University of Alberta

Library Release Form

Name of Author: Christopher Mark Barton

Title of Thesis: Code Transformations to Augment the Scope of Loop Fusion in
a Production Compiler

Degree: Master of Science

Year this Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Christopher Mark Barton
1145 75 Street
Edmonton, Alberta
Canada, T6K 254

Date:







University of Alberta

CODE TRANSFORMATIONS TO AUGMENT THE SCOPE OF LOoOP FUSION IN A
PropucTtioN COMPILER

by

Christopher Mark Barton

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

in

Compiler Optimization

Department of Computing Science

Edmonton, Alberta
Spring 2003






University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Code Transfor-
mations to Augment the Scope of Loop Fusion in a Production Compiler
submitted by Christopher Mark Barton in partial fulfillment of the requirements for
the degree of Master of Science in Compiler Optimization.

José Nelson Amaral (Supervisor)

Duncan Elliot (External)

Jonathan Schaeffer

Date:






Abstract

Loop fusion is a common optimization technique that takes two loops and combines
them into a single large loop. Most of the existing loop fusion techniques focus on
heuristics to optimize an objective function such as data reuse within the fused loop
or parallelizability of the fused loop. Most programs have only a small number of
loops that satisfy all of the conditions necessary for loop fusion to occur. This thesis
identifies conditions that prevent loop fusion and focuses on code transformations
applied to sets of loops to make these conditions satisfiable. It also presents algo-
rithms to fuse loops in the IBM®XL compiler suite that generates code for the IBM
family of PowerPC®processors. This compiler uses a heuristic in the loop distribu-
tor to ultimately determine which portions of a loop should remain in the same loop
nest and which portions should be moved into a different loop nest. Thus, in order
for the loop distributor to make the best possible decisions, maximal loop fusion is
performed first to make the loop bodies as large as possible. The large loop bodies
created by loop fusion can also benefit other loop optimizations which are run after
loop fusion and before loop distribution. All of the algorithms have been imple-
mented in the IBM XL compiler framework and tested on an IBM pSeries™ 630
machine equipped with a POWER4™ processor using the SPEC95 and SPEC2000

benchmark suites.






Contents

1 Introduction

4.1

4.2

4.3

4.4

4.5

1.1 Original Loop Fusionin TPO . . . . . ... ... ... ........
1.2 Known Compiler Techniques . . ... ... ... .. ... .....
1.3 Summary of Major Contributions . . . . . ... ... ... ......
2 Definitions
3 Overview of TPO
3.1 Loop Optimizationsin TPO . . . . .. .. ... ... ... ......
3.1.1 Loop Normalization . .. ... ... ... .. .........
3.1.2  Aggressive Copy Propagation . . . . ... ... ........
3.1.3 Dead Store Elimination . . . . ... ... ... ........
3.14 Loop Unrolling . . . ... ... ... ... ... ...,
3.1.5 Loop Unroll and Jam . . ... ... ... ... ........
3.1.6 Node Splitting . . . . .. ... .. ... ...
3.1.7 Loop Distribution . . .. ... ... ... ...
3.1.8 Loop Permutation . ... ... ... ..............
3.1.9 Index Set Splitting . . . . .. ... ... ... ...
3.2 Loop Structurein TPO . . ... ... ... ... ...
4 Loop Fusion

Requirements for Loop Fusion . . . . . ... ... ... ...
4.1.1 Fusion Candidates . . . . . . . ... ... ..o
4.1.2 Fusion Criteria . . . . . . . . ... o oo
Adjacency . . . . . oL
4.2.1 Identifying Intervening Code . . . . ... ... .. ... ...
4.2.2 Data Dependence Graph Construction . . . . . .. ... ...
4.2.3 Intervening Code Analysis . . . . . . ... ... .. ......
Conforming Bounds . . . . ... ... ... ... . .
43.1 LoopPeeling . ... ... . ... ... ... ...
4.3.2 Guarding Iterations . . . ... ... ... ... ... ... ..
4.3.3 Run time Bounds Check . . . . . . .. .. ... .. ... ...
Control Flow Equivalence . . . . ... ... ... ... ........
4.4.1 Identifying Control Flow Equivalence . . ... .. ... ...
4.4.2 Creating Control Flow Equivalent Loops . . . . . . ... ...
Negative Distance Dependencies . . . . . . .. .. ... ... ....
4.5.1 Loop Alignment . . ... ... ... ... ... . ...,

N N = =

15
16
16
17
18
18
19
20
20
22
23
23



4.6 Ordering Code Transformations . . . . . . . . ... . ... ......
4.6.1 Data Structures. . . . . . . . ..o Lo
4.6.2 Tteration . . . . . . . .. . ...
4.6.3 Loop Fusion Algorithm . . .. ... ... .. ... .. ....
4.6.4 Control Flow Equivalent FusionPass . . . ... .. ... ...
4.6.5 Non Control Flow Equivalent FusionPass . . . .. ... ...

5 Experimental Results
5.1 Compiler Versions . . . .. ... ... ... Lo
5.2 Machine Configuration . . . . . . ... ... ... oL
5.3 Contrived Example . . . . . ... ..o L o oL oL
5.4 Compile Time Results . . . . . . ... ... ... ... .. ... ...
55 Run Time Results . . . .. ... ... .. ... ...

6 Related Work
6.1 Loop Fusion for Parallelism . . . ... ... ... ...........
6.1.1 Typed Fusion . . . . ... ... ... ... .. ...
6.1.2 Unordered and Ordered Typed Fusion . . . ... ... ....
6.2 Loop Fusion for Data Reuse . . . . . . ... ... ... ........
6.2.1 Loop Dependence Graph . . . ... ... ... .. ......
6.3 Bandwidth-minimal Loop Fusion . . . . .. ... ... .. ......
6.4 Weighted Loop Fusion . . . . .. ... ... ... ... .. ......

7 Conclusions

8 Future Work
8.1 Loop Optimization Framework . . . . .. ... ... ... ......
8.2 Interprocedural Loop Fusion. . . . . . ... ... ... ... ...

Bibliography
A Additional Results

B Trademarks

65
65
66
67
70
74

77
7
78
79
80
81
85
88

91

95
95
96

97

101

103



List of Figures

21
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

Simple Control Flow Graph . . . . .. ... ... ... ........ 7
Example Control Flow Graph and Dominator Tree . . . . ... ... 9
Example ECFG . . . . . .. ... . o 10
Types of Data Dependencies. . . . . . ... ... ... ... ..., 11
Nested Loops Example . . . . . . . .. ... .. ... ... 13
High Level Control Flow Through TPO . . ... ... .. ... ... 15
Loop Optimizationsin TPO . . . . . . ... .. .. ... ..., 16
Loop Normalization Example . . . . . ... ... ... ... ..., 17
Aggressive Copy Propagation Example . . . . . . ... ... ... .. 17
Dead Store Elimination Example . . . . . . .. ... ... ... ... 18
Loop Unrolling Example . . . . . . .. ... ... 0. 19
Loop Unroll and Jam Example . . . . ... ... ... .. ...... 19
Loop Unroll and Jam Example . . . . ... ... .. ... ... ... 20
Loop Distribution Example . . . . .. ... . ... ... ... 22
Loop Permutation Example . . . . .. ... ... ........... 22
Index Set Splitting Example . . . . . . ... ... oo 23
Example Loop . . . . . . . .. . o 24
Loop Structure in TPO . . . . . . .. ... ... ... 25
Intervening Code Example . . . . . . ... ... ... ... 30
Example Code Fragment and Associated DDG . . . ... ... ... 32
Splitting and Movement of Aggregate Node . . . ... .. ... ... 33
Algorithm to Check if All Intervening Code Can Be Moved. . . . . . 34
Loop Peeling Example . . . . .. ... ... ... 0oL 36
Iteration Guarding Example . . . . . . .. ... ... L. 37
Index Set Splitting Example . . . . . ... ... ... L. 38
Run time Bounds Check Example . . ... ... ... ........ 39
Algorithm to Fuse Loops Using a Guard Statement . . . . . . .. .. 39
Run time Bounds Check after Index Set Splitting . . . . . . .. ... 40
Possible Control Flow Scenarios . . . . . . ... ... ... ...... 42
Creating Control Flow Equivalent Loops . . . . . . ... .. .. ... 44
Algorithm to Determine if Intervening Code is Movable . . . . . .. 45
Algorithm to Move Intervening Code . . . . . . . ... .. ... ... 46
Loops Separated by Two Decision Points . . . . . .. .. ... ... 47
Unaligned Loop Example . . .. ... ... ... .. ... ..... 48
Array Access Patterns . . . . .. ... oL oL 49
Loop Alignment Example . . . . ... ... ... ... ........ 49



4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Aligned Loops After Index Set Splitting . . . . ... ... ... ... 50

Algorithm to Fuse Unaligned Loops Using Guard Statements . . .. 52
Running Example . . . .. ... ... ... o oL 54
Loop Fusion Algorithm. . . . .. ... ... ... ... ... 55
Control Flow Equivalent Loop Fusion Algorithm. . . . . ... .. .. 56
Running Example . . . .. ... ... ... o oL 58
Running Example . . . .. ... ... .. o oL 60
Non Control Flow Equivalent Loop Fusion Algorithm . . ... ... 61
Contrived Example . . . . . . .. .. 000000 o oo 68
Contrived Example After Loop Fusion with MIC . . . . .. ... .. 69
Order-sensitive Fusion Problem . . . . .. .. ... ... ... .... 79
Order-sensitive Fusion Problem . . . . ... . ... ... ....... 80
An Example LDG for a Given Code Fragment . . . . . . . ... ... 82
Fusion of Loops Containing Independent Statements . . . . . . . .. 83
Fusion of Loops Containing Forward Loop-carried Dependencies . . 84
Loop Fusion to Ilustrate Data Cache Performance . . .. .. .. .. 85
Fusion Graph Example . . . . . . . .. ... ... .. 0oL 87
Loop Fusion to Maximize Data Reuse . ... .. ... .. ... ... 87

Loop Fusion to Maximize Data Reuse . . . ... ... .. ... ... 88



List of Tables

4.1

5.1
5.2
9.3
5.4
5.5
5.6
5.7

Al

Dominance and Postdominance Relationships for Loops . . . . . .. 43
Run Time and Speedups of Contrived Example . . . . . . ... ... 67
Number of Loops Fused for SPEC2000 Benchmarks . . . . . ... .. 71
Number of Loops Fused for SPEC95 benchmarks . . . .. ... ... 71
Compilation Times for SPEC2000 Benchmarks . . . . .. ... ... 72
Compile Times for SPEC95 Benchmarks . . . . . ... .. ... ... 72
SPEC2000 Run Time Results . . . . . . ... ... .. .. ...... 74
SPEC95 Run Time Results . . . . . . ... ... ... ........ 75
SPEC2000 Run Time Results . . . . . ... ... ... ........ 101






Chapter 1

Introduction

This thesis introduces new algorithms that extend the scope of applicability of loop
fusion in a state-of-the-art, robust, commercial compiler. We also describe our
implementation of new techniques to remove loop fusion impeding conditions. Al-
though these techniques are regarded as “known” by compiler practitioners, they
are scarcely described in the literature and, to the best of our knowledge, this is the
first integrated description of the complete set of algorithms required to remove all
of the conditions that prevent loop fusion.

All algorithms were implemented in the IBM XL Compiler Suite which is the
set of compilers commercially shipped by IBM.

Several of our improvements to this compiler framework have passed the standard
IBM regression tests and will be shipped with the next commercial release of the

XL Compiler Suite.

1.1 Original Loop Fusion in TPO

The IBM XL compilers contain a language independent, interprocedural analysis
component called the Toronto Portable Optimizer (TPO). Before our contribution,
TPO contained an efficient but basic and non-aggressive loop fusion algorithm.
This algorithm tested for the existence of conditions that made loop fusion illegal
in order to ensure correct code generation. However, no code transformations were
attempted to remove these conditions and allow fusion to occur.

Due to the importance of loop fusion in TPO’s loop optimization framework, the
necessity for a more aggressive approach was evident. Our initial approach was to
identify common cases that prevented loop fusion and implement code transforma-

tions to allow legal fusion in the presence of these cases. The cases initially identified



were (i) the presence of intervening code between two loops and (ii) loops which
had different iteration counts. Once we handled these two cases successfully, we
addressed the remaining conditions preventing fusion. We implemented instrumen-
tation inside the loop fusion framework to identify situations in which loop fusion
was failing. This instrumentation allowed us to identify and prioritize the conditions
resulting in failure to fuse loops. The priority was established based on the number

of times a specific condition caused loop fusion to fail.

1.2 Known Compiler Techniques

Loop fusion is a very popular compiler optimization and is discussed extensively
in the compiler literature. It is also implemented in several production compilers
including: MIPSpro, Intel’s C++ Compiler, the Open Research Compiler and IBM’s
XL Compiler Suite [35, 6, 3]. As a result, several techniques discussed here are well
known within the compiler community. Specifically, using loop peeling to make the
loop bounds of two loops conform is a well documented optimization[28][1]. Loop
alignment to remove fusion-preventing dependencies from between two loops is also
a well established technique|[1].

The movement of intervening code from between two non-adjacent loops is a
technique that is also well understood and probably implemented in several compil-
ers. However, no formal algorithms have been published that specify how to move
intervening code from between two loops. Furthermore, the techniques presented
here dealing with movement of intervening code have a unique attribute in the way
they reduce the need for rebuilding of internal data structures in TPO, thus reducing

compilation time.

1.3 Summary of Major Contributions

The major contributions of this thesis are

e Description of four algorithms to enhance loop fusion:

— ISINTERVENINGCODEMOVEABLE determines if code located between two

loops can be moved to an alternative location;

— FUSEWITHGUARD adjusts the number of times that the two loops iterate;



— FUSEANDALIGN eliminates dependencies between two loops through the

insertion of conditional code in the loop bodies;

— LooPFUSIONPASS combines all code transformations to fuse loops;

e Development of the new NONCFELOOPFUSIONPASS algorithm that allows
two loops that execute under different run time conditions to be fused through

code duplication.
e Implementation of these algorithms.
e Integration of algorithms into a production compiler.

e Study of the performance of these new algorithms using an industry-standard

set of benchmarks.

e Discussion of further improvements to the loop re-structuring code in a pro-

duction compiler.

The ISINTERVENINGCODEMOVEABLE algorithm determines if statements lo-
cated between two loop bodies can be moved. The movement of code from between
two loops is likely to be implemented in some production compilers. However, no
algorithms to describe the analysis required have been found in the literature.

The FUSEWITHGUARD algorithm causes two loops, which originally would have
iterated a different number of times, to iterate the same number of times. Loop
peeling is a well-known technique that can be used to make two loops iterate the
same number of times [1, 36, 2]. For loop fusion, the disadvantage of loop peeling is
that it generates additional statements outside of the loop body. These statements
can make subsequent attempts to fuse loops more complicated. Our technique uses
a different approach to make the loops iterate the same number of times. It does
not generate statements outside the loop thereby making subsequent loop fusion
attempts more efficient.

The FUSEANDALIGN algorithm allows loops that have fusion-preventing depen-
dencies between them to be fused. It is a variation of an optimization known as loop
alignment. Loop peeling can also be used to perform loop alignment, thus making
two loops fusible [1]. Again, loop peeling is unfavorable in this situation because it
introduces additional statements outside of the loop bodies that can complicate the

fusion of subsequent loops.



The two algorithms implemented in place of loop peeling (FUSEWITHGUARD
and FUSEANDALIGN) solve the same problems that can be solved by loop peeling.
However, they improve the performance of the loop fusion algorithm by making
subsequent loop fusions easier.

The NONCFELOOPFUSIONPASS algorithm allows two loops to be fused even if
it cannot be guaranteed that both loop bodies will execute. No known algorithms
have been developed to fuse loops in this situation and we have not found any
discussions in the literature that address this issue. A detailed evaluation of the
benefits/costs of non-CFE loop fusion with a large a large set of benchmarks is left

for future research.

Finally, the LOOPFUSIONPASS algorithm combines the ISINTERVENINGCODE-
MOVEABLE, FUSEWITHGUARD, FUSEANDALIGN, and NONCFELoOPFUSIONPASS
algorithms listed above. The LOOPFUSIONPASS algorithm has two key properties:
(1) it guarantees that loop fusion can occur before any code transformations are ap-
plied and (7¢) it minimizes the time required to perform loop fusion. Again, there are
no known discussions which detail how to combine code transformations to attempt
and remove all conditions required for loop fusion. Furthermore, this algorithm is
designed to work efficiently within the TPO framework to minimize the compile

time overhead of fusing loops.

The algorithms have been implemented in C++ and integrated into the devel-
opment version of TPO. They can be used to optimize loops written in C, C++
and FORTRAN. Several of the algorithms have passed the standard IBM regression
tests. The remaining algorithms are currently undergoing the regression tests and
are expected to be released as part of the TPO framework with the next official
release of the IBM XL Compile suite.

Chapter 2 provides definitions for terms used throughout this document. Chap-
ter 3 describes TPO in more detail, including a description of the loop optimizations
that it performs. Chapter 4 presents the algorithms developed. Specific combina-
tions of the algorithms have been tested with the SPEC95 and SPEC2000 bench-
mark suites. The results from these tests are presented in Chapter 5. Chapter 6
discusses related work. Chapter 7 discusses conclusions which can be drawn from
the algorithms and the experimental results. Finally, the Future Work chapter of
this thesis lists suggestions for improving the loop fusion algorithms in order to

make loop fusion more profitable. It also includes a discussion of how the loop opti-

4



mization framework within TPO can be enhanced to further benefit from this more
aggressive loop fusion implementation. Appendix A contains results of each opti-
mization applied independently to the SPEC2000 benchmark suite as well as other

combinations of the optimizations performed on specific SPEC2000 benchmarks.






Chapter 2

Definitions

Basic Block A basic block is a sequence of executable statements that has the
following attributes:
e There is a single entry point at the first statement in the block
e There is a single exit point at the last statement in the block

Thus, if one statement in a basic block is executed, all statements in the block

must be executed.

Control Flow Graph A Control Flow Graph (CFG) is a directed multigraph.
Nodes in the CFG correspond to Basic Blocks, and edges in the CFG corre-

spond to transfer of control between basic blocks.

Figure 2.1: Simple Control Flow Graph

Figure 2.1 shows a simple control flow graph. The CFG contains four basic
blocks (B1, B2, B3, and B4), a distinguished Entry Node (S) and a distin-
guished Ezit Node (E). Every CFG must have exactly one entry node and

exactly one exit node.!

'Tf the CFG has multiple entry or multiple exit nodes, a simple graph transformation inserts a
new entry and/or exit node along with the necessary new edges.



Block B1 has two successors. For a given execution of this graph, either B2
or B3 is executed, but not both. The last statement in B1 is a test (e.g., an if
statement). Based on the outcome of the test, one of the two paths is selected

and the subsequent code executed. This test is called a decision point.

Block B4 has two predecessors, meaning that the entry point into B4 can be
from either B2 or B3. B4 is called a join node because it joins two (or possibly

more) different paths.

Dominance A node N; dominates a node N; if every path from the entry node
to N; goes through N;. When N; dominates Nj, the relationship is described
using the the notation IV; <4 N;.

In Figure 2.2(a), B1 dominates B2, B3, B4, B5, and B6 because the only way
to get to each of those nodes is through B1. On the other hand, B3 does not
dominate B5, because there is a path from the entry node to B6 that does

not contain B3. Similarly, B4 does not dominate B5.

A node Nj strictly dominates a node N; if N; dominates N; and N; # N;. A
node N; immediately dominates a node N; if N; strictly dominates N; and

there is no other node Ny, such that N; dominates Ny and N dominates Nj.

Dominator Tree A dominator tree represents dominance relationships. The root
of the dominator tree is the entry node. There is an edge from a node N; to
a node N; in the dominator tree if and only if N; immediately dominates N;.

Every node in the dominator tree only dominates its decedents in the tree.

Figure 2.2(b) presents the dominator tree for the Control Flow Graph of Fig-
ure 2.2(a).

We refer to the sub-tree rooted at a node IV; as the dominator tree of node
N;. The dominator tree for each CFG node can be efficiently represented
using bit vectors. Every node in the CFG has an associated bit in the bit
vector. Consider the bit vector that represents the dominator tree for a node
N;. The number of the CFG node provides the index for the associated bit in
the bit vector. A 0 bit means that the corresponding node in the vector is not
dominated by N;. A 1 bit means that the corresponding node is dominated



B1

a‘m B2 66 |

B3 B5 B4

(a) (b)

Figure 2.2: Example Control Flow Graph and Dominator Tree

For example, the dominator tree for B2 in Figure 2.2(a) is 011110. The dom-
inator tree for B6 is 000001 because B6 only dominates itself.

Postdominance A node N; postdominates a node N; if and only if every path
from N; to the exit node goes through N;. When N; postdominates IV;, the

relationship is described using the notation N; <4 N;.

In Figure 2.2(a), B6 postdominates B1, B2, B3, B4 and B5 because the only
way to get from each of those nodes to the exit node is through B6. On the
other hand, B3 does not postdominate B2 because there is a path from B2 to
B5 that does not contain B3. Similarly, B4 does not postdominate B2.

The postdominance relationship can also be represented in a tree structure.
The root of the tree is the exit node. Every node in the tree only post dom-
inates its decedents in the tree. Postdominator trees for specific CFG nodes
can also be represented using bit vectors. The representation is exactly the
same as for dominator trees, except that the postdominance relationship is

represented instead.

The postdominator tree for B6 in Figure 2.2(a) is 111111. The postdominator
tree for B5 is 011110. Likewise, the postdominator tree for B1 is 100000

because B1 only postdominates itself.

Regions A region is a collection of basic blocks B, in which a header node dom-
inates all the other nodes in the region. A consequence of this definition is
that any edge from a node not in the region to a node in the region must be

incident in the header.



A Single Entry, Single Ezit(SESE) region (also known as a Contiguous region)
is a region in which control can only enter through a single entry node and
leave through a single exit node. Thus, when traversing the nodes in a SESE
region, the following two conditions must be met: (i) from the entry node, all
nodes in the region can be reached, (i4) during the traversal, no node not in

the region is reached before the exit node.

Extended Control Flow Graph We define an Extended Control Flow Graph
(ECFG) as a directed multigraph. The nodes in the ECFG are either basic
blocks or regions. An edge in the ECFG from node N; to node N; indicates
that control can be transferred from N; to N;. A node representing a region

is itself an ECFQG, representing the control flow within the region.

(a) CFG containing a region (b) Resulting ECFG

Figure 2.3: Example ECFG

Figure 2.3 gives an example CFG and the associated ECFG. In Figure 2.3(a),
blocks B2 and B3 form a region because of the back-edge from B3 to B2.
Figure 2.3(b) shows the region (L1) created from B2 and B3. The contents
of L1 is a graph, containing B2 and B3, connected by a directed edge from
B2 to B3 as well as the back-edge from B3 to B2. While not shown in this
example, the contents of a region can contain arbitrary control flow between

basic blocks as well as other regions.

In this text, unless otherwise specified, we assume that nodes in the Extended
Control Flow Graph are numbered starting at 0. In an ECFG diagram, square

nodes represent basic blocks and circular/oval nodes represent regions.

10



Data Dependencies Two statements S; and S; that access the same variable (or

memory location) have a data dependence between them.

There are four kinds of data dependencies that can occur, based on the type
of access that the statements are performing. Figure 2.4 illustrates the four

types of data dependencies between two statements.

1. Input dependence occurs when S; and S; both read from the same loca-

tion (Figure 2.4(a)).

2. Output dependence occurs when two statements both write to the same
location (Figure 2.4(b)). An output dependence from statement S; to .S;

is written as S;0°S;.

3. Flow dependence occurs when S; writes to a location and a subsequent
statement S; reads from the same location (Figure 2.4(c)). A Flow de-

pendence from statement S; to S; is written as Siéij.

4. Anti-dependence occurs when S; reads from a location and a subse-
quent statement S; writes to the same location (Figure 2.4(d)). An

anti-dependence from statement S; to S is written as 5;6°S;.

S0 = X S X = S = X St X =

(a) (b) (c) (d)
Figure 2.4: Types of Data Dependencies

Data Dependence Graph A Data Dependence Graph (DDG) is a directed multi-
graph that represents data dependencies between statements. A node in a
DDG corresponds to either a single statement or a group of statements. Edges
in the DDG represent data dependencies between nodes. A directed edge from
node NN; to N; represents a data dependence from N; to N;. Edges in the DDG
can have attributes that represent the type of data dependence the edge rep-

resents and a distance/direction vector.

11



Normalized Loop A normalized loop is a countable loop that has been modified
to start at a specific lower bound and iterate, by increments of 1, to a specific

upper bound.

Data Dependence in a loop When data dependencies occur between two state-
ments in a loop, they are generally discussed in terms of the distance of the
iteration space containing the statements. That is, when we refer to the dis-
tance of a data dependence in a loop, we are referring to the number of loop

iterations that the dependence crosses.

Loop Invariant Expression A loop invariant expression is an expression whose
result is not based on the iteration of a loop. That is, the expression’s value

does not change throughout the execution of the loop.

Induction Variable An induction variable is any scalar variable for which the
value of the variable on a given iteration of the loop is a function of loop

invariants and the iteration number (0,...,n) [36].

During loop normalization in TPO, two types of induction variables are cre-
ated: controlling induction variable and derived induction variable. The con-
trolling induction variable is the variable that controls the execution of the
loop. The derived induction variable is any variable whose value is a function

of the controlling induction variable.

Lower bound The lower bound of a normalized loop is the minimum value that
the controlling induction variable can be assigned to during loop execution. If
the controlling induction variable is less than the lower bound, the loop body

does not execute.

Upper bound The upper bound of a normalized loop is the maximum value that
the controlling induction variable can be assigned to during the execution of
the loop body. Whenever the controlling induction variable is greater than

the upper bound, the loop body does not execute.

Countable loop A loop is countable when the upper bound and increment of the

loop do not depend on values that are computed in the loop body.

Iteration count The iteration count of a loop is the number of times that the

loop body executes. For instance, a countable loop in the C language, with an

12



upper bound U, a lower bound L and an induction variable that is incremented

by 1 every iteration has an iteration count of U — L + 1.

Nesting level The nesting level of a loop is equal to the number of loops that

enclose it. Loops are numbered from the outermost to the innermost nesting

level, starting at O.

Given two loops, L; and L;, if L; dominates L;, or if L; postdominates L;, then
L; and L; must be at the same nesting level. That is, dominance relationships

are only reported between loops that are at the same nesting level.

Perfect loop nest Loops are perfectly nested if all statements, excluding state-

ments specific to the control of the loop, are located in the innermost loop.
Figure 2.5(a) gives an example of a perfect loop nest. Figure 2.5(b) gives an

example of a loop nest that is not perfectly nested.

for (i=0; i<N; i++)

for (i=0; i<N; i++) {
{ B[i] += C[il;
for (j=0; j<M; j++)
{ for (j=0; j<M; j++)
for (k=0; k<P; k++) {
{ B[il[j1 += C[il[j];
ATil[j1[x] += B[il1[j] - C[jl1[kI;
} for (k=0; k<P; k++)
} {
} ATi]1[j1x] += BLil[j]1 - C[j1[k];
}
}
}
(a) Perfectly Nested Loops (b) Imperfectly Nested Loops

Figure 2.5: Nested Loops Example

Ordering of Loops Whenever there is a dominance relation between two loops L;

and Lj, such that L; dominates L;, we refer to L; as the first loop and L; as

the second loop.

13



14



Chapter 3

Overview of TPO

The Toronto Portable Optimizer (TPO) originated as an interprocedural optimizer
for RS/6000 machines. It has evolved since its conception into a compiler component
that analyzes and transforms programs at both the procedure and program unit
(interprocedural) level. The purpose of TPO is to reduce the execution time and
memory requirements of the generated code. TPO is both machine and source
language independent through the use of W-code as an intermediate language. W-

code is a well established interface between IBM compiler components.

Wode fromfront end

Decode

Control Fl ow
¥ Data Fl ow
Opti ni ze Loop Optimization

v Wode and parti al

; call graph and
| Gollection = synbol table to

l link pass

Encode

v
Wode to back end

Figure 3.1: High Level Control Flow Through TPO

TPO can perform both intraprocedural and interprocedural analysis. Intrapro-
cedural analysis is performed on individual files at compile time. Interprocedural
and intraprocedural analysis is performed on an entire program at link time. Fig-
ure 3.1 shows the high level flow of control through TPO. At compile time, input
into TPO is provided from the compiler front end. At link time, input into TPO is
provided from object files and libraries, some of which may have been compiled by

TPO. Object files compiled by TPO are supplemented by W-code and a partial call

15



graph and symbol table.

The three main groups of optimizations performed in TPO are control flow
optimizations, data flow optimizations, and loop optimizations. We focus on the
loop optimizations. While these optimizations can be performed at both compile
time (intraprocedural scope) and link time (interprocedural scope) the focus is on
the compile time pass. The future work section discusses applying the loop fusion

transformations during the link pass.

3.1 Loop Optimizations in TPO

Loops are often a source of performance improvement opportunities because of the
repeated execution of statements. Loop optimization in TPO has several objectives
including: reduction of path length in the loop body, improvement of memory refer-
ence locality to improve the usage of the memory hierarchy (i.e., more efficient use
of data caches) restructuring of loops for shared memory parallel execution and the

exploitation of vector libraries.

AggressveCopy | _ | Dead Store | o : | Loopunroll | Node
> “Propagation P Elimination | > LoopFusion == "o am 1 splitting
L Scalar - Loop - Loop < | Loop Unroll
Expansion “7| pistribution | © | Permutation [ © | andJam

Figure 3.2: Loop Optimizations in TPO

The execution sequence of the major loop optimizations performed in TPO is
seen in Figure 3.2. The following sections discuss these optimizations, providing
examples to illustrate the code transformations that they perform and, where ap-

plicable, how they can improve the performance of loops in a program.

3.1.1 Loop Normalization

Loop normalization modifies a countable loop to start at a specific lower bound and
iterate, by increments of 1, to a specific upper bound. In TPO, normalized loops
have a lower bound of 0. The upper bound is computed based on the original lower
bound, upper bound, and increment of the loop to ensure that the loop iterates
the correct number of times. Uses of the induction variable in the loop body are

modified to maintain consistency with the original loop. Figure 3.3(a) shows an

16



example of an un-normalized loop. The normalized version of the loop is seen in

Figure 3.3(Db).

for i=10,n for i=0,n-10
A[i] = A[i+2] * 2 A[i+10] = A[i+12] * 2
B[i+1] = A[i-1] + 3 B[i+11] = A[i-9] + 3
endfor endfor
(a) Un-normalized Loop (b) Loop after normalization

Figure 3.3: Loop Normalization Example

Whenever possible, the compiler creates bump normalized loops. A loop is bump
normalized if its first iteration is 0 and the induction variable is incremented by 1 in
every iteration of the loop. Loops whose induction variables increment by 1 every
iteration are described as having a stride of 1. A loop that is not countable cannot

be bump normalized.

3.1.2 Aggressive Copy Propagation

Copy propagation identifies statements of the form a =< ezpr >. It then replaces
the use of a with < ezpr > in subsequent statements (as long as a is not redefined).
Typical copy propagation algorithms to not move code inside a loop body to pre-
vent enlargement of the dynamic path length of the loop body. Aggressive copy
propagation, however, does move statements inside a loop body to create perfectly
nested loops. Figure 3.4 demonstrates the aggressive copy propagation performed
in TPO. Figure 3.4(a) shows the initial code and Figure 3.4(b) shows the code af-
ter aggressive copy propagation. Aggressive copy propagation enables other loop

transformations. The computation of x * y can be later moved out of the inner

loop.
for(i=0 ; i<k ; i++) for(i=0 ; i<k ; i++)
{ {
S = X¥y; S = X¥y;
for(j=0 ; j<n ; j++) for(j=0 ; j<mn ; j++)
VIil[31 = VI[i1[3] + s; VIil1[j1 = VIi1[§] + x*y;
} }
(a) Original Code (b) Code after aggressive copy propagation

Figure 3.4: Aggressive Copy Propagation Example

17



3.1.3 Dead Store Elimination

Dead store elimination identifies assignments to variables that are never used and
thus not necessary. This optimization is used with aggressive copy propagation to
create perfect loop nests. Figure 3.5(a) shows the code created by aggressive copy
propagation in the previous section. We see that the assignment to s before the
second loop is not necessary because s is no longer used anywhere. Thus, it can be

removed, creating the code seen in Figure 3.5(b).

for(i=0 ; i<k ; i++) for(i=0 ; i<k ; i++)
{ {
s = x*y; for(j=0 ; j<n ; j++)
for(j=0 ; j<n ; j++) {
{ VIi1[j]1 = VIi1[j] + =x*y;
VIil[3] = V@il [5] + =xxy; }
} }
}

(a) Code after aggressive copy propagation (b) Code after dead store elimination

Figure 3.5: Dead Store Elimination Example

Figure 3.5 shows that the combination of aggressive copy propagation followed
by dead store elimination has created a perfectly nested loop. While this loop does
need to compute the value of x * y in every iteration, the perfectly nested loop can
be advantageous for both loop interchange and loop unroll and jam. Furthermore,
the computation of x * y is loop invariant code and thus may be moved back outside

the loop after the loop optimizer has completed the loop transformations.

3.1.4 Loop Unrolling

Loop unrolling duplicates the body of a loop several times and modifies the loop
control so that it executes fewer iterations. The number of copies of the loop body
created is called the unrolling factor. If the upper bound of the loop is not a multiple
of the unrolling factor, a loop residual must be added after the loop. This residual
contains the remaining iterations of the loop body.

Loop unrolling is used to reduce the overhead of executing a loop. For example,
given a loop L; that iterates n times, the exit test of the loop (latch condition)
must be executed n times. If the loop is unrolled by a factor of 2, the exit test
is only executed n/2 times. Loop unrolling can also benefit other optimizations,

including common-subexpression elimination and instruction scheduling. Common-

18



subexpression elimination identifies repetitive computations of the same expression
and replaces the computation with the use of a stored value. Instruction sequencing
determines the order of the instructions in memory when the program is being
executed. On the other hand, loop unrolling results in more code, which can impact

the performance of the instruction cache.

for (i=0; i < n; i+=4)

{
for (i=0; i < n; i++) A[i]l = A[i] + BI[il;
{ A[i+1] = A[i+1] + B[i+1];
A[il = A[il + BLil; A[i+2] = A[i+2] + B[i+2];
} A[i+3] = A[i+3] + B[i+3];
}
(a) Original Loop (b) Loop unrolled by a factor of 4

Figure 3.6: Loop Unrolling Example

Figure 3.6(a) shows a simple loop. Figure 3.6(b) shows the loop that is generated
by unrolling by a factor of 4. Note that the increment of the induction variable in

Figure 3.6 has been modified to increase by 4 for every iteration of the loop.

3.1.5 Loop Unroll and Jam

Loop unroll and jam is an optimization performed to increase data reuse within
iterations of a loop. It operates on loop nests. The transformation can be visualized
in two stages: () unroll the outer loop, creating multiple copies of the inner loop
and (i7) fuse the copies of the inner loop. Figure 3.7 shows an example loop before
unrolling (a) and after unrolling by 2 (b). Figure 3.8(b) shows the final loop created

after the two inner loops are jammed together.

for (i=0; i < n; i+=2)

{
for (i=0; i < n; i++) for (j=0; j < m; j++)
{ {
for (j=0; j < m; j++) A[i]l = A[i] + B[jl;
{ }
A[il = A[il + B[jl; for (j=0; j < m; j++)
} {
} A[i+1] = A[i+1] + B[j];
}
}
(a) Original Loop (b) After outer loop unrolled by 2

Figure 3.7: Loop Unroll and Jam Example

19



for (i=0; i < n; i+=2;)

{ for (i=0; i < n; i+=2;)
for (j=0; j < m; j++) {
{ for (j=0; j < m; j++)
A[il = A[il1 + B[jl; {
} A[il1 = A[4] + BLj1;
for (j=0; j < m; j++) A[i+1] = A[i+1] + B[jl;
{ }
A[i+1] = A[i+1] + B[j]; }
}
}

(a) Outer loop unrolled by 2 (b) After jamming inner loops

Figure 3.8: Loop Unroll and Jam Example

3.1.6 Node Splitting

TPO allows complex statements in the code representation. This is done to keep
the size of the Data Dependence Graphs manageable. Each complex statement is an
aggregate node in the DDG. Since it represents complex statements, an aggregate
node may participate in multiple dependence relations. Node splitting separates a
complex statement into two or more simpler statements. Each of these simpler state-
ments participates in a disjoint dependence relation. In some cases, node splitting
allows loop distribution (see Figure 3.2) to distribute two portions of a statement
into separate loop nests. For example, if one part of a complex statement has a
self-dependence, splitting the statement into two simpler statements allows distri-
bution to put the two statements into different loops, one that is parallelizable and

one that is not.

3.1.7 Loop Distribution

Loop distribution focuses on splitting a single loop nest into multiple loop nests. In
TPO, loop distribution decides which statements should remain together in a loop
nest and which statements should be moved to a separate loop. The resulting loops
are formed to make optimal use of superscalar execution units, registers, and caches.

The loop distributor begins by building a DDG for a given loop nest. The
DDG contains both single statement nodes and aggregate nodes. Aggregate nodes
and single statement nodes that form strongly connected components in the DDG
are grouped together to form m-nodes, named after the definition by Kuck [21].
For example, nodes representing loops in the ECFG form m-nodes in the DDG.

20



Degenerate m-nodes are formed from the remaining DDG nodes that are not part
of any strongly connected component. Therefore, a m-node may contain a single
statement or an arbitrarily complex portion of the code. m-nodes are the units that

the distributor works with.

There are several characteristics of m-nodes that are relevant to the loop distri-
bution algorithm. These include: register requirements,' load/store usage, number
of floating point and fixed point operations executed and the number of prefetchable
linear data streams.? The distributor also takes into consideration whether the code
in a m-node is self-dependent or not. A m-node that is not dependent on itself is

parallelizable and should be grouped only with other non-self-dependent m-nodes.

Once the m-nodes are formed, the distributor creates an affinity graph. This
is an undirected weighted graph whose nodes correspond to m-nodes and whose
weighted edges represent the affinity between the nodes. Currently, the only measure
of affinity used in the compiler is the potential for data reuse between the code
in the nodes. The compiler uses a greedy algorithm to distribute nodes in the
affinity graph. Nodes are gathered in decreasing order of desirability. The decision
about grouping two m-nodes is based not only on the affinity in the graph, but
also on whether grouping would satisfy data dependencies and whether grouping
is desirable based on node attributes. For example, if the aggregation of two 7-
nodes would exceed the capacity of the existing prefetching streams, the nodes are
usually not grouped together. Similarly, self-dependent (non-parallelizable) nodes
are usually not grouped with non-self-dependent (parallelizable) nodes. Decisions

about aggregating nodes are conditioned to the potential increase in data reuse.

Figure 3.9 gives a sample loop nest before distribution (a) and after the loop
nest is distributed (b). The loop distributor creates two separate loop nests. The
first loop computes all values of a[i]. This computation is moved into a separate
loop to create a perfect loop nest which can benefit later loop optimizations. The
second loop nest computes the values of cli][j] and e[i][j]. These two computations

remain together because there is data reuse (the value of a[i]) in both computations.

'"Loop body size is used as an estimator for register pressure.

2The number of prefetchable linear data streams is an important characteristic for the opti-
mization of code for the POWERA4 because this architecture has a hardware stream prefetching
mechanism that is triggered by regular data accesses.

21



for (i=0; i<n; i++)

{
for (i=0; i<n; i++) ali] = b[i] * r;
{ }
ali] = b[i] * r; for (i=0; i<n; i++)
for (j=1; j<n; j++) {
{ for (j=1; j<n; j++)
c[il[j]1 = d[i1[j-1]1 / alil; {
el[il[j1 = e[i1[j]1 * alil; clil[j]1 = d[i1[j-11 / alil;
} e[il[j]1 = e[i][j] * alil;
} }
}
(a) Original loop nest (b) Loops created by distribution

Figure 3.9: Loop Distribution Example

3.1.8 Loop Permutation

If a loop nest is perfectly nested, in many cases it is possible to reorder the loops
in the nest without affecting program results. This reordering might improve the
locality of reference of arrays used in the loop (i.e., reordered memory accesses make

better use of the data caches). It can also be used to expose larger units of work to

parallel processors.3
for (i=0; i<n; i++) for (j=0; j<n; j++)
{ {
for (j=0; j<n; j++) for (i=0; i<n; i++)
{ {
aljI1[i] = al[jl[i]1 + b[j1[il; aljI1[i] = al[jl1[i]l + b[j1[il;
} }
} }
(a) Original loop nest (b) Loop nest after permutation

Figure 3.10: Loop Permutation Example

Figure 3.10 shows an example of loop permutation. In Figure 3.10(a) the inner
loop is modifying the induction variable j used to access the first dimension of the
arrays a and b. This access order may lead to poor cache performance because in
C arrays are organized in memory in a row first order. In Figure 3.10(b) the loops
are reordered so that the inner loop is modifying the induction variable accessing
the second dimension of the arrays. When the size of the arrays is large, this
loop permutation results in improved cache performance and in a reduction of the

execution time of the program.

3Increasing parallelism is not currently considered when performing loop permutation in TPO.

22



3.1.9 Index Set Splitting

Loops that contain control flow can be split into multiple loops containing no con-
trol flow if the condition controlling the control flow is variant with the loop. Fig-
ure 3.11(a) gives an example loop that contains control flow. The condition sur-
rounding the control flow compares the induction variable i with the value of m.
Thus, the condition is variant with the loop. Figure 3.11(b) shows how the original

loop is split into two separate loops.

for (i=0; i < n; i++) for (i=0; i < m; i++)
{ {
if (i < m) ali] = a[i] * b[il;
a[i] = a[i] * b[il; 3
else for (i=m; i<n; i++)
alil = a[i] * al[il; {
} a[i]l = a[i]l * a[il;
}
(a) Original loop (b) Loops generated by index set splitting

Figure 3.11: Index Set Splitting Example

The resulting loops are guaranteed to produce the same result as the original
loop. The relationship between n and m does not need to be known at compile time.
If n < m, at most one path of the conditional statement is executed. In this case, the
second loop created in Figure 3.11(b) never executes because the initial condition

of this loop is not satisfied.

3.2 Loop Structure in TPO

The structure of loops in TPO corresponds to the general description of regions in
the definitions section. A loop in the source code is transformed into five distinct
parts in TPO, each having its own purpose. Figure 3.12 shows an example loop in
C source code (a), and the loop representation within TPO (b).

The first branch in the code of Figure 3.12(b), s1, protects the initial execution
of the loop. In TPO this branch is called the guard branch for the loop. The purpose
of the guard branch is to ensure that no code between the guard branch and the
branch target (s7) is executed if the original loop would not have been executed at
least once. If the compiler can ensure that the test condition always evaluate to
true (i.e., the initial value of the induction variable is always less than the upper

bound) the guard branch can be removed by later optimizations. However, the

23



s1: if (k >= j) goto L1

s2: 1 =0

for (i=k; i < j; i++) s3: L2:

{ s4:  A[i+k] = A[i+k] + 2;
A[i]l = A[i] + 2; sb:  B[i+k] = B[i+k-1] * 3;
B[i] = B[i-1] * 3; s6: i=1i+1;

} s7: if (i < j-k) goto L2

s8: Li:
(a) Source Loop (b) TPO Representation

Figure 3.12: Example Loop

guard branch is always present while loop optimizations are performed. All loops
in TPO are changed into do loops in which the exit condition is tested at the end
of the iteration, instead of the beginning of the iteration. This transformation is
always legal because the initial execution of the loop body is protected by the guard

branch.

The initialization of the induction variable (s2) is placed under the guard branch

to prevent unnecessary execution of instructions when the loop does not execute.

The body of the loop remains the same; the assignments to the two arrays A and
B remain unchanged. The latch branch (s7) tests whether the induction variable is
within the original bounds. As long as it is, control continues to jump back to the
first statement in the loop body. As soon as the induction variable has passed the

upper bound, control falls through to the second label.

Figure 3.13 gives a general overview of the parts of a loop structure in TPO. The
guard block is the block immediately preceding entry into a loop. The guard branch
protects the execution of the loop and is the last statement in the guard block. If the
guard branch evaluates to true, a jump instruction is executed and control jumps
directly to the exit block, skipping the loop entirely. If the guard branch evaluates
to false, all blocks representing the loop are executed at least once.

The loop prolog is located immediately below the guard branch of the loop, before
the loop body. Since it is not included in the loop body, only instructions that are
invariant to the loop are located in the loop prolog. The loop prolog normally
contains the initialization of the induction variables used in the loop body, as well
as any loop invariant code that has been moved out of the loop by the loop invariant

code motion optimization.

The loop body contains all of the loop variant statements that were in the orig-

24



CGuard
Bl ock

Loop
Prol og

Loop
Body

Loop
Epi | og

Exi t
Bl ock

Figure 3.13: Loop Structure in TPO

inal loop plus any additional statements that were moved into the loop body by
optimizations.* Note, in Figure 3.13, that the loop body can contain an arbitrary
number of basic blocks with arbitrary control flow between them. The last state-
ment of the last basic block in the loop body is called the Latch Branch. It is a
test to determine if the current value of the induction variable is within the bounds
set by the original loop. If it is, the back edge branch is taken, resulting in the
execution of another iteration of the loop. If the value is not within the bounds, the
back edge is not taken and control flows to the loop epilog.

The loop epilog block contains statements to be executed after the loop body
has executed but only if the loop body was executed. Like the loop prolog, the loop
epilog only contains statements that are invariant to the loop body. For instance,
any statements that were identified as loop invariant but could not be put into the
loop prolog due to data dependencies would be placed in the loop epilog. It is
possible that the loop epilog remains empty in which case it is removed by a later
optimization.

The beginning of the ezit block contains the target of the guard branch. This is
the first block executed if the guard condition protecting the loop evaluates to true

and the jump is taken.

4 Aggressive copy propagation is one example of an optimization that can move statements into
a loop body.

25



26



Chapter 4

Loop Fusion

4.1 Requirements for Loop Fusion

There are two different sets of conditions that need to be checked during loop fusion.
First, each loop needs to be checked individually to determine if it can be fused with
other loops. Second, pairs of loops are checked to verify that specific conditions are
met, or can be met through code transformations. The algorithms presented here

focus on making the latter conditions satisfiable.

4.1.1 Fusion Candidates

The first step of loop fusion is to create a set of Fusion Candidates. This set is
created from all of the loops in a given procedure. A series of checks is performed
on each loop to verify that it can be fused with other loops. Every fusion candidate

must pass all of the following criteria:

1. The loop must be bump normalized. If loop normalization was unable to

normalize a loop, the loop cannot be fused.

2. The loop must have a single entry point and a single exit point. It must not
be possible to execute any statement in the loop body without going through
the entry point. Similarly, once inside the loop, it must not be possible to
execute any statement not in the loop without first going through the exit
point. For example, loops containing break statements are not candidates for
fusion. This condition, combined with the first condition ensures that the
number of times the loop executes is based solely on the upper bound of the

induction variable.

27



3. Loops marked as parallel (either by the programmer or by the compiler) are
not candidates for fusion. This is because the resulting fused loop may not be
parallelizable due to loop-carried dependencies introduced during fusion. It is
possible to fuse parallel loops with other parallel loops provided the resulting
loop does not contain any loop carried dependencies (i.e., the resulting loop
is also parallel). This case is not currently considered when performing loop

fusion.

4. The loop cannot contain any volatile memory references.

5. The loop cannot contain any statements (including some function calls) that
have side effects.
Side effects are externally visible changes to the environment e.g., Input/Output.

While it may be possible to move such statements correctly, the compiler treats

them conservatively and thus does not move them.

A statement that invokes a function that cannot be proven to not have side
effects is considered to have side effects. In other words, if the compiler cannot
prove that the function call does not have side effects, it conservatively assumes

that it does.
6. The loop must be guarded.

7. The loop must represent a contiguous region. This is also used to ensure that

the loop does not have any side entrances or side exits.

4.1.2 Fusion Criteria

In order for a pair of fusion candidates, L; and Ly, that satisfy all the conditions

above to be fused, the following four conditions must be met:

1. L; and Ly must be adjacent, i.e., there cannot be a statement S; such that S;

executes after L; and before Ly.

2. L; and Ly must be conforming, i.e., both L; and L;, iterate the same number

of times.

3. L;j and Lj, must be Control Flow Equivalent, i.e., when L; executes, Lj also

executes or when Lj executes, L; also executes.

28



4. There cannot be any negative distance dependencies between L; and L;. A
negative distance dependence occurs between L; and Ly, where L; dominates
Ly, when at iteration m, Lj uses a value that is computed by L; at a future

iteration, m + n (where n > 0).

These four conditions ensure that the program execution produces the same
results after two loops are fused.

The following sections present algorithms that are applied when one of the above
conditions is not met. The goal of the algorithms is to manipulate the control flow

of the program to make the condition satisfiable.

4.2 Adjacency

If there is code between two loops they cannot be fused. However, in many cases
this code can be moved to another place to enable loop fusion.

The extended control flow graph is used to determine if two loops are adjacent.
Let L; and L; be two nodes in the ECFG, each representing a loop, such that L;
dominates L;j. One of the conditions for a loop to be a fusion candidate is that it
must have only one entry point and one exit point. Thus, the following condition
always determines if the two loops are adjacent: if the sole immediate successor of
L; is Lj, and the first statement in L; is the guard branch of L;, the two loops are
adjacent.

When two loops are not adjacent, there is Intervening Code between them.
Movement of the intervening code to other places can be attempted using the fol-

lowing algorithm.

4.2.1 Identifying Intervening Code

The dominator and postdominator trees are used to identify the ECFG nodes that
intervene between the two fusion candidates. We use one bit vector to record the
nodes that are strictly dominated by the first loop and a second bit vector to record
the nodes strictly dominated by the second loop. A simple bit vector subtraction
produces a record of intervening nodes.!

In the ECFG shown in Figure 4.1 two fusion candidates, A and B, are separated

by intervening code. Each ECFG node is annotated with a unique number for

!The bit vector subtraction is performed using an and-with-compliment operation on the two
bit vectors.

29



Figure 4.1: Intervening Code Example

identification. Lets assume that this ECFG contains 20 nodes, numbered 0 through
19. Nodes 0 to 5 are located above Loop A (i.e., Loop A postdominates nodes 0 to
5). Nodes 16 to 19 are located below Loop B (i.e., Loop B dominates nodes 16 to
19).

The strict dominator tree for Loop A, is represented as the following bit vector:

19 18 17 16 15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 O
(tfifrfrfejufaifejufifujtfrjofofofojo[o]o]

The strict dominator tree for Loop B is represented as the following bit vector:
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[(t[t]t1[1]oJofofojofofojofofofofofo0fo[0]O]

The difference between the two bit vectors results in the following bit vector:
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0JoJofofJrJufifrjufifurjtfrfofofofojofo]o]

The resulting bit vector yields nodes 7, 8, 9, 10, 11, 12, 13, 14, and 15 as
intervening nodes. Notice that node 15 contains Loop B. We include node 15 in the
list of intervening nodes because there could be statements in node 15 that must
be moved before fusion can take place. These statements in node 15 would appear

before the guard branch of Loop B.

30



4.2.2 Data Dependence Graph Construction

The algorithm that attempts to move intervening code must analyze (i) dependen-
cies between the loop bodies and the intervening code, and (i7) dependencies among
the statements of the intervening code. The movement of intervening code cannot
violate any data dependencies between the loops and the moved statements. In
other words, a statement S cannot be moved above Loop A if there is a flow, out-
put, or anti-dependence between S and Loop A. A similar argument can be made if

trying to move S below Loop B.

A group of intervening statements can be split by moving some of the state-
ments above the first loop and the remaining statements below the second loop.
The splitting of the intervening code cannot violate any data dependencies among
the statements moved. For example, if two intervening statements S; and S; are
originally executed in the order S; followed by S; and there is a dependence between

S; and S, the statements cannot be reordered such that S; is executed before S;.

Intervening statements that have side effects cannot be moved. If the intervening
code contains any statements with side effects, the algorithm cannot make the two

loops adjacent and thus the two loops cannot be fused.

Once all of the intervening ECFG nodes between the two loops have been iden-
tified, a Data Dependence Graph (DDG) is built using the statements in the ECFG
nodes. The DDG is used to determine which statements can be moved from between
the two loops while maintaining the necessary relative ordering of the intervening
statements. The DDG contains two types of nodes: single statement nodes and
aggregate nodes. Single statement nodes contain a single statement from the list of
intervening ECFG nodes. An aggregate node is formed by a minimal SESE region,
i.e., the minimum number of nodes required to form a valid SESE region. All of

the basic blocks that form an aggregate node must be moved together.

Aggregate nodes are used to make the analysis and the movement of statements
easier. An aggregate node represents a collection of statements that, for convenience,
must remain together. It would be possible to treat every node (or even every
statement) in a region individually. This would allow the region to be split and
parts of it to be moved separately. However, it would be necessary to duplicate
the conditional branch in every place a member of the region is moved to. Thus,

treating the entire region as a single unit results in a simpler analysis and movement

31



of code.

In Figure 4.1, each statement in node 7, except for the branch statement at
the end, form a single node in the DDG. The branch statement in node 7, plus all
statements in nodes 8 and 9 form an aggregate node. Each statement in node 10
form a single statement node in the DDG. Node 11 is an aggregate node. As with
node 7, all statements before the branch statement in node 12 form single nodes.
The branch statement in node 12 plus every statement in node 13 form a third
aggregate node. Finally, all statements in node 14 form single statement nodes.

Nodes in the DDG are connected using directed edges that represent dependen-
cies between the nodes. An edge from node NN; to N; in the DDG indicates a data
dependency from N; to N;. Output, flow, and anti-dependencies are monitored

because they prevent reordering of statements.

sl: a=>b+ c;

s2: c d + e; a
s3: if k < 10 @
s4: f =c % 2;
sb: g =h+ 3;
s6: else f @ o
s7: g =h+ 2;
s8: f =c * 3;
s9: h = a + c; @
s10: a = h + b; f
(a) Example code segment (b) Associated DDG

Figure 4.2: Example Code Fragment and Associated DDG

Figure 4.2(a) gives an example code segment containing 10 statements. The
associated DDG is shown in Figure 4.2(b). The nodes in the DDG are labeled with
their corresponding statement number, with the exception of al which represents
the aggregate node containing s3, s4, s5, s6, s7 and s8. The letters £, o and a on
the directed edges represent flow, output and anti-dependencies between two nodes
in the DDG.

If statements s3-s8 are not treated as a single unit, the conditions s3 and s6
must be replicated in every location that the statements s4, s5, s7 and s8 are moved
to. For example, if the goal was to move the conditional statement (starting at s3
and ending at s8), Figure 4.3 shows the code generated if the aggregate node a1
in Figure 4.2(b) is broken. If the aggregate node is not broken, the code cannot be

32



moved.

s3: if k < 10

sb: g =h+ 3;
s6: else

s7: g =h+ 2;
sl: a=D>b + c;
s2: ¢ =d + e;
s9: h =a + c;
s10: a = h + b;
s3: if k < 10
s4: f =c % 2;
s6: else

s8: f =c¢c % 3;

Figure 4.3: Splitting and Movement of Aggregate Node

Figure 4.3 demonstrates that while the splitting of the aggregate node allows the
code to be moved, it requires the duplication of the test condition. For this reason,

aggregate nodes are forced to move as a single unit.

4.2.3 Intervening Code Analysis

After the intervening code has been identified, we must determine if the interven-
ing code can be moved from between the two loops. The DDG of the intervening
code represents a partial ordering that intervening code statements (or groups of
statements) must adhere to. Figure 4.4 provides an algorithm to determine if all in-
tervening statements between two loops, L; and Ly, can be moved from between the
loops, thus making them adjacent. The algorithm begins by gathering all statements
that are located between L; and Ly, using the technique described in 4.2.1 (Step 1).
It then checks to make sure that none of the intervening statements has side effects,
and thus is non-movable (Step 2). Step 4 builds a Data Dependence Graph of all
of the intervening statements using the methods outlined in Section 4.2.2. A queue
data structure is used to collect all of the nodes that can be moved around one of the
loops while maintaining the partial ordering of statements provided by the DDG.

The DDG contains at least one node that has no predecessors and at least one
node that has no successors. Nodes in the DDG that have no predecessors can
be executed before all other nodes in the DDG. Nodes in the DDG that have no
successors can be executed after all other nodes in the DDG.

To find the nodes in the DDG that can be moved above the first loop, all of
the nodes that have no predecessors are added to the MoveQueue (Step 6). Nodes

33



ISINTERVENINGCODEMOVABLE(L;, Ly)
1. InterveningCodeSet < {az|L; <4 az and Ly <pa Gz}
2. if any node in InterveningCodeSet is non-movable
3. return False
4. Build a DDG G of InterveningCodeSet
5. CanMoveUpSet <+ 0
6. MoveQueue <~ Nodes in G with no predecessors
7. while MoveQueue # 0
8. N; <+ Head of MoveQueue
9. if L; § N;
10. CanMoveUpSet < CanMoveUpSet U{N;}
11. Add each immediate successor of N; to tail of MoveQueue
12. endif
13. end while
14. CanMoveDownSet < 0
15. MoveQueue < Nodes in G with no successors
16. while MoveQueue # 0
17. N; + Head of MoveQueue
18. if N; 5 Ly
19. CanMoveDownSet < CanMoveDownSet U{N;}
20. Add each immediate predecessor of NV; to tail of MoveQueue
21. endif
22. end while
23. if InterveningCodeSet —
(CanMoveUpSet U CanMoveDownSet) = §§
24. return True
25. return False

Figure 4.4: Algorithm to Check if All Intervening Code Can Be Moved.

34



are then removed from the head of the MoveQueue and data dependence analysis
is performed between every statement in the first loop and every statement in the
node (Steps 8 and 9). Let’s consider the analysis for a node N;. If there are
no dependencies between any statement in the first loop and any statement in IV;,
N; fLyg, then Nj; is added to the CanMoveUpSet and all the immediate successors
of N; in the DDG are added to the MoveQueue (Steps 10 and 11). This continues
until the MoveQueue is empty. Once the MoveQueue is empty, all of the DDG nodes
that are in the CanMoveUpSet can be moved above the first loop.

To find all of the nodes in the DDG that can be moved below the second loop,
all of the nodes that have no successors are added to the MoveQueue (Step 15).
Nodes are then removed from the head of the MoveQueue and data dependence
analysis is performed between all statements in the node and all statements in the
second loop (Steps 17 and 18). Again, consider a node N; from the head of the
MoveDown queue. If there are no data dependencies between any statement in NN,
and any statement in second loop, N; is added to the CanMoveDownSet and all
of the immediate predecessors of N; are added to the MoveQueue (Steps 19 and
20). This repeats until the MoveDown queue is empty. When the MoveQueue is
empty, all of the DDG nodes in the CanMoveDownSet can safely be moved below

the second loop.

At the end of this analysis, if the collection of nodes in the CanMoveUpSet and
the CanMoveDownSet contains all of the nodes that were in the InterveningCodeSet,
then all of the intervening code between the two loops can be moved. If all of the
code cannot be moved, the two loops cannot be made adjacent and thus cannot be

fused.

4.3 Conforming Bounds

The bounds of two loops do not conform when the two loops have different iteration
counts. This means that the body of one loop executes more times than the body
of the other loop. When the difference in iteration counts of two loops cannot be
determined at compile time, the compiler assumes that they are different. There are
several methods to modify two loops with different iteration counts to make them

conform.

35



4.3.1 Loop Peeling

One approach is to use loop peeling to replicate iterations of the loop with the higher
execution count. After peeling we have two loops with identical iteration counts and
residual code comprised of the peeled iterations. If the iteration count of the first
loop is higher than the one of the second loop, peeled iterations are placed before
the first loop. If the iteration count of the second loop is higher than the one of the
first loop, the peeled iterations are placed after the second loop. This ensures that
there is no intervening code placed between the two loops. Figure 4.5 demonstrates

loop peeling.

A[0] = A[0] * 2
for (i=0; i < n; i++) A[1] = A[1] * 2
{ for (i=0; i < n-2; i++)
Ali]l = A[i] * 2 {
} A[i+2] = A[i+2] * 2
for (j=0; j < n-2; j++) }
{ for (j=0; j < n-2; j++)
Al3]1 = Al3]1 + 3 {
} A[j]1 = A[j1 + 3
}
(a) Original Loops (b) After Peeling First Loop

Figure 4.5: Loop Peeling Example

Loop peeling has a disadvantage in that peeled iterations of a loop are placed
between other loops, thus creating more work for the preparation for fusion. It is
always possible to move the peeled iterations around either loop in order to fuse
them - if the iterations could not be moved, then the loops could not have been

fused.

The peeled iterations may be either laid out sequentially as in Figure 4.5 or
grouped together to form another loop. This option allows the amount of code
growth to be managed. Consider a case where the upper bounds of two loops differ
by a large amount and the loop bodies of the two loops are large. Peeling the
iterations would result in the duplication of the loop body many times, resulting
in a large amount of code growth. However, putting the peeled statements into a
separate loop whose iteration count is the same as the difference in upper bounds

minimizes the amount of code growth.

36



4.3.2 Guarding Iterations

An alternative to loop peeling is to guard the body of one of the loops to ensure that
it executes the correct number of iterations. Figure 4.6(a) shows a simple example
of two loops whose iteration counts differ by k, k > 0. Figure 4.6(b) shows the fused

loop created by guarding the iterations.

for (i=0; i < n; i++)

for (i=0; i < n; i++) {
{ if (i < n-k)
A[i] = A[i+2] * 2; {
} ATi] = A[i+2] * 2;
for (j=0; j < n-k; j++) A[i] = A[i] * 3;
{ }
A[j]1 = A[j]1 * 3; else
} {
ATi] = A[i+2] * 2;
}
}

(a) Two loops with different upper bounds (b) Loops Fused by Iteration Guarding

Figure 4.6: Iteration Guarding Example

The upper bound of the fused loop in Figure 4.6(b) is the maximum of the two
original upper bounds. The guard that is placed in the body of the loop determines
if the current iteration count is less than the minimum of the original upper bounds.
Under the guard is the body of both loops. This guard ensures that the body of one
loop does not execute more times in the fused loop than it would have in the original
loop. Finally, an else condition is added that contains the remaining iterations of
the loop with the larger upper bound. These remaining iterations are called the
residual of the loop.

The resulting loop is guaranteed to execute the exact number of iterations of each
one of the original two loops. Moreover, this method does not introduce intervening
code that could create more work for subsequent loop fusion. However, the guard
branches introduce control flow into the fused loop body. The addition of control flow
to a loop body is generally considered bad practice because it can negatively impact
several later optimizations, including software pipelining. However, the Index Set
Splitting algorithm, described in Section 3.1.9, removes control flow from a loop
body through the creation of several distinct loops. Therefore, the control flow

introduced during fusion is eliminated later. Figure 4.7 shows the loops generated

37



after Index Set Splitting for the loop in Figure 4.6(b).

for (i=0; i < n; i++) for (i=0; i < n-k; i++)
{ {
if (i < n-k) A[i]l = A[i+2] * 2;
{ Ali] = A[i] * 3;
A[i] = A[i+2] * 2; }
A[i] = A[i] * 3; for (i=n-k; i < n; i++)
} {
else A[i] = A[i+2] * 2;
{ }
A[i] = A[i+2] * 2;
}
}

(a) After Iteration Guarding  (b) After Index Set Splitting

Figure 4.7: Index Set Splitting Example

4.3.3 Run time Bounds Check

In order for loop peeling and guarding iterations to work, the difference between
the upper bounds of the two loops must be known at compile time. It is often the
case that this difference cannot be determined at compile time. In this case, it is
necessary to add checks at run time to determine which upper bound is greater and
to create a fused loop that executes correctly based on these run time values.

Figure 4.8(a) provides an example of two loops whose iteration count differs
by an unknown value.? The fused loop in Figure 4.8(b) first performs a check to
determine the maximum and minimum upper bounds of the two loops. The new
loop has an upper bound equivalent to the maximum of the two upper bounds (as
it did with guarding iterations in Section 4.3.2). The guard inserted into the loop
body has the value of the minimum of the two upper bounds (again, as it did with
guarding iterations). Because the relation between the values of n and m is not
known at compile time, an additional check is necessary to determine which loop
body should be executed for the residual.

Figure 4.9 shows the algorithm for fusing two loops, L; and L with different
bounds. Step 1 of the algorithm creates the upper bound of the new loop, L,
using the maximum of the upper bounds of the two original loops, x(L;) and x(Ly).
Step 2 inserts the first guard branch to limit the iterations of one loop body. If the

difference in the upper bounds of L; and Lj can be determined at compile time an

2We assume that the values of n and m are not known at compile time.

38



for (i=0; i < nj; i++)
{

A[i] = A[i] * 2;
}

for (j=0; j < m; j++)
{

A[j1 = A[3] * 3;
}

(a) Two loops with different upper bounds

w
1]

max (n,m) ;
min(n,m);
for (i=0; i < S; i++)

|
1]

if (1 < T)
{
Ali]
A[i]
}
else
{
if (i < n)
{
Ali]
}
else
{
ATi]
}
}
}

Ali]l * 2;
A[i] * 3;

A[i] * 2;

A[i] * 3;

(b) Loops Fused using Run time Bounds Checks

Figure 4.8: Run time Bounds Check Example

FUSEWITHGUARD(Lj, Lg)

1. Create L,, with upper bound max(x(L;),k(Lx))
2. Insert Guard Bound for min(k(L;),x(Lk)) at beginning

of L,
3. Copy body of L; to L,,, within guard
4.  Copy body of Ly to Ly, after L; body, within guard
5. if (k(L;) > w(Lg))
6. Insert else statement
7 Copy body of L; to L,, after else statement
8. else if (k(L;) < k(Ly))
9. Insert else statement
10. Copy body of Ly to L,,, after else statement
11. else
12. Insert Guard for x(L;)
13. Copy body of L; within second guard
14. Insert else statement
15. Copy body of Ly within else statement
16. endif

Figure 4.9: Algorithm to Fuse Loops Using a Guard Statement

39



else statement is inserted and the loop body with the higher upper bound is copied
under the else statement (Steps 5 to 10). If the difference in upper bounds of L;
and Lj cannot be determined at compile time, two additional guard statements are

inserted and the bodies of both loops are copied under the appropriate guard.

S = max(n,m); S = max(n,m);
T = min(n,m); T = min(n,m);
for (i=0; i < S; i++) for (i=0; i < T; i++)
{ {
if (1 < T) A[i]l = A[i] * 2;
{ A[i] = A[i] * 3;
A[i] = A[i] * 2; }
A[i] = A[i] * 3; for (i=T; i < n; i++)
} {
else if (i < n) A[i] = A[i] * 2;
{ }
A[i] = A[i] * 2; for (i=T; i < §; i++)
} {
else Ali]l = A[i] * 3;
{ }
A[i]l = A[i] * 3;
}
}

(a) (b)
Figure 4.10: Run time Bounds Check after Index Set Splitting

The fused loop, shown in Figure 4.8(b), has control flow in it, just as it did in the
guarding iterations case. This control flow is later removed by index set splitting.
Figure 4.10 shows the loops that are generated by index set splitting for the loop of
Figure 4.8(Db).

When using run time bounds checks to fuse loops, additional code duplication
is required because the residual loop cannot be determined at compile time and
thus both loop bodies must be replicated because either could be executed at run
time (based on the run time values of the upper bounds). This technique causes
a significant amount of code growth (every fused loop will be twice the size of the
original two loops). When the two loop bodies are large, the code can quickly grow
to sizes that would result in a long compilation time because later optimizations
would have to handle a large code analysis. Thus, it is necessary to limit the fusion
of loops whose upper bound difference cannot be determined at compile time. This

limitation is enforced to prevent an explosion in the size of the code.

40



4.4 Control Flow Equivalence

Two loops are control flow equivalent when the execution of one loop implies the
execution of the other loop. In other words, it is not possible for one of the loops to
execute and the other loop not to execute. Control flow equivalence is determined
by the dominance relation. Given two loops L; and L; in an ECFG, there are four

possible dominance relations between L; and L;, as shown in Figure 4.11.

We attempt fusion of two loops if they are control flow equivalent (Figure 4.11(d)),
if loop L; dominates L; (Figure 4.11(a)), or if loop L; postdominates loop L; (Fig-
ure 4.11(b)). In all these cases there is a reasonable probability that both loops are
executed in the same control path. Loops L; and L; may execute in the same con-
trol path even when there is no dominance relation between them (Figure 4.11(c)).

However, we do not attempt to fuse the loops in this case.

This section presents algorithms for situations depicted in Figure 4.11(a) and
4.11(b). These algorithms copy the loop that always executes into both paths of the
conditional statement. This code replication allows the two loops in one path to be

fused, while maintaining correct execution for the alternative path.

In this paragraph we introduce terminology to refer to the loops and execution
paths when a loop L; dominates a loop L; (situation depicted in Figure 4.11(a)).
Similar terminology can be used when loop L; postdominates L; as depicted in
Figure 4.11(b). This terminology is used throughout this section. The point at
which the control flow path splits into two distinct paths is called the decision point.
In Figure 4.11(a), the decision point is the last statement in Block 2. The point
where two separate control flow paths merge into a single path is the join point.
In Figure 4.11(a), the join point is the first statement of Block 7. From a decision
point, two paths can be taken. The path containing the second loop is the fusible
path. In Figure 4.11(a), the path on the left, containing Loop 4 is the fusible path.
The path that does not contain the loop is the non-fusible path. The path on the
right in Figure 4.11(a) is the non-fusible path. The loop that is executed regardless
of which path is taken from the decision point is the unconditionally-executed loop.
In Figure 4.11(a) Loop 1 is the unconditionally-executed loop. The loop that is
executed if the fusible path is taken is the conditionally-executed loop. Loop 4 in

Figure 4.11(a) is the conditionally-executed loop.

41



Bl ock 1

Bl ock 2 Bl ock 2

/\

Loop 4 Bl ock 6 Bl ock 4

Bl ock 7

=

Bl ock 5

N

O

(a) Loop 1 dominates Loop 4 (b) Loop 7 postdominates Loop 3

Bl ock 1
@ Bl ock 2
Bl ock 3
Bl ock 4 Bl ock 3 Bl ock 4
Bl ock 5 Bl ock 5
Bl ock 7
(c) No dominance relationship (d) Loop 1 and Loop 6 are
between Loop 2 and Loop 6 control flow equivalent

Figure 4.11: Possible Control Flow Scenarios

42



4.4.1 Identifying Control Flow Equivalence

The control flow equivalence of two loops is determined using the dominator and
the postdominator relationships. Table 4.1 describes the four control flow situations
that can occur, in terms of dominance and postdominance. When Loop A does not
dominate Loop B and Loop B does not postdominate Loop A there is no relation-
ship in the execution of the two loops. An example of this is seen in Figure 4.11(c).
While it may be possible for the two loops to reside in the same control flow path,
no attempt is made to fuse them. When Loop A dominates Loop B but Loop B does
not postdominate Loop A the execution of Loop B implies that Loop A must have
executed (Figure 4.11(a)). Similarly, if Loop B postdominates Loop A but Loop A
does not dominate Loop B then the execution of Loop A implies that Loop B also
executes (Figure 4.11(b)). Finally, if Loop A dominates Loop B and Loop B post-

dominates Loop A then the two loops are control flow equivalent (Figure 4.11(d)).

A Does Not Dominate B | A Dominates B
B Does Not Postdominate A No relation B— A
B Postdominates A A—B A=B

Table 4.1: Dominance and Postdominance Relationships for Loops

Bit vectors representing the dominator and postdominator trees of the two loops
are used to quickly determine the dominance relationship of the two loops. For
example, the dominator tree for Loop 1 in Figure 4.11(a) is represented by the
bit vector 1111111. The postdominator tree for Loop 2 is represented by the bit
vector 001100. Thus, Loop 1 dominates Loop 4 because the bit vector for Loop 1
at position 4 has a 1. However, Loop 4 does not postdominate Loop 1 because the
bit vector for Loop 4 at position 1 has a 0. Thus, we have the condition where the
first loop dominates the second loop but the second loop does not postdominate the

first loop.

4.4.2 Creating Control Flow Equivalent Loops

Two loops that are not control flow equivalent can be made control flow equiva-
lent by copying the unconditionally-executed loop into the fusible path. This code
duplication requires that the unconditionally-executed loop be moved into the non-
fusible path to guarantee correct program execution. Consider the two loops Loop 1

and Loop 4 in Figure 4.11(a). Loop 1 is copied immediately above Loop 4. It also

43



needs to be copied into the non-fusible path, immediately above Block 6. Note that
if there are no nodes in the non-fusible path, Loop 1 needs to be copied into the
non-fusible path, immediately below the decision point and immediately above the

join point. Figure 4.12 shows the resulting ECFG after this code transformation.

(a) Original ECFG (b) ECFG After code duplication

Figure 4.12: Creating Control Flow Equivalent Loops

Before the unconditionally executed loop is copied into the fusible path, anal-
ysis needs to be performed to ensure that any intervening code between loop L;
and loop Ly can be moved from between the two loops. If loop L; dominates
loop Ly but Ly does not postdominate Lj;, there can be intervening statements
between the unconditionally-executed loop and the decision point (Block 2 in Fig-
ure 4.12(a)). There can also be intervening statements on the fusible path between
the decision point and the conditionally-executed loop (Block 3 in Figure 4.12(a)).
If loop L; postdominates Ly but L does not dominate L;, there can be intervening
statements between the conditionally-executed loop and the join point (Block 4 in
Figure 4.11(b)). There can also be intervening statements between the join point
and the unconditionally-executed loop (Block 6 in Figure 4.11(b)).

Figure 4.13 provides an algorithm to identify the intervening code between two
loops L; and Ly and to determine if the code can be moved. This algorithm requires
that loop L; is the unconditionally-executed loop and loop Lj is the conditionally
executed loop. The technique used in Section 4.2.1 cannot be used to gather the
intervening nodes because the two loops are not control flow equivalent. Instead, the
intervening code is broken up into two parts: (i) the unconditionally executed por-
tion and (77) the conditionally executed portion. In order to distinguish between the

two parts, the condition node or the join node must be retrieved, depending on the

44



NONCFE_ISINTERVENINGCODEMOVEABLE(L;, L)

1.  interveningCode = 0

2. if L; <4 Ly

3. condNode = FindConditionNode(L;, L)

4. interveningCode = interveningCode U DominatorTree(L;) — DominatorTree(condNode)
5. interveningCode = interveningCode U DominatorTree(condNode) — DominatorTree(Ly,)
67. else

8. joinNode = FindJoinNode(Lj, L)

9. interveningCode = interveningCode U DominatorTree(Ly) — DominatorTree(joinNode)
10. interveningCode = interveningCode U DominatorTree(joinNode) — DominatorTree(L;)
11. endif

12. if IsInterveningCodeMovable(interveningCode, movelist, L;, Ly,)

13. return True

14. else

15. return False

16. endif

Figure 4.13: Algorithm to Determine if Intervening Code is Movable

dominance relationship between the two loops. The functions FindConditionN ode
and FindJoinNode find the condition node and the join node. Once these nodes
have been retrieved, bit vector subtraction is used to identify the two parts of the
intervening code. Steps 4 and 10 identify the unconditionally executed intervening
code for the two dominance relationships. Steps 5 and 9 identify the conditionally

executed intervening code for the two dominance relationships.

At Step 11, interveningCode contains a list of statements that reside between
loop L; and loop L. A modified version of the algorithm in Section 4.2.3 is then
called (Step 12). This modified algorithm accepts a list of statements to be moved
from between two loops, L; and L. If all of the statements in interveningCode
can be moved from between L; and Ly, the algorithm returns true and the second
argument to the algorithm, moveList contains all statements that must be moved
below Lj. If all of the statements cannot be moved, the algorithm returns false and
moveList contains no statements. If all statements can be moved, the intervening

code between loops L; and Ly, does not prevent the loops from being fused.

Figure 4.14 provides the algorithm to move the list of intervening statements
that must be moved from between two non-control flow equivalent loops, L; and
Lj,. This algorithm also requires that loop L; be the unconditionally executed loop
and loop Lj the conditionally executed one. The moveList contains all the state-
ments that have a flow, output, or anti-dependence with a statement in loop L;. Any

intervening statements for which no dependencies exist, can safely be executed inde-

45



NONCFE_MOVEINTERVENINGCODE(L;, Ly, move List)
1 if Lj <q Lg

2 foreach S, € moveList

3 Move S, after Ly

4. if Ly, Apd So

5. Copy S: into non-fusible path
6 endif

7 endfor

8. elseif L;j <pq Ly

9. foreach S, € moveList

10. Move S, before Ly

11 if Ly, A4 Sz

12. Copy S; into non-fusible path
13. endif

14. endfor

15. endif

Figure 4.14: Algorithm to Move Intervening Code

pendent of the position of L;. The algorithm begins by identifying which dominance
relationship exists between the two loops. The moveList may contain statements
that are located on the unconditional path as well as the statements located on the
fusible path. Movement of these two types of statements must be treated differently.
Any statement that is located on the unconditional path (either before the decision
point or after the join point depending on the dependence relationship of loops L;
and Lj) must be copied into the non-fusible path as well as into the fuseable path.
Statements that are located on the fuseable path only need to be moved around
Ly. If loop L; dominates loop Lg, then any statement S, that is postdominated
by Lj, must be located below the decision, i.e., S; is in the fuseable path. Thus
the movement of S, below L; does not require any code duplication. A statement
S; that is not postdominated by Ly, must be before the decision point, and thus,
moving S, below L; requires the duplication of S, into the non-fusible path. The
analysis for the case in which loop L; postdominates loop Ly is similar. Steps 4 to

6 and 11 to 13 identify these scenarios for the different dominance relationships.

When the algorithm is complete, all statements that are dependent on loop L;
have been moved to a point below loop L;. Any statements that remain in the path
between L; and Lj are independent of loop Lj;. Thus, L; can safely be copied into

the fuseable path above loop Ly and into the beginning of the non-fusible path.

Figure 4.12(b) shows how the unconditionally executed loop is copied into both

paths under the decision point.

46



Bl ock 2

Bl ock 3

Bl ock 5 Bl ock 6

Bl ock 7

Bl ock 8

Figure 4.15: Loops Separated by Two Decision Points

The algorithms presented in Figures 4.13 and 4.14 only handle non-control
flow equivalent loops that are separated by one decision point. Figure 4.15 shows an
example of two loops, Loop 1 and Loop 4 that are separated by two decision points.
In this example, Loop 1 must be copied into three control flow paths to preserve
program correctness: between Block 3 and Loop 4, between Block 3 and Block
5 and between Block 2 and Block 6. Intervening code between Loop 1 and Loop
4 also must be copied into multiple paths depending on its location. The analysis
required to identify the paths necessary for code duplication (both duplication of
the unconditionally executed loop and intervening code) is complex. Furthermore,
the duplication of code in all of the necessary paths would increase the code growth
and may negatively impact the compilation time for programs. Thus, it was decided
to limit the scope of non-control flow equivalent loop fusion to loops separated by a
single decision point.

The method to enable the fusion of non-control flow equivalent loops described
in this section can result in a large amount of code growth. At least one loop body
must be duplicated into two alternative control paths. However, it is likely that
additional intervening code must also be duplicated. It would be futile to undertake
the rather complex code movement maneuver described here only to find out that the
two loops that were made adjacent by it cannot be fused because of one of the other

conditions that prevent fusion. Therefore, before any code movement/duplication

47



is performed, we (i) verify that each loop is fusible; (ii) ensure that we will be able
to make the two loops conforming, and (i7¢) analyze the data dependencies between
the two loop bodies. If any of these checks fail, the two loops are not made control

flow equivalent.

4.5 Negative Distance Dependencies

The final condition for loop fusion states that there cannot be any negative distance
dependencies between any statement in the two loop bodies. A negative distance
dependence exists when the second loop computes data that is read by the first loop
in a subsequent iteration. Figure 4.16 shows two loops that have a negative distance

dependence between them.

for (i=0; i < n; i++)

{

Ali]l = A[i] + 10;
}
for (j=0; j < n; j++)
{

A[j1 = A[j+1] * 2;
}

Figure 4.16: Unaligned Loop Example

Figure 4.17(a) shows the array access pattern that results in a negative distance
dependence for the loops in Figure 4.16. The top row represents array accesses
by the first loop. The bottom row represents array accesses by the second loop.
Columns indicate the iteration of the loop. The edges represent data dependencies
between the two loop bodies. Since the edges go from a current iteration in the first
loop (top row) to a previous iteration in the second loop (bottom row) a negative
distance dependence exists. We say that the array accesses are unaligned. A com-
mon technique to eliminate negative distance dependencies is called loop alignment.
We shift the bottom row over one iteration as shown in Figure 4.17(b). After the

shifting, dependencies occur within the same iteration.

4.5.1 Loop Alignment

In order to align two loops to remove the negative distance dependencies we must
be able to determine the dependence distance at compile time. If there are multi-

ple negative dependence distances between two loop bodies, the maximum of the

48



0 n 0 n
Alil=Ali]+10 [TTTTT] Ai]=Ali]+10
L
Alij=ali+y*2 LTI 1T AL ]=ALi +1]*2
(a) Original Array Accesses  (b) Array Accesses after alignment

Figure 4.17: Array Access Patterns

absolute values of the distances is used for alignment. For example, given loops L;
and Ly with a maximum negative dependence distance of 2, alignment is achieved
by executing two iterations of L;, followed by the remaining iterations of the L;,

combined with the iterations of L. The final 2 iterations of L are then executed.

for (i=0; i < n+2; i++)

for (i=0; i < n; i++) {
{ if (1 < 2)
A[i] = A[i]l * 2; {
} A[i]l = A[i] * 2;
}
else if (i < n)
for (j=0; j < n; j++) {
{ A[i] = A[i] * 2;
ALj1 = ALj+21 * 3; A[i-2] = A[i] * 3;
} }
else
{
A[i-2] = A[i] * 3;
}
}
(a) Original loops (b) Fused loop after alignment

Figure 4.18: Loop Alignment Example

Figure 4.18 shows an example of two non-aligned loops (a) and the resulting
alignment combined with fusion (b). In this example, the negative distance depen-
dence between the two loop bodies has a distance of 2 iterations. In other words,
the second loop uses a value that is calculated by the first loop 2 iterations in the
future. Thus, the aligned loop has a guard that executes the first two iterations of
the first loop, to reduce the dependence distance to 0. A second guard is inserted to
ensure that the body of the first loop is not executed more times than the original
loop. Finally, the body of the second loop is executed to maintain its correct number

of iterations.

49



for (i=0; i < n+2; i++)

for (i=0; i < 2; i++)

{ {
if (1 < 2) A[i]l = A[i] * 2;
{ }
A[i] = A[i] * 2; for (i=2; i < nj; i++)
} {
else if (i < n) A[i] = A[i] * 2;
{ A[i-2] = A[i] * 3;
A[i] = A[i] * 2; }
A[i-2] = A[i] * 3; for (i=n; i < n+2; i++)
} {
else Ali-2] = A[i] * 3;
{ }
A[i-2] = A[i] * 3;
}
}

(a) (b)
Figure 4.19: Aligned Loops After Index Set Splitting

In this implementation, we again used guard statements to inhibit execution of
iterations of one loop body. Index Set Splitting is used to remove the control flow
from the loop body and create three separate loops. Figure 4.19 shows the aligned

loops after index set splitting has been performed.

There are two scenarios that can arise when attempting to align loops: (i) the
two loops have the same upper bound or, (i) the two loops have different upper

bounds.

When the two loops have the same upper bound, loop alignment produces a loop
similar to that seen in Figure 4.18(b). The upper bound of the new loop is equal
to the upper bound of the original loops plus the negative dependence distance. An
initial guard is inserted to align the two loops. This guard compares the value of
the induction variable against the negative dependence distance. Only the body of
the first loop is placed under the first guard. A second guard is inserted to test
the value of the induction variable against the original upper bound. This second
guard protects the first loop from executing too many times. The bodies of both
the first loop and the second loop are copied under the second guard. The value
of the induction variable used in the body of the second loop is subtracted by the
negative dependence distance. Finally, a third guard is added to determine if the
value of the induction variable is greater than the original upper bound. The body

of the second loop is copied under the third guard guaranteeing that it iterates the

50



correct number of times.

When two loops have different upper bounds, if the upper bound of the second
loop is lower than the upper bound of the first the guard branch that is inserted to
make the loops conform is used to align the loops. Let’s assume the difference in the
upper bounds of the two loops is n. Let’s also assume that the negative dependence
between the loop bodies has a distance of d. In order to make the two loops conform,
a guard branch is inserted to allow the first loop to execute n times more than the
second loop. If n > d, the guard branch is constructed so that the first n iterations
of the first loop are executed first. The remaining iterations include the body of
both loops. This results in the two loops being aligned. It is necessary to subtract
n from the induction variable in the body of the second loop to ensure the correct
data accesses are made. Figure 4.20 shows the algorithm used to fuse two unaligned
loops.

If the upper bound of the first loop is lower than the upper bound of the second
loop, we need to insert guard branches to make the loops conform. The portion
of the fused loop that contains both loop bodies can then be aligned by inserting
additional guards as described above. This transformation is not performed because
it results in a significant amount of code duplication. Thus, if the upper bound of
the first loop is lower than the upper bound of the second loop, the two loops are
not aligned and thus cannot be fused.

If the difference in the upper bounds cannot be determined at compile time, a
similar approach is necessary to align the loops. This also results in a significant

amount of code duplication and thus is not performed.

4.6 Ordering Code Transformations

We presented algorithms that can be used to satisfy the four conditions of loop
fusion. The order in which these algorithms are applied plays a significant role in
the performance of loop fusion. This section focuses on how the algorithms should be
applied to maximize the number of loops fused while minimizing the time required

to identify loop fusion candidates and to apply the appropriate transformations.

4.6.1 Data Structures

There are several data structures that are used extensively during loop fusion. These

data structures include the control flow graph, the data flow graph, the domina-

51



FUuSEANDALIGN(L;j, L)

L i (K(Ly) = k(L))

2 o < min(DependenceDistance(L;, L))

3 Create L,, with Upper Bound of x(L;)

4 Insert Guard for o at beginning of Ly,

5 Copy body of L; to L,, within first guard

6 Insert second guard for k(L;)

7 Copy body of L; to L,, within second guard

8 Copy body of Ly to Ly, after L; body, within second guard

9 Subtract o from all uses of induction variable in copy of Li body
10 Insert else statement

11 Copy body of Lj, within else statement

12 Subtract o from all uses of induction variable in copy of Li body
13 else

14 o + |k(Lj) — k(Lg)|

15 Create L, with Upper Bound k(L)

16 Insert Guard for o at beginning of L,

17 Copy body of L; to L, within guard

18 Insert else statement

19 Copy body of L; to L,, within else statement

20 Copy body of L, to L, after L; body, within guard

21 Subtract o from all uses of induction variable in L body
22. endif

Figure 4.20: Algorithm to Fuse Unaligned Loops Using Guard Statements

tor, and the postdominator trees. The transformations introduced in the previous
sections modify the intermediate representation, causing these data structures to
become inconsistent. For example, the movement of code from between two loops
causes the control flow graph, dominator, and postdominator trees to become stale,

no longer representing the current organization.

Incrementally updating the data structures would require very careful crafting
of the compiler code and would make the compiler more difficult to maintain. The
designers of TPO decided that after statements are moved the control flow graph
must be recreated. The creation of these data structures is an expensive operation
and should therefore be invoked conservatively. For this reason, we designed the loop
fusion algorithm to minimize the number of times the data structures are destroyed
and rebuilt. This is achieved by only modifying parts of the data structures where
analysis has already been performed. Modifications are never made to a position in
the control flow graph where the algorithms have not analyzed. This careful code
analysis and update allows us to perform the loop fusion algorithms on an entire set
of loops before the data structures are rebuilt. However, care must be taken in the

way the loops in the set are ordered and the way the entire set is traversed.

52



4.6.2 Iteration

Control flow equivalent loops that are candidates for fusion are grouped into equiv-
alence classes. The loop fusion algorithm attempts to fuse each loop with every
other loop in the same equivalence class. The list must be organized to allow an
ordered traversal of the loops, and thus guarantee that the conditions described in
Section 4.6.1 are not violated. The list is ordered such that the first time a position
in the list is reached for analysis, nothing at that position has been modified. Two
passes of loop fusion are necessary in order to complete all steps of the algorithms
described in the previous sections. Since all of the loops in the list are control flow
equivalent, the dominance relation provides a total order over the list. In the first
pass, the loops in the list are ordered in dominance order. Let L; be the loop at
position LoopSet[i] and L; be the loop at LoopSet[j]. For every position 4, (i < j)
in the list, L; dominates L;. Traversal of the list then corresponds to a topological
traversal of the ECFG. In this pass, modifications are only made to locations that
are located higher in the control flow graph. For example, if there is intervening
code between L; and Lj, the intervening code is only moved up, above L; in this
pass. Any code that needs to be moved down is moved during the next pass.

During the second pass of loop fusion, the loops in the list are organized in
postdominance order. For every position m,n (m < n) in the list, L,, postdominates
L,,. Traversal of this list corresponds to a reverse topological traversal of the ECFG.
In this pass, modifications are only made to locations that are lower in the control
flow graph. For example, intervening code between two loops can only be moved
down, below L,,.

For a given pass of loop fusion, the direction that the loops are traversed is called
the iteration direction.

The iteration through sets of loops allows all algorithms to be applied correctly

while minimizing the number of times the required data structures must be rebuilt.

4.6.3 Loop Fusion Algorithm

The code presented in Figure 4.21 is used as a running example to illustrate the
loop fusion algorithm. This example has five loops accessing two different arrays, A
and B. We assume that there is no overlap between the memory locations of A and
B, i.e., there is no 7 and j such that the address of A[i] overlaps with the address
of B[j].

53



P=2; /* S1 %/

for (i=0; i < n; i++) /* L1 */
{

A[i] = A[i] * 2;
}
for (j=0; j < n; j++) /% L2 %/
{

B[j1 = A[j]1 + A[j+1] * p;
}
p=4 /* 82 %/
q=0.0 /* S3 */
for (k=0; k < m; k++) /* L3 *x/
{

q=q+ B[k];
}
if (n < m) /* S4 *x/
{

for (1=0; 1 < n; 1++) /* L4 x/

{

B[1] = B[1] * p;

}
}
else /* S5 */
{

Blm]l = B[n] * 4; /* S6 */
}
for (p=0; p < n; p++) /* L5 */
{

Blpl = Alp] + Blpl / q;
}

Figure 4.21: Running Example

54



Figure 4.22 presents the LOOPFUSION algorithm. The algorithm operates one
nest level at a time, starting at the outermost level and moving towards the in-
nermost level (Step 1). It proceeds by gathering all loops at the current nest level
into one set, called the LoopSet. In Step 3 loops that are not eligible for fusion
are removed from the LoopSet. The algorithm continues by grouping control flow
equivalent loops from the LoopSet into lists called FusionCandidateLists. Each Fu-
sionCandidateList S; is then processed by the loop fusion algorithm. The algorithm
iterates, alternating forward and reverse passes over the list until it finds no more
loops to be fused. At the beginning of each pass, the ECFG and dominance relations

are re-computed to reflect any changes made in the previous pass.

LooprFusioN

1. foreach NestLevel N; from outermost to innermost

2 Gather all loops in NV; into a single LoopSet

3 Remove loops non-eligible for fusion from LoopSet

4. Gather control flow equivalent loops from LoopSet into FusionCandidateLists
5. foreach FusionCandidateList S;

6 FusedLoops < True

7 Direction < Forward

8. while FusedLoops = True

9. if |S7,| <2

10. break

11. endif

12. Build Data Structures

13. Compute Dominance Relation

14. FusedLoops = CFELoopFusionPass(.S; ,Direction)
15. if FusedLoops = False

16. FusedLoops = NonCFELoopFusionPass(LoopSet)
17. endif

18. if Direction = Forward

19. Direction = Reverse

20. else

21. Direction = Forward

22. endif

23. endfor

24. end while

25. endfor

Figure 4.22: Loop Fusion Algorithm.

The while loop starting at Step 8 iterates over the FusionCandidateList un-
til no loops are fused. In every iteration, the CFELoopFusionPass algorithm is
called. This algorithm attempts to fuse loops that are control flow equivalent. If the
CFELOOPFUSIONPASS is unable to fuse any loops, the NONCFELOOPFUSIONPASS

is called. This algorithm attempts to fuse loops that are not control flow equivalent.

55



The algorithms are called in this order because it is preferable to fuse control flow
equivalent loops over non-control flow equivalent loops to minimize the amount of
code growth and the number of times the data structures must be rebuilt.

In the example of Figure 4.21, all loops are at the same nest level and eligible
for fusion. Thus, all loops are in the LoopSet. The FusionCandidateList contains
L1, L2, L3, and L5. L4 is not included because it is not control flow equivalent with
the other loops. The loops in the FusionCandidateList are ordered in dominance

order (e.g., L1, L2, L3, L5) for the first pass of the loop fusion algorithm.

4.6.4 Control Flow Equivalent FusionPass

CFELOOPFUSIONPASS(S;, Direction)

1. FusedLoops = False

2. foreach pair of loops L; and Ly in S;, such that L; dominates L, in Direction

3. if INTERVENINGCODE(L;, Ly) = T'rue and
ISINTERVENINGCODEMOVABLE(L;, L) = False

4 continue

5. endif

6. o « |k(Lj) — w(Lg)|

7 if L; and L; are non-conforming and
o cannot be determined

8. continue

9. endif

10. if DependenceDistance(Lj, L) < 0 and
DependenceDistance(L;j, L) cannot be determined at compile time

11. continue

12. endif

13. FusedLoops = T'rue

14. MOVEINTERVENINGCODE(L;j, L, Direction)

15. if INTERVENINGCODE(L;, Ly) = True

16. continue

17. endif

18. if DependenceDistance(Lj, Ly) < 0

19. L., + FuseAndAlign(L;, L)

20. else if L; and L; are non-conforming

21. L,, + FuseWithGuard(L;, L)

22. else

23. Ly Fuse(Lj, Lk)

24. endif

25. S; (—SiULm—{Lj,Lk}

26. endfor

27. return FusedLoops

Figure 4.23: Control Flow Equivalent Loop Fusion Algorithm.

Figure 4.23 presents the algorithm used for a single pass of loop fusion on a list
of control flow equivalent loops. The algorithm is given a FusionCandidateList S;

containing loops to be fused and the current iteration direction. In a forward pass,

56



the loops contained in the FusionCandidateList S; are traversed in dominance order
while during a reverse pass the traversal is in postdominance order.

For each pair of loops L; and Lj in S;, the algorithm begins by checking if L;
and L are adjacent (Step 3). If they are not adjacent, a check is performed to
determine if the intervening code between them can be moved using the algorithm
presented in Section 4.2. If all of the intervening code cannot be moved, L; and Ly
cannot be fused and the algorithm continues to the next pair of loops.

In Step 6, the difference between the upper bounds of the two loops x(L;) and
k(Lyg) is computed and stored in o. Step 7 determines if the two loops do not
conform and if the difference in bounds can be determined. If the Compile Time
Bounds checking described in Section 4.3.2 is enabled, the compiler must be able to
resolve ¢ to a value. If the Run Time Bounds Checking described in Section 4.3.3 is
enabled, o can be a symbolic difference (i.e., n —m). If the loops cannot be made
to conform, the two loops cannot be fused and the algorithm continues to the next
pair of loops.

Step 10 determines if the dependence relations between the bodies of the loops L;
and Ly, prevent fusion. If there is a negative distance dependence and the distance
cannot be determined at compile time, loops L; and L; are not fused.

At this point, all four conditions for fusion have been tested and it has been ver-
ified that all conditions have already been satisfied or are satisfiable. The algorithm
proceeds by performing the necessary code transformations to make all conditions
satisfiable. The first transformation is to move any intervening code from between
the two loops. This transformation is limited to moving code in one direction based
on the current iteration direction. Thus, if it is necessary to move code in both
directions, not all code is moved in this iteration.

If all of the intervening code is moved successfully (or no intervening code is
present), the algorithm determines which fusion algorithm should be called. If
there is a negative distance dependence between the two loops, the FUSEANDALIGN
algorithm from Section 4.5 is used. If the bounds of the two loops do not conform
(but no negative distance dependence is present), the FUSEWITHGUARD algorithm
from Section 4.3 is used. Note that this algorithm is either the compile time bounds
check or the run time bounds check depending on which compiler option is enabled.

In the example of Figure 4.21 the first loops to be compared are L1 and L2.

They are adjacent, but they do not conform and there is a negative dependence of

o7



distance 1 between the two loop bodies. The test in Step 18 of Figure 4.23 is true

and the two loops are fused using the algorithm from Section 4.5. Since the bounds

of the two loops did not conform, the loops are aligned using a guard statement.

This fusion results in the loop L6 shown in Figure 4.24(a).

P=2;
for (i=0; i < n; i++)
{
if (i < 1)
{
ATi] = A[i] * 2;
}
else
{
A[i] = A[i] * 2;

B[i-1]1 = A[i-1] + A[i] * p;
}
}
P=4
q = 0.0;
for (k=0; k < m; k++)
{
q = q + B[kl;
}
if (n < m)
{
for (1=0; 1 < n; 1++)
{
B[1] = B[1] * p;
}
}
else
{
B[m] = B[n] * 4;
}
for (p=0; p < n; p++)
{

Blp]l = Alpl + Blpl / q;
}

/* 81 */
/* L6 */

/%
/%
/*

/%

/*

/*

/%

/*

52
53
L3

54

L4

55

S6

L5

(a) After L1 and L2 Fused

*/
*/
*/

*/

*/

*/

*/

*/

P =2
q = 0.0;
for (i=0; i < n; i++)
{
if (i < 1)
{
A[i]l = A[i] * 2;
}
else
{
A[i]l = A[i] * 2;
B[i-1] = A[i-1] + A[i] * p;
}
}
p = 4;
for (k=0; k < m; k++)
{
q =q + B[k]l;
}
if (n < m)
{
for (1=0; 1 < n; 1++)
{
B[1] = B[1] * p;
}
}
else
{
B[m] = B[n] * 4;
}
for (p=0; p < m; p++)
{

Blp]l = Alp] + Blpl / q;
}

/*
/%
/%

/%
/*

/%

/*

/*

/%

/*

S1
53
L6

52
L3

54

L4

S5

S6

L5

*/
*/
*/

*/
*/

*/

*/

*/

*/

*/

(b) After Intervening Code Moved

Figure 4.24: Running Example

The next comparison is between loops L6 and L3. There are no dependencies

preventing fusion but the loops are not adjacent. All of the intervening code can be

moved from between the two loops allowing fusion to occur. However, dependencies

require that statement S2 be moved down to the point after loop L3 while statement

S3 be moved up to the point before L6. Since statements can only be moved up in

58



the forward pass, Step 14 of Figure 4.23 only moves statement S3. Thus, the test for
intervening code between loops L6 and L3 in Step 15 fails and the loops cannot be
fused on this pass. The results of moving statement S3 is shown in Figure 4.24(b).

Loop L6 cannot be fused with any other loop in the list because statement S2 is
intervening code that cannot be moved and thus prevents all fusion attempts.

The next comparison is between loops L3 and L5. The two loops are not adjacent
and dependencies prevent the intervening code (S4, L4, S6, S7) from being moved
from between the two loops. Thus, the test on Step 3 of Figure 4.23 fails and the
loops cannot be fused.

The ECFG is rebuilt and the dominance and postdominance relations re-computed
before a new pass starts. In the reverse pass, the loops in the FusionCandidateList
are ordered in postdominance order (e.g., L5, L3, L6). Loops L5 and L3 are com-
pared but cannot be fused because the intervening code between them cannot be
moved. L5 cannot be fused with L3 or L6 because the same intervening code prevents
fusion.

Next, loops L3 and L6 are compared. There is a single intervening statement be-
tween them (S2) that is moved down to the point below L3 in Step 14. The two loops
are fused, using the run time bounds check algorithm described in Section 4.3.3. The
results of this fusion are shown in Figure 4.25(a).

The reverse pass terminates after loops L3 and L6 are fused. The next forward

pass results in no additional fusions.

4.6.5 Non Control Flow Equivalent FusionPass

Figure 4.26 presents the algorithm to fuse non-control flow equivalent loops. The
algorithm processes a set of loops, S;, looking for pairs of loops L; and Lj that
satisfy the dominance relations of Figure 4.11(a) and (b). Step 2 guarantees that
L; is the unconditionally executed loop and Ly is the conditionally executed loop.
This is required by the algorithms in Section 4.4. Step 3 uses the algorithm from
Section 4.4.2 to check for intervening code and determine if the intervening code can
be moved. Steps 6 and 7 determine if the upper bounds of loops L; and Lj, conform
or can be made to conform. Step 10 determines if there is a negative distance
dependence between the two loops and if the loops can be aligned to remove the
dependence. In Step 14 the intervening code between the two loops is moved using

the algorithm specified in Section 4.4.2. Finally, the two loops are fused using the

59



P=2; /%
q=0.0; /*
S8: S = max(n,m); /*
S9: T = min(n,m); /%
for (i=0; i < S; i++) /*
{
if (1 < T)
{
if (4 < 1)
{
A[i] = A[i] * 2;
}
else
{
A[i] = A[i] * 2;
B[i-1] = A[i-1] + A[i] =* P
}
q = q + B[i];
}
else if (i < n)
{
if (i < 1)
{
A[i] = A[i] * 2;
}
else
{
A[i] = A[i] * 2;
B[i-1] = A[i-1] + A[i] * p;
}
}
else
{
q = q + B[i];
}
}
p =4 /*
if (n < m) /*
{
for (1=0; 1 < n; 1++) /*
{
B[1] = B[1] * p;
}
}
else /*
{
B[m] = B[n] * 4; /*
}
for (p=0; p < n; p++) /%

{
Blp]l = Alpl + Blpl / q;
}

S1
S3
58
59
L6

52
5S4

L4

55

56

L5

(a) After L3 and L6 Fused

*/
*/
*/
*/
*/

*/
*/

*/

*/

*/

*/

p

q
S8:

S9:
for

{

(i=0; i < S; i++)

/%
/%
/*
/%
/%

S1
53
58
59
L6

max(n,m) ;
min(n,m) ;

if (1 < T)

{

}

if (i < 1)

{

A[i] = A[i] * 2;

}

else

{

A[i] =
B[i-1]

}

A[i] * 2;
= A[i-1] + A[i] * p;

q = q + B[il;

else if (i < n)

{

}
el

{

}

}
p =

if (n < m)

{

for (1=0; 1 <

{

}
}
else

{

B[m] = B[n] * 4;
for (p=0; p <

{

}
}

if (i < 1)

{

A[i] = A[i] * 2;

}

else

{

Ali] =
B[i-1]

}

se

A[i] * 2;
= A[i-1] + A[i]l * p;

q = q + B[i];

4;

B[1]
B[1]

B[p]

Figure 4.25: Running Example

60

/* S2

/* S4

n; 1++) /* L4
B[1]

Af1]

* p;
+ B[1] / q;

/* 85

/%
/*

S6

n; p++) L5

= Alp]l + B[p] / q;

(b) After L4 and L5 Fused

*/
*/
*/
*/
*/

*/

*/

*/

*/

*/
*/



NONCFELOOPFUSIONPASS(S;)
FusedLoops = False
foreach pair of loops L; and Ly in S;, such that

1.
2.

N O ok W

8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

endfor

(L; dominates Ly and Lj does not postdominate L;) or
(L; postdominates Li, and Ly does not dominate L;)
if NONCFE_ISINTERVENING CODEMOVABLE(L;j, L) = False
continue
endif
o [K(L;) — R(L)]
if L; and L are non-conforming and
o cannot be determined
continue
endif
if DependenceDistance(Lj, Ly) < 0 and
DependenceDistance(Lj, L) cannot be determined at compile time
continue
endif
FusedLoops = True
NoNCFE_MOVEINTERVENINGCODE(L;, Ly,)
if DependenceDistance(Lj, Li) < 0
Ly, F‘useAndAlign(Lj, Lk)
else if L; and Ly are non-conforming
L,, + FuseWithGuard(L;, L)
else
Ly, + F‘use(Lj, Lk)
endif
Copy L; into non-fuseable path
S; < S; UL, — {Lj,Lk}
Build Data Structures

return FusedLoops

Figure 4.26: Non Control Flow Equivalent Loop Fusion Algorithm

61




appropriate fusion algorithm.

Since all of the loops in the LoopSet are not guaranteed to be control flow
equivalent, there is no dominance relation between all of the loops in the LoopSet.
Thus, it is not possible to use the iterative approach described in Section 4.6.2 to
iterate over the LoopSet. For this reason, when two non-control flow equivalent
loops are fused, it is necessary to rebuild all of the data structures. This is done in
Step 24 of Figure 4.26.

Many of the steps in the NONCFELOOPFUSIONPASS algorithm are the same
as in the CFELOOPFUSIONPASS algorithm of Figure 4.23. Different algorithms to
identify and move intervening code are necessary because loops L; and Lj are not
control flow equivalent. The check to determine if all of the intervening code was
successfully moved (Step 15 in Figure 4.23) is not necessary because movement of
parts of the intervening code is not done when the two loops are not control flow
equivalent. If all of the intervening code cannot be moved, the two loops cannot be
fused.

In the example of Figure 4.25(a), no additional loops can be fused during a
CFELoopFusionPass. The LOoOPFUSION algorithm of Figure 4.22 calls the NON-
CFELOOPFUSIONPASS to attempt to fuse non-control flow equivalent loops. The
entire LoopSet, containing L6, L4 and L5, is passed to the NONCFELOOPFUSION-
PAss algorithm.

The first loops to be compared are L6 and L4. There is no intervening code
between the two loops that needs to be moved. The upper bounds of loop L6 and
L4 do not conform, but run time bounds checking can be used to allow fusion of
the two loops. However, there is a negative dependence of distance 1 between the
accesses of array B in loops L6 and L4. This dependence cannot be removed because
the upper bounds of loops L6 and L4 cannot be determined at compile time. Thus,
L6 and L4 cannot be fused.

Next, loops L4 and L5 are compared. There is intervening code between loops
L4 and L5, but the code can be moved allowing the loops to be fused. The bounds of
L4 and L5 conform and there are no negative distance dependencies between the two
loop bodies. Step 14 of Figure 4.26 moves the intervening code from between L4 and
L5. The two loops are fused in Step 20 and loop L5 is copied into the non-fuseable
path in Step 22. The results of fusion are shown in Figure 4.25(b).

After successfully fusing two non-control flow equivalent loops, the LOOPFUSION

62



algorithm of Figure 4.22 calls CFELOOPFUsIONPAss and NONCFELooPFUSION-
PAss once more. No loops will be fused in either pass and the algorithm will

terminate.

63



64



Chapter 5

Experimental Results

This chapter presents results collected during both compile time and run time using
the SPEC95 and SPEC2000 benchmark suites. The experiments conducted were

designed to answer the following three questions:
1. Do the algorithms presented in Chapter 4 enable additional loop fusion?
2. Are there benefits to enabling loop fusion?
3. Do the algorithms prohibitively impact compilation times?

4. What are the run time performance benefits as a result of loop fusion?

5.1 Compiler Versions

To answer Question 1, we compare 5 different versions of our algorithm with an

implementation of basic loop fusion. The versions of the compiler are:

Base: The basic loop fusion algorithm in which no code transformations are per-
formed to try and make loops fusible. The baseline compilation is performed

at optimization level O4.

MIC: The algorithm iterates, alternating forward and reverse passes, moving in-

tervening code from between two loops to enable fusion.

GuardCTB: In addition to moving intervening code, guard branches are used to
fuse loops when the difference in upper bounds can be determined at compile

time.

65



GuardRTB: In addition to moving intervening code, guard branches are used to
fuse non-conforming loops. The compiler does not need to be able to determine

the difference in upper bounds at compile time.

align: In addition to moving intervening code and fusing non-conforming loops,
guard branches are used to align loops that have a negative distance depen-

dence between them.

nonCFE: The complete loop fusion algorithm, including movement of intervening
code, guard branches to make loops conform and align as well as fusing of

non-control flow equivalent loops.

These five versions were chosen because, in our opinion, they create a logical
evolution of the techniques presented in Chapter 4 into a complete loop fusion algo-
rithm. Appendix A provides additional results for each of the specific optimizations
as well as other combinations of optimizations.

The algorithms were implemented in the development version of the IBM XL
compiler suite. Benchmarks compiled with the modified compiler were run on an
IBM eServer pSeries 630 machine, built with the POWER4 processor. Measure-
ments from the SPEC benchmark suites were not collected using the official SPEC
Tools.

5.2 Machine Configuration

The POWER4 is a new microprocessor implementation of the 64-bit PowerPC ar-
chitecture designed and manufactured by IBM for the UNIX®server market. The
pSeries 630 machine is a two- to four-way symmetric multiprocessor machine. Two
processor cores running at 1.0 GHz are located on a single die. Each of the pro-
cessors on the die has a dedicated 64 KB direct mapped L1 instruction cache, a
dedicated 32 KB 2-way set associative L1 data cache and a unified 1024-entry 4-way
set associative TLB supporting 4 KB and 16 MB page sizes. The processors share
a single 8-way set associative 1.44 MB on-chip combined L2 cache and a 32 MB L3
cache.

The L1 instruction cache can support up to 3 outstanding misses and the L1
data cache can support up to 8 outstanding misses. The L1 data cache and the L2

and L3 shared caches include support for automatic prefetching of linear streams of

66



data. Fach processor maintains a 12-entry prefetch address filter queue and up to
8 concurrent active prefetch streams. The L2 cache is organized into 3 slices, each
480 KB in size and can offer more than 100 GB/s in bandwidth [20].

The machine used for testing is a 2-way, POWER4 machine. It contains two

processors on a single die running at 1.0 GHz and 2 GB of main memory.

5.3 Contrived Example

To answer question 2, we study the performance of the contrived C program is
presented in Figure 5.1. The compiler versions introduced in Section 5.1 are used to
compile the sample program, fusing different combinations of loops. The resulting
executables are run to determine the performance benefit of each compiler version.

The sample C program in Figure 5.1 was compiled with three different compiler
optimizations: no loop fusion, baseline, and MIC. With no loop fusion, none of the
loops in the program are fused. With baseline loop fusion, loops L1, L2, L3 and L4
are fused, resulting in 7 loops. With MIC loop fusion, loops L1, L2, L3 and L4 are
fused into a single loop body, loops L5, L7, L9 are fused into a single loop body and
loops L6, L8 and L10 are fused into a single loop body (Figure 5.2). This results
in a program with 3 loops, which is the minimum number of loops possible while
maintaining correct program execution.

The contrived example was run with two different array sizes (definitions of N
and M), 50000 and 100000. Table 5.1 shows the run times for each of the loop fusion
options and each of the array sizes. Each run time is reported in seconds and was
computed by averaging the times of three seperate runs, obtained using the UNIX
time command. The % Improvement columns report the improvement in run time
of the baseline and MIC compilations compared to the compilation where no loop

fusion was performed.

‘ Array Size ‘ No Loop Fusion ‘ Baseline ‘ % Improvement ‘ MIC ‘ % Improvement ‘

50000 203.59 203.45 0.07 180.68 11.25
100000 773.9 773.5 0.05 724.27 6.41

Table 5.1: Run Time and Speedups of Contrived Example

Using the baseline compilation option results in 4 loops being fused, a run time

improvement of 0.07% for arrays of size 50000 and a run time improvement of

67



int main (int argc, char **xargv)
{
int p, i, j, k, 1, s, g, r, a, b, c, d, e, f;
float q;
int A[N], B[M], C[N], D[M];
/* Initialization */

for (i=0; i < N; i++) { /* L1 %/
A[i]l = 4 * 2) + (i - 6);
}
for (i=0; i < M; i++) { /* L2 x/
B[i] = (i * 3) + (6 - i);
}
for (i=0; i < M; i++) { /* L3 */
Clil = (1 * 4) + (i + 2);
}
for (i=0; i < M; i++) { /* L4 *x/
D[i]l = (i * B) + (i + 4);
}
j=k=l=r=a=b=c=d=0;
for (i=0; i < N; i++) { /* L5 */
j += A[i] + 2;
1 += C[i] * 3;
for (g=0; g < M; g++) { /* L6 */
k += Blgl - 4;
r += D[g] * 2;
}
}
e = 0;
f =0;
for (i=0; i < N; i++) { /* LT */
a += A[i] + 2;
b += C[i] - 2;
for (g=0; g < M; g++) { /* L8 */
¢ -= Blg]l + 6;
d -= DIgl / 4;
}
}
p =4
q =0.0;
for (i=0; i < M; i++) { /* L9 x/
q=q+ B[il;
p = p - Blil;
for (g=0; g < M; g++) { /* L10 */
e += Blgl + q;
f += Algl - p;
}
}
s = 0;
p += 5;
qQ =4

printf("%d %d %4 %d %d %d 4d %d /%d %4 %d %d\n",
j, k, 1, r, a, b, c, d, e, f, p, q);

Figure 5.1: Contrived Example

68



int main (int argc, char **xargv)
{
int p, i, j, k, 1, s, g, r, a, b, ¢, d, e, f;
float q;
int A[N], B[MI, CIN], D[MI;
/* Initialization */

for (i=0; i < N; i++) { /* L1 */
AT[i] = (4 * 2) + (i - 6);
B[il = (i * 3) + (6 - 1);
Clil = (i * 4) + (i + 2);
D[i] = (i * 5) + (i + 4);
}
j=k=1l=r=a=b=c=d-=0;
e = 0;
f =0;
p =4
q = 0.0;
for (i=0; i < N; i++) { /* L5 *x/
j += A[L]l + 2;
1 += C[i] * 3;
a += A[i] + 2;
b += C[i] - 2;
q = q + B[il;
p = p - Blil;
for (g=0; g < M; g++) { /* L6 */
k += Blgl - 4;
r += D[g] * 2;
c -= Blgl + 6;
d -= DIgl / 4;
e += Blgl + q;
f += Algl - p;
}
}
s = 0;
P *=5;
Q=4

printf("%d 4d %d %d %d %4d 4d %4 4d %d %d %d\n",
j, k, 1, r, a, b, c, d, e, f, p, q);

Figure 5.2: Contrived Example After Loop Fusion with MIC

69



0.05% for arrays of size of 100000. The loops that are fused (L1, L2, L3, L4) are
initialization loops and do not contain the majority of the computation performed
by the program. Thus, these four loops are considered cold loops. This example
demonstrates that fusing cold loops does not significantly impact the running time
of the program.

Using the MIC compilation option results in 9 loops being fused and a runtime
improvement of 11.25% for arrays of size 50000 and a run time improvement of
6.41% for arrays of size 100000. These loop fusions include the initialization loops
as well as the loops containing the majority of the computation. This illustrates the
benefit of data reuse obtained through loop fusion.

One possible explanation for a smaller performance improvement when using
larger arrays is the number of cache misses is not significantly different (i.e., there
is the same amount of data reuse with array sizes of 50000 and 100000). If this is the
case, the cost of the cache misses is ammortized over a longer running time of the
loops (the loops are executing for 100000 iterations as opposed to 50000 iterations)

resulting in less performance benefit from data reuse.

5.4 Compile Time Results

To answer question 3 we collected the compilation times of the benchmarks using
the versions of the algorithm described in Section 5.1.

This section presents results from the loop fusion algorithms gathered at compile
time. These results include the number of loops fused and the compilation times
for the different configurations of the compiler. Benchmarks that did not have an
increase in the number of loops fused with any algorithm are omitted from the table.
Also, benchmarks from SPEC95 which also occur in SPEC2000 are not repeated.

Tables 5.2 and 5.3 present the number of loops fused using each algorithm.
Counting the number of loops fused is a metric that allows us to analyze how
the techniques assist in enabling loop fusion. The results demonstrate that each
algorithm was able to increase the number of loops fused.

Overall, the complete loop fusion algorithm, compared to the original loop fusion
algorithm, results in 18 times as many loops fused in siztrack, 15 times as many
loops fused in applu and 8 times as many loops fused in crafty. It also enables
loop fusion in art, lucas, mesa, twolf and vpr, where no loops were fused with the

original algorithm. These results indicate that the algorithms presented are effective

70



in increasing the number of loops that are fused.

Benchmark | Base | MIC | Guard | Guard | align | non
CTB | RTB CFE
ammp 1 1 1 2 2 2
applu 2 2 3 3 30 30
apsi 5 5 5 5 6 11
art 0 1 1 3 3 3
facerec 12 18 18 20 20 20
fma3d 36 77 82 112 113 116
SPEC galgel 21 35 35 40 40 40
2000
FP lucas 0 2 2 2 2 2
mesa, 0 0 0 0 0 1
mgrid 12 13 13 13 13 13
sixtrack 4 6 37 44 45 73
swim 4 4 4 4 6 6
bzip2 9 9 12 12 12 12
crafty 3 12 22 24 25 25
SPEC eon 0 0 0 0 0 0
gap 1 1 4 5 5 5
2000
INT gee 5 7 9 9 9 9
gzip 0 0 4 7 7 7
twolf 0 1 1 9 9 9
vpr 0 0 4 4 4 4

Table 5.2: Number of Loops Fused for SPEC2000 Benchmarks

Benchmark | Base | MIC | Guard | Guard | align | non
CTB RTB CFE
tomcatv 1 2 2 2 2 2
turb3d 0 0 6 6 6
compress 1 1 1 1 2 2

Table 5.3: Number of Loops Fused for SPEC95 benchmarks

Fusing more loops may not always result in better performance. For example,
consider four loops, L;, Lj, Li, and Ly,, where loop L; cannot be fused with Ly
or L,, because of fusion preventing dependencies. All other possible fusions are
legal. Also, assume that there is data reuse between L; and L;, but not between
L;, Ly and Ly,.
number of loops fused. However, fusing L; and L; may result in better run time

performance because of the data reuse between the two loops.! There is currently

In this example, fusing L;, Ly and L,, would result in the most

'Note that when L; is fused with L;, the resulting loop contains the fusion preventing depen-

71




no mechanism in the loop fusion algorithm to weigh the benefit of fusing two loops.
Thus, situations such as this one may not be handled optimally by the loop fusion
algorithm. If an attempt was made to fuse L; and L; first, they would be fused
and data reuse would result. If an attempt was made to fuse L; with either L; or
L, first, the fusion would occur and L; and L; would not be fused. Work that
is currently underway to attempt to identify these situations and deal with them

appropriately is described in more detail in Chapter 8.

Benchmark | Base MIC Guard | Guard align non
CTB RTB CFE
ammp 70.56 71.16 71.22 70.19 70.23 70.57
applu 71.52 71.57 73.65 76.46 112.86 113.91
apsi 70.34 70.81 70.76 70.79 70.57 71.76
art 7.40 7.33 7.39 7.05 7.05 7.08
facerec 46.75 47.00 46.85 47.59 47.48 48.21
SPEC fma3d 512.85 | 518.06 | 543.75 | 594.32 | 591.07 | 600.59
2000 galgel 110.34 | 109.01 | 109.12 | 109.22 | 109.45 | 110.25
PP lucas 16.47 16.85 16.98 16.82 16.88 16.83
mesa 214.56 | 214.80 | 214.99 | 214.69 | 214.88 | 215.01
mgrid 9.31 9.16 9.23 9.19 9.18 9.27
sixtrack 1242.91 | 1246.47 | 1301.94 | 1330.44 | 1330.73 | 1384.83
swim 4.48 4.5 4.54 4.5 5.03 5.01
bzip2 17.53 17.53 17.58 17.4 17.65 17.75
crafty 78.90 79.01 357.30 | 358.26 | 360.52 | 359.16
eon 182.47 | 182.27 | 182.66 181.9 182.64
gap 331.94 | 332.44 | 329.56 | 329.78 | 329.66 | 330.92
SPEC gee 625.58 | 627.54 | 926.92 | 926.19 | 926.97 | 930.55
2000 gzip 18.97 19.05 18.92 19.00 19.17 19.24
INT twolf 112.37 | 112.82 112.63 111.73 112.17 112.59
vpr 60.79 60.52 60.84 60.93 60.73 60.95

Table 5.4: Compilation Times for SPEC2000 Benchmarks

Benchmark | Base | MIC | Guard | Guard | align | non
CTB | RTB CFE

tomcatv 2.02 | 2.15 2.14 2.16 2.16 | 2.16
turb3d 15.57 | 15.78 | 15.6 17.66 | 17.75 | 17.66
compress 2.83 | 2.92 2.87 2.79 277 | 2.69

Table 5.5: Compile Times for SPEC95 Benchmarks

The compilation times for the benchmarks using each of the algorithms are listed

dencies present in L; and thus cannot be fused with either Ly or L,,.

72



in Tables 5.4 and 5.5. These results are an average of three compilation runs. The
compilation time for the benchmarks indicate the amount of overhead each algorithm
adds to the compilation time. There was very little change in compilation time
when code was moved to make loops adjacent. When guard branches were inserted
to make non-conforming loops conform, the compilation time of crafty increased by
4.5 times, the compilation time for gec increased by 48% and the compilation times

of fma8d and siztrack increased by 4%.

An analysis of the time spent in the actual loop fusion phase of the compiler re-
vealed that it is not contributing significantly to the increase in compilation times.
For example, during baseline compilation for crafty, the loop fusion phase took
0.165s and contributed 0.21% to the total compilation time. When guard branches
were inserted, the loop fusion phase took 1.30s and contributed 0.36% to the to-
tal compilation time. Loop distribution, on the other hand, took 0.455s and con-
tributed 0.56% to the total compilation time during baseline compilation. When
guard branches were inserted, loop distribution took 256.27s, contributing 72.07%
to the total compilation time. Thus, in crafty, the increase in compilation time can

be attributed to the loop distribution phase, not the loop fusion phase.

Similar results were found for applu, whose compilation time increased by 53%
when guard branches were inserted to make loops with negative distance dependen-
cies align. During baseline compilation, 1.153s were spent in the loop fusion phase
and 15.71s spent in the loop distribution phase. These times contributed 1.62% and
22.12% to the total compilation time respectively. When alignment was performed,
4.97s were spent in the loop fusion phase and 49.39s were spent in the loop distribu-
tion phase. These numbers contributed 4.38% and 43.63% to the total compilation
time. Again, the increase in time spent in loop distribution is the major cause for
the increase in compilation times.

These results indicate that the increase in compilation time is not because of an
increased amount of time spent in loop fusion phase. However, this does not mean
that loop fusion is not the cause of the increased compilation time. It is possible
that other optimizations, such as loop distribution, require more time because of
the loops created by loop fusion. For example, it is possible that more time is being
spent in the loop distribution phase because loop fusion is fusing loops that should
not be fused and the loop distributor requires extra time to determine the best

way to split the loops. It is also possible that the size and structure of the loop

73



bodies that are created by loop fusion are difficult for the loop distribution phase

to manage, thus causing it to execute for longer. This seems likely in some cases

because Index Set Splitting is not currently being used to remove the control flow

inserted into the fused loop bodies. A more detailed analysis of the time spent in

loop distribution is necessary to fully understand the cause of the compilation time

increases.

5.5 Run Time Results

To answer question 4 we collected the run times of the benchmarks using the versions

of the algorithm described in Section 5.1. These versions did not use the index-set

splitting facility described in Chapter 2. Thus, all of the guard branches added into

the loop bodies by the algorithms were not removed after loop fusion had completed.

Benchmark | Base MIC Guard | Guard align non Best
CTB RTB CFE

ammp 488.74 | 487.98 | 488.59 | 491.15 | 491.53 | 490.67 | 0.16 %

applu 319.68 | 320.19 | 321.49 | 321.36 | 307.72 | 307.2 | 3.9 %

apsi 397.02 | 397.48 | 396.34 | 397.28 | 400.29 | 401.22 | 0.17

art 217.60 | 223.82 223.1 221.71 | 220.73 | 220.95 | -1.43

SPEC facerec 201.02 | 201.27 | 201.06 | 201.1 201.28 | 201.24 | -0.02
2000 fma3d 341.14 | 336.77 | 337.08 | 338.30 | 353.13 | 340.35 | 1.28%
Fp galgel 180.71 | 179.13 | 179.83 | 179.32 | 180.59 | 179.81 | 0.87%
lucas 266.58 | 264.26 | 265.21 | 265.89 | 265.1 | 264.34 | 0.87%

mesa, 331.30 | 331.65 | 328.21 | 331.90 338.83 | 0.93%

mgrid 339.76 | 339.54 | 340.78 | 340.49 | 340.59 | 340.26 | 0.06%

sixtrack 265.32 | 265.54 | 268.15 | 266.42 | 266.81 | 268.1 | 0.08%

swim 274.03 | 273.86 | 274.04 | 273.82 | 274.07 | 274.41 | 0.08%
bzip2 257.27 | 257.79 | 258.21 | 258.11 | 258.01 | 258.20 | -0.20%
SPEC crafty 186.35 | 189.27 | 192.35 | 198.41 | 195.40 | 195.84 | -1.57%
2000 gap 246.31 | 242.28 | 236.03 | 236.03 | 235.23 | 241.57 | 4.50%
INT gzip 326.83 | 327.13 | 327.61 | 328.72 | 328.68 | 328.16 | -0.09%
twolf 435.84 | 440.48 | 438.48 | 433.50 | 442.42 | 440.04 | 0.54%

vpr 260.33 | 262.67 | 257.05 | 256.95 | 258.52 | 258.18 | 1.30%

Table 5.6: SPEC2000 Run Time Results

Tables 5.6 and 5.7 present the run time results for the SPEC2000 and SPEC95

benchmark suites, compiled using the different algorithms. The results reported are

the running times for each benchmark, averaged over three runs. The Best column

displays the best run time improvement for each benchmark. The best run time for

74




Benchmark | Base | MIC | Guard | Guard | align | non | Best
CTB | RTB CFE
tomcatv | 28.55 | 26.76 | 27.23 | 27.26 | 27.23 | 27.23 | 6.27%

turbo3d 96.1 | 96.09 | 96.17 | 96.54 | 96.56 | 96.11 | 0.01%
compress | 46.09 | 46.19 | 46.09 | 46.05 | 46.36 | 46.21 | 0.09%

Table 5.7: SPEC95 Run Time Results

each benchmark is in bold.

As seen in the Tables 5.6 and 5.7, the impact of increased loop fusion on the
running times of the benchmarks is modest. The movement of intervening code to
make loops adjacent results in a 2.8% decrease in performance for art. The use
of guards to make two non-conforming loops, whose difference in bounds is known
at compile time, conform results in a 4.2% improvement over the baseline in gap
and a 3.2% decrease in performance over the baseline in gap. The use of guards to
make two non-conforming loops, whose difference in bounds cannot be determined
at compile time, conform results in a 6.5% decrease in performance over the baseline.
The use of guard branches to make loops with negative distance dependencies align
results in a 4.2% performance improvement over the baseline for applu and a 4.4%
decrease in performance over the baseline for fma3d. The fusion of non-control flow
equivalent loops results in a 2.3% decrease in performance over baseline for mesa.

There are two explanations for the mediocre impact of loop fusion on the running
times of the benchmarks. First, since the index-set splitting optimization has not
been integrated with loop fusion into the compiler framework, the guard branches
introduced by several of the algorithms are not being removed. The presence of
these guard branches inside the loop body could have an impact on the performance
of other compiler optimizations, such as software pipelining. It is anticipated that
when index-set splitting has been fully integrated with loop fusion and the the guard
branches are removed, some of the benchmarks will benefit from increased run time
performance.

The second explanation for the small changes in run times is the amount of
time that the fused loops contribute to the total running time of the programs.
For example, compiling galgel with the MIC option resulted in an additional 14
loops fused. However, there was no significant difference in the run time. Since
the movement of intervening code does not introduce guard branches, the absence

of index-set splitting cannot be attributed to the run time performance (i.e., there

75



are no guard branches introduced during fusion so there is no reason to expect
index-set splitting will improve the run time performance). A run time performance
analysis of galgel determined that 36.3% of the total execution time is spent in five
functions: SysNSN (12.3%), DGEMYV (7.8%), DLARFX (6.2%), syshitn (5.0%) and
dgemm (5.0%). Only one loop was fused in all five of these functions. Thus, a large
part of the execution time is spent in functions in which no loops were fused. This
indicates, that the majority of loops fused are infrequently executed.

Similar results are found for fma3d when using runtime bounds checks to fuse
loops (GuardRTB column). An additional 30 loops were fused, but there was
no change in run time performance. A run time profile analysis was performed
and revealed that 37.8% of total program execution time is spent in 6 functions:
solve(8.0%), platq_stress_integration(7.5%), khplq_gradient_operator(7.1%),
platg_internal_forces(6.9%), khplq_divergence_operator(4.4%) and
material_41_integration(3.9%). No new loops were fused in any of these functions
as a result of the runtime bounds check (i.e., the same loops were fused when using
the compile time bounds checks). Thus, none of the additional 30 loops fused were
located in the functions responsible for 37.8% of the programs total execution. This

also indicates that infrequently executed loops are being fused.

76



Chapter 6

Related Work

This work focuses on maximal loop fusion for the IBM XL compiler suite. Very
little work has been published on maximal fusion followed by selective distribution.
In contrast, there has been extensive studies and experimentation on loop fusion
for parallelism, loop fusion to increase data reuse, loop fusion to minimize memory
bandwidth, and weighted loop fusion.

Loop fusion to increase parallelism and increase data reuse as well as weighted
loop fusion require that loop bodies be as small as possible. Thus, maximal loop
distribution is generally performed prior to performing loop fusion. The formation
of smaller loops removes constraints between statements originally located in the
same loop body, giving the loop fusion algorithms more freedom to selectively fuse

loops (group statements) based on a specific criterion.

6.1 Loop Fusion for Parallelism

Loop fusion to increase parallelism focuses on fusing loops such that the resulting
loop bodies can be run in parallel. Running a loop body in parallel can have per-
formance benefits if the loop iterates many times, or if the body of the loop is large.
Loop fusion is used to increase the size of loop bodies and thus increase the benefits
of running the loop in parallel. However, care must be taken while fusing loops to
ensure that the fused loop can be run in parallel.

In their conversion of Kennedy and M®Kinley’s research work [18] [19] to text-
book material, Allen and Kennedy[1] identify the following two safety constraints

for loop fusion:

1. Fusion-preventing dependence constraint: Two loops L; and L; cannot be

correctly fused if there exists a fusion-preventing dependence between them.

7



2. Ordering constraint: Two loops cannot be correctly fused if there exists a
path of loop-independent dependencies between them that contains a loop or

statements that are not being fused with L; and L;.

Constraint 1 corresponds to the fusion preventing dependence criterion and con-
straint 2 corresponds to the adjacent criterion identified in Section 4.1.2. They
mention other constraints such as conforming bounds, but do not discuss how to
handle programs where these other constraints are not satisfied.

Allen and Kennedy[1] identify what they call a “parallelism inhibiting” depen-

dence constraint that can effect the profitability of fusing two loops:

Definition 6.1.1 An edge between statements in two different loops is said to be
parallelism inhibiting if, after fusing the two loops, the dependence would be carried

by the combined loop.

Allen and Kennedy([1] then identify the following two profitability constraints for

loop fusion:

1. Separation constraint: A sequential loop should not be fused with a parallel
loop because the result would necessarily be sequential, reducing the total

amount of parallelism.

2. Parallelism-inhibiting dependence constraint: Two parallel loops should not

be fused if there exists a parallel-inhibiting dependence between them.

6.1.1 Typed Fusion

In typed fusion, there is a strict distinction between parallel and sequential loops.
Typed fusion attempts to create the largest possible parallel loops using loop fusion.
It does not attempt to determine when sequential loops might be run in parallel with
other sequential loops or with parallel loops.

Allen and Kennedy define the typed fusion problem in terms of graph G, con-
taining nodes NV and edges FE. Nodes in the graph represent loops. Every node has
an associated type; the type of a node can be either parallel or sequential. Edges in
the graph represent dependencies. Each graph has a set of bad edges that contain
fusion preventing or parallel-inhibiting edges. That is, a bad edge e, between two
nodes n; and n; indicates that there is either a fusion preventing dependence or a

parallel-inhibiting dependence between the loops represented by n; and n;.

78



They define a solution for the typed fusion problem as a graph G' = (N', E')
where N’ is obtained by fusing nodes of a specific type, subject to the following

constraints:

1. Bad edge constraint: no two nodes connected by a bad edge can be fused.

2. Ordering constraint: no two nodes joined by a path containing a node that is

not of the specified type can be fused.

By specifying the type to be parallel loops, the typed fusion problem formulated
above can be used to maximize the number of parallel loops that are created by loop
fusion. That is, an optimal solution to the typed fusion problem has the smallest
number of parallel loops. Kennedy and M¢Kinley presented an optimal greedy

algorithm to the typed fusion problem[19].

6.1.2 Unordered and Ordered Typed Fusion

It is possible to extend the types in typed fusion to represent other constraints of
fusion. For example, the iteration counts of loops can be introduced as types - two
loops with different iteration counts would have different types. This would not
provide a mechanism to make the two loops conform, but would fit into the typed
fusion framework for selecting loops to fuse.

In typed fusion, when there are more than two types to consider, the order in
which loop types are fused can determine how many loops are fused. Allen and
Kennedy[1] give the following example to illustrate the importance of type order

during typed fusion with more than two types:

Type 0 Type 1 Type 2

Figure 6.1: Order-sensitive Fusion Problem

In Figure 6.1, there are fusion preventing edges between loops 1 and 5, loops 2

and 4, loops 2 and 6 and loops 3 and 5. Two loops that have a fusion preventing

79



edge between them cannot be fused. When two loops are fused, the resulting loop

contains the outgoing and incoming edges of all of the original loops.

Type 0 Type 1 Type 2 Type 0 Type 1 Type 2

(a) Result of fusing type 1 first (b) Result of fusing type 0 first

Figure 6.2: Order-sensitive Fusion Problem

Figure 6.2(a), demonstrates the loops that are created when loops of type 1 in
Figure 6.1 are fused first. The result is the creation of bad paths for both type 0
and type 2, meaning that no more loops can be fused. Thus, if type 1 is fused first,
the result contains 5 loops. However, if type 0 is fused first, a bad path is created
only for type 1. This allows type 2 to be fused also, resulting in the loops shown in
Figure 6.2(b). The result of fusing type 0 first is more successful, containing only 4
loops.

Kennedy and M®Kinley used a polynomial reduction of the Vertex Cover prob-
lem to show that the unordered type fusion problem is NP-Hard[18].

The ordered typed fusion problem places priorities on the types. This allows types
of higher priority to be considered for fusion before types of lower priority. This is
equivalent to saying that it is more important to minimize the number of nodes of
a higher priority than of a lower priority type. Kennedy and MC®Kinley provide a
greedy algorithm to solve the ordered typed fusion problem by treating each type,

in order of priority, as a typed fusion problem[18].

6.2 Loop Fusion for Data Reuse

Loop fusion to increase data reuse can be divided into two separate areas. Loop
fusion has been used to increase the register reuse within a loop body. It has also
been used to increase the data cache performance by utilizing data as much as

possible before it is expunged from the cache.

80



On modern, superscalar processors, data must be moved from memory into
hardware registers before being used in a computation. While moving data from
a cache into a register is a relatively inexpensive operation (compared to moving
data from lower levels to higher levels in the memory hierarchy), it still requires
time to perform. Loop fusion has been used to try and reduce the number of loads
from data cache into hardware registers by placing computations from separate loop
bodies that use the same data into a single loop body. This reduces the number of
loads from data cache to hardware registers, resulting in a more efficient use of the
data.

Moving data between levels in the memory hierarchy can be an expensive op-
eration, depending on which level of the memory hierarchy contains the data. As
you move down through the memory hierarchy, transferring data to higher levels
becomes increasingly more expensive. Loop fusion has been used to increase data
cache performance by utilizing data as much as possible before it is expunged from
the cache. This reduces the amount of data that has to be retrieved from a lower
level in the memory hierarchy. The cost of retrieving data increases significantly as
you move lower in the memory hierarchy, allowing data reuse to have a significant

impact on the runtime performance of many programs.

6.2.1 Loop Dependence Graph

A Loop Dependence Graph (LDG) is a directed multigraph that represents a single
entry single exit region containing k perfect loop nests, introduced by Ferrante et
al. [12]. Every loop in the LDG must be control flow equivalent and have conformable
bounds. A node in the LDG represents a loop nest. A directed edge from a node n;
to nj represents a loop independent data dependence from node n; to node n;. Every
edge in the LDG is marked as being fusible or non-fusible. Two nodes n; and n;
connected by a non-fusible edge cannot be fused because doing so would violate the
data dependence test for loop fusion. Fusible edges in the LDG are further classified
as being contractable or non-contractable. A fusible contractable edge between two
nodes n; and n; signifies there is data reuse between statements in node n; and node
n; while a fusible non-contractable edge means no data reuse exists. An LDG edge
can represent flow, output or anti-dependencies between two nodes, however, only
edges representing flow dependencies can be marked as contractable.

Gao et al.[14] provide a sample FORTRAN code fragment to illustrate a simple

81



LDG. This sample code has been translated to C and modified slightly to make it
consistent with the other examples presented in this document. Figure 6.3 shows
the C code fragment (a) and the resulting LDG (b). Edges in the LDG marked with
an X represent nonfusable edges while edges marked with an % represent fusible-

noncontractaable edges. All other edges are fusible and contractable.

Li: for (i=0; i < N; i++)

{
A[i] = E[i];
}
L2: for (i=0; i < N; i++)
{
B[i] = A[i] * 3;
C[i] = B[i] + 10;
}
L3: for (i=0; i < N; i++)
{
D[i] = A[i+1] * 2;
}
L4: for (i=0; i < N; i++)
{
E[i] = B[i] C[il*D[il;
}
L5: for (i=0; i < N; i++)
{
F[i] = B[i] * 2;
G[i] = E[i] - F[il;
}
L6: for (i=0; i < N; i++)
{
H[i] = F[i] + G[i] * E[i+1];
}

(a) A C code fragment (b) The LDG of C code fragment

Figure 6.3: An Example LDG for a Given Code Fragment

In Figure 6.3, the nonfusable edge from node n; to node nj3 is a result of the
fusion-preventing dependence between L1 and L3. The nonfusable edge from node
n4 to node ng exists for the same reason. The non-contractable edge from node 7
to n4 is a result of the anti-dependence on array E in loops L1 and L4.

Gao et al. use loop fusion to maximize data reuse within a loop. This maxi-
mization allows the same register to be used for multiple computations of the same
data, saving the cost of loading the same data into a register in multiple loop bodies.

Gao et al. proposed an algorithm based on the max-flow /min-cut algorithm [14].
Their algorithm works in two stages. The first stage identifies the minimum number

of clusters required for a solution and determines in which cluster each node can

82



legally be placed. The number of required clusters is determined by performing a
topological traversal of the LDG, assigning each node to a cluster based on the edges
in the graph and the other nodes already in the cluster.

Finally, a reduced graph G’ is created by collapsing all clusters into nodes in G'.
Nodes from the LDG that could only reside in one cluster are contained within the
new cluster nodes. Nodes that could reside in multiple clusters are left as regular
nodes in G'.

Gao et al. focus on solving the problem of moving data between caches and
registers. Our approach can benefit the data cache performance, but is not driven
by the performance benefits that would result. Also, there is less of a focus in our
approach on register reuse for data within a loop body.

Allen and Kennedy also discuss loop fusion to improve register reuse [1]. They
identify dependences between statements S; and S; in loops L; and L; as profitable
loop fusion for register reuse if (i) statements S; and S; remain independent when
L; and L; and fused, or (i) statements S; and S; become forward loop-carried

dependences when L; and L; are used.

for (i=0; i < n; i++)

{ for (i=0; i < n; i++)
A[i] = B[i] + C[i] * 2; {
} A[i] = B[i]l + C[i] * 2;
for (i=0; i < n; i++) D[i] = B[i] + C[i] + 10;
{ }
D[i] = B[i] + C[i] + 10;
}
(a) Independent statements (b) After loop fusion

Figure 6.4: Fusion of Loops Containing Independent Statements

Condition (i) may create the potential for register reuse within a loop iteration
if loop fusion is performed. Figure 6.4 provides an example of two loops containing
a loop independent dependence. In Figure 6.4(a), the values of B[i] and C[i]
are used in both loop bodies. Thus, two values need to be loaded from memory
into registers for every iteration of both loop bodies. Figure 6.4(b) shows the loop
created after loop fusion. In this loop, it is only necessary to load two values from
memory for every iteration of the loop body. Thus, through the reuse of registers in
the fused loop, the number of memory loads into registers has been reduced by 2n.

Condition (i7) may create the potential for register reuse across loop iterations

83



for (i=1; i < nj; i++)

{ for (i=1; i < n; i++)
A[i] = B[il + 2; {
} C[i] = A[i-1] =* 3;
for (i=1; i < n; i++) A[i] = B[i] + 2;
{ }
C[i] = A[i-1] =* 3;
}

(a) Forward loop carried dependence (b) Loop fusion and reordering of statements

Figure 6.5: Fusion of Loops Containing Forward Loop-carried Dependencies

if statements S; and S; can be reordered. The two original loops in Figure 6.5(a)
contain a forward loop-carried dependence to array A. Before fusion, it is necessary
to load the values of A[i] and A[i-1] from memory into registers for every iteration
of the first and second loops respectively. After fusion, and reordering of statements,
the value of A[i] can be used in the next iteration for the value of A[i-1], thus
saving a load from memory. It is necessary to reorder the two statements in the
fused loop to create the register reuse scenario. However, statement order is not
a factor in preserving loop-carried dependencies thus the statements can be safely

reordered.

Allen and Kennedy also provide algorithms to fuse loops, using loop alignment
and loop peeling to remove fusion preventing dependencies and maximize the amount
of register reuse in the fused loop body[1]. The technique of using loop peeling to
align loops containing fusion preventing dependencies is very similar to the technique
presented in Section 4.5 to align loops by guarding iterations. A fusion preventing
dependence from statement S; to statement S;, indicates that S; uses a value that
is created by S; in a future iteration. The goal is to align the loops so that the
creation of the value in S; is on the same iteration as the use of the value in §j.

This also maximizes the amount of register reuse within the fused loop.

Their algorithms work an a set of loops that have varying upper and lower
bounds. The set of loops must be in the order in which the loops should be executed.
The result consists of three components. First is a series of pre-loops, consisting of
the peeled iterations from the beginning of all loops that require peeling. Second is
the fused loop body, which contains the common parts of all loops. Third is a series
of post-loop bodies that contain the remaining iterations of all the loop bodies. The

key point to this algorithm is that it can take a set of loops with varying lower

84



and upper bounds and create a single fused loop body and a series of pre-loops and
post-loops. In our algorithms, all loops considered for fusion have been normalized
and thus all have the same lower bounds. Furthermore, the input to Allen and
Kennedy'’s algorithm is a set of loops to be fused, in the order in which they should
be fused. The algorithm does not determine if fusing the loops is legal nor attempt

to make loops fusible.

6.3 Bandwidth-minimal Loop Fusion

The increasing difference between processor and memory hierarchy speeds has be-
come the primary limiting factor in program performance [10]. This observation
has motivated research that focuses on reusing data loaded into the data cache as
much as possible before it is removed from the cache. By increasing the amount of
data reuse from the data cache, the amount of data transferred between levels in the
memory hierarchy is reduced resulting in an increase in the data cache performance.

Data cache performance is similar to register reuse in that it attempts to reuse
data. However, granularity of the data that is being reused is slightly coarser. In
order to increase register reuse, the same data must be used in multiple statements
within a loop body. In order to increase data cache performance, data from the
same cache line must be used before the data is discarded. For example, if the array
accesses in two loop bodies are not aligned, but the loops can still be fused, it may
not be possible to reuse registers in the fused loop. However, it is likely that the
fused loop will benefit from increased data cache performance because parts of the

array will stay in the data cache through several iterations of the loop.

for (i=0; i < n; i++) for (i=0; i < n; i++)
{ {

B[i] = A[i] + 10; B[i] = A[i] + 10;
} Cl[i] = A[i] * 2;
for (i=0; i < n; i++) }

{
C[i] = A[i] * 2;
}
(a) Original loops (b) After loop fusion

Figure 6.6: Loop Fusion to Illustrate Data Cache Performance

Loop fusion will also benefit from data cache performance if the array accessed

by the two loops is larger than cache. Figure 6.6 shows an example of two loops,

85



before and after loop fusion. Assume that n is larger than the cache. Every iteration
of the first loop in Figure 6.6(a) will result in a data cache miss. When the first
loop completes, the entire cache will be filled with values from the A array, but the
values required at the beginning of the second loop will not be present because they
have been overwritten by values from later iterations. Thus, every iteration of the
second loop will also incur a cache miss. The fused loop in Figure 6.6(b) will incur
a cache miss at the beginning of each iteration while loading the value from the A
array. However, the second use of this value in fused loop will result in a cache hit.
Thus, the fused loop has reduced the number of cache misses by a factor of n.

Ding and Kennedy proposed a Bandwidth-minimal loop fusion to minimize mem-
ory transfer of data and provided a polynomial solution to a restricted form of the
problem [10]. They also provided a polynomial reduction of the k-way cut problem
to the Bandwidth-minimal fusion problem to show that the unrestricted problem is
NP-hard.

The Bandwidth-minimal loop fusion problem is modeled using a fusion graph,
based on the Loop Dependence Graph used by Gao et al.. Nodes in the graph repre-
sent loops, directed edges model data dependencies and undirected edges represent
fusion-preventing constraints. Ding and Kennedy define the objective for fusion is

stated as follows [10]:

Given a fusion graph, how can we divide the nodes into a sequence of partitions

such that

e (Correctness) each node appears in one and only one partition; the nodes
in each partition have no fusion-preventing constraint among them; and
dependence edges flow only from an earlier partition to a later partition

in the sequence.

e (Optimality) the sum of the number of distinct arrays in all partitions is

minimal

Ding and Kennedy present the following example to illustrate that the data-
reuse problem formulation of Gao et al. and Kennedy and MCKinley is different
from their bandwidth-minimal loop fusion[10].

Figure 6.7(a) shows the data accessed by 6 different loops. Letters A, B, C, D,

E and F represent arrays, while sum is a scalar quantity. Figure 6.7(b) shows the

86



Loop Array Accesses

o Ul W N
k=
o
\.U\'
\.m\‘
&5 |

(a) Array accesses in loops (b) Associated Fusion Graph

Figure 6.7: Fusion Graph Example

associated fusion graphs for the loops listed in Figure 6.7(b). The weights on the
directed edges represent the number of shared arrays between the two loops. For
example, the edge from L1 to L2 has a weight of 4 because the two loops access the
same 4 arrays. Similarly, the edge from L1 to L4 has a weight of 3 because they
only access three of the same arrays. The undirected edge from L5 to L6 represents
a fusion-preventing dependence between L5 and L6, meaning that the two loops

cannot be fused together or cannot be located in the same fusion cluster.

Figure 6.8: Loop Fusion to Maximize Data Reuse

Figure 6.8 shows the partition that would be formed using the algorithms Gao
et al.and Kennedy and M®Kinley. Their approach partitions the nodes to minimize
the total weight of edges between partitions. The resulting partitions group nodes
L1, L2, L3, L4 and L5 into a single group, leaving L6 to form the second partition.

This results in a total cross-partition edge weight of 2, which is the lowest possible

87



for this graph. However, it requires 8 arrays to be loaded.

Figure 6.9: Loop Fusion to Maximize Data Reuse

Figure 6.9 shows the partitions that would minimize the bandwidth consumption.
This partition only requires 7 arrays to be loaded, but has slightly less data reuse as
a result. Also, the cross-partition edge weight total is 3, which is not optimal based
on the formulation by Gao et al.and Kennedy and M®Kinley.

Ding and Kennedy argue that in order to correctly represent data sharing be-
tween loops, a hypergraph is necessary. Since multiple loops can share the same
data, traditional edges in a graph cannot fully represent the data sharing relation-
ship between loops. Instead, a single hyper-edge is used to connect multiple nodes
in the graph. A graph containing hyper-edges is called a hyper-graph [10].

The Bandwidth-minimal loop fusion problem can be formulated in terms of
hypergraphs by adding hyper-edges to a fusion graph. Each hyper-edge connects
all loops that access a specific array. The length of the hyper-edge corresponds to
the number of partitions the edge is connected to after partitioning. The goal of

Bandwidth-minimal loop fusion is to minimize the total length of all hyper-edges.

6.4 Weighted Loop Fusion

Weighted loop fusion provides a framework for selecting groups of loops to be fused.
This selection is based on profitability of performing loop fusion on a set of loops.
Data reuse is the most common measurement of profitability, however other criterion
such as parallelism or resulting code size could also be used. The weighted loop
fusion problem uses a weighted graph to represent profitability for fusing different

pairs of loops. Nodes in the graph represent loops that can be fused. Edges in the

88



graph have two meanings, depending on the value of their weights. An edge from
node N; to node N; with positive weight (i.e., weight > 0) represents the potential
gain from fusing N; and N;. An edge from node N; to node N; with negative weight
(i.e., weight < 0) indicates that N; and N; cannot be fused (i.e., there is a fusion
preventing dependence between N; and N;). Given a weighted graph representing
fusion potentials, the goal of weighted loop fusion is to group the nodes into clusters
in a way that minimizes total weight of positive edges that cross cluster boundaries
while ensuring that no cluster contains an edge with negative weight.

Kennedy and M®Kinley used a polynomial reduction of the Multiway Cut prob-
lem to prove that solving the weighted loop fusion problem is NP-Hard. They also
provide a greedy algorithm and a variation of the max-flow/min-cut algorithm to
find approximated solutions for the weighted loop fusion problem [18].

Megiddo and Sarkar presented an integer programming formulation for the weighted
loop fusion problem. The number of variables and constraints in the formulation is
linearly proportional to the size of the weighted loop fusion problem. They also pro-
vide a custom branch-and-bound algorithm that can be used to solve their integer

programming formulation [27].

89



90



Chapter 7

Conclusions

While there has been extensive work done on loop fusion for a variety of scenarios,
scant work has been done on methods to handle the conditions surrounding loop
fusion. This work presented algorithms to test and move intervening code from
between two loops, thus making them adjacent. Alternative techniques to make
loops with different bounds conform and loops with fusion preventing dependencies
align were also presented. These alternative techniques use guard branches placed
within the fused loop body to limit the execution of one of the original loop bodies.
This technique does not effect future loop fusion attempts and the guard branches

can be removed after loop fusion has completed using index set splitting.

An algorithm to fuse loops that are not control flow equivalent was also pre-
sented. This algorithms copies the unconditionally executed loop into both control
flow paths, allowing the two loops in one control flow path to be fused while still

maintaining program correctness should the other control flow path be taken.

Finally, an algorithm to identify and correct the conditions preventing loop fu-
sion was given. This algorithm determines if code transformations can be used to
modify a program in order to fuse pairs of loops. No code transformations are per-
formed if all conditions necessary for fusion cannot be satisfied, thus limiting the
amount of unnecessary transformations performed. The loop fusion algorithm uses
the dominator/postdominator relationships between control flow equivalent loops
to enforce an ordered traversal of fusion candidates. This reduces the number of
times internal data structures are built and lowers the overall compilation time of
the program.

The results presented in Section 5.4 show the effect of the different algorithms
on the number of loops fused. The benchmarks fmadd, galgel and crafty all bene-

91



fitted significantly from the movement of intervening code from between two loops.
Additional loops were fused in fmadd, galgel and crafty as a result of adding compile
time guards to the loops to make the bounds conform. Vpr saw 4 loops fused where
none were fused before as a result of the guardCTB algorithm.

The number of successfully fused loops increased in fmadd, galgel, siztrack, gzip
and twolf as a result of using run time bounds checking to fuse loops. Applu saw
a dramatic increase in the number of loops fused when guards were added to align
loops and remove negative distance dependencies from between loop bodies. Apsi,
fmadd, siztrack, swim and crafty each had a single additional fused loop as a result
of loop alignment. Finally, apsi and siztrack both saw a significant increase in the
number of loops fused when non-control flow equivalent loops were fused. Fma8d
and mesa also saw a small increase in the number of fused loops when non-control

flow equivalent loops were fused.

The effects of each algorithm on the compilation time of the benchmarks was also
reported. From this data, we see that in some cases the algorithms do increase the
compilation time of the benchmarks. However, the increase in compilation time is
not extreme, thus allowing the loop fusion algorithms to be applied in a commercial
setting.

The run time results are not as impressive as the compile time results. There
are three possible reasons for this. First, it is possible that many of the loops being
fused are cold loops. In several benchmarks, cross referencing was performed to
associate hot functions with the number of loops fused in those functions. It was
determined that in several cases the majority of loops being fused were located in
cold functions and thus not executed frequently. Second, the index set splitting
optimization is not being used after loop fusion has completed. Thus, the loops
fused with the FUSEWITHGUARD and FUSEANDALIGN algorithms still contain the
control flow used to make the loops conform and align. It is hoped that once the
interface to allow index set splitting to be used on loops created by loop fusion will
be finished soon and that once control flow is removed from the loops a performance
increase will be seen.

The third possible explanation for the meager run time results is that the loop
distributor may not be dealing with the loop created by loop fusion ideally. The
loop fusion mechanism is now fusing significantly more loops and may be creating

opportunities that have never been encountered by the distributor. Thus, it is

92



possible that the distributor is not splitting the loops in the best way.

93



94



Chapter 8

Future Work

8.1 Loop Optimization Framework

The loop optimization sequence in TPO is designed to perform maximal loop fusion
followed by selective distribution. The algorithms presented here were designed to
fuse as many loops as possible, without placing priority on fusing some pairs of loops
over other pairs of loops. Instead, all possible pairs of loops are fused. This is done
with the knowledge that the loop distributor will “undo” any bad choices that loop
fusion made i.e., loop distribution will separate a loop body into different loops if
keeping them together has a negative effect on program performance.

As the algorithm for loop fusion evolved, more aggressive loop fusion was per-
formed. Specifically, the fusing of loops whose difference in bounds could not be
determined at compile time and fusing non-control flow equivalent loops. Both of
these algorithms require the duplication of code to ensure program correctness. It
became necessary to limit the code growth resulting from these algorithms to keep
the compile time of the program within an acceptable limit. By limiting the amount
of code growth, maximal loop fusion could no longer be performed. Thus, it seems
prudent to use heuristics to guide loop fusion, especially in the cases where the total
number of allowable loop fusions is limited.

These heuristics should include knowledge of loop structures that will benefit
subsequent loop optimizations e.g., perfect loop nests. The heuristics should also
be aware of the situations that the loop distributor can properly deal with and
ensure that loop fusion does not fuse two loops that cannot be distributed by the
distributor. This leads to a tighter coupling between the loop fusion algorithm and
the loop distribution algorithms. The loop fusion algorithms should be aware of

what the loop distributor does and use this knowledge to help select the loops that

95



will be fused.

8.2 Interprocedural Loop Fusion

TPO allows the loop optimizations to be run at either compile time or link time.
Running loop optimizations at compile time means that the scope of the optimiza-
tions are limited to a procedure. Running the loop optimizations at link time means
the algorithms can be applied at an interprocedural scope. The loop fusion algo-
rithms presented here are not limited to work on an interprocedural scope. While
the results presented in this document were taken from an intraprocuderal scope
(i.e., algorithms were run at compile time) they do not require an intraprocuderal
scope.

Running the algorithms at link time will create the potential for loops located
in separate functions to be fused.

One way to allow loops from different procedures to be fused would be to have
the potential for loop fusion to guide the function inlining routine. For example,
assume a function X contains a loop L; and a function Y contains a loop L. If Y’
was called from X and if L; and L; could be fused, the inlining mechanism would be
more inclined to inline Y into X (copy the body of Y into X, thereby eliminating
the function call) and allow L; and Lj to be fused.

It would be necessary to add checks that determine if two loops in separate
procedures can be fused. This would prevent a function from being inlined only
to determine that the two loops could not be fused. It would also be beneficial
to have tests that determine the profitability of fusing two loops. This can help
the inlining mechanism determine if benefits of inlining the function and fusing the
loops outweigh the disadvantages of inlining i.e., data reuse within the fused loop

vs the code growth from inlining the function.

96



Bibliography

[1]
[2]

[10]

[11]

[12]

[13]

Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architec-
tures. Morgan Kaufmann Publishers, 2002.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transforma-
tions for high-performance computing. ACM Computing Surveys, 26(4):345—
420, 1994.

Steve Behling, Ron Bell, Peter Farrell, Holger Holthoff, Frank O’Connell, and
Will Weir. The POWERA4 processor introduction and tuning guide. Technical
Report SG24-7041-00, IBM, November 2001.

Bob Blainey, Christopher Barton, and José Nelson Amaral. Removing im-
pediments to loop fusion through code transformations. In 15th Workshop on
Languages and Compilers for Parallel Computing, pages 271-281, College Park,
Maryland, 2002.

Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimiza-
tions for improving data locality. In Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 252-262, San Jose, California, 1994.

Intel Corporation. Intel C++ Compiler User’s Guide. Intel Corporation, 1996-
2002.

Alain Darte. On the complexity of loop fusion. In International Conference on
Parallel Architectures and Compilation Techniques, pages 149-157, 1999.

K. Diefendorff. Best new technology: POWER4 — IBM’s chip multiprocessor is
analysts’ choice for technology award. In Microprocessor Report: The Insider’s
Guide to Microprocessor Hardware, February 2000.

Chen Ding. Improving Effective Bandwidth through Compiler Enhancement
of Global and Dynamic Cache Reuse. PhD thesis, Department of Computer
Science, Rice University, January 2000.

Chen Ding and Ken Kennedy. The memory bandwidth bottleneck and its
amelioration by a compiler. In 2000 International Parallel and Distributed
Processing Symposium, pages 181-189, Cancun, Mexico, May 2000.

Chen Ding and Ken Kennedy. Improving effective bandwidth through compiler
enhancement of global cache reuse. In International Parallel and Distributed
Processing Symposium (CD-ROM), San Francisco, CA, April 2001.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Programming
Language Systems, 9(3):319-349, 1987.

Amit Ganesh. Fusing loops with backward inter loop data dependence. ACM
SIGPLAN Notices, 29(12):25-30, 1994.

97



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Guang R. Gao, Russ Olsen, Vivek Sarkar, and Radhika Thekkath. Collective
loop fusion for array contraction. In 1992 Workshop on Languages and Com-
pilers for Parallel Computing, pages 281-295, New Haven, Conn., 1992. Berlin:
Springer Verlag.

Rajiv Gupta and Rastislav Bodik. Adaptive loop transformations for scientific
programs. In IEEE Symposium on Parallel and Distributed Processing, pages
368-375, San Antonio, Texas, October 1995.

Bor-Ming Hsieh, Michael Hind, and Ron Cytron. Loop distribution with mul-
tiple exits. In Proceedings of Supercomputing, pages 204-213, November 1992.

Ken Kennedy and Kathryn S. McKinley. Loop distribution with arbitrary
control flow. In Proceedings of Supercomputing, pages 407-417. IEEE Computer
Society Press, November 1990.

Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and
improving data locality via loop fusion and distribution. In 1993 Workshop
on Languages and Compilers for Parallel Computing, pages 301-320, Portland,
Ore., 1993. Berlin: Springer Verlag.

Ken Kennedy and Kathryn S. McKinley. Typed fusion with applications to
parallel and sequential code generation. Technical Report CRPC-TR94646,
Rice University, Center for Research on Parallel Computation, 1994.

Kevin Krewell. IBM’s POWERA4 unveiling continues: New details revealed at
microprocessor forum 2000. In Microprocessor Report: The Insider’s Guide to
Microprocessor Hardware, November 2000.

David J. Kuck. A survey of parallel machine organization and programming.
ACM Computing Surveys, 9(1):29-59, March 1977.

Chi-Chung Lam, Daniel Cociorva, Gerald Baumgartner, and P. Sadayappan.
Optimization of memory usage and communication requirements for a class of
loops implementing multi-dimensional integrals. In 12th International Work-
shop on Languages and Compilers for Parallel Computing, pages 350-364, La
Jolla, San Diego, 1999.

E. Christopher Lewis, Calvin Lin, and Lawrence Snyder. The implementation
and evaluation of fusion and contraction in array languages. In Proceedings of
the SIGPLAN ’98 Conference on Programming Language Design and Imple-
mentation, pages 50-59, Montreal, Canada, 1998.

Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. Blocking and array con-
traction across arbitrarily nested loops using affine partitioning. In Proceedings
of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 103-112, June 2001.

N. Manjikian and Tarek S. Abdelrahman. Fusion of loops for parallelism and
locality. IEEE Transactions on Parallel and Distributed Systems, 8(2):193-209,
1997.

Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data local-
ity with loop transformations. ACM Transactions on Programming Languages
and Systems, 18(4):424-453, July 1996.

Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion for parallel
programs. In ACM Symposium on Parallel Algorithms and Architectures, pages
9282291, 1997.

Steven S. Muchnick. Advanced Compiler Design € Implementation. Morgan
Kaufmann Publishers, 1997.

98



[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

Gabriel Rivera and Chau-Wen Tseng. Locality optimizations for multi-level
caches. In ACM International Conference on Supercomputing (CDROM), 1999.

Gerald Roth and Ken Kennedy. Loop fusion in high performance FORTRAN.
In ACM International Conference on Supercomputing, pages 125-132, 1998.

Edwin H.-M. Sha, Timothy W. O’Neil, and Nelson L. Passos. FEfficient
polynomial-time nested loop fusion with full parallelism. International Journal
of Computers and Their Applications, In Press.

Edwin Hsing-Mean Sha, Chenhua Lang, and Nelson L. Passos. Polynomial-
time nested loop fusion with full parallelism. In International Conference on
Parallel Processing - Vol. 3, pages 9-16, 1996.

Sharad Singhai and Kathryn S. McKinley. A parameterized loop fusion al-
gorithm for improving parallelism and cache locality. The Computer Journal,
40(6):340-355, 1997.

Yonghong Song Sun, Rong Xu, Cheng Wang, and Zhiyuan Li. Data local-
ity enhancement by memory reduction. In ACM International Conference on
Supercomputing, pages 50-64, June 2001.

Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop trans-
formations considering caches and scheduling. In IEEE/ACM International
Symposium on Microarchitecture, pages 274-287, Paris, France, December 1996.

Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley Publishing Company, 1996.

99



100



Appendix A

Additional Results

Table A.1 presents additional results collected using the algorithms described in
Chapter 4. Each algorithm was applied individually to the benchmarks. The best
performance for each benchmark is in bold. The Best column gives the best perfor-

mance improvement for the benchmark.

101

Benchmark | Base MIC Guard | Guard align non Best
CTB RTB CFE
ammp 488.74 | 487.98 | 487.42 | 488.01 | 486.55 | 488.95 | 0.45%
applu 319.68 | 320.19 | 320.39 | 319.81 | 319.82 | 319.74 | -0.02%
apsi 397.02 | 397.48 | 397.03 | 396.71 | 396.28 | 395.43 | 0.40%
art 217.60 | 223.82 | 221.46 | 220.29 | 219.81 | 221.29 | -1.02%
SPEC facerec 201.02 | 201.27 | 201.12 | 200.79 | 201.32 | 200.66 | 0.18%
2000 fma3d 341.14 | 336.77 | 334.16 | 340.64 | 340.63 | 339.88 | 2.05%
Fp galgel 180.71 | 179.13 | 179.56 | 179.76 | 179.74 | 179.53 | 0.87%
lucas 266.58 | 264.26 | 265.96 | 265.87 | 266.11 | 265.93 | 0.87%
mesa 331.30 | 331.65 | 330.04 | 331.21 | 332.18 | 332.41 | 0.38%
mgrid 339.76 | 339.54 | 339.71 | 339.48 | 340.11 | 339.61 | 0.08%
sixtrack 265.32 | 265.54 | 268.46 | 265.36 | 265.46 | 267.99 | -0.02%
swim 274.03 | 273.86 | 274.05 | 273.66 | 273.64 | 274.21 | -0.22%
bzip2 257.27 | 257.79 | 256.55 | 256.34 | 256.54 | 256.45 | 0.36%
SPEC crafty 186.35 | 189.27 | 185.35 | 186.56 | 186.15 | 186.41 | 0.54%
9000 gap 246.31 | 242.28 | 236.57 | 243.30 | 243.25 | 238.19 | 3.95%
INT gzip 326.83 | 327.13 | 328.29 | 326.79 | 326.84 | 326.53 | 0.09%
twolf 435.84 | 440.48 | 439.82 | 442.26 | 440.43 | 436.86 | -0.23%
vpr 260.33 | 262.67 | 266.01 | 260.41 | 261.63 | 261.46 | -0.03%
Table A.1: SPEC2000 Run Time Results




102



Appendix B

Trademarks

The following terms are trademarks or registered trademarks of International Busi-
ness Machines Corporation in the United States, other countries, or both: IBM,
PowerPC, POWERS3, POWERA4, pSeries, VisualAge.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

103



