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Chapter 1

Speeding Up Production Systems:
From Concurrent Matching to Parallel Rule Firing*

José Nelson Amaral and Joydeep Ghosh

Electrical and Computer Fngineering Department
The Unwversity of Texas at Austin, Austin, TX 78712, U.5.A.

This chapter identifies the problems that a computer architect faces in at-
tempting to speed up the execution of production systems. We first focus
on state-saving algorithms using Rete networks because they were the ma-
jor source of inspiration for a number of research efforts in the eighties’.
Early attempts to speed up production systems almost exclusively concen-
trated on concurrently executing the match phase of the match-select-act
loop. More recent studies have shown that significant speedup will not
be obtained unless architectures include the capability for parallel rule fir-
ing. However, difficult problems, such as the identification of dependencies
among different rules and guarantee of correctness, arise when rules are
fired in parallel. The second part of this chapter identifies these problems
and critiques some of the solutions proposed by different researchers.

1. Introduction

A production system consists of a knowledge base, a set of rules or pro-
ductions, and an inference engine. The knowledge base is formed by a set
of tuples containing facts about a given domain. A production consists
of a collection of conditions or premises about the knowledge base and a
set of actions. These actions are addition, deletion, or change of facts in
the knowledge base. The inference engine is a computational mechanism
that has three distinct functions: determining which rules are satisfied or
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enabled, selecting a rule or a set of rules to be executed or “fired”, and
performing the actions specified by the rules.

A problem is specified as a set of facts in the knowledge base, a set of
productions related to the facts, and the specification of a desired or final
state. The knowledge base is said to be in an intial state before any of the
actions specified by productions is performed. The inference engine moves
the knowledge base over the knowledge space. The objective is to reach a
final state in a minimum amount of time.

The quest for speeding up expert systems, which are commonly realized
in the form of production systems, has led to efforts in different directions
over about twenty years of research. One of the most important contribu-
tions to this research was the creation of Rete networks by Forgy in 1979
[5]. The use of Rete networks to encode the conditions of rules allowed
the implementation of efficient match algorithms. Since 1t was published,
many improvements and modifications to Rete have been proposed.

Another important contribution to the development of expert systems
was the creation of OPS) systems [6]. The OPS5 model requires the gen-
eration of a complete conflict set at each cycle and the selection of a single
rule from this set, to be acted upon. The most common criterion used for
rule selection is recency. The reasoning behind the recency criterion is that
rules enabled more recently are more likely to move the knowledge system
towards a goal state.

Early research estimated that in OPS5-like production systems, the
matching of rules against facts in the knowledge base takes approximately
90% of the computing effort [10]. Consequently, a considerable amount of
effort was dedicated to speeding up the matching phase of the production
cycle. This observation also led to the conclusion that the speeding up of
expert systems by means of parallel techniques is limited to approximately
tenfold [9]. This is a direct consequence of Amdahl’s law.

More recently, research using compiled versions of the TREAT algo-
rithm at The University of Texas at Austin [24, 19] have indicated that
the amount of time taken by the match phase might be around 50% of the
computing effort, possibly getting as low as 30% for some programs. If
these numbers are accurate, the maximum speedup that can be expected
from match processing improvements alone is twofold. Therefore, there
is a strong belief in the research community that it is mandatory to im-
prove the other phases of the production system cycle to obtain significant
speedup. Some researchers [16] propose to eliminate global synchronization
altogether. The elimination of synchronization at each cycle and the firing
of rules in parallel would increase the amount of changes in the knowl-
edge base over time, accelerate the movement of the knowledge base over
the knowledge space, and hopefully make the system reach the goal state



Speeding Up Production Systems 3

sooner.

Problems in the maintenance of correctness and consistency of the knowl-
edge base arise in parallel rule firing. There are a variety of definitions for
the possible inconsistency of rules and a few different approaches to en-
sure correctness while allowing parallel rule firing. Optimization in the use
of processing resources is also an issue in the parallel execution of expert
systems. The way the rule system is partitioned is critical in guaranteeing
high usability of processors and low communication overhead.

Kuo and Moldovan have published a detailed, well-written survey on the
state of the art in parallel production systems [22]. They emphasize efforts
in implementing data-driven systems [33] and initiatives in parallel produc-
tions systems like the TRIS programming methodology [29], Ishida’s work
[14], PARS [31], RUBIC [26], CREL [20], CUPID [17], and PARULEL [37].
This chapter partially overlaps with that survey, but also complements and
updates it. In the next section we present a generic model for the architec-
ture of an expert system. Section 3 introduces state-saving algorithms with
emphasis on Rete network based algorithms. Section 4 discusses concurrent
matching and parallel execution of Rete. Section b discusses optimization
of Rete networks at compile time without parallel rule firing. Section 6
presents some key efforts towards parallel rule firing, and section 7 consists
of a discussion of current trends in the research towards speeding up expert
systems.

2. A Generic Production System Architecture

Most of the research towards speeding up expert systems via faster match-
ing uses an architectural model similar to the one represented in fig. 1.
The memory of the system is divided into a set of productions or rules
stored in the production memory, and a set of facts stored in the working
memory. The working memory gets its name from the fact that it 1s used
as a “scratch” memory where the system writes and overwrites partial re-
sults. Each fact of the knowledge domain 1s stored in this memory as a
unit called a Working Memory Element (WME).

A rule stored in the production memory consists of a set of conditions
and a set of assertions. The rules are usually syntactically expressed with
the conditions positioned to the left of an arrow. Therefore, the conditions
are called the Left Hand Side (LHS) of the rule. Similarly, the assertions or
actions, positioned to the right of the arrow, are called the Right Hand Side
(RHS) of the rule. Some research groups [4] adopted a better nomenclature
which labels the conditions the antecedents of the rule and the assertions
the consequents of the rule.

A rule in the production memory is said to be fireable if all its non-
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Fig. 1. Generic Production System Architecture

negated conditions are satisfied and none of its negated conditions is sat-
isfied. Also, if variables appear in more than one condition element, all
instantiations of the same variable must be bound to the same value.

In an OPS5-like system, the match engine of fig. 1 compares (or matches)
all conditions of all rules in the production memory against all facts in the
working memory, while keeping track of variable bindings to check which
rules are fireable. The set of all fireable rules at the end of the match
processing is called the conflict set.

The conflict set resolver decides which rule from the conflict set will be
selected to fire in the current cycle. Criteria used to select the rule include:
recency, specificity, priority, and context.
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After a rule is selected to fire, the act phase of the system produces
changes in the memory, creating or deleting WMEs. Most of the production
systems produce changes only to the Working Memory, altering the facts in
the knowledge base. Some systems also produce new rules or eliminate old
ones. We suggest that such systems be called adaptive expert systems [16]
or learning expert systems, because they have the capability of adapting to
changes in the environment.

3. State-Saving Algorithms

The work performed by the match engine is a combinatorially explosive
problem. However, there are two characteristics of production systems
that allow a good approach to this problem. The pieces of knowledge
stored in the working memory of a production system change slowly over
time. This implies that if the results of the matching in one cycle are saved
for the next cycle, a substantial amount of work can be eliminated. The
other characteristic is that there are many identical condition elements in
different rules. Therefore, an algorithm that allows these conditions to be
shared by distinct rules must match a condition only once, regardless of
the number of rules in which the condition appears.

3.1. Rete Networks

The Rete network was created by Forgy [5]. Forgy reports that Rete is
inspired by the Pandemonium machine of Selfridge [34]. Pandemonium
was one of the earliest learning machines and consisted of multiple layers
of demons. A demon in a given level supervised an inferior level of demons.
When it observed meaningful patterns, it sent messages to a superior level.
The top-level demons performed more telling actions.

The Rete network is a data-flow graph that encodes the antecedents of
rules. The inputs to the Rete network are changes to the working memory
generated in the act phase of one cycle, and the outputs of the network
are changes to the conflict set used to choose a rule to be fired in the next
cycle. The following discussion of Rete networks is presented here after [8],
[25], [10], and [23].

Fig. 2 presents a Rete network with the set of rule antecedents encoded
in it. The network is formed by four different kind of nodes: constant-test
nodes, memory nodes, two-input nodes and terminal nodes. The constant-
test nodes appear in the first layer of the network. They store attributes
that have constants in the value field and perform intra-condition tests to
determine if a working memory element satisfies these constant fields of the
condition element. In the original Rete network, the result of this test was
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Fig. 2. Rete Network

stored in a local a-memory [10]. Some authors now claim that the one-
input nodes can be memoryless because the constant test takes a negligible
amount of time [23].

Two-input nodes, also called and-nodes, join-nodes, or S-nodes, perform
the matching between distinct condition elements. All tokens arriving in
a two-input node come from a memory node, and whenever a new token
arrives in one of a node’s inputs, it 18 compared with all tokens present in
the other input. The results of the join operation performed in the two-
input node are stored in a local f-memory. Good hashing techniques are
necessary to speed up the matching in the two-input nodes. Otherwise, it
might be necessary to process long lists of tokens. [8].
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Terminal nodes receive a token when a production should be inserted
into or removed from the conflict set. There is one terminal node for each
production in the system. The data-flow discrimination network compiled
by the Rete Algorithm produces nodes with a maximum fan-in of two [38].

The Rete algorithm implements the network described above and then
keeps feeding it with changes to the working memory and extracting from it
changes to the conflict set. The state of the system is stored in the memory
nodes of the network. To enable the use of Rete networks, a problem must
be compiled into primitive match tests. Rete networks are not adequate for
match problems in which the objects are not constants or where the set of
objects changes fast. Because it is a state-saving algorithm, it is inefficient
when the data used change substantially from cycle to cycle [38].

3.2. TREAT Algorithm

There is a tradeoff in the amount of information that should be saved from
one cycle to the next in the Rete algorithm. Saving all the information from
cycle to cycle can have a negative effect, especially if the knowledge changes
substantially from cycle to cycle. On the other hand, saving too little of
the state may cause some matches to be repeated frequently. Miranker
pointed out that there is an overhead in memory management of the -
memories in the join nodes. This occurs because when WMEs are removed,
it 1s necessary to perform the match to decide which memories need to be
deleted. To solve this problem, Miranker created a modified algorithm
called TREAT to process Rete networks [25].

The TREAT algorithm eliminates G-memories attached to join nodes.
As a consequence, it is necessary to perform the matching operation each
time a WME is created, but it is not necessary to perform any matching
when a WME is deleted. Miranker presents empirical results that indicate
that the time saved in deletions compensates for the extra time spent in
addition of WMEs, and therefore TREAT is faster than Rete [25]. Tt is
necessary to observe that TREAT is not a state-saving algorithm in the
same sense as the Rete algorithm, and it is only comparable to Rete in that
it makes use of a similar data-flow structure.

3.3. Generalized Rete Networks

In the original Rete network, the joins in the match pattern are limited
to left-associative joins. This means that a join node can have another
join node only as its left predecessor. The right predecessor must be a
single pattern. Later, extensions allowed arbitrary group of conditions.
However, some naive extensions of Rete may introduce errors, such as du-
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plicate or missing joins, leading to incorrect match results. Lee and Schor
[23] pointed out that such a situation arises when a join node has successors
that reconverge at a subsequent join node. They introduced an algorithm
that handles this problem correctly without any loss of efficiency. Fur-
thermore, this algorithm permits incremental addition of new rules and
demand-driven pattern matching by means of blocking a portion of the
network from being updated during normal operation and enabling it on
demand.

Dynamic addition of rules in a production system is difficult to map into
a Rete network because it implies augmenting the network. Since state
is stored throughout the network, the contents of several S-memories in
existent nodes may need to be propagated to the new nodes corresponding
to the added rule. Thus, a single node (the recently inserted one) may
receive many updates from multiple predecessor nodes.

Generalized Rete networks have the advantages of increasing match com-
putation sharing, especially in join result sharing, and eliminating the
“long-chain” effect. This effect occurs when a large number of patterns
must be joined. Since a join node can have only its left successor as an-
other join node in the original Rete, it is necessary to create a long chain
of nodes to accomplish the task. One disadvantage of generalized Rete
networks is an increased likelihood that large cross-product effects occur.
The cross-product effect refers to the increase in G-memory storage and
matching time when a single token flowing into a two-input node finds a
large number of tokens with consistent variable bindings in the opposite
memory of the node [10].

3.4. Rete for Real-Time Systems

Barachini and Theuretzbacher [2] have introduced PAMELA (PAttern
Matching Expert system LAnguage), which extends the Rete algorithm
to allow interrupt handling necessary for real-time systems. They pro-
pose a reduction of the Rete algorithm by means of sorting intra-element
conditions and increasing the sharing of nodes. Also, they propose an opti-
mization for changing and removing tokens from the network. It consists of
the use of counter memories that record the number of consistently bound
tokens in the opposite memory for each incoming token. The advantage
is that when the system receives an incoming token, it knows how many
tokens must be looked at. PAMELA was implemented only for sequential
systems and was simulated on an IBM-PC/AT, which compromises the
results and comparisons presented.
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4. Parallel Execution of Rete
4.1.  Data-Driven Processing of Rete Network

Gaudiot and Sohn [7, 36] have investigated the suitability of data-driven
processing for the execution of parallel matching in production systems.
Data-flow machines are often used exclusively for numerical processing.
This happens because in symbolic processing, data structures are irregular
and nondeterministic, and the basic entities manipulated are objects or sets
of objects rather than numbers. To adapt to such idiosyncrasies of symbolic
processing, some modifications have been proposed to the data-flow model:
allowing data tokens to carry more information than a single scalar element
and adding several simple functional units to each processing element to
take care of the fewer primitive functions of symbolic computations (rather
than encoding complex functions as numerical computation).

The machine proposed by Gaudiot and Sohn is based on the execution
of the Rete algorithm using a data-flow multiprocessor. The advantages of
this combination come from the natural match between the algorithm and
the architecture: both are driven by data tokens. In the Rete algorithm,
multiple comparisons are performed at the same time, while in the data-flow
architecture, multiple actors can be fired simultaneously. In both, there are
no data modifications, except for arrays, and both rely on the dependency
graph obtained from the problem domain. Memorization of partial results
and counters for negated nodes required by the Rete algorithm are easily
handled in the data-flow architecture.

The Rete algorithm has some inefficiencies that must be overcome in the
data-flow machine. The root node has to distribute all the tokens, causing
a bottleneck right at the beginning of the processing. The comparisons
that take place in a two-input node when a token arrives in either side are
accomplished in a sequential fashion. The memory management for two-
input nodes takes a substantial amount of time to delete WMEs. This last
inefficiency is not addressed by the data flow approach.

Gaudiot and Sohn suggest two possible ways of allocating productions
to PE’s: redundant and minimum allocations. In a redundant allocation,
all patterns are copied and independently allocated. This method reduces
communication overhead but consumes a lot of memory. The minimum
allocation technique reduces the computation time in matching and reduces
the storage space necessary, but it increases the communication overhead.
Gaudiot and Sohn chose to use a redundant allocation. To overcome the
root distribution bottleneck, they exploited an interesting fact: a WME
only matches patterns that have the same number of attribute-value pairs.
Therefore it 1s possible to partition the WMEs and the rule conditions in
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groups according to the number of attribute-value pairs. The mechanism
suggested is able to distribute WMEs simultaneously to different groups,
reducing the impact of the bottleneck at the root. A drawback is that
considerable speedup will arise only if the WMEs are evenly allocated to
groups.

The authors present extensive analysis of a 12-WME, 3-rule example, as
well as simulation results and analytical performance evaluation, all based
on the same example. Unfortunately, there 1s no evaluation or comparison
with commercial benchmarks to compare the data-driven model proposed
with competing approaches. Nonetheless, there are indications that data-
flow processing might be promising for parallel matching in production
systems.

4.2.  Multiprocessing of Rete

Several researchers have attempted to speed up the execution of Rete net-
works by employing multiple processors. Given that parallel implemen-
tation of Rete at the token-passing level leads to too fine a granularity,
mappings of Rete to shared data structures that can be processed using a
shared-memory multiprocessor have been considered. However, this leads
to overheads due to memory access conflicts and synchronization. An alter-
native is to use a distributed memory multicomputer with message passing.
A detailed discussion of the advantages and disadvantages of these two ap-
proaches 1s given in chapter 77. In this section, we concentrate on four
parallel implementations that shed some light on how amenable Rete is to
parallelization.

4.2.1.  DRete Algorithm and CUPID Architecture

Kelly and Seviora [17, 18] present a multiprocessor architecture for sup-
porting comparison level partitioning. They try to solve the problem of
preserving match correctness and keeping communication overhead to a
manageable level by introducing a distributed Rete algorithm called DRete.
DRete implements partitioning at a token-to-token level. It is observed
that constant-nodes do not need to be partitioned. Furthermore, to im-
prove load balancing, token-node pairs are moved away from the processing
elements that create them. The reasoning behind this action is that there is
a high likelihood that pairs created at the same time will be activated at the
same time and therefore ought to be located in distinct processor elements.
The overhead of this transfer is kept low because the pairs are transferred
while the host performs conflict resolution and action phases. Kelly and
Seviora also claim that the use of hashing at the node level can lead to a
reduced number of comparisons necessary at each node. Instead of doing
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the comparison with all tokens in the node, it 1s necessary to compare only
with the tokens within a given bucket of the hashing mechanism. Although
they have not used hashing in their study, they expect a combination of
DRete with hashing to be promising.

The architecture proposed, denominated CUPID, consists of a matching
multiprocessor attached to a host. Kelly and Seviora propose an order of
hundreds of small processing elements organized as a single two-dimensional
array. The communication between the host and the processing elements is
realized by a pair of bidirectional trees with the processing elements as the
leaves of these trees: one tree is used to broadcast match information to all
processing elements, and the other is used to collect responses from them.
A processing element is formed by a CPU, a local program ROM, local
RAM, local CAM Block, and state machines for communication control.
The content of the CAM indicates which nodes of the Rete network are
simulated by the corresponding PE.

At the time of the report (1989), the design of the PE was completed
and pre-fabrication simulations of the CPU were done. Simulation results
of the proposed design indicate a speedup of 7.2 over a VAX 11/785 if 16
PEs are used, and significant increase in the speedup is expected if the PEs
become faster.

4.2.2. METE/PIPER

Working for the Strategic Defense Initiative (SDI), Rowe et al. [30, 3]
developed the Parallel Inferencing Performance Evaluation and Refine-
ment project (PIPER). This inference engine is based on an extension
of Rete called Merit Enhanced Transversal Engine (METE) algorithm.
METE/PIPER explores intra-rule parallelism in match processing and con-
flict resolution, but there is no attempt to exploit multiple rule firing or
any other kind of inter-rule parallelism.

PIPER is implemented in the BBN Butterfly Plus computer that con-
sists of up to 256 processor nodes interconnected via a Butterfly Switch.
BBN runs the Chrysalis operating system that allows shared-memory ac-
cess and management. In this implementation, there is a processor called
the Inference Manager (IM) that interfaces with the operating system. The
remaining processors are used as constant test (CT) processors or as join
processors (called TAND processors). A copy of all constant tests is given
to each CT processor. The distribution of facts among CT processors is
done dynamically by the IM processor, using a round-robin scheme.

In contrast to the CT processors, the join processors are specialized,
containing only specific TAND tests. The IM processor is in charge of
synchronization at the end of the match phase. Upon receiving an ac-
knowledgement that the last CT token was processed, the IM processor
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generates startup messages for the TAND processors. The resolution of
the conflict set (the process of given priority to fireable rules) is pipelined
with the join processing. An average true speed-up of 9.29 over Gupta’s
results [9] was reported.

Bechtel and Rowe [3] report the development of a tool designed to realize
performance analysis. The input to the tool is a rule set to be analyzed.
The prediction tool analyzes four factors of interest in estimating the per-
formance of rule sets, namely: length of inference path, interconnectedness
of individual rules, rule independence, and number of distinct object types.
At the time it was reported, this tool was in an early stage of development.
Neither statistical confirmation of the predictions nor calibration of these
factors against actual implementation had been performed yet.

4.3.  Loosely-Coupled Implementations

Ishida et al. [16] propose an organization of distributed production sys-
tem (DPS) agents to improve the performance of adaptive expert systems
and deliver the performance required by real-time expert systems. They
point out that in contrast with parallel expert systems, DPSs have no
global synchronization for conflict resolution. In a DPS all the rules are
fired asynchronously and the interference among rules is avoided by local
synchronization between specific agents. The structure proposed in [16]
is capable of self-organization, with the agents executing decompositions
when the workload is high and performing composition (fusion of agents)
when the workload is light. This ability allows the release of hardware
resources for future increases in the demand for processing.

Acharya et al. [1] explore the possibilities of using message-passing com-
puters to implement the Rete network. They propose a system with a set of
processors dedicated to constant nodes, a set of processors for the conflict
set resolution, and a concurrent hash-table mechanism operating in a third
set of processors to implement the match operation. The major advan-
tage of message-passing computers is the absence of a centralized schedule.
However, the static partitioning of the hash-table could cause problems
because distinct tokens cannot be processed in parallel if they hash to the
same processor pair. The concurrent distributed hash-table allows the ac-
tivation of distinct Rete nodes to be processed in parallel. Furthermore, it
allows the multiple activation of the same node to be processed in parallel.

Other noteworthy parallel implementations of Rete Network include the
Encore Multimax using a shared data structure [11]; DADO, using rule
level parallelism on a tree structured multicomputer [38, 39]; and PESA,
a specialized, hierarchical, pipelined computer that exploits the simpler
control of bus-based systems [33]. A good, brief description of these systems
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can be found in Kuo and Moldovan [22].

Shrobe et al. [35] propose a Virtual Parallel Inference Engine that is
claimed to be able to isolate the issues of problem representation in a
knowledge processing system, such as expert systems, from the issues of
executing this system in a particular machine. They present simulation
studies for executing production systems on a loosely coupled distributed
system and using a Multilisp simulator. They also discuss issues of paral-
lelizing the Rete algorithm. However, they do not include in their study
the issue of ordering constraints between rules.

5. Compile Time Optimization of Rete

Ishida [13] proposes a compile-time optimization of the Rete network based
on the evaluation of a local cost function that takes into consideration
statistical measures of previous executions of the system. The measures
take into account not only the size of the Working Memory (WM), but
also the number of changes to WM. This method uses a cost model based
on the number of inter-condition tests and the number of tokens stored in
each node. The cost functions have coefficients that are adjusted according
to the cost of storing and testing in the particular system being used.

Ishida points out that speeding up a particular rule often implies de-
stroying shared joins and slowing down the overall program. Therefore,
the optimization ought to be global. However, the number of possible join
structures is an exponential function of the number of rules. A constructive
heuristic method that deals first with the most expensive rules is used. This
method optimizes the sharing of variables (connectivity constraint), avoids
duplication of substructures (minimal-cost constraint), and promotes the
use of more efficient structures for rules that are computationally more de-
manding at run time by using the statistic results of prior runs (priority
constraint). The result is a Rete network that minimizes the number of in-
tercondition tests performed over the entire network, as well as the number
of tokens passed between nodes. Results indicate a significant improvement
over similar man-made optimizations.

6. Parallel Rule Firing

Gupta [8] states that large scale parallelism is not appropriate for OPS5-
like production systems because changes to WMEs do not have global ef-
fects and because large-scale architecture implies small processing elements.
Therefore, it is better to map the program onto a few powerful processors.
However, recent research, discussed below, has found some ways around this
problem by allowing several rules to fire concurrently and thereby avoiding
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the serial bottleneck of a match-select-act cycle that results in the firing of
only one rule.

Parallel rule firing brings some new problems to the creation of expert
system machines. With many rules firing in the same cycle, it is necessary
to use techniques to ensure that the outcome of the system is correct. By
the same token the designer wants to maximize the amount of parallelism
and improve the load balance among processor nodes, thereby increasing
the hardware usability. Decreasing the internode communication is also
important to increase the speed of the system and reduce its cost. Finally,
the designer wants a system that is focused. That is, the knowledge base
should move towards a desired goal state. This problem of focusing the
system is also referred to as the convergence problem.

6.1. Data Dependency

Firing rules in parallel implies the simultaneous execution of actions of
more than one enabled rule. Since these actions change the contents of the
Working Memory, and the rules are enabled according to the facts stored in
this memory, there might be some compatibility problems between different
rules. Kuo and Moldovan [21] identify three different dependencies among
rules:

Inhibiting. A rule R; inhibits a rule R; if firing R; adds or deletes data
elements such that R; is no longer satisfied.

Output. Two rules R; and R; are output dependent if firing R; deletes
(adds) a data element which is added (deleted) by firing of R;.
Enabling. A rule R; enables a rule R; if firing R; adds or deletes data

elements such that R; becomes eligible to fire.

Inhibiting and output dependencies typically prevent concurrent execu-
tion of rules. Enabling dependencies do not prevent concurrent execution
but indicate communication between rules and may have an impact on
the communication overhead in a parallel implementation. Although they
choose different names and notation, Schmolze [32], Kuo et al. [20], and
Xu and Hwang [42] identify the same set of dependencies.

6.2. Correciness

Correctness becomes an important issue in systems that fire rules in par-
allel. There are two criteria proposed to guarantee that a set of rules fired
in parallel produces a correct result. Ishida and Stolfo [15] propose the
commutativity criterion, 1. e. , a set of rules is parallelizable if and only if
any serial execution of the rules produces the same results. Schmolze [32]



Speeding Up Production Systems 15

proposes the serializability criterion, 1. e. |, a set of rules is parallelizable
if and only if there is a serial order of rule firing that produces the same
results as the parallel one.

While the commutativity criterion requires that all possible sequential
executions produce the same result as the parallel execution, the serial-
izability criterion only requires that there exist one sequential execution
that produces the same result as the parallel execution. Therefore the
commutativity criterion is much stronger and its conservative nature pre-
vents parallelization of rules. For some real-life systems the use of the
commutativity criterion resulted in almost no parallelism possible [32].

The serializability criterion allows much more parallelism but makes it
much more difficult for the programmer to check correctness because all
possible sequential executions must be checked for correctness. If this crite-
rion is expected to be successful in the future, good tools must be developed
to aid the programmer in this work [22].

6.3. Rule Partitioning

Rule partitioning is a major problem in the implementation of parallel pro-
duction systems on multiprocessors. Oflazer [28] proposes a static parti-
tioning of productions among processors to keep a low partitioning overhead
per cycle. Along these lines is the work of Xu and Hwang [42] that uses
simulated annealing techniques along with matrix algebra to identify the
dependencies among rules and produce a good mapping onto a multipro-
cessor. Their goals are to maximize parallelism by distributing workload
evenly and minimize communication costs in message passing among nodes.
The criterion used to decide whether two rules are parallelizable is the com-
mutativity criterion. They use a communication matriz to identify whether
rules have enabling or output dependencies; a parallelism matriz to iden-
tify if the rules are compatible; a distance matriz, that encodes the distance
(number of nodes) between processor nodes in the machine, and thus helps
identify communication costs among nodes; and a firing frequency vector
to encode how often a rule is fired. The output of the simulated annealing
process consists of a configuration matriz that indicates in which processor
node each rule shall be located to achieve the goals.

The cost function used in the annealing process by Xu and Hwang has
three independent components. Each of these components represents a
cost related to one of the goals: loss of parallelism, load imbalance, or
internode communication. At the conclusion of the paper, they state that as
expert systems have unpredictable behavior, dynamic load balance is more
desirable. The firing frequency vector, which collects run time statistics,
is a good instrument for predicting the run-time behavior. This technique
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allows the method of Xu and Hwang to have a performance close to that
of a dynamic distribution of rules among nodes, without paying the cost of
slowing down the system with rule distribution at run time.

6.4. Compiled Parallel Systems

Kuo et al. [20, 19] introduce the Concurrent Rule Execution Language
(CREL). CREL is syntactically equivalent to OPS5.c [6], but instead of
using the recency criterion, the conflict set is resolved nondeterministically.
The programmer must guarantee that any sequential execution is correct.
Kuo defines a mutual exclusion set of rules as a set of rules connected
by cycles of dependencies. CREL utilizes static and dynamic dependency
analysis. The static analysis identifies mutual exclusion sets and groups
rules into clusters. All rules belonging to the same mutual exclusion set
are placed in the same cluster. Therefore, there are no dependencies among
clusters that can prevent parallel firing of rules in different clusters. The
dynamic analysis verifies dependencies among rules within a cluster.

It is desirable to increase the number of clusters, leaving a smaller num-
ber of simpler dependencies to be analyzed at run-time. When a static
clustering is applied by itself to a CREL program, it generally partitions
the program into a single, large cluster. Kuo identifies some optimizing
transforms that result in better clustering. The goals of this optimization
are breaking interference relations, increasing the number of clusters, and
reducing the complexity of the run-time task in each cluster. Listed below
are the optimizing transforms identified by Kuo.

control variable smart. It is not unusual for an expert system program-
mer, to use “control variables” to pass “secret messages” between
rules with the purpose of enabling only a subset of rules at a given
time. When these control variables are identified, the rules can be
divided into sets that test for the same values. As rules belonging
to different sets will never be enabled at the same time, any depen-
dencies among them can be eliminated, allowing the creation of more
clusters.

propagating constants. When rules test the same WME for different
constant values, or when a rule creates a WME with a constant that
differs from a constant tested by the antecedent of another rule, the
dependencies between them can be statically eliminated.

disjoint attribute tests. In CREL, a WME has a class specification that
is used in the construction of the dependency graph. A rule might
test and modify a subset of the attribute-value pairs of the class.
When the set of attributes modified by one rule is disjoint with the
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set of attributes tested by another rule, the dependency between the
rules due to this class can be eliminated.

copy and constraining. If a given attribute has a known finite set of n
values, each rule that uses this attribute can be substituted by a set
of n equivalent independent rules, each one testing for a constant
value.

The run-time checking is twofold. It is necessary to determine which pair
of instantiations in the conflict set of a cluster can possibly fire in parallel.
This verification is independent of any particular variable binding. After
that, it 1s necessary to check which rules in this subset can fire in the
current cycle. This last checking involves variable bindings.

Kuo concludes that because of improvements in the compilation tech-
niques, the focus of attempts to parallelize production systems has shifted.
Match is no longer a primary target for parallelization. The most signif-
icant performance improvement obtained in the CREL system is derived
from run-time checking to allow multiple rule firings in one cycle. This
is due to the reduction in the number of cycles that the system executes,
reducing the number of synchronization points.

Highland and Iwaskiw [12] argue that a knowledge base can be com-
piled by restricting the inferencing techniques available, and consequently
reducing the expressive power of the language. They implement the High
Performance Embedded Reasoning (HiPER) System that compiles not only
the match phase but the inference engine as well. HIPER generates a Rete
network from the text form of the knowledge base, and this network is
traversed to generate procedural code.

6.5. Using Meta Rules to Solve Conflicts

Stolfo et al. [40] have created a parallel rule language for production sys-
tems called PARULEL. This language is tailored for a system with parallel
execution semantics and for the use of redaction meta-rules to solve the
conflict set. Redaction meta-rules have instantiations of the actual rules
as condition elements, and its actions consist on redact, or eliminate, rule
instances from the conflict set. The intention is to allow the programmer to
dictate which instantiations need to be eliminated from the conflict set to
avoid the firing of conflicting rules. Stolfo conjectures that it is inadequate
to use OPS5-like languages for parallel production systems,; claiming that
rather than parallelizing an inherently sequential formalism, one should
program using an inherently parallel formalism. This work suggests that
the language’s execution semantics should be based entirely on parallelism
and explicit program sequentialities. The use of meta-rules is advocated
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as a proper mechanism to express control of execution of an underlying
nondeterministic formalism.

There are some problems with this approach. The burden of specifying
which rule instances should not be fired in parallel is on the programmer.
It is unlikely that robust systems will be constructed without good tools to
help in ensuring correctness. Another problem occurs when the meta-rules
are complex and conflict each other. A possibility of using meta-meta-
rules exists. However, it 1s obvious that this road leads to rather complex
systems.

7. Discussion

On surveying the different initiatives to building expert systems, we have
observed that there are four main types of production systems:

A completely serial system.

— Concurrent match is allowed, but only one rule can fire at a time.
Parallel Rule Firing with synchronization at the end of the matching
phase, followed by generation and resolution of the conflict set.

— A completely distributed system, where there is no generation of a
conflict set, and synchronization is strictly local.

The first approach has been abandoned since the first days of research,
and it has been accepted for some years that the second approach can-
not yield significant speedup. Many research efforts based on the third
approach have been conducted in recent years. However, further re-
search i1s not likely to result in dramatic speed improvements. The gen-
eration/solution of the conflict set is a bottleneck because the length of
the match-select-act loop cannot be reduced to a period smaller than the
lengthiest match operation.

Eliminating global synchronization seems to be very promising and is a
current area of research. Issues of rule partitioning and memory partition-
ing have just started being elaborately addressed. Minimizing the commu-
nication overhead in such a system is a challenge. However, it seems to be
the most promising approach to the problem of further speeding up expert
systems. Similar approaches are being developed in areas not closely re-
lated with the expert system research community, such as the development
of A-Teams and scale-efficient organizations [27, 41]. We anticipate that
some results from these areas might be useful in improving execution of
expert systems.

The 1ssue of correctness must be addressed more carefully. There is a con-
flict between computer architects and system designers on this issue. The
problem is that a criterion such as serializability is very convenient for the
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architectural construction of the machine. However, it results in a heavier
burden for the programmer who has to check correctness, making the con-
struction of a robust expert system very difficult. On the other hand, the
commutativity criterion that makes programming much easier also makes
it almost impossible to find parallelism among different rules. We believe
that a compromise might be reached by building systems that use the se-
rializability criterion at the architectural level and provide software tools
to aid programmers in correctness verification. The use of meta-rules sim-
plifies the hardware. However, because ensuring correctness is completely
the programmer’s responsibility, this approach does not seem to be very
promising. Furthermore, the solution of conflicts at the meta-rules level is
an unsolved problem.

Another important area of research is in Expert Systems languages and
design aid tools. Murthy [27] correctly points out that for some problems,
it is possible to gather a few hundred heuristics and put together an expert
system in a few weeks. However, maintaining these systems during their
lifetimes might cost a lot of time and money. One example is the Rl
system at DEC that at one time required a few hundred people for its
maintenance. Good software engineering techniques need to be adopted in
the construction of expert systems to avoid such situations.

Finally we observe that so far, the research done towards speeding up
production systems via parallel techniques has been short-lived. This has
happened because even the most successful solutions that have been pro-
posed deliver only a small amount of speedup — between one and two
orders of magnitude. Considering the design effort and cost of the paral-
lel techniques, this leverage over sequential implementations is too small
to guarantee a reasonable useful life for the results of such research to be
marketable. Also production systems are quite successfully compiled to
run on sequential machines based on cheap, general-purpose microproces-
sors. This relative success of sequential machines is due to the advances
in process technology and in compiling techniques. This observation sug-
gests that a compiled/parallel execution of production systems might be
promising.
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