ford, CA, Aug. 2002, pp. 101–106.

[5] T. Ogura, M. Nakanishi, T. Baba, Y. Nakabayashi, and R. Kasai, “A 336-
kbit content addressable memory for highly parallel image processing,”
in IEEE 1996 Custom Integrated Circuit Conference, San Diego, CA,
May 1996, pp. 273–276.

[6] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
IEEE/ACM Trans. Networking, vol. 6, pp. 515–528, Oct. 1999.

[7] D. Shah and P. Gupta, “Fast updating algorithms for tcams,” IEEE Micro,
vol. 21, pp. 36–47, Jan./Feb. 2001.

[8] H. Liu, “Routing prefix caching in network processor design,” in Tenth
International Conference on Computer Communications and Networks,
Scottsdale, AZ, Oct. 2001, pp. 18–23.

[9] M. Kobayashi, T. Murase, and A. Kuriyama, “A longest prefix match
search engine for multi-gigabit ip processing,” in International Confer-
ence on Communications (ICC 2000), vol. 3, New Orleans, LA, June
2000, pp. 1360–1364.

[10] K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-lines and hier-
archical search-lines for low-power content addressable memories,” in
IEEE Custom Integrated Circuit Conference, San Jose, CA, Sept. 2003,
pp. 383–386.

[11] A. Sheikholeslami and I. Arsovski, “A mismatch-dependent power
allocation technique for match line sensing in content-addressable mem-
ories,” IEEE J. Solid-State Circuits, vol. 38, pp. 1958–1966, Nov. 2003.


