
Serialization Management Driven Performance in
Best-Effort Hardware Transactional Memory Systems

by

Matthew Gaudet

A thesis submitted in partial fulfillment of the requirements for the
degree of

Master of Science

Department of Computing Science
University of Alberta

c⃝Matthew Gaudet, 2014

Abstract

Serialization Management is the Best-Effort Hardware Transactional Memory

(BE-HTM) counterpart to Software Transactional Memory (STM) Contention

Management. A serialization manager uses non-speculative serialization to

provide a forward-progress guarantee while simultaneously attempting to pro-

vide high application performance. Historically, non-speculative serialization

management has been done through a simple policy of allowing a fixed number

of retries. This thesis investigates the proposition that application performance

can be improved through better Serialization Management.

This thesis explores seven serialization managers and their tuning param-

eters on Blue Gene/Q’s BE-HTM system using the Stanford Transactional

Applications for Multi-Processing (STAMP) and the Recognition, Mining and

Synthesis (RMS-TM) benchmark suites. It presents the first large-scale in-

vestigation of Serialization Management for BE-HTM in the literature. This

investigation experiments with a large number of values for each tuning pa-

rameter on multiple platforms. The main finding is that program performance

can be improved by changing the serialization manager. However, performance

is actually dominated by the tuning of parameters for each manager and this

tuning depends on the benchmark, the thread count, and the platform.

ii

Preface

Parts of Chapter 4 have been previously submitted to the 2013 ACM Student

Research Competition Grand Finals, titled Transactional Event Profiling in a

Best-Effort Hardware Transactional Memory System.

Appendix A is a collaborative work, with authorship shared among Amy

Wang, myself, Peng Wu, Martin Ohmacht, José Nelson Amaral, Christopher

Barton, Raul Silvera, and Maged M. Michael. I ran the experimentation and

data analysis for the paper, with the majority of writing having been done

by the remaining authors. It has been accepted for publication in the IEEE

Transactions on Computers, however it has not yet appeared at the time of

thesis submission, and so is included as an appendix.

iii

It’s like, French is a great idea, but nobody is going to invent
French if they’re constantly being attacked by bears. Do you see?

SYSTEMS HACKERS SOLVE THE BEAR MENACE. Only
through the constant vigilance of my people do you get the

freedom to think about croissants and subtle puns involving the
true father of Louis XIV.

— James Mickens, The Night Watch

iv

Acknowledgements

First and foremost, I must thank my parents. They raised me well, and helped

guide me just enough to let me find my path.

Andrea, my long-time partner, has been a wonderful support throughout

this process.

My supervisor José Nelson Amaral has guided me continuously for more

than six years now, ever since he took me on as a summer student – a program

that set me on the path I have followed until today. He has been an excellent

mentor, and I do not believe I could have achieved a fraction of what I have

without him.

Thanks to Peng Wu, for her excellent guidance and insights, and to Amy

Wang for laying the ground work upon which this thesis was built.

I would also like to thank a number of others who each helped me in ways

large and small to get through my Masters program: Kit Barton, Martin

Ohmacht, Maged Micheal, Wang Chen, Marcel Mitran, Jerry Zheng, Ian

Gartley, Alan Li, Joran Siu, Yan Luo, Yi Zheng, Arthur Zimek, Ricardo

Campello, Jörg Sander and Manon Gaudet.

IBM must be thanked for being generous in their support. Hundreds of

thousands of experiments were performed over the course of this thesis, and

would have been impossible without them.

This thesis has been funded in part by an Alberta Innovates Graduate

Student Scholarship from Alberta Technology Futures as well as a Canada

Graduate Scholarship from the Natural Sciences and Engineering Research

Council of Canada.

v

Table of Contents

1 Introduction 1
1.1 Transactional Memory . 4

1.1.1 Software Transactional Memory 5
1.1.2 Best-Effort Hardware Transactional Memory 5

1.2 Performance in TM systems 5
1.3 Programming Models and Forward Progress 6
1.4 Programming Models and Forward Progress for Best-effort HTMs 7
1.5 Non-speculative Serialization and the Serialization Manager . 8
1.6 Serialization-Manager-Driven Performance 9

2 Background 11
2.1 Race Conditions . 11
2.2 Transactional Memory . 12

2.2.1 Software Transactional Memory 14
2.2.2 Hardware Transactional Memory 16

2.3 Blue Gene/Q . 18
2.3.1 Hardware Support . 18
2.3.2 Software Support . 20

3 The Effect of Serialization Management on Performance 22
3.1 Evaluation Pitfalls . 22
3.2 New Serialization Managers 23
3.3 Answering the Research Questions 24
3.4 Experimental Methodology . 24

3.4.1 Metrics . 25
3.5 Benchmarks . 25

3.5.1 STAMP . 25
3.5.2 RMS-TM . 27

3.6 Benchmark Characterization 28
3.6.1 Contention . 28
3.6.2 Capacity Overflow . 28

4 The Transactional Event Profiler 30
4.1 TEP Design and Implementation 30
4.2 Limitations of the TEP approach 31

4.2.1 Probe Effects . 31
4.2.2 Hardware Limitations 33

4.3 A Sample of Event Log Analyzers 33
4.3.1 Visualizing Event Rates 33
4.3.2 Visualizing and Comparing Dynamic Transaction Execu-

tion Lengths . 35
4.3.3 Micro-level analysis and visualization 36
4.3.4 Visualizing Parameter Evolution 37

vi

4.4 Lessons from the TEP . 37

5 Explored Serialization Managers 39
5.1 Max-Retry . 39
5.2 SerializationControl . 39
5.3 Limit, inspired by Karma . 40
5.4 LimitMean and LimitMeanST 41
5.5 Best-Effort Adaptive Transactional Scheduling (BE-ATS) . . 42
5.6 Percentage Of Effective Work (Pew) 43
5.7 Other Investigated Serialization Managers 44

6 Manager-Independent Policies 45
6.1 Rollback Delay . 45
6.2 Capacity Serialization . 48

7 Serialization Manager Tunings 51
7.1 Tuning Max-Retry . 51

7.1.1 Mode Generalizability 52
7.2 Tuning SerializationControl’s Blacklisting Threshold . . 55
7.3 Tuning Limit’s Per-Transaction Execution-Cycle Budget 57
7.4 Tuning M in LimitMean and LimitMeanST 58
7.5 Tuning α in BE-ATS . 64
7.6 Tuning PEW’s T and α . 67
7.7 Tuning, a summary . 70

8 Serialization-Manager-Driven Performance Effects 71
8.1 Performance Instability . 71
8.2 Stable Trends . 72
8.3 Wasted-Work Hypothesis . 74
8.4 Serialization Management and Performance 77

9 Related Work 81
9.1 HTM Performance Analyses . 81
9.2 Non-Speculative Serialization 82

9.2.1 Hardware Systems with Non-speculative Execution . . 82
9.2.2 STM Analogues to Non-speculative Execution 83

9.3 HTM Serialization Enhancements 83
9.4 Transactional Profiling . 84

10 Study Limitations 85

11 Future Work 87
11.1 Formalization and Abstraction 87
11.2 Invasive Serialization Managers 87
11.3 Hardware Non-speculative Serialization 88

12 Conclusion 89

Bibliography 90

vii

A Software Support and Evaluation of Hardware Transaction
Memory on Blue Gene/Q 95
A.1 Introduction . 95
A.2 Transactional Memory Programming Model 98
A.3 Hardware Transactional Memory Implementation in BG/Q . . 99

A.3.1 Hardware Support for Transactional Execution in L2 . 99
A.3.2 Causes of Transactional Execution Failures 102

A.4 Software Support for TM Programming Model 102
A.4.1 Managing Transaction Abort and Retry 103
A.4.2 Sandboxing of Speculative Execution 104
A.4.3 Ensuring Forward Progress via Irrevocable Mode . . . 105
A.4.4 Runtime Adaptation 106

A.5 Experimental Setup and Benchmarks 106
A.6 Long- vs. Short-Running TM Mode 108

A.6.1 Loss of cache locality 112
A.6.2 Capacity overflow . 112
A.6.3 Conflict detection granularity 114

A.7 Single-thread TM Overhead 115
A.7.1 Cache performance penalty 116
A.7.2 Capacity overflow . 116
A.7.3 Transaction entry and exit overhead 118

A.8 Scalability . 118
A.8.1 Locks . 119
A.8.2 BG/Q TM . 119
A.8.3 TinySTM . 122

A.9 Related Work . 122
A.10 Conclusion . 123

viii

List of Tables

3.1 Benchmark Options . 26
3.2 Percentage of committed transactions aborted, and percentage

of committed transactions aborted because capacity overflow
was reported in the STAMP and RMS-TM benchmarks run
with MaxRetry set to allow 10 retries with capacity-induced
serialization and rollback delay enabled. The results for 2 threads
are elided because they have negligible counts even in short-
running mode. 29

5.1 Dismissed potential policies, grouped by reason for rejection . 44

A.1 Benchmark Descriptions . 105
A.2 Hardware performance monitor stats. 111
A.3 Percentage of irrevocable and aborted transactions in BG/Q

TM execution. 117
A.4 Basic features of real HTM implementations. 121
A.5 Average read- and write-set size (in words) of STAMP using

TinySTM (1 thread). 122

ix

List of Figures

1.1 Lock Contention visualized on a hashtable. The accesses in
green would produce spurious locking, but the accesses in red
require some synchronization. 3

2.1 Snippet of execution showing a data race with lost updates. . 12
2.2 An example of STM instrumentation 14
2.3 A rough summary of existing TM systems in the TM design

space. This graphic does not address the additional dimensions
of TM induced memory latency or TM overheads. 17

2.4 BG/Q Transactional Memory Stack 18

4.1 Comparing runtime and rollback counts for STAMP benchmarks
run both with (dark blue bars) and without (light blue bars)
Transactional Event Profiling, using Max-Retry allowing 10
retries as the serialization manager, in both Long and Short
running mode. 32

4.2 Event rates for yada demonstrating program phases and consis-
tent rate of serialization. Run with 16 threads in long-running
mode with Max-Retry and 10 allowed retries 34

4.3 Transaction rates for genome showing how transaction activity
can vary across application threads. Run with 16 threads in
long running mode, using the Max-Retry with 10 retries allowed 34

4.4 Histogram of dynamic transaction execution times for the six
static transactions in genome 35

4.5 Individual events plotted for the first 1
4000

th of transactional
execution time for yada Run with 16 threads and no rollback
delays in Long Running Mode. 36

4.6 Showing LimitMeanST modelling µexec for genome run with 64
threads, Long running mode. Note the non-linear y-axis. Only
0.06% of data points were plotted to avoid exceeding technical
limits in the document. 37

6.1 The relationship between allowed-rollbacks and absolute speedup,
showing the effect of exponential backoff. Using Max-Retry
and no capacity serialization. 47

6.2 The relationship between allowed-rollbacks and absolute speedup,
showing the effect of capacity-induced serialization on the STAMP
benchmarks. Using Max-Retry and exponential-backoff. . . 49

6.3 The relationship between allowed-rollbacks and absolute speedup,
showing the effect of capacity-induced serialization on the RMS-
TM benchmarks. Using Max-Retry and exponential-backoff.
apriori, fluidanimate and utilitymine are excluded
for space reasons, as well as showing no effect. 50

x

7.1 Absolute Speedup for STAMP relative to the number of allowed-
rollbacks in Max-Retry for both short and long-running mode.
vacation-high and kmeans-high are elided because their be-
haviour is indistinguishable from their low contention counterparts. 53

7.2 Absolute Speedup for RMS-TM relative to the number of allowed-
rollbacks in Max-Retry for both short and long-running mode.
. 54

7.3 Absolute speedup of the STAMP benchmarks, relative to Thresh-
old and allowed rollbacks in SerializationControl. 56

7.4 Absolute speedup of STAMP benchmarks relative to cycle budget
for Limit. 57

7.5 Serialization fraction for genome in long running mode, relative
to the cycle budget in Limit showing the dramatic effect of
achieving the minimum budget. 58

7.6 Absolute Speedup for the STAMP benchmarks relative to M
or allowed retries when run with Limit, Limit-Mean or Limit-
Mean-ST. The results for 2 threads are elided because they don’t
vary much over the range values explored. 60

7.7 Absolute Speedup for the RMS-TM benchmarks relative to M
or allowed retries when run with Max-Retry, Limit-Mean or
Limit-Mean-ST. The results for 2 threads are elided because
they don’t vary much over the range values explored. apriori
and utilitymine are excluded because they don’t see any
change from policy or tuning. 61

7.8 Absolute Speedup as related to serialization fraction for STAMP
benchmarks run with the Max-Retry, LimitMean and Lim-
itMeanST serialization managers with M or allowed retries
between 1 and 39. 62

7.9 Absolute Speedup as related to serialization fraction for RMS-
TM benchmarks run with the Max-Retry, LimitMean and
LimitMeanST serialization managers with M or allowed re-
tries between 1 and 39. apriori and utilitymine are
elided from this figure because they see no relationship between
serialization ratio and speedup. 63

7.10 Absolute Speedup for STAMP and RMS-TM benchmarks rela-
tive to α parameter in BEATS. Results for thread counts less
than 8 and the missing RMS-TM benchmarks are not presented
because changing α has no effect. The ‘high’ contention versions
of kmeans and vacation are excluded because they behave
identically to the low contention versions presented here. . . . 65

7.11 The relationship between the fraction transactions queued and
absolute speedup in the RMS-TM and STAMP benchmarks. . 66

7.12 Varying the threshold and alpha parameters in STAMP running
PEW for two values of k in Long and Short Running mode,
for 8-64 threads. Results for 1-4 threads and the RMS-TM
benchmarks are not presented because they are insensitive to
parameter values. 68

7.13 Varying the threshold and alpha parameters in PEW for two
values of E in Short Running mode, showing serialization fraction 69

8.1 Serialization Fraction and its relationship to absolute speedup
for 16 threads, run in both long and short running mode . . . 73

xi

8.2 Instructions Executed compared to Absolute Speedup for genome
run with 8-64 threads in long running, plotting the top 30%
of executions, where the size of each point corresponds to the
number of Aborts per commit, with smaller dots having fewer
aborts. 75

8.3 Instructions Executed compared to Absolute Speedup for yada
run with 8-64 threads in short-running mode, plotting the top
30% of executions, where the size of each point corresponds to
the number of Aborts per commit, with smaller dots having
fewer aborts. 76

8.4 Absolute Speedup distribution for STAMP benchmarks over all
serialization managers and all their tunings displayed as violin
plot (exponential-delay and capacity-induced serialization enabled) 79

8.5 Absolute Speedup distribution for RMS-TM benchmarks over all
serialization managers and all their tunings displayed as violin
plot (exponential-delay and capacity-induced serialization enabled) 80

A.1 The main transaction of STAMP/kmeans benchmark using the
BG/Q TM annotation. 98

A.2 Transactional Memory Execution Overview. 103
A.3 Average time spent (in cycles) per dynamic instance of critical

sections in the STAMP and RMS-TM benchmark suites. . . . 108
A.4 Speedup of different critical section implementations of the

STAMP and RMS-TM benchmark suites over the original se-
quential version of the benchmarks (vacation-low results
were similar to vacation-high and hmmcalibrate were
similar to hmmsearch — both are omitted). 109

A.5 LR mode: ratio of total transactions aborted due to capacity
overflow. 110

A.6 SR mode: ratio of total transactions aborted due to capacity
overflow. 110

A.7 The abort ratio of genome and vacation. 113
A.8 The abort ratio of kmeans and calibrate. 113
A.9 Single-thread slowdown of the RMS-TM benchmarks. 115
A.10 Single-thread slowdown of the STAMP benchmarks. 115
A.11 Effect of varying scrub intervals for ssca2and fluidanimate 121

xii

List of Listings

2.1 Race Condition Demonstration 11
2.2 Race Condition Output . 11
2.3 Pseudo Assembly of Race Condition loop 12
2.4 A TM pragma example . 20

xiii

Chapter 1

Introduction

For almost five decades computer architecture has followed a trend dubbed

Moore’s Law, under which the number of transistors in a computer processor

has doubled roughly every two years [53]. For much of the lifetime of Moore’s

Law, gains in transistor counts were accompanied by increases to processor

clock speeds leading to a long period in which software would be made faster

purely though hardware improvements. In the last decade, however, frequency

scaling slowed dramatically due to concerns about power usage and heat

dissipation [12,60]. While Moore’s law has continued to dramatically increase

the transistor count in microprocessors, the new transistors are being funnelled

into multiple cores as opposed to the improvement of performance of a single

monolithic core.

The transition from frequency-scaling to ‘core-scaling’ has necessitated that

software begin to change — and become parallel — in order to exploit new

generations of processors.

Parallel programming, however, has a reputation for being difficult. Paul E.

McKenny divides the tasks a programmer faces when programming in parallel

into four categories [50]:

1. Work Partitioning: This is the task of splitting the algorithm and its

inputs into pieces that can be run in parallel across threads, processes or

computers. This thesis discusses parallel threads, which are streams of

execution that happen concurrently in the same memory space.

2. Resource Partitioning & Replication: This is the task of ensuring

1

that the required resources are partitioned or replicated for the parallel

tasks to remove the requirement of access control.

3. Interacting With Hardware refers to the necessary understanding of

the underlying hardware and it’s limitations when programming in parallel.

Depending on the model of parallel programming, this interaction ranges

from a very small to very large fraction of the parallel programming task.

4. Parallel Access Control, which is required to avoid race conditions

on shared resources. A race condition is an uncontrolled interleaving of

parallel access to a shared resource, which is considered an error in most

domains because the result being computed will vary on seemingly random

timing fluctuations that change the interleaving of accesses occurring

between threads1.

For the purposes of this thesis shared-memory machines are assumed. A

shared-memory machine is a type of parallel architecture where all the processors

working on a problem work in a shared address space, as opposed to distributed

parallel computation where processors working in parallel do not share memory

and, instead, must communicate explicitly through messages.

In a shared-memory machine, a race-condition interleaving typically in-

volves instructions accessing memory across two or more threads in the

machine. These race conditions are called data races and are discussed further

in Section 2.1. Higher-level programming abstractions may also be subject to

race-conditions, and thus semantically require similar parallel access control,

however this thesis focuses on memory-level data races.

In order to avoid data races some form of control must be applied to shared

resources. There are a number of synchronization primitives that can be used,

however a lock is the most common [50]. Lock variables allow a single thread to

declare ownership of a resource. While a lock is held, other threads attempting

to acquire the same lock should either wait for the lock to become unlocked or
1Algorithms can be created to be race-tolerant so that either races do not affect results

or the results are acceptable even in the face of races. However, it is difficult to ensure that
such algorithms are correct.

2

proceed down an alternate path of execution that does not require access to

the resource.

Lock-based programming has been successfully used for parallel program-

ming, however, the paradigm does have some challenges:

• From the perspective of correctness, locks can be misused in such a way

that progress can no longer be made. This failure condition is called a

deadlock, and is caused by a cycle of lock dependencies created by two or

more threads. In the simplest version of this situation two threads each

hold a lock that the other thread requires for progress. Another related

failure condition — that also applies to a number of other programming

systems — is called livelock, which describes a situation where threads

become looped in a cycle of actions without making progress.

• From the perspective of productivity, locks require large amounts of

programmer effort to achieve maximum performance.

A pathology in lock-based programming is lock contention. This is when

multiple threads require the same lock simultaneously to make progress.

The other threads must simply wait to acquire the lock in order to

proceed, because, by definition, only one thread can hold the lock. Lock

contention can dramatically affect program performance if the contended

lock is on the critical path. While lock contention can be inherent in an

algorithm or data-structure, sometimes lock-contention can be the result

of protecting too much data with the same lock. If multiple threads are

waiting for the lock, but all the threads are to access different data, then

the lock contention is spurious.

Figure 1.1 illustrates the problem with a hash-table that has a single

lock. The accesses to be performed by fifteen threads are indicated by

arrows pointing to the hashtable buckets. Of the fifteen accesses, all

but three are to different buckets, and thus such accesses do not require

synchronization. The bottom left part of the figure shows the resulting

lock contention: all the threads wait to acquire the single lock. This is

3

Thread
Accesses

Hashtable

Lock Contention Only Required
Locking

Figure 1.1: Lock Contention visualized on a hashtable. The accesses in green
would produce spurious locking, but the accesses in red require some synchro-
nization. White buckets are not accessed by any thread.

4

true even for threads that have independent accesses. The bottom right

of Figure 1.1 shows how performance can be dramatically improved by

locking only where conflicts can occur, as only three of the fifteen locking

operations are required.

To work around spurious lock contention in a program, typically the

single contended lock must be broken into multiple locks, each protecting

a set of hash table buckets, in order to still guarantee safety. For example,

if the contended lock is guarding access to a large array or hashtable, then

lock striping could be applied to break the array or table into chunks,

each guarded by its own lock [?]. Splitting locks must be carefully

considered, however, because multiple locks combined with poor lock-

discipline can introduce bugs that did not exist in the single-lock version

of the algorithm.

• From the perspective of performance, locks add computation and memory

accesses to memory locations that are not needed by the algorithm. These

accesses are a waste of resources and time in the absence of contention

on the data.

The difficulties imposed by deadlock and contention raise the burden of

parallelization on the programmer. However, reducing the burden of paral-

lelization is highly desirable because parallelization appears to be the main

driver of future performance.

1.1 Transactional Memory

One proposed approach to parallelization with a reduced programming burden

is called Transactional Memory (TM) [39].

Transactional Memory introduces a high-level construct called a transaction.

A transaction is a region of code whose execution semantically cannot overlap

with another transaction. A transaction must run in isolation from other

transactions, must not be able to see partial results computed in another

5

transaction, and must commit its results indivisibly (atomically) so that partial

state cannot be seen.

Transactions are a higher-level construction in comparison with locks. Locks

are akin to imperative programming, in that the user instructs the system

how to achieve safe interleaving. In contrast TM programming is akin to

declarative programming, where the user tells the system what is required for

safe execution, leaving the actual mechanics to the system.

A side effect of this higher level of abstraction is that TM systems can provide

improved performance by optimistically allowing execution to overlap. The TM

system then can monitor the reads and writes performed by parallel executing

transactions. Whenever a transaction attempts to execute an operation that

would violate the isolation guaranteed offered by TM, one or more transactions

can be aborted, and rolled-back to transaction start. A rollback resets the

state of execution to what it was at the beginning of the transaction. Once

the transaction has been rolled back, it may retry in hopes of succeeding on

the next attempt, or it may switch to an alternate method of synchronization.

This model is similar to database transactions, hence the name Transactional

Memory.

First proposed in 1993 by Herlihy and Moss as a hardware modification,

the idea has gained much popularity in the research community, which has

been active in the area for the last 20 years [39]. In order to allow exploitation

of TM for systems that already use locks, Transactional Lock Elision (TLE)

can be used to replace lock pairs with transactions.

When discussing transactions, it is important sometimes to distinguish

between the source code level transaction and an instance of a transaction at

execution time. In this thesis I will refer to the the former, a region of code in

the program text, as a static transaction. During program execution, a static

transaction will likely be executed many times (i.e. being in a loop or function

call), generating a unit of computation that must be executed in isolation and

committed atomically. In this thesis I call this a dynamic transaction.

6

1.1.1 Software Transactional Memory

One of the popular pieces of TM research in the last two decades has been the

exploration of Software Transactional Memory (STM) [66]. The promise of

STM is to provide a high-level transactional construct on existing machines with

no hardware changes. In STM systems the detection and rollback of conflicts

is achieved through the use of a software library and the instrumentation of

reads and writes in the program. This instrumentation can be done by the

user, or automatically by an STM-aware compiler.

1.1.2 Best-Effort Hardware Transactional Memory

One of the most recent developments2 in the area of Transactional Memory

has been the appearance of commercially available, user-accessible, Hardware

Transactional Memory (HTM) systems.

While Transactional Memory was originally specified as a hardware feature,

the cost of producing hardware has meant that TM research has been done

through either Software Transactional Memory or through system simulators

for HTM.

In the last two years three HTM systems have shipped: IBM’s Blue Gene/Q,

IBM zEC12 and Intel’s Haswell-based processors [42, 43,74]. In a short while,

IBM will be shipping a third platform with TM support, the POWER8 proces-

sors [14]. One characteristic that these three systems share is that they are all

‘Best-Effort’ HTM systems (BE-HTM). Best-effort HTM means that they do

not guarantee that any transaction may be completed speculatively [?]. This

is a practical side effect of these being early HTM designs adapted to existing

architectures. These machines all can store only limited amounts of speculative

state, and will abort a transaction that exceeds that amount of speculative

state. The architectures also restrict the state changes that may occur within

a transaction to those that can be easily buffered, typically in one of the data

caches or buffers.
2Azul Systems shipped a version of their Vega processor with HTM several years ago,

however it was deployed completely transparently to the user, and has not been widely
evaluated in the research community.

7

1.2 Performance in TM systems

Transactional-Memory performance often depends on perspective. While cre-

ating a new transactional program, it would be unfair to not account for the

productivity gains brought by the simpler synchronization model.

However, if one is considering converting an existing lock-based program

to transactions as a way of improving performance, then comparing against

the performance of the lock-based version is important. This thesis does not

focus on comparing against different synchronization mechanisms so much as

it focuses on performance among different transactional variants, and therefore

the performance study focuses on absolute speedup, i.e. ratio of wall-clock

running time of the parallel implementation to the wall-clock running time of

the fastest available sequential implementation.

In general, TM performance is dominated by two elements.

1. TM systems can optimistically run, possibly conflicting, transactions

speculatively in parallel. One component of transactional performance is

what proportion of transactions that started have successfully commited,

as opposed to aborting and rolling back to the starting point.

2. The overhead to set up and execute a transaction speculatively in a TM

system is higher than that of a simple locking solution. This overhead

comes from sources such as instrumentation in the Software Transactional

Memory (STM) case, or from mechanisms required to provide forward

progress in BE-HTMs. This overhead varies from system to system. It

is relatively high — hundreds of cycles — for STM systems and BG/Q,

and quite low — tens of cycles — for Intel Haswell, and zEC12.

A transaction that rarely, or never, aborts is an excellent candidate for TM

in a comparison against a lock-based implementation that suffers from lock

contention. However, if a TM is used to elide a lock that is never contended,

then the TM overhead could turn this lock elision into a net loss.

On the other hand, a transaction that aborts in the majority of its attempts

to execute could still be a net-gain, if the alternative is a lock-based version of

8

the program where waiting on the lock dominates the execution time.

In general, it is speculation that is key to the promise of TM’s productivity

and performance. Speculation is the key to TM’s productivity because it allows

programmers to declaratively specify the synchronization required, with the

system providing the actual safety guarantee. It is key to the performance of

TM systems because successful speculations allow computation to proceed in

spite of the appearance of required synchronization, even though unsuccessful

speculation may waste execution cycles.

1.3 Programming Models and Forward Progress

There are two different programming paradigms for STM systems: user-

instrumented and compiler-instrumented STM systems. While the former

generally has better performance because it allows a skilled user to instrument

only the required accesses for safety, the latter provides an excellent program-

ming model. In a compiler-instrumented STM system, the user needs only

to indicate to the compiler which regions of code cannot overlap in execution.

Instrumentation is done automatically by the compiler, and forward progress

is guaranteed by the runtime system.

An important question in STM systems is: When a conflict between two

or more transactions occurs , what transaction(s) should be rolled back? The

answer to this question has important consequences. An inappropriate answer

can cause starvation — where a particular thread is unable to make progress;

livelock — where the system as a whole is unable to make progress because it is

trapped in a cycle of execution states; or simply poor performance. Attempts

to answer this question in STM systems came to be known largely as the

area of Contention Management, which explores policies, called contention

managers, that decide which in-flight transactions to rollback [40]. Contention

Management has been a rich area of research in STM systems.

An STM system with a correctly designed contention manager can always

guarantee forward progress. For example, a contention manager that always

ensures that the eldest transaction involved in a conflict is not aborted will

9

trivially guarantee forward progress.

Forward progress is a very important property for TM systems because

programming without it would be substantially more difficult, requiring the

programmer to provide an alternate path that doesn’t require a transaction,

leading to an increased amount of code and maintenance burden.

1.4 Programming Models and Forward Progress
for Best-effort HTMs

When programming for a best-effort HTM system there are different possibilities

for programming models that can be provided to programmers. One of the

most accessible programming models for programmers is a model that provides

a high-level model similar to that of a compiler-instrumented STM.

In this programming model a user is only responsible for specifying the

boundaries of a transaction. In order to avoid putting platform-dependent

burdens on the programmer, this model allows transaction bodies to contain any

code, including irrevocable actions or code that generate so much speculative

state that the hardware will not be able to store such state.

Irrevocable actions are those that the system cannot rollback or buffer

appropriately. For instance, executing a function that prints to a terminal is

an irrevocable action: once the text appears on the terminal, the action cannot

be undone. Irrevocable operations can take many forms, such as a reference to

a memory-mapped I/O address that cannot reasonably be buffered, or system

calls that cannot be rolled back.

To understand how useful it is to allow irrevocable actions inside a transac-

tion, consider a program where an irrevocable operation that appears inside a

transaction is only rarely executed at runtime: e.g. a warning message printed

on an exceptional result.

The code is greatly simplified by allowing the irrevocable operation to

appear within the transaction region. Allowing irrevocable operations inside

a transaction is also a great advantage when legacy code is converted to

transactions. An unpleasant alternative would be for the runtime to signal

10

a fatal error upon encountering an irrevocable operation, or for the compiler

to require no irrevocable actions statically. Either case would likely require

significant programmer’s effort to rewrite code to make it transactional.

Similarly the ability to specify transactions that require more speculative

state than is available in the hardware allows the creation of TM applications

that can be ported to other systems, even though its performance may be

affected by the hardware limitations in the new system.

The freedom to specify transactions outside the limits of the hardware in

a TM programming model improves programmability but puts the burden of

providing forward-progress guarantee on the platform.

1.5 Non-speculative Serialization and the Seri-
alization Manager

In a best-effort HTM system, a contention manager would not suffice to provide

a forward-progress guarantee. The nature of a best-effort HTM means that a

strategy similar to STM cannot always ensure forward progress because when a

transactional execution failure occurs in a best-effort HTM, there is no guarantee

that any of the aborted transactions may be able to continue execution. For

instance, consider a capacity-limited transaction, i.e. a transaction that creates

more speculative state than the hardware can store. No matter which conflict-

resolution policy the contention manager uses, forward progress will never occur

without additional action from the system. Therefore the only failure-proof way

to guarantee forward progress is to execute such a transaction non-speculatively.

Non-speculative serialization is a technique that allows a transaction to

safely run non-speculatively if the transaction is deemed unable to succeed in

a hardware transaction. It is called serialization because, to avoid a failure of

isolation semantics, there is at most one non-speculative transaction running

at any moment. Concurrent speculative transactions may not commit until

after the non-speculative transaction completes3.
3Non-speculative serialization assumes that all threads accessing shared data structures use

transactions. Non-speculative serialization will not match the hardware isolation semantics
should there be a thread not using transactions when writing shared-data, as that non-

11

Though non-speculative serialization has been described before, there has

been very little discussion of how to decide when non-speculative serialization is

to occur. Most previous publications that discuss non-speculative serialization

for forward progress use a simple policy that limits retries to some maximum

value [77].

This thesis introduces the concept of a serialization manager as the BE-

HTM counterpart to the STM contention manager. Similar to the specification

of contention managers, serialization managers separate the responsibility for

forward-progress from the responsibility for correctness. The serialization

manager is the policy, along with any required state, that decides, when a

transaction aborts, if the aborted transaction should be retried speculatively

or if non-speculative serialization is required.

1.6 Serialization-Manager-Driven Performance

Improved STM Contention Management can improve program performance

by making better decisions about what transactions to abort when conflicts

occur [40]. This thesis argues that improved Serialization Management may

also be able to improve BE-HTM performance because serialization4 forms a

key safety net in the face of high contention. The thesis also argues that better

decisions about when to serialize can improve performance while guaranteeing

forward-progress.

A key tension in a serialization manager design is the tradeoff between

forward progress and speculation. An upper bound on execution time would

be desirable to prevent inefficient use of resources and lots of wasted work.

However, such upper bound comes at a cost because performance in a BE-HTM

system is rooted in speculation. Enforcing the upper bound may eliminate

beneficial speculation. If the upper bound is too high the program wastes

work. If it is too low the overzealous serialization manager eliminates too much

speculative thread is invisible to the TM system and cannot be held-back while the transaction
executes. This could be fixed at great cost by serializing the whole system, however the
proportional response is to consider this case a programming error.

4For the remainder of this thesis we will use the terms serialization and non-speculative
serialization interchangeably.

12

speculative execution.

This thesis presents six new serialization managers — and one that has

been the default used in previous explorations of non-speculative serialization

— along with the first through exploration of Serialization Management in the

literature. The evaluation explores a large number of values for each parameter

of each manager on a TM architecture that has two different modes, each having

different conflict-detection granularity and access latencies. These two modes

are considered for the purposes of this thesis to be two different, though closely

related, platforms for TM. This TM implementation was the first commercially

available offering of HTM, introduced by IBM, and equipped the IBM BG/Q

machine — a machine that was the top-performing computer in the world circa

2013. The thorough evaluation of these serialization managers, along with their

tuning on multiple platforms, provides insight into the amount, and type, of

control afforded to a serialization manager.

The remainder of this thesis is structured as follows:

Chapter 2 provides more background on race conditions, Transactional Mem-

ory and the experimental platform for this thesis, Blue Gene/Q.

Chapter 3 discusses the problem further, generating some smaller research

questions to help guide the study. Once the research questions are

established, the research methodology is described.

Chapter 4 introduces a tool that was designed and built to help explore

questions around serialization.

Chapter 5 introduces the serialization managers.

Chapter 6 introduces a pair of modifications that can be made to all serial-

ization managers, and evaluates them on the MaxRetry manager, before

recommending they both be adopted for all serialization managers.

Chapter 7 evaluates the new serialization managers across parameter values

for those managers that have parameters.

13

Chapter 8 contains the experimental results, where our research questions

are answered.

Chapter 9 discusses related work.

Chapter 10 discusses some limitations to the thesis.

Chapter 11 discusses directions for future work.

Chapter 12 concludes the thesis.

The thesis relies heavily on the contents of Software Support and Evaluation

of Hardware Transactional Memory on Blue Gene/Q for background. For ease

of reference I have included it as Appendix A.

14

Chapter 2

Background

This chapter provides background on race conditions, Transactional Memory

and the Blue Gene/Q’s Transactional Memory system to support the reader

through the rest of the thesis.

2.1 Race Conditions

A race condition is an uncontrolled interleaving of accesses to a shared resource,

where at least one of the accesses modifies the shared resource. In this thesis

the interleaving discussed is between instructions accessing memory in a shared-

memory machine that has more than one processor. Shared-memory race

conditions can be classified as Read-after-Write (RAW), Write-after-Write

(WAW) or Write-after-Read (WAR).

Listing 2.1: Race Condition Demonstration

int main(int argc, char** argv) {
int iterations = atoi(argv[1]);
printf("Running with %d iterations\n",iterations);
int counter = 0;

#pragma omp parallel for
for (int i=0; i < iterations; i++) {

counter = counter+1; // Racy Update
}

printf("%s: Counter is %d, expected %d\n",
counter == iterations ? "PASSED" : " FAILED",
counter,
iterations);

}

15

Listing 2.1 shows a simple program that suffers from a data race that may

cause updates to the variable counter to be lost, leading to a mismatch

between the expected and actual value in the output of the program, contained

in Listing 2.2.

Listing 2.2: Race Condition Output

> g++ -fopenmp race_condition.c -o race
> OMP_NUM_THREADS=1 ./race 90000000
Running with 90000000 iterations
PASSED: Counter is 90000000, expected 90000000

> OMP_NUM_THREADS=2 ./race 90000000
Running with 90000000 iterations
FAILED: Counter is 50095286, expected 90000000

To show in more detail how this race affects the values computed by the

program, Listing 2.3 contains a pseudo-assembly of the loop body that contains

the race condition. Figure 2.1 shows an interleaving of instructions between

two threads where the update intended by Thread 1 is lost. An update was

lost because both threads loaded, incremented, and stored the same value, a

WAW race.

Listing 2.3: Pseudo Assembly of Race Condition loop

/* Initialize variables */
ST [counter],0
ST R0,0 /* R0 will be the loop variable i */

L:
LD R1,[counter]
ADD R1,1
ST [counter],R1
ADD R0,1
CMP R0,[iterations]
BEQ L

...

Figure 2.1: Snippet of execution showing a data race with lost updates.

(a) Thread 1

T1: LD R1,[counter]
T2:
T3: ADD R1,1
T4: ST [counter],R1
T5:

(b) Thread 2

T1:
T2: LD R1,[counter]
T3: ADD R1,1
T4:
T5: ST [counter],R1

16

2.2 Transactional Memory

Transactional processing has existed for a long time, with one of the earliest

widely deployed examples being the SABRE airline reservation system of the

early 1960s [9]. Since SABRE the area has gone through much evolution, with

large amounts of formalization driven by the development and evolution of

relational databases.

Part of the formalization of relational databases was the description of

four properties to guarantee consistent processing of transactions: Atomicity,

Consistency, Isolation and Durability, known as ACID [33,34,36].

Atomicity A transaction is atomic if the changes it makes to storage appear

to happen indivisibly: either all the changes must be seen at once, or

none of the changes can be seen.

Consistency The system remains consistent after the execution of a transac-

tion. If a transaction would leave the system in an inconsistent state, then

the transaction is not allowed to complete. For instance, a transaction

that changes a set of records in a database must appropriately change all

required records.

Isolation Transactional isolation is the inability of any component of the

system to see partial results from an in-progress transaction. Isolation

is a key part of proving consistency because, without isolation, invalid

results could be produced by using invalid temporary results produced

during the execution of a transaction.

Durability Once a transaction commits the results are preserved even in the

event of a system crash.

As can be seen from the D in the ACID definitions, historically transaction

processing has referred to persistent data, mostly stored in files on hard drives

and tapes. The first three properties — Atomicity, Consistency and Isolation

— are powerful concepts and were adapted to transient storage and parallel

programming.

17

Though atomic updates for single variables had existed in various forms

in computer architecture (such as Compare-and-Swap, Test-and-Set, or Load-

linked/Store Conditional) previously, the Oklahoma Update1 was different in

providing a form of atomic updates to multiple values [72]. In an example

of independent discovery, Herlihy and Moss described Transactional Memory

at almost the same time, differing from the Oklahoma Update mostly in

implementation and terminology [39].

Herlihy and Moss’ description of Transactional Memory has been more

persistent than the Oklahoma update. Herlihy and Moss added six instructions

to an architecture’s ISA: Load-transactional (LT) that loads a memory location

and marks the location as transactionally read, Load-transactional-exclusive

(LTX) that loads a memory location marking it as read and hinting that it will

be updated, Store-transactional (ST) that writes speculatively to a location,

Commit (Commit) that commits a transaction if all the values written and

read are still valid. In addition, the Herlihy and Moss paper also added two

instructions that are less important for our discussion here: Abort (Abort)

that discards transactional state, and Validate (Validate) that tests whether

or not the currently executing transaction’s read- and write-sets are valid,

aborting if not. A transaction is implicitly started at the first transactional

access and continues until Commit, Abort or a failed Validate.

Similar to Compare-and-Swap, a transaction can fail if another thread has

altered any of the values in the read set or the write set while the transaction

is in flight. In Herlihy’ s and Moss’ paper validation occurs on the execution of

a Commit instruction that can return true, if the transaction is committed,

or false if the transaction commit failed and the speculative state has been

discarded. If a transaction fails it is up to the programmer to handle this case,

either retrying or choosing an alternate method of synchronization.

Both the Oklahoma Update and Herlihy’s Transactional Memory provide

Atomicity, Consistency and Isolation2 to those values loaded and stored trans-
1Referring to the song All ’Er Nuthing from the musical Oklahoma!
2To be precise, the Oklahoma Update does not provide Isolation because the authors

describe a situation under which a failed update could lead to variables becoming inaccessible.
However, the authors also sketch a fault-tolerance system that can work around this situation

18

actionally.

Though the advantage of transaction-inspired parallel programming could

be seen, both the Oklahoma Update and Transactional Memory were specified

as hardware features. Hardware being both complicated and expensive to build

meant that research on Hardware Transactional Memory work was done on

hardware simulators until much later.

2.2.1 Software Transactional Memory

However, Transactional Memory was not forgotten. Effort simply moved

towards providing the transactional memory paradigm using software, leading

to the research area of Software Transactional Memory (STM), which has

remained active to this day [66]. The goal of STM systems is to provide

the transactional programming model on un-modified hardware by using a

runtime system and instrumentation of reads and writes, done either by an

STM compiler or by the user. An example of instrumentation is contained in

Figure 2.2.

Figure 2.2: An example of STM instrumentation

(a) Before instrumentation

stm_transaction {
A[i] = B[i] + C[i]
}

(b) After STM instrumentation

stm_begin();
b_tmp = stm_load(&(b[i]));
c_tmp = stm_load(&(c[i]));
stm_store(&(a[i]), b_tmp + c_tmp);

stm_commit();

Software Transactional Memory has followed its own evolution, and has in-

troduced a number of concepts and design dimensions. One addition to the TM

model was the idea of guaranteed forward progress. This addition meant that

programmers no longer had to handle the case where the transaction aborted

explicitly — rather the STM system would deal with retry and guarantee that

the system would eventually commit every transaction.

One dimension in STM designs is the distinction between strongly atomic

and weakly atomic STMs. This distinction refers to the STM system’s guaran-

and provide isolation.

19

tees regarding non-transactional access to memory locations in the read sets

and write sets of in-flight transactions [10].3 A strongly atomic STM system

acts like Herlihy’s and Moss’ TM design: a non-transactional access causes a

transaction to abort if the transaction has the accessed location in its read

set or write set. A weakly atomic STM system does not specify what occurs

when there is a non-transactional access to a transactionally tracked location —

typically the argument in defence of weakly atomic STMs is that the existence

of such an access is a programming error.

Strongly atomic STM systems make it easier to interact with non-transactional

code by ensuring that the TM execution remains correct in the face of conflict

with non-transactional code. However, strong-atomicity increases the overhead

incurred by a TM system. As a result, most high-performance STM systems

are weakly atomic.

One of the keys to STM performance is the notion of privatization, which is

the ability to have non-instrumented accesses inside a transaction. Privatization

is important because instrumentation in an STM is costly in comparison to

normal memory accesses. Privatized accesses are a powerful performance tool.

However, they are difficult for an STM compiler to achieve and also STM

programmers find it difficult to use them correctly.

The combination of automatic (or no) privatization and instrumentation

creates a very simple programming model for transactions, as in Figure 2.2(b),

where the programmer indicates the scope of the transaction, the contents

are executed in isolation and the results are committed atomically. This

programming model has been empirically validated as easier than locks for

novice parallel programmers [61].

Though STM has existed for almost twenty years now, it has produced

relatively little impact on day-to-day programming. A number of challenges

faced by STM systems have prevented broad adoption. The instrumentation

and the computation required for conflict detection introduce overhead, in STM
3Blundell et al. argue that the programming-language research area has historically used

the term Atomicity to refer to what would be known in databases as Atomicity and Isolation.
Thus, while the strong vs weak atomicity dichotomy appears to be an isolation issue, the
name is nevertheless appropriate.

20

systems, causes some concern about performance [17]. As well, interaction

with non-transactional code and non-transactional libraries and kernels can

be complicated depending on the atomicity model and guarantees provided

by the TM system [10,17,24]. Efforts continue to improve STM performance

through new TM systems such as SwissTM. Other efforts aim at shoring up

the guarantees provided by TM systems through improved sandboxing and

further investigation of strongly-atomic STM systems [8, 24,28].

Contention Managers

The contention manager is the software component in a Software Transactional

Memory system responsible for determining, when a conflict occurs, what subset

of transactions need to be aborted. Contention management was first proposed

by Herlihy et al. as a generic interface to guarantee progress in transactional

systems [40]. One of the key concepts behind their original specification of

contention managers was that the responsibility for correctness, and for forward

progress, ought to be kept separate.

There has been a substantial amount of work done in this area because

Contention Management can change the performance of STM systems [3,41,

64,69].

More recently, there have been a number of efforts surrounding Transactional

Scheduling, a technique that takes a slightly different approach to forward-

progress and performance [27, 55, 78]. Where contention managers control

what occurs when conflicts are detected, Transactional Schedulers attempt

to proactively avoid conflicts by delaying or moving transactions to avoid

interleavings expected to conflict.

2.2.2 Hardware Transactional Memory

HTM research initially was limited to the development of system simulators due

to the cost of implementing new designs in real silicon. These HTM simulators

range vastly in capability and structure, from very limited forms of TM similar

to the original Herlihy and Moss proposal all the way to unbounded HTM

systems that allow arbitrary transaction sizes by allowing conflict detection

21

at much higher levels in the memory-hierarchy: from evicted cache lines to

swapped out pages [1, 54, 67].

In the last five years Hardware Transactional Memory has begun to appear

outside of simulators. The first implementation was by Azul Systems, though

it was not broadly described outside of a presentation and some patents,

and was only used for Transactional Lock Elision in Java [21]. The next

implementation was to be Sun’s Rock processor, which was cancelled before it

became commercially available, though not before some research into its HTM

facilities [25].

IBM’s Blue Gene/Q was the first commercially available HTM available. It

is on this HTM that we based our study. Further details on the implementa-

tion of HTM in the BG/Q appear in Section 2.3 and Appendix A. IBM has

since produced two more HTM implementations, one on zEC12, the current

mainframe processor, and one on the upcoming POWER8 processor [14,43].

Intel has also shipped an HTM implementation called ‘Restricted Transactional

Memory’ (RTM) in its Haswell micro-architecture [42].

All existing HTM systems are strongly-atomic. In contrast to the original

specification by Herlihy and Moss, all existing HTM systems provide a Begin

instruction to start a transactional region. Within the transactional region all

loads and stores are transactional, similar to the STM compiler programming

model. Only zEC12 supports limited privatization in the form of a Non-

transactional Store instruction

Figure 2.3 positions the existing TM systems on two dimensions of the

design space: conflict-detection granularity and amount of storage available for

speculative state. The conflict-detection granularity refers to how close together

two accesses from different threads may be before the hardware signals a false

conflict — a conflict that is not present in the actual application but that occurs

in the HTM because of the inability of the hardware to determine that two

referenced locations are not the same location. In an ideal system there would

be no false conflicts. However, in most HTM systems the conflict-detection

granularity is some fraction of the cache-line size because this detection uses

existing data caches. The storable speculative state in Figure 2.3 is the

22

 0 8 32 128 512 2048 8192 32768

1/16

0

2

1

1/2

1/4

1/8

Storage Available for Speculative State (KB)

C
on

fli
ct

 D
et

ec
tio

n
G

ra
nu

la
rit

y
(C

ac
he

 L
in

es
)

BG/Q
SR

BG/Q
LRAzul

Haswell

Rock (Est.)

zEC12

Figure 2.3: A rough summary of existing TM systems in the TM design space.
This graphic does not address the additional dimensions of TM induced memory
latency or TM overheads.

23

maximum space that can be occupied by data written by speculative writes.

The two shaded areas for BG/Q in Figure 2.3 indicate the ranges of conflict-

detection granularity are a side effect of a configuration parameter supported

by BG/Q, the running-mode. The running mode changes the behaviour of the

TM system to favour either short-running or long-running transactions. The

running modes of BG/Q are discussed in more detail in Section 2.3.1, but in

brief the long-running mode (BG/Q LR in Figure 2.3) reduces the latency —

the time it takes a cache to serve a request — of accesses within a transaction at

the cost of affecting cache locality across transactions, while the short running

mode (BG/Q SR in Figure 2.3) preserves locality across transactions at the

cost of increased latency within transactions.

Latency is just one dimension not addressed by Figure 2.3. Other design

parameters that are not included in the figure include when conflicts are

detected or signalled (this can be either at the point where the conflict occurs,

or when the transaction attempts to commit) and the overhead of the TM

system and the code required to provide a forward-progress guarantee.

2.3 Blue Gene/Q

IBM’s Blue Gene/Q is a supercomputing solution designed for the solution of

peta-scale computational problems [38]. The core of the Blue Gene/Q system

is the compute node consisting of a 1.6 GHz POWER A2 chip with 16 GB

of memory running the Compute Node Kernel (CNK) [31]. These compute

nodes are combined together in larger groupings to form the total Blue Gene/Q

supercomputing system.

Blue Gene/Q shipped with a Transactional-Memory programming system

that functions within a single compute node4. Blue Gene/Q’s TM support is

implemented in four layers, shown in Figure 2.4, and described below.

4Across-node synchronization must therefore be achieved with a different method.

24

User Program +
Compiler	

TM Runtime	

BG/Q Hardware	

User code: 	

#pragma	
 tm_atomic	

{	
 code;	
 	
 }	
 	

	

Compiler: Runtime
Calls, Save registers	

Transaction
management	

Speculative State
management, conflict
detection	

CNK	

 Interrupt Handling	

Figure 2.4: BG/Q Transactional Memory Stack

2.3.1 Hardware Support

Each BG/Q compute node has 16 user-accessible POWER A2 cores, and each

core has 16K of private L1 cache that is 8-way set-associative, with 64-byte

cache lines. The cores all share a 32MB L2 cache that is 16-way set associative.

BG/Q’s TM support is implemented in the L2 cache, which has been

modified to be multi-versioned so that it can store multiple versions of the

same physical line. Each version occupies a different L2 way [56]. By default

(and in all our experimentation) six of the sixteen sets are reserved for holding

non-speculative state. In this configuration the hardware guarantees that

speculatively written ways lines will not be evicted by non-speculative writes5.

The hardware supports sandboxing that allows hardware exceptions and access

to memory-mapped I/O to be trapped and reduced to a transaction abort.

Transactions are identified by one of 128 Speculation IDs that form part of

the cache tag. These Speculation IDs are managed by the L2 cache, which must

reclaim them by walking the cache contents. The reclamation process, called ID

scrubbing, happens at a fixed interval. Therefore the starting of a transaction

may have to wait for a Speculation ID to be reclaimed. Reclamation occurs

when all the lines marked with a Speculation ID are marked as invalid, or are
5The hardware can be configured to allow speculative writes into up to 15 of 16 ways,

however, if less than six ways are reserved for non-speculative state then non-speculative
ways may evict speculatively written ways, aborting the corresponding transactions

25

merged into the non-speculative state.

When the cache directory finds that two transactions have conflicted, it

updates the conflict register, a status register for the current associated Specu-

lation ID, and triggers an interrupt that is handled by the kernel. The conflict

register contains a status bit to indicate if the transaction failed because it

would have required evicting a speculative line — called the capacity bit – and a

bit that indicates if there was one, or multiple. conflicting transactions. If there

are conflicting transactions, the Speculation ID of the conflicting transaction is

also available in the conflict register.6

Only memory state is tracked transactionally. Thus, support to restore

register values must be provided through compiler-generated code for register

save and restore.

The L1 cache is unmodified from a standard A2 core. Thus BG/Q supports

two transactional execution modes that change how the L1 cache is handled in

order to correctly track speculative state:

Short-running mode evicts speculatively written lines from the L1, forcing

subsequent reads and writes to go to the L2 cache. Short-running mode is

named so because it preserves the contents of the L1 cache across transac-

tions, at the cost of extra read-after-write latency inside the transaction

— therefore this mode is suitable for short-running transactions.

A side effect of the short-running mode is aliasing on the bit that indicates

that the transaction was aborted because it required another speculative

line. The signal aliasing means that the contents of a conflict bit are not

accurate in short-running mode, as shown experimentally in Section 6.2.

Long-running mode removes the transactional read-after-write latency of

short-running mode by allowing lines to remain in the L1 after writes,

at the cost of flushing the L1 cache at the beginning of a transaction.

Long-running mode is suitable for transactions that run for a longer time.
6We did not explore using conflicting Speculation ID data for policies because the mapping

from Speculation ID to transaction is volatile and available infrequently.

26

BG/Q supports both eager and lazy conflict resolution for transactions.

Eager conflict resolution raises an interrupt to the kernel as soon as a conflicting

access is detected. Lazy conflict resolution on BG/Q raises an interrupt to the

kernel when either a jail-mode violation or a capacity overflow occurs. However,

for a memory-reference conflict the interrupt is suppressed until commit time.

The jail mode is used to sandbox transactions. A transaction that attempts to

execute an operation that it is not allowed to execute, such as printing to a

terminal, is said to incur a jail-mode violation.

Lazy conflict resolution can allow some transactions that would have aborted

in the case of eager conflict resolution to commit safely, when the conflicting

transaction has itself been aborted and invalidated before commit is attempted.

All the experiments in this thesis use eager conflict resolution because

it was previously found to perform as well as, or better than, lazy conflict

resolution [74].

2.3.2 Software Support

Compiler Support

Software support for BG/Q’s TM begins in the compiler. IBM’s XL C, XL C++

and XLF Fortran compilers for BG/Q provide support to create transactions

in a program in the form of compiler pragmas, as shown in Listing 2.4

Listing 2.4: A TM pragma example

#omp parallel for
for (int i=0; i < N; i++) {
#pragma tm_atomic
{

A[i] = B[C[i]];
}

}

The code region marked by the pragma as a transaction is compiled into

register save code and calls into the TM runtime.

TM Runtime

The TM runtime manages transactional execution, starts speculation, handles

rollbacks, controls non-speculative serialization and commits state. The runtime

27

consists of functions to initialize the TM system, a transaction-begin function, a

transaction-end function, and a rollback handler. The begin and end functions

are inserted by the compiler. By design the vast majority of state is thread

local to avoid the need for synchronization inside the runtime.

When the kernel aborts a transaction, the rollback handler in the TM

runtime is called. Inside the rollback handler, the TM runtime can query the

conflict register for more information on the rollback, and can decide whether

or not to run the transaction with non-speculative serialization.

Non-speculative serialization in BG/Q is accomplished by acquiring a lock,

known as the irrevocable token. The irrevocable token is used to prevent new

transactions from committing while that token is held. Allowing a transaction

to commit while the irrevocable token is held would violate the isolation

property.

Let TN be a transaction executing non-speculatively and TS be another

transaction that starts speculative execution while TN is executing. There are

two possible solutions to prevent the commit of TS while TN is running:

• With Eager Lock Checking TS reads the status of the token after it begins

speculative execution, but before any of the TS user code has executed.

TS has to abort with a conflict because the irrevocable token is both in

the write set of TN and in the read set of TS. With eager lock checking

any time the irrevocable token is acquired (written) by a non-speculative

transaction all in-flight transactions must abort because all transactions

have the irrevocable token in their read-set.

• With Lazy Lock Checking TS reads the status of the irrevocable token

immediately before commit. Checking the token at the end allows TS to

continue executing simultaneously with TN . However, TS will abort if

the lock is held at its commit time to prevent violations of atomicity.7

In BG/Q the short-running mode uses eager lock checking while the long-
7For example: 1) A TN could write a value x. 2) TS could then read x, use it in a

computation, write the result of that computation, and commit. 3) If TN subsequently
updates the x, then TS would have computed based on an internal state of TN , violating the
atomicity guarantee of TN .

28

running mode uses lazy lock checking. This choice of lock-checking policy

is based on prior investigation into lock checking, though that investigation

found only a small effect from changing lock checking from eager to lazy in real

benchmarks. In both cases, the lock is also checked prior to transaction start

to avoid wasting Speculation IDs.

The TM runtime collects summary statistics on transactional events, count-

ing transactions committed, aborted transactions, transactions serialized for

JMV and transactions serialized by the serialization manager8. The counters are

collected thread-locally and summarized across all threads in our presentation.

Kernel Support

In BG/Q the kernel support for TM consists of a handler for the conflict

interrupt raised by the hardware. The conflict handler examines the relevant

conflict registers and calls the rollback handler with a return code to indicate

why the transaction has been rolled back.

For more details on BG/Q’s TM design, please see the included

Appendix A.

8In some cases the serialization cause is split into further counters.

29

Chapter 3

The Effect of Serialization
Management on Performance

This thesis studies the effect of Serialization Management on performance.

To understand this effect, a through investigation of both existing and new

serialization managers must be undertaken.

An ideal serialization manager would have the following properties besides

high performance:

1. Consistent Performance: Different applications will likely have different

demands for serialization. Ideally a single tuning would accommodate

as many applications as possible because most users will not tune their

setup. Therefore, the default parameters should be performant.

2. Simple Tuning: In cases where tuning is required, the tuning should be

as simple as possible. Ideally there would be a single parameter. A single

parameter makes tuning reasonably easy, even for relatively inexperienced

programmers. Multiple parameters introduces complexity in the search

for a good set of values, while also dramatically increasing the search

space.

3.1 Evaluation Pitfalls

The evaluation of serialization managers in order to compare and contrast them

faces a number of pitfalls that could mislead a simple exploration.

30

The first pitfall is the existence of a number of new BE-HTM systems.

As was seen (partially) in Figure 2.3 different HTM implementations occupy

different positions in the TM design space. Different placement in the TM

design space will change TM execution, and adjust the requirements on a

serialization manager. For instance, systems with finer-granularity conflict

detection may see less aborts and require less serialization leading to lower

demands on the serialization manager.

A second pitfall is TM applications themselves. Serialization-manager

tuning is an important element in the comparison of managers because real-

world applications using TM are likely to have varying contention levels, as are

found in TM benchmarks.

A very desirable property of serialization management would be configu-

ration portability, referring to the question of how a particular set of choices

for serialization management adapts to different programs or platforms. A

portable solution to serialization management should provide similar results

for similar programs, or similar scaling on new platforms.

How these elements of BE-HTM systems interact has not been widely

studied, and thus their combination raises a number of new research questions

that this thesis answers:

1. How much does a serialization manager’s performance depend on the

tuning of its parameters?

2. How stable is a particular serialization manager’s performance across

different programs with the same tuning?

3. How stable is a serialization manager’s performance across different BE-

HTM systems for the same tunings?

3.2 New Serialization Managers

To understand how Serialization Management affects performance, this thesis

needs to explore the design space of serialization managers. Serialization

Management is the BE-HTM counterpart to STM Contention Management.

31

Thus the question “Can advice or inspiration be obtained from STM Contention

Management to develop HTM serialization managers?” drove part of the

exploration presented here.

One dimension of the serialization-manager design space is whether or not

the manager is static or dynamic. A dynamic serialization manager reacts

using the history of the program being executed, making different decisions in

the same circumstance based on changed history. A static manager makes the

same decision in the same circumstance, regardless or history. While dynamic

policies are intuitively attractive, this thesis asks the question: Is there evidence

that dynamic serialization managers should be pursued?

While trying to determine how Serialization Management relates to TM

system design, another question was raised: Are there serialization related poli-

cies that are independent of the manager, and how do they affect performance?

For example, one policy followed by all managers in this thesis is ‘Serialize on

Sandboxing Violation’.

Once the serialization managers are built, some design decisions that were

rooted in intuition can be studied. For instance, is it important for a serialization

manager to minimize wasted work? While intuition drives us in this direction,

careful thought seems to argue that this is not a good metric because the

performance in TM systems is partially provided by speculation that is, in a

sense, wasted work.

3.3 Answering the Research Questions: My Ap-
proach

In order to help answer all the research questions, a large-scale study of

serialization managers was performed on BG/Q, consisting of the following

elements.

1. To help understand transactional program performance in more detail

I developed a tool that gives deep insights into transactional execution

on BG/Q. We call it the Transactional Event Profiler (TEP), and it is

described in Chapter 4.

32

2. I also designed and built seven new serialization managers. Some of

these serialization managers were inspired by STM contention managers,

however, they required adaptation to the unique controls available to a

serialization manager.

3. A very large-scale examination of the serialization managers used the

methodology described in Section 3.4.

To help answer the research questions, whenever a serialization manager

presented a meaningful choice of parameter tuning, I explored a broad

range of values for each parameter. This is not to suggest that the

average programmer should have to pursue a tuning strategy similar to

this. The goal of this exploration is to provide bounds on performance

across tunings.

4. All experiments were run in both long-running and short-running mode

to allows us to investigate the generalizability of tunings. These modes

are two separate (though nearby) points in the BE-HTM design space

(Figure 2.3) with differing conflict-detection granularity and latencies.

3.4 Experimental Methodology

Blue Gene/Q is the experimental platform because the forward-progress-

guarantee programming model was already implemented. Thus, exploring

serialization policies required minimal additional implementation effort.

All programs were compiled with the IBM XL C/C++ compilers, using

a pre-release version, with the compiler flags -O3 -qhot -qtm. The flags

activate the third level of optimization, ‘Higher-Order Transformations’ on

loops, and transactional memory.

Timers are inserted into the programs that measure the wall-clock time

to execute only the parallel section. This is done so that the ideal speedup

would be linear – e.g. 4x for 4 threads – making scaling comparable across

benchmarks.

In a parallel system, it is expected that there will be run-to-run variance in

33

the execution time: A lucky execution could avoid waiting on synchronization

and complete sooner than an unlucky execution that spends time waiting.

To account for run-to-run variance, each benchmark was run 5 times, and

in many plots the mean-speedup is plotted, along with a 95% confidence

interval computed from the t-distribution, assuming that speedups are normally

distributed. In other plots where the mean is not meaningful, all data points

are plotted to show general trends.

All runs used the BG/Q Hardware Performance counters to collect statistics

about L1 misses and the number of instructions executed [48]. The counters

collected were:

• PEVT_L1P_BAS_MISS: Counts prefetchable load misses in the L1P unit.

• PEVT_LSU_COMMIT_LD_MISS: Counts loads that missed the L1 data

cache1. In general, the number of L1 misses reported in this thesis is the

sum of this and the previous counter.

• PEVT_INST_ALL: Counts instructions completed. This counter is useful

for measuring the amount of work done, and will be used to investigate

the nature of ‘wasted’ work.

3.4.1 Metrics

We computed two metrics, measures of transactional execution, to help describe

and compare the execution of our benchmarks at a high level.

Serialization Fraction This could also be described as serializations-per-

commit, and is computed as the ratio of serialized transactions to those

committed. By the nature of serialization, this value is bounded within

the [0, 1] interval.

Abort Fraction The number of aborts-per-commit, computed as the ratio

of the number of serialized and rolled-back transactions to committed
1According to the BGPM documentation, the PEVT_LSU_COMMIT_LD_MISS event does

not include cache-inhibited loads. However, it is unclear from the documentation if the event
captures the forced L1 misses caused by short-running mode.

34

transactions. This value is not bounded within any interval because there

can be more aborts than commits.

Capacity Fraction The number of capacity-aborts-per-commit, computed as

the ratio of the number of serialized and rolled-back transactions where

capacity overflow was reported to committed transactions. This value

is not bounded within any interval because there can be more capacity

aborts than commits.

3.5 Benchmarks

This evaluation uses the STAMP benchmark suite, version 0.9.10 [51], and the

RMS-TM benchmark suite, version R3 [45].

3.5.1 STAMP

The STAMP suite is the de-facto standard in TM evaluations, containing eight

applications that span a variety of transactional workload characteristics and

domains:

bayes A machine-learning benchmark that learns a bayesian network.

genome A genomics benchmark that reconstructs a genome from gene-sequences.

intruder An implementation of a signature-based network-intrusion detection

system.

kmeans A version of the k-means clustering algorithm from machine-learning.

labyrinth A parallel maze-solving algorithm.

ssca2 Kernel 1 from the HPCS graph benchmark [6].

vacation A simulation of a travel reservation system.

yada (Yet Another) Delaunay mesh refinement Algorithm.

35

Benchmark Running Options
bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1
genome -g16384 -s64 -n16777216
intruder -a10 -l128 -n262144 -s1
kmeans -m40 -n40 -t0.00001 -i inputs/random-n65536-d32-c16.txt
kmeans-high -m15 -n15 -t0.00001 -i inputs/random-n65536-d32-c16.txt
labyrinth -i inputs/random-x512-y512-z7-n512.txt
ssca2 -s20 -i1.0 -u1.0 -l3 -p3
vacation -n2 -q90 -u98 -r1048576 -t4194304
vacation-high -n4 -q60 -u90 -r1048576 -t4194304
yada -a15 -i inputs/ttimeu1000000.2

apriori <input> -s 0.0075
fluidanimate ⟨threads⟩ 5 in_300K.fluid
hmmcalibrate -num 500 -seed 33 globin.hmm
hmmpfam Pfam_ls_300 7LES_DROME
hmmsearch globin.hmm 2000_uniprot_sprot.fasta
scalparc F26-A32-D125K.tab 125000 32 2
utilitymine ⟨input⟩ logn1000_binary 0.01

Table 3.1: Benchmark Options

The STAMP benchmarks are used for two reasons: First, since it is the de-

facto standard suite, this allows relatively easy comparison against other work

due to the common deployment of this suite. Second, the STAMP benchmarks

as a whole reflect one particular belief about what transactional memory

programs will look like — relatively large transactions with long running times,

where the majority of time in the program is spent inside of transactions.

The benchmarks were run with the options recommended by the suite

authors for real hardware, presented in Table 3.1.

Though the STAMP suite provides eight benchmarks, most of the experi-

mental evaluation reports only results for five benchmarks. Three benchmarks

are very uninformative for the purposes of the investigation because their

behaviour is dominated by effects that are not within the scope of fallback

policies:

1. bayes is excluded because it is a non-deterministic benchmark. The

time to complete execution depends on the order in which transactions

are committed. A side effect of bayes’ non-determinism is that run-to-run

variance is very high. This high variance prevents accurate description of

36

any effects from changing the TM runtime without a larger number of

repetitions than was feasible.

2. labyrinth is excluded because its running time is dominated by a

transaction that never completes on BG/Q. This transition copies a

large array inside the transaction. This copy exceeds that amount of

speculative state that can be stored by BG/Q.

3. ssca2 is excluded because its bottleneck is waiting for new SpecIDs to

be made available, as its high rate of transaction creation exceeds the

rate of SpecID reclamation in the L2 cache [74].

kmeans and vacation have two variations described in the STAMP

documentation, one for low contention and the other for high contention.

However, most of the performance study presents only the results for the low-

contention version because, from the perspective of Serialization Management,

the low and high variants typically show similar behaviour. When they differ,

results for both variants are presented or discussed.

We have attempted to account for many of the weaknesses of the STAMP

benchmark suite [62], though have shied away from major changes to the suite

in order to attempt to preserve comparability between different publications.

Normally, the sequential version of the STAMP suite uses the system

allocator malloc but the parallel version uses a parallel allocator (memory.c).

STAMP’s parallel allocator does not free memory, and is simpler than malloc,

leading to misleading speedups. It is important to specify the allocator when

discussing STAMP results because the suite is known to be sensitive to allocation

patterns [7]. STAMP’s speedups presented in this thesis are relative to a

sequential version of the benchmark, using the included parallel allocator

for both parallel and sequential runs. The sequential time used to compute

speedups is the minimum of five trials. In our experimentation some benchmarks

— yada , vacation and intruder — showed a substantial performance

difference due to the allocator, that introduces a constant-factor difference

when compared to the results published in other papers where malloc is used

for the sequential baseline.

37

3.5.2 RMS-TM

RMS-TM is a newer benchmark suite that takes its applications for the field of

"Recognition, Mining and Synthesis":

aprori An association rule mining algorithm.

fluidanimate A hydrodynamics simulation.

hmmcalibrate Calibrates a genome sequence profile model

hmmpfam Searches a Hidden Markov Model database.

hmmsearch Find similar sequences from a database.

ScalParC A decision tree algorithm.

utilitymine A rule mining algorithm.

The options used to run RMS-TM are shown in Table 3.1. Results for

utility mine and apriori only exist for 1-8 threads because the input

file needs to be split among threads according to an ‘offset file’, however offset

files exist only for 1-8 threads, and the method for creating them does not

appear to be documented. Similar to STAMP, speedups presented are relative

to the fasted sequential execution with no TM overhead of five trials.

Most benchmarks from RMS-TM exhibit a low relative critical-section

size (the ratio of time spend inside a transaction vs outside during parallel

execution) and have low contention. Therefore there is little opportunity to

exercise serialization management.

This benchmark suite was used to reflect another view of future transactional

memory programs, essentially programs where fine and medium grained locking

has been replaced with transactions.

3.6 Benchmark Characterization

Each benchmark has particular characteristics that affect the response to

changing the serialization managers.

This section is supplemented by Section A.5 and Table A.1 in Appendix A.

38

3.6.1 Contention

The amount of contention experienced by the STAMP benchmarks vary dra-

matically. To quantify the amount of contention, Table 3.2 shows the ratio of

aborted to committed, in long- and short-running modes. This percentage can

be greater than 100% because of transaction retry.

One particular stand-out data point is vacation, that sees dramatically

fewer aborts in short-running mode than in long running mode. This variation

is due to the change in the conflict-detection granularity between long and

short running modes. The change in detection granularity renders vacation in

short-running mode largely insensitive to changes in serialization manager and

tuning.

3.6.2 Capacity Overflow

Table 3.2 also shows that the dramatic difference in capacity-overflow reporting

between long- and short-running modes in BG/Q is caused largely by the

aliasing on the conflict bit discussed in Section 2.3.1.

39

Table 3.2: Aborts per commit and Capacity-overflow aborts per commit in
the STAMP and RMS-TM benchmarks run with Max-Retry set to allow
10 retries with capacity-induced serialization and rollback delay enabled. The
results for 2 threads are elided because they have negligible counts even in
short-running mode.

Name threads Abort Fraction
(Short)

Abort Fraction
(Long)

Capacity
Fraction
(Short)

Capacity
Fraction
(Long)

apriori 4 0.4405 0.3294 0.0069 0.0000
8 1.0441 0.8118 0.0364 0.0000

fluidanimate

4 0.0000 0.0001 0.0000 0.0000
8 0.0001 0.0001 0.0000 0.0000
16 0.0002 0.0001 0.0000 0.0000
32 0.0012 0.0006 0.0001 0.0000
64 0.0010 0.0011 0.0000 0.0000

genome

4 0.0034 0.0213 0.0008 0.0000
8 0.0134 0.0420 0.0018 0.0000
16 0.0393 0.1073 0.0034 0.0000
32 0.0744 0.1185 0.0040 0.0000
64 0.1559 0.1187 0.0088 0.0011

hmmcalibrate

4 1.3582 0.3447 0.0057 0.0000
8 2.6838 0.7622 0.0405 0.0000
16 3.6589 1.4703 0.1311 0.0000
32 4.1091 3.4674 0.2593 0.0000
64 4.4687 5.9864 0.3972 0.0000

hmmpfam

4 3.5068 1.8278 0.0063 0.0000
8 5.3166 3.9553 0.0420 0.0000
16 5.9488 6.5306 0.2276 0.0000
32 5.9438 7.1801 0.3700 0.0000
64 6.4394 7.3492 0.3350 0.0012

hmmsearch

4 0.3667 0.1712 0.0027 0.0000
8 1.0680 0.5204 0.0075 0.0000
16 2.0539 1.1161 0.0171 0.0000
32 3.5236 2.4567 0.0353 0.0000
64 4.7928 4.0839 0.0630 0.0060

intruder

4 0.1233 0.1140 0.0082 0.0000
8 0.3433 0.2491 0.0224 0.0000
16 0.6386 0.4487 0.0427 0.0000
32 0.8874 0.7142 0.0521 0.0000
64 1.0254 0.8166 0.0598 0.0000

kmeans

4 0.0129 0.0030 0.0000 0.0000
8 0.0780 0.0402 0.0000 0.0000
16 0.5073 0.4131 0.0002 0.0000
32 1.3458 1.2705 0.0037 0.0000
64 1.6456 1.5995 0.0078 0.0000

ScalParC

4 0.0911 0.1496 0.0002 0.0000
8 0.2044 0.3548 0.0003 0.0000
16 0.4709 0.8685 0.0007 0.0000
32 1.5086 1.8051 0.0018 0.0000
64 1.5957 1.8067 0.0025 0.0000

UtilityMine 4 0.0135 0.0043 0.0036 0.0000
8 0.0180 0.0110 0.0013 0.0000

vacation

4 0.0001 0.1180 0.0000 0.0000
8 0.0003 0.2261 0.0000 0.0000
16 0.0017 0.3229 0.0000 0.0000
32 0.0111 0.3653 0.0002 0.0000
64 0.0375 0.2608 0.0002 0.0000

yada

4 0.5709 0.4079 0.0030 0.0000
8 0.7418 0.5590 0.0057 0.0000
16 1.1090 0.7756 0.0186 0.0000
32 1.8556 1.0128 0.0676 0.0000
64 2.4957 1.4211 0.1101 0.0000

40

Chapter 4

The Transactional Event Profiler

Many TM implementations, including BG/Q, provide summary counters of the

number of committed and aborted transactions. However, to investigate the

potential efficacy of more sophisticated serialization managers, these counters

are insufficient.

For instance, consider two transactional workloads each of which incurs

10,000 aborts, where the first transactional application takes 1 second to run,

and the other application runs in 10 seconds. Clearly these two programs

experience very different contention levels, yet this difference remains invisible

in summary counters.

Disambiguating these kinds of confusing situations was the main motivation

behind the design of the Transactional Event Profiler (TEP), a tool that gives

us insight into dynamic conditions by capturing the time series of transactional

events inside the TM system.

4.1 TEP Design and Implementation

The Transactional Event Profiler (TEP) a is a software profiling system that

provides a high-resolution time-series view of transactional behaviour in pro-

grams run on BG/Q. The TEP system allows both macro and micro views of

transactional behaviour that have influenced our understanding of benchmarks,

serialization, and serialization managers.

Event profiles are gathered by the TM runtime, triggered by events such as

begin, rollback, serialization and commit. These events are stored in per-thread

41

buffers, and are dumped to a log-file at the end of program execution by the

runtime’s atexit shutdown handler. An event profile consists of a list of

event tuples: (TS, T, TX, TID, [A1, A2]), where:

TS is the timestamp read from a high-resolution counter.

T is an event type.

TX is a unique identifier for each static transaction. In our implementation,

TX is the address of the instruction that starts the transaction

TID is the event’s originating thread ID.

A1 and A2 are optional auxiliary data that can be used to save other data

to the profile. For example, A1 could be used to save the number of

rollbacks used on each serialization.

The event profiles collected are post-processed by analyzers, which are

discussed in more detail in Section 4.3.

4.2 Limitations of the TEP approach

The TEP design currently requires large amounts of memory for the buffers.

Applications will fail if the program’s working set and TEP buffers are larger

than 16GB because the BG/Q compute node does not implement virtual

memory. Experimental evaluation revealed that most TEP logs for the STAMP

benchmarks remain less than 1GB, however, larger programs would be expected

to have larger logs.

Transaction IDs are currently derived directly from the binary file for the

transactional application. This source of IDs is not ideal because comparing

TEP logs between different compilations of the same benchmark requires

inferring a mapping between the two IDs and it is very labour intensive to

recover the mapping between a transaction ID and a source location.

Ideally, compiler support should be deployed to provide (1) smaller TX IDs,

reducing log size, and (2) a constant mapping between each ID and a source

file location. However such support is not yet implemented in the TEP.

42

4.2.1 Probe Effects

Event profiles are imprecise because probe effects may change the behaviour

under study, as the insertion of instrumentation may change interleavings,

caches and other aspects of the system. The imprecision introduced by probe

effects may be acceptable for analyses that use aggregated values or that

are interested in relative rates between events, transactions or applications.

However the overhead and interference of instrumentation must always be kept

in mind.

While probe effects are impossible to avoid completely without a hardware

solution, we made design choices to try to minimize them:

1. The profile buffers are thread local to avoid any synchronization overhead

for the profiling.

2. The event-profiling functions are made as short as possible and are inlined

to avoid function-call overhead inside the runtime handlers.

3. The event-profiling system avoids memory allocation overhead as much

as possible by allocating buffers in very large chunks. A typical profiled

execution, in our experience, allocates less than ten buffer-chunks per

thread.

4. To save space, and to avoid one memory write per logged event, the TEP

does not explicitly store the thread origin in the memory buffer or in the

saved file.

The buffers are saved on disk, one thread buffer at a time, in thread

order. Analyzers can infer the thread ID of the transactions by watching

for breaks in timestamp monotonicity as they process the profiles. Each

such break indicates a thread change.1 This is safe for BG/Q as the
1Thread ID recovery can be accomplished with one line when processing the profile

output with the language R: log$thread=cumsum(c(FALSE, diff(log$timestamp)
< 0)). This R statement creates a new column thread on the data frame log that
contains the thread ID. Many thanks to G. Grothendieck on StackOverflow for this elegant
and idiomatic R solution.

43

http://stackoverflow.com/a/21588596/1074413

timestamp counter we use is synchronized across cores and there is no

thread-migration in BG/Q.

LONG SHORT

0

20

40

60

0

50

100

0

20

40

60

80

0

25

50

75

100

0

50

100

150

200

genom
e

intruder
km

eans
vacation

yada

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Threads

T
im

e
(s

)

LONG SHORT

0

100,000

200,000

300,000

400,000

0

10,000,000

20,000,000

0

5,000,000

10,000,000

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

0

5,000,000

10,000,000

15,000,000

genom
e

intruder
km

eans
vacation

yada

1 2 4 8 163264 1 2 4 8 163264
Threads

R
ol

lb
ac

ks

TEP Disabled Enabled

Figure 4.1: Comparing runtime and rollback counts for STAMP benchmarks
run both with (dark blue bars) and without (light blue bars) Transactional
Event Profiling, using Max-Retry allowing 10 retries as the serialization
manager, in both Long and Short running mode.

Figure 4.1 compares the STAMP benchmarks’ runtimes (the left two columns

of graphs) and rollback counts (the right two columns of graphs) when run with

the Transactional Event Profiler (dark blue bars) and without (light blue bars).

vacation and yada (long running mode, 64 threads) are at the opposite ends

of spectrum for probe effects because both have their results badly distorted

44

by the TEP in opposite directions. vacation’s performance at 64 threads

is improved by 60% when run with TEP, and yada degrades by 280%. The

number of aborts for yada is tripled by the addition of the TEP, whereas

vacation sees up to a 30% drop in aborts.

Despite the distortions caused by the TEP, in most cases the trends as the

thread count changes remain similar, but with changed magnitude.

4.2.2 Hardware Limitations

Some proposed transactional profiling systems not only track begin and end

events, but also the read and write sets [47]. Read and write set information

can provide interesting data on conflicting data. However, it is impossible to

collect this data, in the current form of BG/Q’s TM system, because read

and write sets are managed in the hardware in such a way that they are not

exposed to the software system2.

4.3 A Sample of Event Log Analyzers

The raw event profiles can undergo a variety of analyses and visualizations,

limited only by the imagination of the implementor. I have made substantial

use of the event profiles, and have created a number of bespoke analyzers to

answer specific questions about implementations. Here I discuss analyses and

visualizations that I believe should help in answering our research questions.

4.3.1 Visualizing Event Rates

By looking at the rate of events over time we can discover interesting properties

of benchmarks, such as relative rates between transactions, or phased behaviour

in benchmarks.

Figure 4.2 shows the rate of each transactional event type aggregated across

all threads. Phased behaviour can be seen in the dramatic change in transaction

starts, and the small drop in MaxRetry-induced serializations that occurs about
2Read and write sets on BG/Q can be read, however they must be read before commit,

and need to access the cache via a backdoor that is very slow to access. The capability was
intended for debug and is far too slow for profiling use.

45

9 seconds into execution. The rate of retry in Figure 4.2 never drops beneath

the rate of transaction starts. Given that the retry rate is between two and

three times the start rate, it can be inferred that the average transaction is

retried between two and three times over the course of execution, indicating

that yada is a high-contention benchmark.

0

5000

10000

15000

0 10 20 30
Time (s)

E
ve

nt
s

pe
r

0.
1s

Event Abort and Retry Commit Exhausted Retry Serialization Sandbox Serialization Start

Figure 4.2: Event rates for yada demonstrating program phases and consistent
rate of serialization. Run with 16 threads in long-running mode with Max-
Retry and 10 allowed retries

Event rates can be split per-thread, such as in Figure 4.3, to show how

transactional behaviour need not be uniform across threads: For example,

genome’s thread 0 has a substantially different profile than thread 1 during

genome’s second phase (3 seconds onward). Different profiles for different

threads could be rooted in the application algorithm, as appears to be the

case for genome, or could provide a visual indicator of starvation by showing

reduced rate of commits for a subset of the executing threads.

46

Thread: 0 Thread: 1 Thread: 10 Thread: 11

Thread: 12 Thread: 13 Thread: 14 Thread: 15

Thread: 2 Thread: 3 Thread: 4 Thread: 5

Thread: 6 Thread: 7 Thread: 8 Thread: 9

0

10000

20000

0

10000

20000

0

10000

20000

0

10000

20000

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Time (s)

E
ve

nt
s

pe
r

0.
1s

Transaction

TX 1

TX 2

TX 3

TX 4

TX 5

TX 6

Figure 4.3: Transaction rates for genome showing how transaction activity can
vary across application threads. Run with 16 threads in long running mode,
using the Max-Retry with 10 retries allowed

4.3.2 Visualizing and Comparing Dynamic Transaction
Execution Lengths

An event log can be processed to provide the execution length of each dynamic

transaction, from start to commit. This data can be aggregated in histograms

by each static (source-code level) transaction as can be seen for genome in

Figure 4.4. This figure shows the dynamic transaction lengths for the six

transactions in genome.3

Histograms of dynamic transaction lengths reveal the variability in the

runtime of transactions, both static and dynamic. For instance, the histograms

in Figure 4.4 indicate that transaction TX 1 runs 10 times longer (notice

the different scales for frequency), on average, than any other transaction in

genome, while also being one of the most common by frequency.

Some transactions exhibit multi-modal behaviour with regards to execution

time. This is the combined result of multiple control flow paths through
3For better reading of this presentation the transaction IDs reported by TEP were replaced

by labels TX 1, TX 2, etc.

47

TX 1 TX 2 TX 3

TX 4 TX 5 TX 6

50000

100000

150000

200000

20

40

60

1000

2000

3000

4000

5000

200

400

600

25000

50000

75000

500

1000

20000 30000 40000 50000 1500 2000 2500 3000 3500 1500 2000 2500 3000

1200 1400 1600 1800 4000 6000 80001000012000 3000 4000 5000 6000 7000
Transaction Size (cycles)

F
re

qu
en

cy

Figure 4.4: Histogram of dynamic transaction execution times for the six static
transactions in genome. Run with 16 threads in long running mode, using
the Max-Retry with 10 retries allowed. Each histogram drops the top 10th
percentile of data to avoid the plots being swamped by outliers, and has 100
bins. Note the non-linear y-axis and the different scales in the plots.

transactions, varying amounts of contention and changing cache contents

leading to abort and restarts, possibly many.

4.3.3 Micro-level analysis and visualization

Analysis of the behaviour of individual dynamic transactions allows insight into

the process by which an individual transaction is committed, and the timeline

of events that lead to that point.

One possible microscopic analysis for an event log is to show the timeline

of execution, such as the graph in Figure 4.5 which contains the timeline

for the first 1
4000

th of transactional execution time for the benchmark yada.

Each row corresponds to a single thread, and each dot corresponds to a single

48

●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ● ●●●●●●● ●●● ● ● ● ●●●●●●● ● ●●●●●● ●●●● ●● ●●●●● ●●●● ● ● ● ●●●●● ●

●●●●●●● ●●●● ●●● ●● ●●●●●●●●●●● ● ● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●● ●●● ● ● ●●●●●●●● ● ● ● ● ●

●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ● ●● ● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ● ●● ●● ●●●● ●●● ●●● ● ● ●●●●●● ●

●●● ●●● ● ●●●● ● ●●●●● ●●●●●● ●●●● ●●● ● ● ●●●●●●●●●●●●●●●●● ●●●●●● ● ●● ● ● ● ● ● ●●●●●● ●

● ●●●●●● ●● ● ●●●●●●●●●● ●● ●● ● ● ● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●● ●●● ● ● ● ● ●●●●●●●●● ● ●

● ●●●●●● ●● ● ●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●● ● ● ● ●●●●● ● ●●● ● ● ● ● ●●●●●●●●●●● ●●●● ●●

● ●●●●●● ●● ● ●●●●●●●●● ●●●● ●● ●●● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●● ●

● ●●●●●● ●● ● ●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●● ● ● ● ●●●● ● ●●● ● ● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●

● ●●●●●● ●● ● ●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●●● ●● ● ● ●● ●●● ●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●

● ●●●●●● ●● ● ●●●●●●●●●●●●● ●●●● ● ●● ●●●●●● ●●●●● ●●●●● ●● ● ●●●●●●● ● ●● ●● ●●●●● ● ●●●●●●●●●●●●●●●● ●●●●●●● ●● ●● ●●●●● ●

● ●●●●●● ●● ● ●●●●●●●●● ● ● ● ● ● ● ● ●● ●●●●●● ●● ● ●● ● ● ●●●●●● ●

● ●●●●●● ●● ● ●●●●●●●●●●●●● ●●●● ● ●●●●●●● ●●● ● ● ● ●●●●● ● ●●● ● ● ● ● ●●●●●●●● ● ●

●●●●●●● ●● ● ●●●●●●●● ●●●● ● ●● ●● ●●● ●●●●●●●●●● ● ● ● ●● ●●● ● ● ● ●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●

●●●●●●● ●● ● ●●●●●●●●●●●●● ●●●●● ●● ●●●●●● ●●● ● ● ● ●●●●● ● ●●● ● ● ● ● ●●●●●●●●●● ●●● ●

●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●●●●●●●●● ●● ●● ● ●●●●●●● ● ●●●●●● ●●● ● ●●●●●●●● ●●●●●●● ● ● ●●●●●●●●●● ●●● ●●

●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●● ●● ● ●●●●●● ●● ● ● ●●●●●● ● ●●●●● ●●● ●●● ● ● ●●●●●● ●

0

5

10

15

0.0e+00 5.0e+06 1.0e+07 1.5e+07
Time (cycles)

T
hr

ea
d

event ● ● ● ●Abort and Retry Commit Exhausted Retry Serialization Start

Figure 4.5: Individual events plotted for the first 1
4000

th of transactional ex-
ecution time for yada Run with 16 threads and no rollback delays in Long
Running Mode.

transactional event. Time 0 is set to the time of the earliest transactional

event.

The sea of blue dots — corresponding to aborted transactions retrying —

and red dots — corresponding to transactions serializing to complete — in

Figure 4.5 indicates a high-contention portion of yada’s execution. This

particular log was made with no attempt to space out transactions on retry

through backoff. Thus, the vertical columns correspond to the Convoy effect

described by Bobba et al.. The convoy effect appears because after a first abort

the transactions restart sufficiently close to each other that the same conflict

repeats and slows progress [11].

4.3.4 Visualizing Parameter Evolution

We have made use of the event profiles to understand the behaviour of new

serialization managers with a variety of bespoke analyzers. Event profile tuples

can be annotated with any value from the runtime to visualize parameter values

as they fluctuate over time. This visualization has helped discover flaws in

49

some designs and inspired new approaches.

Section 5.4 introduces a serialization manager called LimitMeanST that

models the mean transaction length — µexec — during program execution.

Dumping the calculated mean to the event log enabled the generation of the

plot in Figure 4.6, that shows the serialization manager modelling the mean

for each static transaction4.

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

● ●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●●
● ●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

● ●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●● ●

●● ●

●

●●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●
●●

●

● ●●

●●

●

●
●

●

● ● ●

●

●

●

●
●

● ●●

●

●● ●

●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●●●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●
●

●

●

●

●● ●●

●

●

●

●

● ●●

● ●

●

●

●

●●
● ●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●●

●●

●

●

●

●

●● ●●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

● ●

●●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

● ● ●

●
●

● ●●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●● ●● ●●

●

●

●

●

●

●

●● ●

●

●●

●

●
●

●● ●●

●

●

●

● ●

●

●

●
●

●●

●

●

●

● ● ●●

●

●

●

●

●
●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●●

●

●●
●

●

●

●

●

●●

●● ●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●●

● ●

●●

●

●

●

●●●
●

●●

●

● ● ●

●●

●

●

●●●

● ●
●

●

●

●

●

●

● ● ●●

●

●●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●● ●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●

●●

●

●

●●

●●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●

●

● ●

●
●

●

● ●

●●

● ●

●

●

●

●
●

●

●

●●
●

●

●

●
●

● ●

●
●●

●

●

● ●●
●

●

●●● ●

● ●

●

●
● ●

●●

●

● ●

●

●
●

●

● ●●

●

●

●

●

●

●●

●

●●

●
●

●● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●● ●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●●●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●●

● ●

●

●●

● ●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●●●●

●●

● ●●●

●
●

●

●

●

●

● ●
● ●

●●

●

●●
●

●

●

● ●●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●

●
●

●

●

●● ● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●● ●●

●● ●
●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●●

● ●

●●

●

●

●

●●

●

●

● ● ●

●

● ●
●

●

●

●

●

●
●

●
●

●

●
●

●

● ● ●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●●

● ●

● ●

●
●

●

●

●

●

●
●

●

●●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ● ●
●

●

●

● ●
●●●

●
●

●●

●●

●
●

●

●

● ●

●
●

●
●●

●

●

●

●
●●●●● ●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

● ●●

●●

●

●

●
●

●

●

●
●

●

● ●●

●●

●

●

●
●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●
●

●

● ●●

●
●●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

● ●

●
●

●

●●

●

●

●

●
●

●
●●

●
● ●

●

●
●

● ●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

● ●
●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●
● ● ●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●●
●

●

●

●
●

●

●

● ● ● ●

●

●

●●
●

●
●

● ●

●

●●

●

●
●

●

●
● ●

●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●
●●
●

●

●
● ●

●● ●

●

●

● ●●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●●

●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●
● ●

●
●

●

●
●

●

● ●

●●

●● ●

●
●

●
● ●

●

●
●●

●●

●

●
●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●●●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●●
●

●

● ●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●●

● ●
●

●●

●●

●

● ●●

●

●

● ●

● ●

●●

●

● ●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●
●

●
●

●

●●●

●

●

●
●

●●
●

●

●●●

●
●

●

●
●● ●● ●

● ●●
●

●

● ●

●

●

●

●

●

● ●

●●

●

●
●

●
●

●

●

● ●

● ● ●● ●
●

●

●● ●●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

● ●●

●

●●
●●

●

●

●

● ●

●
●

●

●●
●

●

● ●

●

● ●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●● ●

●

●

●●●
●

●
●

● ●

●

●●
●

●

●

● ●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●

●

● ●

● ●
●

●

●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●
●●

●

●

●

●

●

●●

●

●●●

●

● ●

●

●
●

●
●

● ●

●

●

●
●

●

● ●

●

●

●
● ●

●

●

●● ● ● ●

●

●
●●

●

●●
●

●

●

● ●● ●
●●

●●

●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●
●

●●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ● ●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

● ●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●●
●

●
●

●

●● ●

●●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

● ●
●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●●● ●

●

●●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●●

●●●

●

●

●

●

● ●

● ●

●
●

●

●

●

● ●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●●
●

●●
●

●

●

●

● ●

● ●

●

●

●
●

● ●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●● ●

● ●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●
●

●

●

●●
●

●●
●

●

●

●
●

●

●● ●
●

●●
●

●

●

●
●

●

●
●

●

●●

●
●

●

● ●

●●

●

●

●

●

●
●

●

●●●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

● ●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●● ●●

●

●
●

●

●
●●●

●● ●

●
●

●
●

●

●

●

●●

●●
●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●
● ●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●● ● ●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

● ● ●
●

●

●

●

●
●

●
●

●

●● ●

● ●●
●

●

●

●
●

●

●

●

●

●●●

●● ●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

● ●

●

●

●● ●

●●

●

●

● ●●

●●

●
●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

● ●

●●●
●

● ●

●●

●

●

●

●

●

●

●

●

● ●

● ●●●
●

● ●●●
●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

● ●

● ●
●

●●

● ●●

●

●●

●

● ●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●
● ●

●
●

●

●

●

●

● ●

●

●● ●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

● ●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

● ●● ●

●

●

●

●

●●●

●
●●●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●●

●●

●

●

●

●

●

●
● ● ●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●
●

●

●
●●●

●

●

●●

●
● ●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●●

●

●
●

●

●
●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●● ●

●

●

●

●

●

●
●●

●

●
●●

●

●

● ●

●

●

●●

●

●

● ● ●

●

●

●

● ●●

●

●

●●

●

●

●
● ● ●

●

●
●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
● ●

●

●

●

●

● ●●

●●

●

● ●

●

●●

●
● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●● ● ●

●

●
●

●

●

●

●●●
●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●●
●

●

● ● ●

●

●

●

●●

●

●
●

●
● ●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●
●

●● ●

●

●

● ●

●●●
●

●●

●
●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

● ●●
●●

●

●● ●

●

●●

● ●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

● ●

● ●

●

●●● ●

●

●

● ●

● ●
●●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●● ●

●
●

●

●●
●

●
●

●

●●●

●

●

●

●

● ●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

● ● ●

●

●

●

●

●
●

●● ●●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●
●

● ● ●

●
●

●●●

●

● ●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

● ●● ●● ●

●

●

●

●●

●

●●

● ● ●

●●
●

●
● ●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●
●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●●●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●
●

● ● ●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

● ●
●

●●

●
●●●

●

●

●

●

● ●

●

●

●

●

●

● ● ●●

●●

●

●
●

●

●

●
●

●
●

● ●●

●

●●
●
●●●

●
●

●

●

●●

●

●

● ● ●

●

●● ●● ●

●●
● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●● ●●●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●● ●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ● ●

●
●

●

● ● ●●

●
●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

● ●

●● ●
●

●

●●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ● ●

●

● ●

● ●

●

●

●

●

●●●
● ●

●

●

●●

●
●

●

●

●

●

● ●
●

●

●

●● ●
●

●●

●

●

●
●●

●

●

●
●●

●
●

●
● ●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

● ● ●

●

●

●
●

●● ●●

●
●

●
●

●

●

●

●●

●

●●●
●

●● ●●

● ●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●●

●●

●●

●
●●

●●
●

●

●

●

●● ●
●

●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●●
●

●●
● ●

●

●

●

● ●●

●

●

●● ●

●
●

●●

●

● ●

●

●

●

●
●●

●

●
●

●
● ●

●

●

●

●

●

●●● ●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●
●

●
●

●

●

●●

●●

●

●

●●
●

●

●

●

●●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

● ● ●●

●●
●

●● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
● ●

●

● ● ●

●
●●

●

●

●●

●

●
●●●● ●●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

● ●
● ●

● ●

●

●

●
●

●
● ●

●
●●●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●

● ●

●
●

●

●

●

●

● ●

●● ●

●
●

●

● ●

●●
●●

●

●

●

●
● ●

●

●●

●
●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●● ● ●●

●
●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●
●

●

●

●

● ●

●

●

●● ●

●
●

●

●●
●

●

●

●

●

●

●
●

●

● ● ●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●● ●

●● ●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●● ●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

● ●●●

● ●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●
●

●

●●

●

● ●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●
● ●

●

● ●●●

●

●

●

●
●●

●

● ●
● ●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●

●

●
●

●

●

●●

●

●

● ● ● ●
●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●●●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●
● ●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●
●

● ●
●

● ● ●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

● ●●

●●

●● ● ●●

●

●

●

●
●

●

●● ●

●

●● ●

●

●

●●

●

● ● ●●

●

●

● ●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

● ●

●

● ● ●

●

●

● ●

●

●

● ●
● ●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●
● ●

●

●
●

●

● ●

●
●●

●●● ●

●

●●

●

●

●

●
●

● ●
●

● ●●●●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●● ●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●●

●●

●

●●

● ● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●

●

●

●

●
●

● ●●

●

●●●
●

●
●

●

●●

●

●
●

●● ●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●
●●

●●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●● ● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●●●

●

●

●● ● ●

●

●● ●●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●● ● ●

●

●

● ●

● ●

●

● ●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●
●

● ●● ●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●● ●

●●
●

●
● ● ●●

●

● ●●●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●●
●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●●●

●
●

●● ●●

●
●

●

●
●

●
●

●●

●● ●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
● ● ●

●●

●

●●● ●●
●

●

●●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●
●

●

●●

●

●
●●

●
●

●●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●●

●

●
●

●

●

●

●●●

●

●
●

●

●●
●

●

●

● ●●

●

●

●

●

●
●

●● ●●● ●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

● ● ●

●
●

●

●●

●
●

●

● ●● ●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

● ●

●

●

●
●

●● ●

●

●●

●

●

●●

●

●

●●

●

●

● ● ●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

●● ●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●●● ●

●

●

●
● ●●● ●

●

●

● ●

●●

● ●

●

●

● ●

●

●

● ●●

●

●
●●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●●●

●●

●●●

●●

●

●

●● ●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●●
●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●●

●
● ●

● ●
●

●

●

●● ● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●●

●
●

●

●
● ●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●●

●

●
● ●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●

●● ●

● ●

●
●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●● ● ●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●●

●

●

●●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

● ●

●
●●

●

●

●

●●

● ●● ●

● ●

●

●

●● ●● ●

● ●

●●

● ●

●●
●

●

●

●

●

●● ●●●

●
●

●●

●

●
●

●
●

● ●● ●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●● ●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●
●
● ●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●●

●

● ●
●

●

● ●

●

●

●

● ●● ● ●

●

●

●

●

●

●

●

● ●●

●
●●

●

●

●●

●●
●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●

●
●

●
●

●●

●

●●
●●

●

●

●

●

●

●

●●

●

●
●●

●

● ●

●●●

●

●●● ●●

●

●
●

●
●

● ●

● ●

●

●

●

●

●

●

●● ●

●

●

●
●●

●

●
●●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●●

●

●

●

●
●

●
●

● ●

●●

●
●●

●

●● ●

●

●
●●●

●

●

●

●

●●
●

● ●●

●

●●

●

●●

●
●

●

●●

●

●
●

●

●

●● ●

●

●●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ● ●

●
●

●

●●

● ● ●
●●

●

●

●

●●

●●
●

●

●

● ●

●

●

● ●

●

●

●

●● ●

●
● ●

●●

●
●●

●● ●

●

●

●

●●● ●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●
●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●
● ● ●●

●

●
●

●

●

●
●

●●

●●● ● ●

●
●●

● ● ●● ●

●

● ●

●
●

●
●

●●●●

●

●

●● ●
●●

●

●
●

●
●

●

●

●
●●

●

●

●

●●
●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●●

● ●● ●

●
●

●●

●

●

●
●

● ●

●

●

● ●

●

● ●

●●

●

●

●●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●● ●

●

●

● ● ●

●

●
●

●● ●

● ●●

●●
● ●

●

●

●

●
●

●
●

● ●

●

●
●

●

● ●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●●

●

●

●●

●

●●

●

●

● ●●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

● ●

●

●

●

● ●

●●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●

●
●

●
●

●

●
●

●

●

●●
●

●●
● ●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●
● ● ●

●

●
●

●●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

● ●●

●

●

●

●

●

● ●
●

● ●●

●

●

●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●
●

●
●●

●

●●

●

●● ●

●

●

●

●

●

●●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●● ●

●●

● ●

●

●●
●

●

●●● ● ●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●● ●
●●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●●

●

● ●

● ●

●

●

●

●

● ●

●

●
●

●
●

●

●

●
●

●●
●

●

●● ●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●●●
●

●

●

●

●

●●
●●

● ●●

● ●

●

●

●●●
●

●●●

●
●

●
●●

●●

●
● ●●●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
● ● ●

●

●
●

●
●

●
●

●
●

●●●
●

●

●
●

●

●

●

●●

● ●●

●●

●●●

●

●

●●
●

●

●
●

●

●●
●

●

●●
●

●

●
●

●

●
●●

●

● ●●
●

●

●●

●● ●

●

●

●

●

●

●
●●

●
●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●
● ●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

● ● ●

●

●

●

●●

● ●

● ●

●

● ●

● ●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●
●

● ● ●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●
● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

● ● ●

●

●

●

●
●

●

●

●●

●
●●●

●

● ●

●

●
●●

●

●

●●

●
●

●●●

●
●

●
●

●
● ●

●

●●

●

●●

●
●

● ●●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

● ●

●

● ●

●
●

●
●●

●●
●

● ●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●
●

●
●

● ●

●

●●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●
●

●

●● ● ●●

●

●

●●
●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●●●
● ●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●●
●

●

●●
●

●● ●

●

● ●

●●

●

●●

● ●
●

●

●

●

●
●

●
●●

●

●

● ● ●

●
●

●●

●
●

●●● ●●

●

●

●●

●

●

●
●

●

●

●●

●●
●

●

● ●●

●●

●
●

●●

●●

●

●

●●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●●

● ●
●●

●

●

● ●●

●

● ●

●●

●
●

●●●

●

●

●
● ●

●

●

●●●

●

●

●

●

●

●
●

●
●

●●
●●●

●
●

● ●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●●

● ● ●
●●

●

●

●

●

●

●● ●

●
●

●●
●

●

●

●

●●

●

●

●

●● ●

●
● ●

●

●

●

●

●●

●

● ●

●

●

●●

●●
●

●
●●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●● ●●●

●

●
●

●

●

●

●

●

●●●
●

●●● ● ●●

●

●
●

●●

●

● ●

● ●●

●

●

●

●

●

●●●

●

●

● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

● ●●●

●

●
●

●
●

●●

● ●●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●● ●

●

●

●
●●●

●

●

●

●

●● ●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
● ●

● ●

●

●
●

●

●
●

●
●

●

●●●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

● ●

● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●
●

● ●

●

● ● ●

●

●●

●

●

●

● ●

●
●●

● ●
●

●●

● ●

●

●
●

●

●

● ●

●

●

●

●●● ●

●

●

●
●

●

●●

● ●

●

● ●
●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●

●
●

● ●
● ●

●

●

● ●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●●●

●

●

●

●
●● ●●

●

●
●

●
●

●● ●

●

●

● ●

●

●

●

● ●

●
●

●

●

●
●

●

●

● ●

●

●
●

●
●● ●

●
●

●

●

●●

● ●

●

● ●
●●

●

● ●

●
●

●

●●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●●

● ●

●

●

● ●

●

● ●●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●● ●

●
●

●

●

●●

●●●●

●●

●
●

●

●

●●

● ●

●

●

●●

●

●
●

●

●●
●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●● ●● ●

●●

●

●
●

●

●

●

●

● ●● ●●
●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●●

●● ●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●● ●

●

●

●●

●

●

●●

●

●

●
●

●●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●●
●●

●

●●

●
●

●

●

● ●

●

●

●

●

● ●●
●

●

●

●

●●

●
●● ●

●
●

●

●

●

●

●●

●
●

● ●

●

●

●

●●
●

●

●

●
●

●

● ●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●●●

●

●

●●●

●
●

● ●

● ●

●

●

●

●●
●

●

●●
●●

●

●●
●

●

●
●

●

●

●

●

●●

●●●

●
●

● ●

● ●

●

●
●

●

●●

●

●

●●

●
●

●
●●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●
●

● ●

●
●

● ● ●

●

●

●

●● ●

●

●

●

●

● ● ●● ●

●●

●

●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

●

● ●

●●

●

●

● ●

● ●

●

●

●

●

●

●

●● ●●

●

●
●

●

● ●

●●

●
●

●
●

●

●

●●●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●
●

●

●

●
●

● ●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
● ●●

●
●

●
●●

●

●

●

●

● ●●

● ●

● ●

●

●

● ●●
● ●

●

●
●

●

●

●

●

●● ●
●

●
●●

●●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●●

●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●
●●

●
●●

●
●

●

●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

● ●

● ●
●

●

●
●●●

●● ●

●
●●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●
●

●

● ● ●
●

●

●

●●

●

●

●

●●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●● ●

●

●
●

● ●● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●● ● ●

●

●● ●

●

●●

●●
●

● ●●●

●

●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●

● ●

●●●●

●●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●●

●
●

●

●

●

● ●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

● ●●

● ●

●
●●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●●

●

●●

●
●

●

● ●●

●

●●

●

●

●

● ●●
●●●

●

●

● ●

●

●

● ●●

●●

●

●

● ●

●

●

●

●

●●

● ●

●
●

● ●●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●

●●

●

●

●● ● ●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

● ●
●●●

●
●

●

●●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

● ●
●

●●

●● ●

●

●

●

●●

●

●

●
●

●
●

●
● ●

●

●

●
●

●

● ●
●

●

●●

●

●

●

●

●

●●
●

●

● ●

●●

●
●

●

●

●

● ●
● ●

●●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

● ●

●
● ●

●

●●

●
●

●●

●

●

●
●

●●

● ●

●
●

●

●

● ●

●

●

●
●

●●●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●

● ●

●

●

● ●

●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●● ●

●●

● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ● ●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●● ●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●
● ●●●

●●
●

●

●
●●●

●

●

●
●

●

● ●

●●

●

●

●

●●●

● ●
●●

●

●

● ● ●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●● ●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●
●

●
●

●
● ●

●●

●

●
●

●

● ●
●

●
●

●
●

●

●●

● ●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●
● ●

●
●

●

●
●

●

●

●●

●
●

●●

●

●

●
●

●

●

● ●

●

●

●
●

●
●●

●●● ●

●

●

●

●

● ●
●

●

●

●●

●
●

●●●
●

●

●● ●

●●

●

●

●

● ● ●

●

●

● ● ●

●

●
●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●
●

●●●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

● ●

●●

●

●●
●●

●
●

●● ●
●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●
● ●● ●

●

●
●

●

●

●● ● ●

● ●●
●

●●

● ●

●

●

●
●

● ●

●

●
●

●
●

●

●●

●

● ●

●

●

●
●●

● ●

●

●

●

●

●

●

●●

●

● ●●

● ●●●

●
●

●

●

●

●

●
●

●
●

●
● ●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●
● ●

●

●● ●

●

●

●

● ●

●

●
●●

●

●

●●●●

●

● ●●

●

●
●

●

●
●●

●

● ●

●

●

●
●● ●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●●

●●
●

●
●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

● ●●
●

●●

●

●

●

●●

●

●
●●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●●

● ●

●

●
●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●●●

●

● ●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

● ●

●

● ●

●
● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●
● ●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●● ●●
●

● ●

●●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●●●
●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

● ●●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●
● ●●●

● ●●

●
●

●

●●●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●
●

● ●

● ●

● ●

●

●

●

●

●
●

●
●

●

●

● ●●

● ● ●

●

●

● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●

●

●●●

●

●

●

●

●

● ●●●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

● ● ●

●
●●

●

●

●● ●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●●●

●●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●●

● ●

●
●

●

●● ● ●●

●

●

●

● ●
●

●

●

●●●

●
●

●

●●

●

●

● ●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●●
●

●

●
●●

● ●

●

● ● ●
●

●

●

●●●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
● ●●

●

●
●

●

●

●

● ●●
●

●

●

●

● ●●

●

●●

●
●

●

●

●

●●

●

●

●

● ●

● ●

● ●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●●

●

●

●●

●●
●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●●

● ●●

●

● ●
●

●
●

● ●

● ●

● ●

●

●

●
●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

● ●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●● ●

●
●●

● ●

●

●

●

●

● ●
●

●●●

●

●

●

●
●

●

●

●
●

● ●

●●

●

●

● ●

●

●

●

●

●

● ●● ● ●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●●

● ●

●

● ●
●

●

●

●

●

●●

●
●

●

●

●

● ● ●

● ●

● ●

●●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●●

● ●

●

●

●● ● ●●●

●

●

●

●●

●●

●

●

●

●

●

● ● ●●

●

● ●

●

●

●

●

●

●● ●

●

●

●●●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

● ● ●●

●

●

●

●

●

●
● ●

●

●
●

●

● ●

●
●

●●

●●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●

●

●
●

●

●● ●

● ●●
●

●

●

● ● ●●

●

●●

●●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●
●●

●

●
● ●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●
●

● ●●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●● ● ●
●

●●

●●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
● ● ●

● ●

●●

● ●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●● ●
●

●

●

● ●

●

●●●●
●

● ●
●

●●

●
●

●

●
●

●

●

●

●●

●
●

● ●
●

●

● ●● ●

●

●

●

●

●

●

●●
●

●●

●

● ●● ●

● ●
●

●

●

● ●

●

●
●

●

●
●

●

●● ● ●
●

●

●

●

●

●●

●

●
● ●

●
●●●

●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

● ●●

●

●

● ●

●●●

●

●

●

●

●

●

●●

●

● ●

●

●
●●

●

●

● ●

●

●

●

● ●●

●
●

●●

●

● ●●

●●
●

● ●●

●

●

●

●

●

●

●●●

●

●

●
● ●

● ●
●

●●

●

● ● ●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

● ● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●● ●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●● ●

●●

●●

●

●

●●

●

●

●

●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

● ●
●

●

●

● ●●

●

●
●

●

● ●

●

● ●● ●

●

●

● ●●

●

●

●

●

●

●

●

●●
●

●

●●● ●

●

●
●●

●

●●●

●
● ●

● ●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●
●●●

●
●●

●● ●●
●

●

●

●

●
●●●

●

●

●
●

●●●
● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

● ●

●

● ●●

●

●

●
●●

●

●

●

●
●

●

●

● ●●

●

●

●
●● ●●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

●
●

●
●

●

●●

●

● ●

●
●

●

●

●

●

●

●●

●
●●

● ●

●●
●

●
●

●

● ●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●

● ●

●

●

●

● ●

●

●
●

●

● ●●

●
●

●

●

●

● ●

●

●

●

● ●

● ●● ●●

●

●

●
●

●

●

●

●

●
● ●

● ●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●

●
●

●

●

●

●

●

●

●

●● ● ●

●

●

●

● ●

●

●
●

● ●

●

● ●
●

●●

●

●

●

●●● ●

●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●●●

●
●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●●

●
●

●

●●

●
●●

●
●

●
●●

●●

●

● ●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

● ●● ●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●● ● ●●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●● ●

●

● ●

●●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●●

● ●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●●

●

●

● ●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●●

●

●

●●●
●

●

●

●●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

● ● ●

●

● ●

●

● ●

●

●●

●●
●

●●

●● ●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

● ●

●●

● ●

● ●

●

●●

●

● ●

●

●
●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

● ●
●

●

●

●

● ● ●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●● ● ● ●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●● ●

●
●

●

●
●●

●

●

●●
● ●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●●●

●

●

● ●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●
●● ●

●

●

●

●

●
●

● ●●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

●

● ●

●

●●

●

●

● ●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●
●

●

●

● ●●●

●●

●

● ●●
●

●●

●

● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
● ●

●

●

●
●

●

● ●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

● ●

●

● ●

●
● ●

●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●●

●

●

●● ●●●

●

●●

●

● ● ●

●

●●

●
●

●

●

●

●
● ●●

●

●

●

●

● ● ● ●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●

●

●●

●

●●

●

●
●

●

● ● ●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

● ●

● ●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●● ●

●
●

●

●

●

●
● ●

●

●

●

● ●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

● ●●

●
●

●

●●

●●

●

●

●
●

●

●

● ●

●

●

●●

●

●● ●

● ● ●●

●

●●

●●●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

250000

500000

750000

1000000

0 2 4
Time (s)

M
ea

n
E

xe
cu

tio
n

T
im

e
E

st
im

at
e

Transaction
●

●

●

●

●

●

TX 1

TX 2

TX 3

TX 4

TX 5

TX 6

Figure 4.6: Showing LimitMeanST modelling µexec for genome run with 64
threads, Long running mode. Note the non-linear y-axis. Only 0.06% of data
points were plotted to avoid exceeding technical limits in the document.

LimitMeanST adapts to changing execution time for transactions, as can

be seen by the kink in the curve for transaction TX 1 occurring at around 1
4

seconds.

4.4 Lessons from the TEP

The phasing of retry rates with drastic changes seen at certain points in

execution seen in both Figures 4.2 and 4.3, as well as the large variance in

transaction execution time recorded in Figure 4.4 suggest that dynamic policies
4The transaction IDs in Figure 4.6 are incomparable with the transaction IDs in Figure 4.4

because these profiles are generated from different binary files, as described in Section 4.2.

50

that can change their behaviour over time may be required to extract maximum

performance from BE-HTM.

Dramatic changes in abort rates indicate that there are likely points in

transactional execution that demand different responses from the serialization

manager. Higher contention could demand more retries before serialization to

reduce the chance of serialization convoy, or could demand more serialization

because less work is being accomplished.

The large variance in transaction execution time shows that some transac-

tions may benefit from being treated differently. This applies both to static

(source code level) transactions, where some transactions may demand serial-

ization more often, and dynamic (a particular instance) transactions, where

some transactions run much longer than average.

51

Chapter 5

Explored Serialization Managers

We developed a number of serialization managers, some from scratch and

others inspired by approaches from the STM literature. Often the inspired

policies look quite different from the original STM ones because there is little

overlap in the information available to BE-HTM and STM systems. However

we attempted to preserve the fundamental insights of each particular policy, as

best as possible, when translating to BE-HTM systems.

For those policies that can be tuned through a parameter, this chapter

also contains the results of that tuning. A more detailed investigation and

across-policy comparisons are presented in Chapter 8.

5.1 Max-Retry

Max-Retry is perhaps the simplest serialization manager imaginable. Max-

Retry allows a fixed number of rollbacks before forcing a transaction to

serialize. This policy trivially ensures forward progress and accepts different

tunings for different programs.

Most previous work in BE-HTM systems have used policies very similar or

identical to Max-Retry.

5.2 SerializationControl

SerializationControl is built upon Max-Retry, but encourages fast

serialization for transactions that are predicted to have little chance of com-

52

mitting speculatively. Each thread has a local serialization table1 to support

SerializationControl. For each static transaction, this table keeps track

of the number of times that the transaction is committed, the number of times

it is serialized, and a black-list counter that flags transactions for immediate

serialization on retry.

The serialization-commit ratio for a static transaction is the ratio between

the number of times the transaction is serialized to the number of times the

transaction is committed. When a transaction serializes by retrying more than

N times, the transaction entry in the serialization table is used to compute its

serialization-commit ratio. If the serialization-commit ratio exceeds a predefined

threshold, then the black-list counter in the serialization table entry is set to

N . In the event of a transaction failure when the black-list counter is greater

than zero, the transaction is serialized immediately and the black-list counter is

decremented. Serializations that happen while a transaction is black listed do

not contribute to the serialization count, thus allowing the serialization-commit

ratio to decrease while the transaction is black listed.

The goal of SerializationControl is to improve performance in the worst

cases for non-speculative execution when feedback is limited. This case happens

when transactions continually fail when executed speculatively. Recording the

history of static transactions per-thread leads to a better predictor of whether

instances of the transaction will abort in the future. The per-transaction

predictor should help in benchmarks where a subset of the static transactions

require serialization more often than others.

5.3 Limit, inspired by Karma

Karma is a classic contention manager from the STM literature [64]. The

goal of Karma is to increase throughput by aborting the transaction that

has done the least amount of work. Karma estimates the amount of work

done by a transaction by the number of objects that the transaction has
1The serialization table is keyed by static transaction address in the program text and

uses linear probing to attempt to resolve collisions. However, if collisions are not resolved
after two probes, then the element is recycled, leading to table aliasing.

53

accessed. The intuition behind Karma is that it is preferable to abort a

smaller transaction that has done little work than to abort a larger transaction

that could soon commit and has done larger amounts of work. In order to be

fair, however, a dynamic transaction accumulates its completed work — called

karma — across aborts to provide an element of karmic fairness. The idea is

that small transactions should be allowed to build up enough karma so that

they eventually complete even when they conflict with larger transactions.

Karma requires an estimation of the amount of work done by a transaction.

This estimate is provided by the transaction read-write set size so that Karma

can favour transactions that have done more work. A serialization manager

inspired by Karma will need an alternative way to estimate the transaction

size because existing HTMs do not expose the size of the read or write sets to

software.

One solution is to budget an amount of execution time (in cycles) for

each dynamic transaction to attempt to execute speculatively. We call this

policy Limit. In Limit each dynamic transaction is given a budget of time to

complete. While that budget is not exhausted, an aborting transaction may

continue to retry. Once the budget is exhausted, the transaction must execute

non-speculatively.

When Limit is run with exponential randomized backoff on retry, it could

be said that Limit emulates the intentions of the contention manager Polka,

which is precisely Karma with exponential backoff [64].

The intuition behind Limit is that it would be better to allow a short-

running transaction to retry more often than to allow a long-running transaction

to keep retrying. The idea is that both the risk of abortion and the amount

of wasted work in case of abortion are lower for a short-running transaction

than for a long-running transaction. In Limit a long-running transaction will

serialize after fewer retries and thus will be favoured for resource allocation,

just like in Karma.

54

5.4 LimitMean and LimitMeanST

Limit performs well when the budget parameter is tuned correctly. However,

budget tuning is difficult because it depends on many factors. We have

developed two modifications to Limit to attempt to address the tuning difficulty.

The first is called LimitMean. LimitMean computes, per thread, the

cumulative moving arithmetic mean of the transaction execution time µ̄exec,

computed as:

µexec:(N+1) =
Nµexec:(N) + Texec

N + 1
(5.1)

The mean execution time is updated each time a transaction completes

either serially or with no aborts. At transaction start, the budget is computed

as M × µ̄exec for some parameter M provided at program start.

LimitMean follows similar intuition to Limit, preferring to allow small

transactions to retry and large transactions to serialize quickly. However,

LimitMean adjusts the definition of small and large depending on the actual

transaction lengths observed in the program, effectively self-tuning the budget.

LimitMeanST (Static Transaction) modifies LimitMean by tracking

µ̄exec at a per-static-transaction level using the same hash-table scheme as

SerializationControl.

The intuition behind LimitMeanST is a little different, and relies on

the fact, seen in Figure 4.4, that transactions have varying running lengths.

LimitMeanST is based on the idea that the serialization manager should not

unduly punish naturally large transactions, but rather it should punish only

the outliers of transactional execution time, i.e. only the transactions that run

many times longer than average.

In both LimitMean and LimitMeanST transactions are pre-loaded with

an estimate of the execution length of 10000 cycles if the transaction has not

been seen previously, or if the hash table entry has been recycled.

55

5.5 Best-Effort Adaptive Transactional Schedul-
ing (BE-ATS)

Adaptive Transactional Scheduling (ATS) is an idea from the STM litera-

ture [78]. ATS is not a contention manager, but instead it is a transactional

scheduler that can be combined with any contention manager. A transaction

scheduler adjusts when transactions execute, as opposed to a contention man-

ager that decides what transactions survive a conflict. The motivation for

including ATS in this study is to show how other techniques, besides contention

managers, can be deployed as serialization managers on a Best-Effort HTM

system, broadening the pool of ideas that can be drawn upon.

In a transactional-memory system experiencing low levels of conflict, retrying

an aborted transaction speculatively — instead of acquiring a lock to ensure

its completion — is a high-performance choice. However, when the contention

levels are high, the amount of work wasted by frequent retries may outweigh the

benefits of parallel execution. ATS aims to prevent the concurrent execution

of transactions that have a high probability of conflict, without completely

serializing execution.

The intuition behind ATS is that threads can detect high-contention situa-

tions and those threads experiencing contention can cooperate by waiting in a

queue before executing a transaction. ATS uses Conflict Intensity (CI) — a

parameterizable distributed measurement of contention — to decide whether

transactions executing on a thread must consult a central queue before starting.

Conflict Intensity is recurrently defined as shown in equation 5.1. The value

of CC is 0 for a commit and 1 for an abort, and CI0 = 0. The parameter α

runs from 0 to 1 and controls the amount of history preserved, and thus the

rate of adaptation. A high α value preserves more history and slows adaptation

to changing circumstance.

CIn = α× CIn−1 + (1− α)× CC (5.2)

When a transaction starts (or restarts), its conflict intensity is compared

against a QueueIntensity threshold. If the QueueIntensity threshold

56

is exceeded, the transaction is stalled and enqueued in a global scheduler.

When the transaction reaches the head of the queue, it is allowed to proceed

regardless of its conflict intensity. ATS attempts to reduce contention by

preventing concurrent execution of transactions that have a high probability of

generating a conflict.

ATS can be implemented on BG/Q very simply and efficiently by tracking

the conflict intensity2 and acquiring a ticket lock when the conflict intensity

goes above the QueueIntensity threshold. The ticket lock handles waiting

threads using a first-in-first-out order, and thus emulates a queue.

ATS alone does not guarantee forward progress. Even if all threads are

in the queue for the lock, a livelock may occur if the executing thread is

attempting to execute a transaction that requires irrevocability to complete.

For instance, the executing transaction may perform an I/O operation.

To compensate for transactions that will always fail, we modified ATS

into Best-Effort Adaptive Transactional Scheduling, or BE-ATS that defines

a MaxIntensity threshold. If the CI computed for the thread is above

MaxIntensity any transactions that execute on that thread are executed

through non-speculative serialization, turning ATS into a serialization manager.

5.6 Percentage Of Effective Work (Pew)

A common hypothesis in TM systems is that it is best to minimize wasted time

through some bound.

One measure of wasted time is given by the metric Percentage of Effective

Work (PEW), described in a forthcoming contribution by Pereira et al. [58].

PEW is computed per static transaction t and, in our implementation, is

computed thread-locally. In addition, PEW is specified based on an execution

slice, a group of k attempts to execute a transaction t.

To compute PEW (t, n) for a transaction t in slice n, five quantities are
2Tracking conflict intensity is slightly different in BG/Q. The compiler liveness analysis

for register-save and restore expects the runtime does not use any floating point registers, and
so the FP registers are not saved or restored. Therefore CI is computed using libfixmath,
a Q16.16 fixed point library.

57

tracked:

1. WC(t, n) is the amount of work committed in slice n for transaction t.

2. WA(t, n) is the amount of work wasted in a slice n for transaction t.

3. c(t) is a counter that tracks progress of an execution slice for transaction

t.

4. T (t, n) is the total work performed by the transaction, including wasted

work. This value is smoothed by the history of previous slices.

5. E(t, n) is the effective (committed) work performed by the transaction

in slice N. This value, like total work, is smoothed by history.

Whenever c(t) = k the runtime recomputes PEW (t, n). First the runtime

computes WT (t, n) = WC(t, n) + WA(t, n). WT (t, n) is the total amount of

execution time for transaction t. From these two values, the total (Equation 5.2)

and effective (Equation 5.3) work can be computed, with a history parameter

α to provide some discounting to past values.

T (t, n) = α× T (t, n− 1) + (1− α)×WT (t, n) (5.3)

E(t, n) = α× E(t, n− 1) + (1− α)×WC(t, n) (5.4)

The percentage of effective work is defined as the ratio between these two

values (Equation 5.4):

PEW (t, n) =
E(t, n)

T (t, n)
(5.5)

On rollback, if PEW (t, n) drops beneath some threshold T , then the

runtime will serialize that execution, increasing PEW (t, n+ 1).

As in BEATS, PEW was implemented using a fixed-point math library to

perform the fractional calculations.

58

5.7 Other Investigated Serialization Managers

Though this thesis focuses on the seven serialization managers described above,

they are far from the only possible serialization managers, and far from all that

we investigated.

Runtime Work
adaptSTM [57] Could be used for switching between long– and short-

running modes, however would require a redesign of the
TM runtime.

Insufficient
Information
CAR-STM [27] Would require implementing higher-order transactions

that can be manipulated; moved from one core to an-
other core for example. Would also require information
on enemy transactions.

LUTS [55] Need enemy-transaction information to model conflicts
Eruption [41] Need enemy-transaction information to pass along pri-

ority.
Steal-on-abort [?] Need enemy-transaction information to choose target

thread, as well as requiring higher-order transactions
that can be moved from core to core.

Insufficient Con-
trol
Various contention
managers [64]

Very weak control of transactions to abort on conflict

Table 5.1: Dismissed potential policies, grouped by reason for rejection

Table 5.1 contains a short discussion of a number of policies that were also

investigated and rejected, sorted by the reason for their rejection. Runtime

Work contains policies that are feasible candidates for BE-HTMs but would

require more engineering resources than were available. Insufficient Infor-

mation contains policies that do not successfully translate to BE-HTMs due

to the limited feedback provided by HTMs. Insufficient Control are polices

that require more control than an HTM provides.

There were also some policies that were implemented but that either over-

lapped substantially with existing policies or did not perform well enough to

be worth describing in detail.

59

Chapter 6

Manager-Independent Policies

While trying to understand how serialization management fits together with

existing HTM systems, the question was raised as to whether there are manager-

independent policies that can be added to any serialization manager. In our

exploration we discovered two such policies, Rollback Delay and Capacity

Serialization, described below.

In the experiments in this chapter we use the serialization manager Max-

Retry as a vehicle to explore the two policies and their effect on performance.

The results in this chapter will justify enabling these two policies in all subse-

quent experiments. Section 7.1 will discuss Max-Retry itself.

6.1 Rollback Delay

Bobba et al. described a pathology called Convoy, where a large group of

transactions abort near-simultaneously, usually because of conflicting references

on the same cache line, and retry near-simultaneously, leading to waves of

rollbacks and little progress or livelock [11]. To avoid a Convoy, restart after

rollback can be delayed through a randomized exponential backoff [72].

Figure 6.1 shows the results of a comprehensive exploration of exponential

backoff’s effect on performance on the STAMP benchmarks. The horizontal

axis records the number of rollbacks that were allowed and the vertical axis

reports the absolute speedup over an efficient sequential execution reported for

each individual execution of the benchmark as a single point in the plots. For

each allowed retry value, from 1 to 39, each benchmark was executed five times.

60

The number of threads used in each execution is shown at the top of each

column of plots. The graph shows the mean of the measured speedups, along

with a 95% confidence interval in grey. For instance, the plots for kmeans

with 16, 32, and 64 threads show a higher variance in the measured speedups

in comparison with all other plots. The red line represents the mean speedup

without rollback delay while the blue dotted line represents the mean speedup

with rollback delay.

Figure 6.1 shows that most benchmarks see performance improvements from

enabling exponential random backoffs. The improvements typically are seen at

higher thread counts combined with higher numbers of allowed-retries. The

result can be dramatic, doubling the performance of yada in Long Running

mode and improving the performance of intruder especially when a large

number of retries is allowed.

However, the improvement is not universal. Some configurations see higher

performance without rollback delays. This is the case, for example, when

running intruder with two and four threads. Rollback delay can reduce

performance where simultaneous retry is uncommon, or where simultaneous

retry does not cause more aborts.

Degradations caused by exponential backoff are rare and of low magnitude

compared to the improvements delivered by exponential backoff. Therefore all

subsequent experiments in this part will have exponential backoff enabled.

61

2 4 8 16 32 64

5

10

2

4

6

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

3

6

9

12

3

6

9

12

2.5
5.0
7.5

10.0

1.0

1.5

2.0

2.5

1

2

3

4

0.5

1.0

genom
e

genom
e

intruder
intruder

km
eans

km
eans

vacation
vacation

yada
yada

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
Rollbacks

A
bs

ol
ut

e
S

pe
ed

up

Rollback Delay NO YES

Figure 6.1: The relationship between allowed-rollbacks and absolute speedup,
showing the effect of exponential backoff. Using Max-Retry and no capacity
serialization.

62

6.2 Capacity Serialization

The BG/Q TM hardware provides some feedback to the TM runtime system.

One element of the feedback is a capacity bit that indicates that the transaction

was aborted because a speculatively loaded line was evicted, meaning that

conflicts could no longer be detected safely. When designing a policy the

capacity bit can be used to serialize early, ideally saving one or more useless

subsequent retries.

However, the capacity bit can be misleading. In both long- and short-running

mode, when a transaction is retried, other parallel threads and transactions

may have changed the state of the cache or the system – other transactions

may have committed, freeing speculative state for use, for example – possibly

allowing the capacity-aborted transaction to complete speculatively on retry.

In addition, as mentioned in Section 2.3.1, in short-running mode there is some

aliasing on the capacity bit, where the hardware sets the capacity bit even on

aborts that are not actually caused by capacity limitations.

Figures 6.2 and 6.3 show the results of a comprehensive exploration of the

effects of capacity-induced serialization on performance on the STAMP and

RMS-TM benchmarks.

Each point in the figure corresponds to a single execution. Similar to

Figure 6.1 the plots here also show the mean and 95% confidence interval

of the measured absolute speedup of five runs of the benchmark for each

number of allowed rollbacks. The red line show the speedup for runs without

capacity-induced serialization while the blue dotted-line is for runs with capacity

serialization. All the plots in a column are for the same thread count, listed

at the top of the column, and each row of plots is for a given benchmark at a

given running mode as indicated to the right of the figure.

The results in Figures 6.2 and 6.3 indicate very small effects on performance

from capacity-induced serialization for most benchmarks in either running mode.

The largest effects are improvements due to capacity-induced serialization in

short-running mode with large amounts of retries allowed — seen in genome,

intruder and hmmcalibrate. The effect of capacity-induced serialization

63

on performance in long-running mode seems to be almost entirely negligible,

with a very small amount of change noticeable for intruder running with 16

threads.

The different responses to capacity-induced serialization in the two modes

are explained partially by Table 3.2 that shows the percentage of transactions

that report a capacity overflow in each benchmark.

All subsequent experiments in this thesis will have capacity-induced serial-

ization enabled because capacity-induced serialization seems to provide more

benefit than harm.

64

2 4 8 16 32 64

5

10

2

4

6

1.0

1.5

2.0

2.5

1.5

2.0

2.5

3

6

9

12

3

6

9

12

2.5
5.0
7.5

10.0

1.0

1.5

2.0

2.5

1

2

3

4

0.5

1.0

genom
e

genom
e

intruder
intruder

km
eans

km
eans

vacation
vacation

yada
yada

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
Rollbacks

A
bs

ol
ut

e
S

pe
ed

up

Capacity−Induced Serialization NO YES

Figure 6.2: The relationship between allowed-rollbacks and absolute speedup,
showing the effect of capacity-induced serialization on the STAMP benchmarks.
Using Max-Retry and exponential-backoff.

65

2 4 8 16 32 64

2
3
4
5
6
7

2
3
4
5
6
7

2
3
4

2
3
4
5

10
20
30

10
20
30

2.5
5.0
7.5

10.0

2.5
5.0
7.5

10.0

10
20
30

10
20
30

5
10
15

5
10
15

1
2
3
4

2
3
4
5

apriori
apriori

fluidanim
atefluidanim

ate
hm

m
calibrate

hm
m

calibratehm
m

pfam
hm

m
pfamhm

m
searchhm

m
searchS

calP
arC

S
calP

arCU
tilityM

ineU
tilityM

ine

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
Rollbacks

A
bs

ol
ut

e
S

pe
ed

up

Capacity−Induced Serialization NO YES

Figure 6.3: The relationship between allowed-rollbacks and absolute speedup,
showing the effect of capacity-induced serialization on the RMS-TM benchmarks.
Using Max-Retry and exponential-backoff. apriori, fluidanimate and
utilitymine are excluded for space reasons, as well as showing no effect.

66

Chapter 7

Serialization Manager Tunings

All the serialization managers described in Chapter 5 have at least one tuning

variable that can be changed to vary the behaviour of the manager. A generous

evaluation of serialization managers requires understanding the behaviour of

the manager across a wide range of its parameter values. This chapter performs

that study for each serialization manager described in Chapter 5.

7.1 Tuning Max-Retry

Max-Retry requires that all transactions complete successfully within a

limited number of retries. If a transaction exceeds that limited number of

retries, Max-Retry serializes execution in order to enforce forward progress.

Figures 7.1 and 7.2 show how the absolute speedup achieved by the STAMP

and RMS-TM benchmarks changes with both the running mode and the number

of allowed retries when using Max-Retry as the serialization manager.

The two figures show clearly that tuning for the number of rollbacks allowed

has some effect. However, the number of rollbacks for which the maximum

speedup is achieved depends not only on the running-mode but also on the

benchmark and the number of threads used for execution.

The STAMP benchmarks spend substantially more time inside transactions

than the RMS-TM benchmarks. Thus, the STAMP benchmarks are much

more sensitive to tuning as compared to the RMS-TM benchmarks, where only

hmmcalibrate, hmmpfam and scalparc appear to be affected by tuning.

Where the RMS-TM benchmarks appear to universally perform best with

67

only one retry leading to serialization, the STAMP benchmarks vary dramat-

ically on where the best speedup is achieved. For example, vacation, in

long-running mode performs best with a large number of retries allowed (> 10),

yet for kmeans, any more than one or two retries reduces performance for all

thread counts more than 4. intruder is notable for a dramatic reversal of

behaviour between thread counts ≤ 8 and thread counts ≥ 16.

No benchmark in our tests improved in performance after 25 retries.

7.1.1 Mode Generalizability

According to the results for the the Max-Retry tuning, the benchmarks can

be divided into two groups. In one group — consisting of intruder , kmeans

(both low and high contention) and all the RMS-TM benchmarks excluding

scalparc run with 64 threads — the tuning between long and short running

mode largely follow the same general trend. Most of these benchmarks are

mode-insensitive, seeing relatively small differences between achievable speedup

between long- and short-running mode. The tuning for the second group

— consisting of scalparc run with 64 threads,and the remaining STAMP

benchmarks — follow very different trends between long- and short-running

mode. scalparc is the exception, as it is largely mode-insensitive, yet sees

a dramatic change in program behaviour for long-running mode when more

than ten rollbacks are allowed in comparison to short-running mode.

68

2 4 8 16 32 64

5

10

1.0

1.5

2.0

2.5

3

6

9

12

2.5

5.0

7.5

10.0

1

2

3

4

genom
e

intruder
km

eans
vacation

yada

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
Allowed Rollbacks

A
bs

ol
ut

e
S

pe
ed

up

Running Mode LONG SHORT

Figure 7.1: Absolute Speedup for STAMP relative to the number of allowed-
rollbacks in Max-Retry for both short and long-running mode. vacation-high
and kmeans-high are elided because their behaviour is indistinguishable from
their low contention counterparts.

69

2 4 8 16 32 64

2
3
4
5
6
7

2
3
4
5

10

20

30

2.5

5.0

7.5

10.0

10

20

30

5

10

15

1
2
3
4
5

apriori
fluidanim

ate
hm

m
calibrate

hm
m

pfam
hm

m
search

S
calP

arC
U

tilityM
ine

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
Allowed Rollbacks

A
bs

ol
ut

e
S

pe
ed

up

Running Mode LONG SHORT

Figure 7.2: Absolute Speedup for RMS-TM relative to the number of allowed-
rollbacks in Max-Retry for both short and long-running mode.

70

7.2 Tuning SerializationControl’s Blacklist-
ing Threshold

SerializationControl modified Max-Retry to handle transactions that

serialize often by blacklisting them, forcing them to serialize immediately on

subsequent aborts for a period of time.

In the vast majority of benchmarks — all of the RMS-TM benchmarks,

genome, ssca2 — SerializationControl does not change performance

relative to Max-Retry across all the values of threshold explored. In the case

of the RMS-TM benchmarks, this is due to the relatively low amount of time

spent in transactions. In the case of genome and ssca2 the lack of effect of

SerializationControl on performance is because rare serializations never

trigger blacklisting.

What is the effect of the blacklisting threshold of SerializationControl

on performance? The results of an experiment that varies the blacklisting

threshold from 0.05 to 1 — for 5, 10 and 40 allowed retries — for the benchmarks

whose performance is affected by SerializationControl is presented in

Figure 7.3. Each graph presents the raw data-points of the results for five

runs. In these plots, variance is seen through the width of the lines. The

darkness of a dot indicates the black-list threshold according to the key at the

bottom of the figure. A black-listing threshold of 1 indicates that the blacklist

will only be activated once per static transaction, if it has failed 100% of the

executions. This threshold value mimics the behaviour of Max-Retry in the

vast majority of situations and provides a point of comparison for very little or

no blacklisting.

In most of the benchmarks a lower threshold for black listing is too aggressive,

causing a reduction in performance relative to higher thresholds. The exceptions

are benchmarks with high amounts of contention and serialization: yada

running with 8 threads and kmeans running with more than 16 threads where

the number of allowed retries is low. These are also the configurations and

benchmarks that performed best with a very-low number of retries in Max-

Retry, as expected. intruder and yada show discontinuities where there

71

exists a minimum (in the case of intruder) or maximum (in the case of

yada) threshold requirement. In the majority of cases it appears that it is

much more important to choose the correct number of retries than the correct

black-listing threshold. Black listing has a relatively minor effect in those cases

where it improves performance, except for kmeans that sees a substantial

improvement from avoiding transactional execution as much as possible.

72

8 16 32 64

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●

●
●●
●●●●●●●●

●

●
●●

●
●●●●●●

●
●

●
●●●
● ●

●
●
●
●

●●●●●
●
●●

●●●

●

●●
●

●

●
●●
●●●●●●●●

●

●
●●

●
●●●●●●

●
●

●
●●●
● ●

●
●
●
●

●●●●●
●
●●

●●●

●

●●
● ●

●●●●●

●
●●
●

●●●
●
●

●
●●●●

●
●
●
●
●

●
●●●
● ●●●●

●
●

●●●
●

●
●
●●
●●

●
●

●

●
●
●●●●●

●
●●
●

●●●
●
●

●
●●●●

●
●
●
●
●

●
●●●
● ●●●●

●
●

●●●
●

●
●
●●
●●

●
●

●

●
●●●

●

●

●
●●
●●

●
●
●

●●
●●●●
●

●●●●●●●●●●
●
●●
●

●

●
●
●

●
●●●●

●
●

●
●
●
●
●

●●●●
●●●●

●
●

●

●●
●●

●●●●
●●

●

●

●●●●●●● ●●
●

●
●●

●●●
●

●●
●●
●●●

●
●
●

●●●●
●●●●

●
●

●

●●
●●

●●●●
●●

●

●

●●●●●●● ●●
●

●
●●

●●●
●

●●
●●
●●●

●
●
● ●

●●●●
●●●●●

●●
●
●
●●●

●
●●

●
●●
●●

●●
●
●●

●
●●●
●

●●●●●
●●●

●
●

●●●
●●

●
●●●●

●●●●●
●●
●
●
●●●

●
●●

●
●●
●●

●●
●
●●

●
●●●
●

●●●●●
●●●

●
●

●●●
●●

●

●
●
●●

●

●●●
●

●
●●●

●

●
●

●

●●●
●●
●●

●●●
●

●

●●●●●●●
●●
●

●
●●

●

●

●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●

●

●
●
●●

●

●
●●
●

●
●

●

●●
●●●

●

●

●●

●

●●●

●

●

●

●

●
●●●

●

●

●
●
●
●
●
●●●

●
●
●

●●●

●

●
●
●●

●

●
●●
●

●
●

●

●●
●●●

●

●

●●

●

●●●

●

●

●

●

●
●●●

●

●

●
●
●
●
●
●●●

●
●
●

●●●

●
●

●

●

●

●
●●●

●●●●●
●
●

●●

●●
●

●
●
●

●●

●

●
●●●

●

●

●●
●●●●

●●
●

●

●

●

●

●

●●●

●
●

●

●

●

●
●●●

●●●●●
●
●

●●

●●
●

●
●
●

●●

●

●
●●●

●

●

●●
●●●●

●●
●

●

●

●

●

●

●●

●

●●●●●
●

●

●●●

●●
●
●●●●

●●●
●
●

●●●
●●

●
●
●
●

●
●

●●

●

●
●

●

●
●

●●
●●●●

●
●

●
●

●

●●
●●
●

●●
●

●

●
●●

●

●

●

●

●

●●
●●●●

●
●

●

●

●

●

●

●

●

●●

●

●●
●
●●

●

●
●
●
●

●
●

●
●

●

●●
●●
●

●●
●

●

●
●●

●

●

●

●

●

●●
●●●●

●
●

●

●

●

●

●

●

●

●●

●

●●
●
●●

●

●
●
●
●

●
●

●●
●

●

●
●●
●

●

●●

●
●●

●
●

●●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●
●

●

●
●

●●
●

●

●
●●
●

●

●●

●
●●

●
●

●●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●
●

● ●
●
●
●
●●●

●

●
●

●●●
●●●

●

●
●●●

●

●

●
●●●

●
●● ●●

●●
●

●

●

●●
●

●

●

●●●●
●●

●
●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●
●
●
●●

●

●

●
●●

●
●●
●●●

●
●

●
●

●
●

●
●
●●●●

●

●

●●

●●●●●
●
●
●●

●
●
●
●

●●●

●
●

●
●
●
●●

●

●

●
●●

●
●●
●●●

●
●

●
●

●
●

●
●
●●●●

●

●

●●

●●●●●
●
●
●●

●
●
●
●

●●●

●
● ●

●●

●

●●
●

●
●
●

●
●
●
●
●

●●

●

●
●

●
●●
●
●

●

●

●

●● ●●
●

●

●
●

●●●●

●

●
●
●

●

●●●
●
●

●
●●

●

●●
●

●
●
●

●
●
●
●
●

●●

●

●
●

●
●●
●
●

●

●

●

●● ●●
●

●

●
●

●●●●

●

●
●
●

●

●●●
●
●

●

●●●
●

●●
●
●
●

●
●

●

●

●

●

●

●●
●

●●

●
●●●●

●

●

●

●

●●

●
●

●
●●●●

●

●

●
●●

●

●

●

●●

●●●

●

●

●
●
●

●●
●●●●
●

●
●
●
●

●
●
●●●
●

●●

●
●
●

●●

●

●

●
●●
●

●

●

●
●

●

●

●

●
●
●

●

●

●●●

●

●

●
●
●

●●
●●●●
●

●
●
●
●

●
●
●●●
●

●●

●
●
●

●●

●

●

●
●●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●
●●

●●●
●
●●

●

●●

●
●
●●●●

●
●●●

●

●

●● ●
●●●
●●

●

●●●●

●

●●●

●

●

●
●
●

●

●
●

●

●
●●

●●●
●
●●

●

●●

●
●
●●●●

●
●●●

●

●

●● ●
●●●
●●

●

●●●●

●

●●●

●

●

●
●
● ●

●
●
●
●

●●
●
●
●

●

●
●
●●

●
●
●

●

●●
●●

●
●

●

●

●
●

● ●●

●
●
●●

●●●
●

●
●

●

●●●

●

●

●
●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●

●

●

●
●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●●

●

●

●
●●
●

●●
●
●
●●

●●

●●
●
●●
●●

●

●●●
●

●

●
●
●●●

●
●

●

●●●

●
●●

●

●

●
●

●
●●●●

●

●

●
●●
●

●●
●
●
●●

●●

●●
●
●●
●●

●

●●●
●

●

●
●
●●●

●
●

●

●●●

●
●● ●●

●●
●

●
●

●

●
●

●●●

●
●●

●

●
●
●

●●
●

●
●●●●

●●

●

●●

●

●

●
●
●●
●●

●

●
●

●
●

●●●●
●●

●●
●

●
●

●

●
●

●●●

●
●●

●

●
●
●

●●
●

●
●●●●

●●

●

●●

●

●

●
●
●●
●●

●

●
●

●
●

●●●●
●

●
●●
●

●
●
●
●
●

●
●●●●●

●

●●●●
●●

●
●●●●●

●
●●
●●●●●●●

●●
●

●

●

●
●●●●●

●●●

●

●●

●
●●
●

●

●

●
●
●

●●
●
●

●
●●●
●

●
●●
●

●
●

●

●

●
●
●

●
●●
●
●

●
●
●
●
●

●

●

●
●●

●●●

●

●●

●
●●
●

●

●

●
●
●

●●
●
●

●
●●●
●

●
●●
●

●
●

●

●

●
●
●

●
●●
●
●

●
●
●
●
●

●

●

●
●●

●
●
●
●
●●●

●●
●●

●
●
●
●

●

●●●

●

●●

●

●
●

●
●

●

●● ●

●●

●
●

●

●

●
●

●

●
●●●●

●●
●●●

●
●
●
●
●●●

●●
●●

●
●
●
●

●

●●●

●

●●

●

●
●

●
●

●

●● ●

●●

●
●

●

●

●
●

●

●
●●●●

●●
●●● ●

●
●●●●

●
●●

●
●●
●●
●●●

●●
●

●

●
●
●
●

●

●

●
●
●

●
●
●
●
●

●

●
●●●

●

●●●
●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●

●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

1.4
1.6
1.8
2.0
2.2
2.4

1.5

2.0

2.5

4

6

8

10

4

6

8

10

3

6

9

12

1.75

2.00

2.25

1

2

3

0.6

0.8

1.0

1.2

Intruder
Intruder

K
m

eans
K

m
eans

Vacation
Vacation

Y
ada

Y
ada

Long
S

hort
Long

S
hort

Long
S

hort
Long

S
hort

5 10 40 5 10 40 5 10 40 5 10 40
Rollbacks

A
bs

ol
ut

e
S

pe
ed

up

Blacklist Threshold ● ● ● ● ● ● ● ● ● ●0.05 0.06 0.07 0.08 0.09 0.11 0.14 0.2 0.33 1

Figure 7.3: Absolute speedup of the benchmarks affected by Serializa-
tionControl relative to Threshold and 5, 10 and 40 allowed rollbacks in
SerializationControl. A threshold of 1 approximates Max-Retry in
almost all cases, only blacklisting transactions when the transaction has failed
100% of executions.

73

7.3 Tuning Limit’s Per-Transaction Execution-
Cycle Budget

Limit provides a static execution-cycle budget for each dynamic transaction

as discussed in Section 5.3. This budget is the same for all transactions and

is determined by the user at program start. The intuition is that a sufficient

budget will encourage large transactions to serialize while allowing smaller ones

to keep attempting speculative execution. The hope is that less computation

will be wasted retrying larger transactions.

4 8 16 32 64

0
3
6
9

1.25
1.50
1.75
2.00
2.25

2.5
5.0
7.5

10.0
12.5

1

2

3

0.7
0.8
0.9
1.0
1.1

genom
e

intruder
km

eans
vacation

yada

0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00

Cycle Budget

A
bs

ol
ut

e
S

pe
ed

up

mode LONG SHORT

Figure 7.4: Absolute speedup of STAMP benchmarks relative to cycle bud-
get for Limit. kmeans-high is excluded because it under-performs in all
configurations, similar to yada

Figures 7.4 shows the effect of tuning the per-transaction cycle budget for

the benchmarks from 1000 to 96000 budgeted cycles on the STAMP benchmark

suite.

74

Results for the RMS-TM benchmarks are not presented because they were

found to be entirely insensitive to the cycle budget except for a small amount

of performance degradation with very low (< 3000) cycle budgets.

The results for genome show how sensitive Limit can be to tuning. genome

has a sharp increase in speedup when the time budget passes a required

minimum budget of 55,000 cycles. After the minimum budget is achieved,

speedup continues to improve with a larger cycle budget.

4 8 16 32 64

●●●●●

●●●

●

●

●

●●●●●●
●
●●●●●

●●

●

●

●●

●

●●

●

●●

●

●

●●●●●

●
●
●●

●

●●●

●●●●●

●●●●●

●●

●●●●●

●

●●

●
●

●●

●

●
●

●
●
●

●
●

●

●

●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●●●●●

●●●●●

●●

●●●●●

●

●
●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●●●●

●●●●●

●●

●●●●●

●

●

●
●
●

●●
●●
●●●

●●
●●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●●●●

●●

●●●●●
●

●●

●

●

●
●
●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●●●

●●
●●
●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●
●●●●

●
●

●
●

●●
●●
●

●●●●●

0.00

0.25

0.50

0.75

1.00

genom
e

0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00 0

25
00

0

50
00

0

75
00

0

10
00

00

Cycles

S
er

ia
liz

at
io

n
F

ra
ct

io
n

Figure 7.5: Serialization fraction for genome in long running mode, relative
to the cycle budget in Limit showing the dramatic effect of achieving the
minimum budget.

The required minimum budget for genome stays relatively constant for 4, 8,

16 and 32 threads. However at 64 threads the required minimum jumps higher,

possibly due to increased pressure on shared resources in 4-way SMT mode.

The tuning curves for long- and short-running modes appear largely consis-

tent for kmeans and intruder. The highest performance for kmeans occurs

at the lowest budget because kmeans prefers serialization to speculation.

Figure 7.5 shows the dramatic effect the cycle budget has on the fraction

of transactions serialized. The continued improvement shows up here as a

decrease in serialization.

When compared to the previous serialization managers, all benchmarks,

except for kmeans, perform far worse than the highest performance seen. The

expectation here is that in most cases the range of explored cycle budgets

was insufficient. The challenge of choosing the cycle budget correctly is what

inspired LimitMean and LimitMeanST.

75

7.4 Tuning M in LimitMean and LimitMeanST

LimitMean and LimitMeanST attempt to alleviate the challenge of choosing

the correct cycle budget by estimating it as some multiple M of µ̄exec, the

estimated mean execution time.

Figures 7.6 and 7.7 contain the results of a tuning study of M for Limit-

Mean and LimitMeanST. In addition, the results of changing the allowed

number of retries for Max-Retry have been included because the three serial-

ization managers are so closely related that comparing allowed retries and M

is very sensible.

For most tests the maximum speedup of the three managers is achieved by

either LimitMeanST or Max-Retry, with the single exception of yada in

short-running mode run with 32 threads. In all other cases LimitMean at

best matches the performance of the other two policies.

genome is an interesting success case for LimitMeanST. Compared to

Max-Retry, LimitMeanST’s ability to distinguish based on transaction

appears to dramatically improve performance over Max-Retry and Limit-

Mean for many larger values of M . A similar benefit, at a different point in

the tuning space appears to occur for intruder in long-running mode.

In contrast, vacation has a cliff in its performance with LimitMean and

LimitMeanST that occurs consistently with more than ten retries. There is a

small jump in serialization fraction that happens at that point, however, it is

not clear why this occurs though it seems to be inherent in the application.

The key difference between Max-Retry, LimitMean and LimitMeanST

is how they decide when to serialize. Figures 7.8 and 7.9 explore how the

fraction of transactions serialized relates to absolute speedup through a scatter

plot of all the samples obtained. The idea behind the figures is to show any

relationship between the empirical serialization fraction and speedup.

Roughly speaking Figures 7.8 and 7.9 contain three groups of benchmarks

(and configurations): those like genome and intruder (in long-running

mode) that see improved results with increased serialization up to a limit, those

like kmeans and hmmcalibrate where the performance keeps improving as

76

the amount of serialization increases; and those like yada and hmmsearch

that see only reductions in performance when serialization increases. These

results are rooted in the algorithms and data access patterns of the benchmarks.

The notable feature of LimitMeanST is the ability to make different

decisions based on what static transaction is being executed. intruder and

yada appear to be the only two benchmarks that benefit from this ability as

can be seen by improved performance over Max-Retry and LimitMean with

the same serialization fraction.

The vertical bar for ScalParC executing with 64 threads in long-running

mode corresponds to the decrease in performance when more retries are allowed

in the Max-Retry policy as seen in Figure 7.7.

77

4 8 16 32 64

5.0
7.5

10.0
12.5

3
4
5
6
7

1.5

2.0

2.5

1.5

2.0

2.5

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

0.0
2.5
5.0
7.5

10.0
12.5

1.25
1.50
1.75
2.00
2.25
2.50

1

2

3

4

0.25
0.50
0.75
1.00
1.25

genom
e

genom
e

intruder
intruder

km
eans

km
eans

vacation
vacation

yada
yada

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
Multiplier / Allowed Retries

A
bs

ol
ut

e
S

pe
ed

up

Serialization Manager LimitMean LimitMeanST MaxRetry

Figure 7.6: Absolute Speedup for the STAMP benchmarks relative to M or
allowed retries when run with Limit, LimitMean or LimitMeanST. The
results for 2 threads are elided because they don’t vary much over the range
values explored.

78

4 8 16 32 64

2.0
2.5
3.0
3.5
4.0

3

4

5

10

20

30

10

20

0.0
2.5
5.0
7.5

10.0

0.0
2.5
5.0
7.5

10.0

10

20

30

10

20

30

5

10

15

5

10

15

fluidanim
ate

fluidanim
ate

hm
m

calibrate
hm

m
calibrate

hm
m

pfam
hm

m
pfam

hm
m

search
hm

m
search

S
calP

arC
S

calP
arC

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
Multiplier / Allowed Retries

A
bs

ol
ut

e
S

pe
ed

up

Serialization Manager LimitMean LimitMeanST MaxRetry

Figure 7.7: Absolute Speedup for the RMS-TM benchmarks relative to M or
allowed retries when run with Max-Retry, LimitMean or LimitMeanST.
The results for 2 threads are elided because they don’t vary much over the
range values explored. apriori and utilitymine are excluded because
they don’t see any change from policy or tuning.

79

8 16 32 64

●●●●
●●●●●●●●●●●●●
●●●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●
●
●●●●●
●
●
●
●●●●
●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●
●●●●

●●●
●●

●●●

●●●●●●●●●●

●●

●●●

●●●●●

●●●●●
●●

●●
●●●●
●
●●
●●●

●

●●●
●●●

●
●

●

●
●
●●
●

●●
●●
●

●●●●●
●
●
●

●

●
●
●
●
●

●●●●
●
●●●
●●
●
●

●

●

●●●●●

●

●●
●●
●●

●

●●

●

●●
●●
●

●●

●●
●
●●●●
●

●
●●●
●●●●●

●
●●
●
●●●●●●●
●
●●
●●

●●
●●●
●
●
●●
●
●
●
●
●
●●●
●
●●●
●●●●●●●●●●

●

●
●●●●

●

●
●●

●

●●●
●
●
●

●●●
●

●
●●

●

●●
●
●
●
●

●●

●
●
●●
●
●

●
●●●●●
●
●●

●●

●●●●

●

●●

●

●●
●●●
●
●
●●
●
●●
●●●●●●●
●●

●
●

●

●●●
●
●●

●

●
●
●

●●●●
●

●
●

●

●

●

●

●

●●●

●

●

●
●
●●
●
●●●
●●●●

●

●
●●●●●●
●

●

●
●

●

●●

●●●

●
●●
●
●●
●●●●

●●
●
●

●
●
●●●●●
●

●

●
●
●●●●
●
●●
●
●

●●

●

●

●

●
●
●●
●

●
●

●

●
●●

●

●●
●

●●
●●
●●●●
●
●●●
●
●
●
●●●
●●
●
●

●
●●●●●●●●●●●
●●●

●
●

●
●●●●●
●
●

●●

●

●●●

●●

●●●

●●

●●●

●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●

●●
●●●●●●●●●●●●●
●
●
●●●
●●
●
●●
●●

●
●●●
●●
●●●●
●
●
●●
●●●●●
●
●
●

●
●●●
●●●

●

●●●
●●
●●●

●●
●
●●
●●

●●
●
●
●●
●
●
●

●
●
●

●
●●
●●
●
●
●●●
●●●

●

●●●●●●●
●●
●
●●
●
●
●
●●●
●●
●
●●●●●●●●●
●

●
●●
●●●●
●
●●●
●●●●
●
●●●
●
●
●
●●
●●●●●
●●●

●
●
●
●
●●
●●●
●

●
●●
●●
●
●●●

●●

●
●●●●
●
●

●
●●●
●●
●

●
●
●
●●●●●●
●●●
●
●●●
●
●●
●
●●
●
●
●●●
●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●
●
●●●●●●
●
●
●
●●
●
●●
●
●
●●
●●
●

●

●●●●●●●
●●●
●●●
●●●
●●●●
●●●●●●●●

●

●●

●
●●●●●●
●
●
●

●●●●●

●●●●●

●●
●●●●●●●
●
●●
●
●●●●●
●
●●●●●●●
●
●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●

●●●●●

●●●●●

●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●
●

●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●

●
●

●
●

●

●●

●●

●
●

●●

●

●

●

●●

●●●
●

●

●
●

●
●

●●●●

●

●●●
●●

●
●
●

●
●
●

●
●
●

●●
●●
●●

●

●

●●

●

●●

●
●●
●

●

●●
●

●
●

●

●●
●
●

●
●●
●

●●

●

●
●●
●●

●●

●

●

●

●
●
●

●

●

●
●
●

●

●

●
●

●●
●
●●
●
●
●
●
●

●

●

●●

●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●●
●

●

●

●
●

●

●●

●

●

●
●
●●

●
●
●
●●

●

●

●●●

●

●●

●

●
●
●
●

●
●●

●

●
●

●●●

●

●●

●

●

●

●
●

●

●

●

●
●
●●●
●
●

●

●

●●

●
●
●

●
●
●

●

●

●
●

●●

●
●
●
●
●
●●

●
●

●

●
●
●●●
●●●

●
●
●●●

●●●●

●●
●

●

●

●

●
●
●●

●●

●
●

●

●

●

●

●●

●

●

●●●

●

●●
●
●●
●

●

●●

●
●

●●●

●

●
●

●
●

●

●

●●

●

●●

●

●
●●

●●
●

●

●●●

●
●●

●
●
●

●
●

●

●

●

●●

●

●
●●

●
●●●
●
●

●

●
●●●

●

●
●●
●

●

●●

●

●

● ●

●

●
●
●

●●●
●
●

●
●
●

●

●

●●

●

●

●
●
●

●

●
●

●●

●

●

●●●
●

●
●
●

●

●

●

●
●●

●
●●

●

●
●

●●

●● ●●●●●

●●●

●●

●●

●●
●●

●●●●●

●●●●●

●●●●●

●●●
●●

●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●

●●

●●●●●

●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●
●●●
●
●
●●●
●●
●
●●●

●●●●●●
●●

●

●●
●●●
●
●
●
●

●
●

●

●●
●●
●

●

●

●
●
●
●
●●●

●
●●
●
●

●
●

●

●●●●
●
●
●

●

●

●

●

●

●●

●

●●
●
●

●
●●●●●
●
●●
●
●●
●
●●

●●

●

●●
●
●
●●●
●●
●
●
●

●

●●

●
●
●

●

●●
●
●●

●●

●

●●

●

●●●●
●●

●●
●

●
●●

●
●●●
●
●●●●

●
●
●●●

●●●●
●
●
●

●
●●
●
●

●
●
●
●●●

●

●
●●
●●●●

●

●
●●●
●
●
●
●●
●●●●

●●
●●●●●●●●●●●●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●
●
●●●●
●
●
●●●
●

●
●
●
●●
●●
●●●●
●
●●
●●

●

●
●●

●

●●●
●
●●●●●●●
●
●
●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●
●●●
●●●●●●●
●●●●●●●

●●●●
●

●●●●●

●●●●●
●●●●●
●●●●●●●●●●●●●●
●

●
●●●●●●●●●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●

●●●●●

●●●●●

●●●●●●●●●●

●●●
●●

●●●●●

●●●
●

●●●●●
●

●●●●
●

●●
●●●

●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●

●

●
●●
●●

●●

●●

●
●

●●

●

●

●

●●

●
●

●●

●

●
●●
●

●
●
●
●

●●

●
●

●

●

●

●●●

●

●

●
●

●●
●●●

●

●

●

●

●
●
●

●

●
●
●

●
●

●●

●

●

●

●

●●
●

●

●
●

●●

●
●

●

●
●

●

●●●
●

●
●

●

●
●

●
●
●
●●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●●

●

●

●
●
●

●
●
●

●●

●●

●

●

●

●
●
●

●●
●
●
●
●
●

●
●●●

●●
●●

●

●

●

●

●

●

●
●

●●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●
●

●●●

●

●
●●

●
●

●

●
●●●●●

●

●●

●

●
●●

●
●●●

●

●●

●●
●
●

●●
●
●
●

●

●
●

●

●
●

●

●●
●
●
●

●

●

●

●●
●●
●●
●
●●
●
●●
●

●●
●●●●
●
●
●

●

●

●

●
●

●

●●
●
●●
●

●●

●

●
●●●
●●

●
●●

●

●

●●●
●
●
●

●
●●●
●●

●
●●

●●
●

●●●

●

●●●

●
●●

●

●
●

●
●
●●

●

●
●
●

●

●

●

●

●

●●●

●
●

●

●
●●●
●
●
●●
●●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●

●●

●

●

●●
●

●

●

●●
●

●●●●
●

●●

●
●●
●

●

●●

●●
●

●

●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●
●●●●
●●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●● ●●

●●
●●●

●
●

●●●

●
●●●

●●●
●
●

●●

●●●
●●●●

●●
●
●●
●●●●
●
●
●
●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●
●
●●●
●●●

●
●●●
●●●●●●
●
●●
●
●
●
●●●●
●
●●
●
●
●
●
●
●●●
●●

●
●
●●●●
●●

●
●
●●●●
●

●●●●
●●●●●●●●
●●●●●●●
●
●
●●●●●●●

●
●
●●●
●●
●

●
●
●
●

●
●●●●●●
●
●●●●●
●●●
●●
●
●●●
●●●
●
●
●

●●●
●●●
●
●

●●
●
●●●
●

●
●●●●

●
●●

●

●
●
●●●●
●●●●●
●●●●
●●●●●●
●●
●●
●●●
●●●●●
●
●●●
●
●●
●

●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●

●●●●●

●●●●●

●●●●●●●●●
●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●

●●●●●

●
●

●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●

●
●●

●
●

●

●●●●●

●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●● ●●

●

●
●●

●
●●

●

●

●
●
●●

●●●
●

●●
● ●

●
●

● ●●
●

●●

●
●

●

●

●
●●

●●●
●

●
●

●

●●
●

●●●
●●

●

●●●●●●●●●●

●
●

●

●●●

●
●
●●

●
●

●
●

●●

●

●

●
●●

●
●
●

●
●●

●

●●
●●●●

●
●
●
●●●

●

●

●

●

●
●

●
●

●●●

●
●●

●
●
●
●●●

●
●

●
●
●●●

●●

●●
●

●
●

●

●

●
●

●●

●

●●

● ●

●
●

●

●

●●
●
●

●
●

●

●

●

●●

●

●
●

●

●

●●
●

●●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●
●

●●●
● ●

●

●● ●●●
●● ●
●●● ●●●●●

●●
●

● ●

●

●
●
●

●
●

●

●
●●

●
●

●
●

●●●

●
●●●

●

●

●●●
●●●
●

●
●

●

●
●

●
●●●●●●
●

●
●●
●
●●

●●
●

●

●●●
●
●
●
●●
●●

●
●
●●

●

●●●
●
●
●

●
●
●●

●
●

●

●

●
●

●●
●●●●

●●●
●

●

●●●
●●
●

●

●

●●●

●

●●●
●●
●
●

●

●
●

●●

●

●●●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●●

●
●

●

●●
●

●

●

● ●

●
●

●

●

●

●●
● ●

● ●

●

●

●●

●
●●

●

●
●

●

●●●
●●

●●●●●

●●●●●

●●●●●●●●●●

●
●
●
●●

●●●●
●●●●●●●●●●●●●●●
●●●●●●

●●●

●●●●●
●●●●●
●●

●
●●●
●
●●
●●●
●●●
●
●
●
●

●
●
●
●●

●
●●

●

●
●
●●●
●●
●●
●●●●●●
●
●●●
●●●●●●
●●●●●
●●●
●
●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●

●●●●●

●●●
●●

●●● ● ●
●●

● ●
●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●
●●

●●
●●●●●

●●●●●
●

●●●●●●●●●●●
●●●●
●●●●●

●●●●
●●●●●●

●●

●
●

●
●●

●
●

●

●
●
●●
●●
●●●

●

●●●
●●●●●●●
●●●
●●●●●
●●●●
●●●●●●
●●
●●●●

●●●●●

●●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●

5.0

7.5

10.0

12.5

4
5
6
7

1.6

2.0

2.4

1.5

2.0

2.5

5.0

7.5

10.0

5.0

7.5

10.0

12.5

2.5
5.0
7.5

10.0

1.75

2.00

2.25

2.50

1

2

3

4

0.4
0.6
0.8
1.0
1.2

genom
e

genom
e

intruder
intruder

km
eans

km
eans

vacation
vacation

yada
yada

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Serialization Fraction

A
bs

ol
ut

e
S

pe
ed

up

Serialization Manager ● LimitMean LimitMeanST MaxRetry

Figure 7.8: Absolute Speedup as related to serialization fraction for STAMP
benchmarks run with the Max-Retry, LimitMean and LimitMeanST
serialization managers with M or allowed retries between 1 and 39.

80

8 16 32 64

●●●

●●●

●●●

●●●●●
●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●

● ●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●

●● ●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●
●
●

●●
●●
●
●
●●●●
●
●
●●●●●
●
●●●●
●
●●●
●
●●●●●●●
●●●●●●●●●●
●

●●●●●

●
●●
●●●
●
●
●
●●
●●●●●●
●
●
●●●●●●●
●●
●
●
●●●●

●
●●●

●
●
●●●
●
●●
●
●●
●

●
●●●
●

●●
●●
●●●●
●
●●●
●
●●●●●●●●●●
●●●●
●
●
●●●●●●●●
●
●●●●●●●
●
●●●●

●
●

●●●
●
●●●

●

●

●
●●

●

●
●●●
●●●●
●●●
●
●
●
●

●●●●●

●
●●●

●
●

●
●
●●

●●●

●

●

●●
●

●●●
●
●
●●●●

●●
●
●

●
●

●
●
●

●
●

●●●●
●
●●●●●●●

●●●
●

●

●

●●
●●●●● ●●

●
●
●
●●

●●●
●●●

●
●

●

●●
●

●

●

●

●
●●
●

●
●●●

●
●●
●

●
●

●

●
●

●
●
●

●●●●●

●●
●●
●●●●●●
●●
●

●

●
●

●
●
●

●●●

●
●

●●●
●
●●●

●
●●●●●●●●●

●

●

●●

●

●●●●

●
●●●●●●●●●
●
●●
●

●●●●●
●

●●
●●

●

●
●
●
●

●

●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●
●●●●●

●●●●●● ●●●●●●● ●● ●● ●●● ●●●● ●● ●●● ●●●● ● ●●●●●●●●●●●●● ●●●
●●●●●

● ●●● ●●●●● ●●● ●● ●●●●●●● ●●●●●●● ●● ● ●●● ● ●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●● ●●●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●
●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●
●●●●●
●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●
●●●●●●●●●●●●
●●●●●●●●
●

●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●
●●
●●●
●●
●●
●●●●●●●●
●
●●
●

●

●
●
●

●

●
●

●
●●
●

●

●
●
●●●●●●●●
●
●●●●●

●●
●●●

●●

●

●

●
●

●●●●
●●
●●●●●●●
●
●
●

●●
●
●
●

●
●
●●

●
●
●
●●●

●

●
●
●

●●
●●●

●
●
●●

●
●

●●●

●
●
●

●
●

●
●

●

●●●●
●
●●●
●
●
●
●

●
●●
●
●●
●●

●

●

●

●
●●
●
●

●●
●●
●
●
●●
●●●●●
●

●●●●●
●●●●●

●
●●●●●

●
●
●
●●●●●●●
●●●●

●●●●●

●●●
●

●
●●
●●

●
●●●

●
●●●●●●

●
●●●

●

●
●●

●
●●

● ●
●

●●

●
●●●●

●●●
●

●
●●
●

●

●
●●
●●

●●

●

●

●
●●

●
●
●

●
●●●
●●
●

●

●

●

●●

●
●

●●
●●●

●

●
●
●●

●

●
●

●
●

● ●
●

●
●

●

●

●
●

●●

●●●●●

●
●

●

●●●

●
●
●●●
●●

●

●●

●
●
●

●

●

●

●
●●

●●●

●
●

●●

●

●●●
●●
●

●
●

●
● ●●
●●

●

●
●

●●●●●
●●●

●
●●●

●●
●

●●
●●●●

●
●●
●●●

●●
●

●●●●●

●●●●● ●●
●● ●●

●
●●●●●

●●●●● ●●●
●

●●●●●
●

●●●●
●●●●●●●●●●●●

●
●

●●●●●

●●●●
●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●
●

●●●●●

●●●●●
●

●●●●●●
●● ●●
●

●●●●●●●
●●●●●●
●●●●●●

●●●●●●●●●●●●●●

●●●●●●● ●●●●●● ●●●●● ●●●●●●● ●●●●●

●●●

●●● ●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●●●

●●●●●
●●●●●●● ●●●●●●●●●●●●●●
●

●
●●●●●●●
●

●●●●●●●●●
●●●●●●

●
●●●

●●●●●

●
●●●●●

●●●
●●●●●●

●
●

●●●●
●●● ●

●●●
●
●●●●●
●
●

●●●●
●●●●●

●
●●
●●

●●●●●

●
●●

●●●●●●● ●●●●●●
●

●
●

●
●

●●●●●
●●

●●●●●
●

●●●●
●●●●●●●●●
●

●
●

●●●●●●●●●●●●● ●●●●●●●●●●
●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●
●●●●●

●●●●●●●
●

●●●
●●●

●
●
●
●●

●●
●
●●●●●●

●
●
●
●

●
●
●●●●

●●●●●

●●
●●●●●●●
●
●
●
●
●●●●●●
●
●●●
●●

●
●
●
●
●●

●●
●
●

●
●
●●●●●●
●

●
●●
●
●●

●●●●●

●
●
●●

●

●●●

●
●●
●
●●
●●
●

●
●
●
●●●
●
●

●●
●
●
●●●●
●●
●●

●●
●
●
●●●
●

●
●

●

●●

●●●●●●●●●●●●
●●●● ●●●●●

●●
●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●
●●
●
●●
●●

●●●
●
●●●
●
●

●

●●●●●
●

●

●
●

●●●●

●

●●

●●
●●

●●●●●

●

●

●

●

●

●●
●
●●●

●
●●
●●●●

●●
●

●

●

●
●

●

●

●

●●

●●●●●

●

●

●

●
●

●●

●●

●●
●

●
●

●
●●
●
●
●●●
●●

●●●
●●

●
●
●
●
●

●●●●

●●

●
●

●●
●

●

●
●
●●

●● ●●●●● ●● ●●●●●●●●●
●

●●●●● ●●●●●●

●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●
●●

●●●●●●●
●

●●

●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●
●●
●

●●
●●●●●
●●●●●●●●●●●●●●●

●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●● ●
●●

●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●●●●
●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●● ●

●●

●●●

●●●●●

●●●
●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●● ●●

●●●●
●

●●●
●
●

●
●●●●●●●●●●●●

●
●●●●●

●●●●●●●
●
●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●
●●●●

●●●●●●●●●●●●●
●●●●●●●

● ●
●●●●●

● ●●
●
●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●
●

●●●●●
●●●●●●●●●●●●●●●

●● ●●●●●●● ●●●●●●
●
●●●● ●●●●● ●●●●●
●●●●●

●●●●●

●●●●●●●●●
●
●●●

●●●●● ●●
●●

●●●●●●●●●
●

●
●●●●●

● ●●●● ●●●●●●
●

●●●●●

●●●●●●●●●●●●●
●

●●●●
●●●●●
●●●●●●●●
●
●●●●

●●●●● ●●
●●●

●
●

● ●

●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●

●●●● ●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●●
●●●●●●●

●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●● ●●●●●

●●
●● ●●●●
● ● ●● ●●
●●●●●●● ●
●
●

●●●●●●
●●● ●●●●●●●●
●●●●●●●●●●●●
●●

●●
●●
●●●
●●

●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●

● ●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ● ●●●●●●●● ●●●
●●
●●●●● ●●●● ●●●●●
●
●

●●

●●
●

●●● ●●
●
●●●

●●
●

●
● ●

●●●●●
●

●●●●●●

●

●
●

●

●

●

●●●
●

●●● ●●●●●●

●
●

●●●

●●●●
●

●●●●

●

●

●

●●●●●●
●●

●

●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●● ●●

●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●● ●●●●● ●●●●●●●● ●●
●●●●●

●●●●●
●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●● ●●●●●●●●●

●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

2.0
2.5
3.0
3.5
4.0

3

4

5

10
15
20
25

10

20

0.0
2.5
5.0
7.5

10.0

2
4
6
8

10

10

20

30

10
15
20
25
30

5

10

15

10

15

fluidanim
ate

fluidanim
ate

hm
m

calibratehm
m

calibrate
hm

m
pfam

hm
m

pfam
hm

m
search

hm
m

search
S

calP
arC

S
calP

arC

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Serialization Fraction

A
bs

ol
ut

e
S

pe
ed

up

Serialization Manager ● LimitMean LimitMeanST MaxRetry

Figure 7.9: Absolute Speedup as related to serialization fraction for RMS-TM
benchmarks run with the Max-Retry, LimitMean and LimitMeanST
serialization managers with M or allowed retries between 1 and 39. apriori
and utilitymine are elided from this figure because they see no relationship
between serialization ratio and speedup.

81

7.5 Tuning α in BE-ATS

BE-ATS tracks contention per thread using Conflict Intensity, which is updated

using a parameter α that controls the amount of history preserved. Higher α

means slower adaptation to changing circumstance, and lower α means faster

adaptation to changing circumstance.

When a thread’s measured Conflict Intensity goes above a threshold

QueueIntensity, subsequent transactions on that thread are queued to

reduce overlapped execution. If a thread’s Conflict Intensity increases beyond

a second threshold, named MaxIntensity, then transactions are serialized

upon aborting.

Figure 7.10 shows how benchmark performance is affected by varying α

for both STAMP and RMS-TM. In this experimentation, QueueIntensity

was arbitrarily set to 0.6 and MaxIntensity to 0.9. Though a complete

examination of BE-ATS would require also examining where the thresholds are

set, a static pair of thresholds gives a good overview of the range of behaviours

expected modulo some shifting based on α.

Previous experimentation has showed that kmeans and scalparc per-

form best when serialization happens immediately after abort. This trend

holds true with BE-ATS with the highest performance occurring when α is

low, which ignores most of the previous value of Conflict Intensity. Similarly

hmmcalibrate’s performance drops as α increases.

As we have seen previously, intruder, kmeans and the RMS-TM bench-

marks have similar speedup curves between short- and long running-mode,

while the remaining benchmarks see different behaviour curves across the values

of α.

One of the fundamental elements of BE-ATS is the idea that threads can

self-throttle in order to reduce contention and increase program performance.

Figure 7.11 examines the relationship between the fraction of transactions that

enter the queue and absolute speedup.

intruder in both modes and genome, yada and vacation in long-

running mode appear to benefit from small amounts of queueing. The re-

82

maining benchmarks’ performance is largely determined by serialization, with

performance either entirely unrelated to the fraction of transactions queued or

with their highest performance happening when no transactions are queued.

While some benchmarks queue more than 20% of total executed transactions,

typically large fractions of queued transactions appear to harm speedup overall,

and few benchmarks queue many transactions.

83

8 16 32 64

●●● ●● ●●●

●●● ●● ●●●

●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●●● ●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●
●

●●
●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●
●
●●●●●●●●●●
●
●●●●●●●●●●●●

●●

●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●

●●● ●● ●●●

●●
●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●
●●
●●●●●●●●●●●

●●●●●●●
●●●
●●●●●●●●

●●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●● ●● ●●● ●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●● ●● ●●● ●

●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●●● ●●●●● ●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●●
●

●
●
●●●
●●

●
●●●●
●
●

●
●
●●
●
●
●
●
●●●●
●
●
●
●
●

●●●●●●●●●
●
●●●
●

●●●

●
●
●
●●
●
●
●●●● ●●

●

●●●●
●
●
●●●
●●●●●●●●●
●

●
●●
●
●●
●●
●●
●●
●●
●●●●●●
●●
●●
●●●●●●●
●●●●●●●
●●●●●●
●

●

●
●●●
●●
●

●●
●●
●

●
●●

●
●
●
●●
●●●
●●●●●
●●●
●●
●

●
●●
●
●
●
●●
●●
●
●
●
●●
●
●●●●●●
●
●●
●●
●●
●●●
●
●
●●●●

●
●●●●
●●
●
●
●●●●●●

●●
●
●●●●●

●

●●●●●●●●
●
●

●
●●
●
●●
●●
●●●
●●●●
●●●●●
●●●
●
●●
●
●●
●●●●

●
●
●
●●●●●

●●● ●●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●
●●●●●

●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●
●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●

●●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●
●
●
●

●●
●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●
●
●
●
●
●●●●●
●
●
●●●●
●
●●●

●
●●
●●●●
●●●●●●●●
●●●●●●●●
●●
●●●●●●●
●●●
●
●
●

●
●●
●● ●●●●

●●●●●●●●●●●●●
●
●●

●
●
●●●●
●●●●●●

●

●●
●
●●●●●●●

●●●●●●●
●●
●
●
●●●●
●
●●

●●
●●●

●
●
●
●

●●●
●●●●●●
●
●●
●●●
●●●

●

●
●●●●
●●●●
●●
●●
●
●●
●●●●●●
●●
●●
●●●●
●
●●●●●●●●●●●●●●●

●●
●
●●●●

●●
●●●●
●
●
●●●●

●●●●●●
●
●●●●●
●●●

●●●●●●

●
●●
●
●●●

●●
●●●●●●●●●●●●

●●●●●
●
●
●
●●●●●

●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●

●●●●●

●●● ●● ●●●●●
●●● ●● ●●●●●

●●● ●● ●●●●● ●●●●● ●●●●●
●●● ●● ●●●●● ●●●●● ●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●
●●

●
●●●
●
●●
●
●
●●●●
●
●
●●●●●●●●●●
●●●●●●●
●●●●
●●●
●●
●●
●●●●●●
●●●●
●
●●
●
● ●●

●●●
●

●
●●

● ●
●●●●●
●
●●●●●
●●●●●●●● ●●●●●●●

●●●●●
●●●●

●
●
●
●●●●

●●●●●●●●●●●●
●●●
●
●

●●●●●

●●●●●●●●●●●●●●●
●●●
●

●
●●
●●●●●●●●●●●
●●●●●●●
●●●●
●
●●●●
●●●●●●●
●●●●
●
●
●
●● ●

●●●●●●●●●●●●
●●
●
●●●●●●●●●●●
●
●●●●●●●●●●

●●●●
●

●●
●●●●●●

●
●
●●
●●●●
●●●●●●●
●
●
●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●

●●●●●

●●●●●●●●●●●●●●●
●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●● ●●●●●

●●●●●

9
12
15
18

9
12
15
18

6
8

10
12

4
5
6
7

10
15
20
25

10
15
20
25

1.2
1.6
2.0
2.4

1.0
1.5
2.0
2.5

4
6
8

10
12

2.5
5.0
7.5

10.0
12.5

2.5
5.0
7.5

10.0

1.59
1.62
1.65
1.68
1.71

1
2
3

0.5
0.6
0.7
0.8
0.9

S
calP

arC
S

calP
arC

genom
e

genom
ehm

m
calibrate

hm
m

calibrateintruder
intruder

km
eans

km
eans

vacation
vacation

yada
yada

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0.
00

0.
05

0.
10

0.
15

0.
20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
00

0.
05

0.
10

0.
15

0.
20

Fraction of Transactions Queued

A
bs

ol
ut

e
S

pe
ed

up

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

α

Figure 7.10: Absolute Speedup for STAMP and RMS-TM benchmarks relative
to α parameter in BE-ATS. Results for thread counts less than 8 and the
missing RMS-TM benchmarks are not presented because changing α has no
effect. The ‘high’ contention versions of kmeans and vacation are excluded
because they behave identically to the low contention versions presented here.

84

8 16 32 64

●●● ●● ●●●

●●● ●● ●●●

●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●●● ●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●
●

●●
●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●
●
●●●●●●●●●●
●
●●●●●●●●●●●●

●●

●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●

●●● ●● ●●●

●●
●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●
●●
●●●●●●●●●●●

●●●●●●●
●●●
●●●●●●●●

●●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●● ●● ●●● ●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●● ●● ●●● ●

●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●●● ●●●●● ●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●●
●

●
●
●●●
●●

●
●●●●
●
●

●
●
●●
●
●
●
●
●●●●
●
●
●
●
●

●●●●●●●●●
●
●●●
●

●●●

●
●
●
●●
●
●
●●●● ●●

●

●●●●
●
●
●●●
●●●●●●●●●
●

●
●●
●
●●
●●
●●
●●
●●
●●●●●●
●●
●●
●●●●●●●
●●●●●●●
●●●●●●
●

●

●
●●●
●●
●

●●
●●
●

●
●●

●
●
●
●●
●●●
●●●●●
●●●
●●
●

●
●●
●
●
●
●●
●●
●
●
●
●●
●
●●●●●●
●
●●
●●
●●
●●●
●
●
●●●●

●
●●●●
●●
●
●
●●●●●●

●●
●
●●●●●

●

●●●●●●●●
●
●

●
●●
●
●●
●●
●●●
●●●●
●●●●●
●●●
●
●●
●
●●
●●●●

●
●
●
●●●●●

●●● ●●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●
●●●●●

●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●
●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●

●●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●
●
●
●

●●
●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●
●
●
●
●
●
●●●●●
●
●
●●●●
●
●●●

●
●●
●●●●
●●●●●●●●
●●●●●●●●
●●
●●●●●●●
●●●
●
●
●

●
●●
●● ●●●●

●●●●●●●●●●●●●
●
●●

●
●
●●●●
●●●●●●

●

●●
●
●●●●●●●

●●●●●●●
●●
●
●
●●●●
●
●●

●●
●●●

●
●
●
●

●●●
●●●●●●
●
●●
●●●
●●●

●

●
●●●●
●●●●
●●
●●
●
●●
●●●●●●
●●
●●
●●●●
●
●●●●●●●●●●●●●●●

●●
●
●●●●

●●
●●●●
●
●
●●●●

●●●●●●
●
●●●●●
●●●

●●●●●●

●
●●
●
●●●

●●
●●●●●●●●●●●●

●●●●●
●
●
●
●●●●●

●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●

●●●●●

●●● ●● ●●●●●
●●● ●● ●●●●●

●●● ●● ●●●●● ●●●●● ●●●●●
●●● ●● ●●●●● ●●●●● ●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●
●●

●
●●●
●
●●
●
●
●●●●
●
●
●●●●●●●●●●
●●●●●●●
●●●●
●●●
●●
●●
●●●●●●
●●●●
●
●●
●
● ●●

●●●
●

●
●●

● ●
●●●●●
●
●●●●●
●●●●●●●● ●●●●●●●

●●●●●
●●●●

●
●
●
●●●●

●●●●●●●●●●●●
●●●
●
●

●●●●●

●●●●●●●●●●●●●●●
●●●
●

●
●●
●●●●●●●●●●●
●●●●●●●
●●●●
●
●●●●
●●●●●●●
●●●●
●
●
●
●● ●

●●●●●●●●●●●●
●●
●
●●●●●●●●●●●
●
●●●●●●●●●●

●●●●
●

●●
●●●●●●

●
●
●●
●●●●
●●●●●●●
●
●
●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●

●●●●●

●●●●●●●●●●●●●●●
●●●●

●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●● ●●●●●

●●●●●

9
12
15
18

9
12
15
18

6
8

10
12

4
5
6
7

10
15
20
25

10
15
20
25

1.2
1.6
2.0
2.4

1.0
1.5
2.0
2.5

4
6
8

10
12

2.5
5.0
7.5

10.0
12.5

2.5
5.0
7.5

10.0

1.59
1.62
1.65
1.68
1.71

1
2
3

0.5
0.6
0.7
0.8
0.9

S
calP

arC
S

calP
arC

genom
e

genom
ehm

m
calibrate

hm
m

calibrateintruder
intruder

km
eans

km
eans

vacation
vacation

yada
yada

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

0.
00

0.
05

0.
10

0.
15

0.
20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
00

0.
05

0.
10

0.
15

0.
20

Fraction of Transactions Queued

A
bs

ol
ut

e
S

pe
ed

up

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

α

Figure 7.11: The relationship between the fraction of transactions queued
and absolute speedup in the RMS-TM and STAMP benchmarks. UtilityMine,
apriori, fluidanimate, hmmpfam, and hmmsearch are excluded because they
see no relationship between speedup and the fraction of transactions queued.

85

7.6 Tuning PEW’s T and α

PEW controls serialization by estimating the amount of wasted work a thread

has done. This policy serializes if history (controlled by a parameter α in a

similar manner to BE-ATS) indicates that the thread has been wasting too

much work, determined by the ratio of committed to uncommitted work PEW

dropping beneath a threshold T . A higher threshold is less lenient about wasted

work, serializing more often than a lower threshold which allows substantially

more wasted work.

PEW requires updating an average for every transaction start or abort. To

accomplish that the serialization manager has a third parameter k that chunks

the updates to reduce overhead, The computed PEW is only updated every k

operations.

Figure 7.12 shows the results of an experiment that varies the threshold

and α parameters for PEW while executing the STAMP benchmarks. In the

plots in the four left columns k = 0 leading to the updating of PEW in every

execution. For the plots in the four right columns k = 10 and therefore PEW is

updated every tenth execution. The performance of the RMS-TM benchmarks

does not vary when the parameters of the PEW policy are changed. Therefore,

results for that suite are not presented.

Before these experiments, the expectation was that k = 0 would lead to

higher overhead. Surprisingly, the overhead of updating PEW does not appear

to have the largest effect on performance. Changing k appears to instead

have a dramatic effect, in many cases reducing performance substantially, and

dramatically altering the tuning curves for the STAMP benchmarks. For

instance, genome in long running mode at 32 threads sees a complete reversal

of speedup trend when varying α between k = 0 and k = 10. Updating PEW

too aggressively causes overly aggressive serialization, as seen in Figure 7.13.

This figure plots the serialization fraction relative to the threshold and α values.

Overly aggressive serialization explains most of the poor-performing cases for

k = 0.

One of the interesting results from Figure 7.13 is how successfully the

86

threshold parameter is able to control the serialization rate, as designed, when

using PEW and k = 10. Almost every benchmark has a very similar curve

of serialization fraction. Performance is then dependent on the program and

algorithm’s requirements and resource usage.

These results provide clear evidence that speculation is one of the key

elements for TM performance in most cases. The performance is terrible for

genome in long-running mode with a high threshold T because genome, when

run in long-running mode, needs speculation in order to perform well. The

serialization-fraction results help explain the subset of the benchmarks that do

not perform as expected in transactional memory: genome in short-running

mode and kmeans. In both cases PEW performs best with as little speculation

as possible, which is accomplished with low α and high T . These cases are

pathological failures in the BG/Q’s BE-HTM system.

87

k: 0

Threads: 8

k: 0

Threads: 16

k: 0

Threads: 32

k: 0

Threads: 64

k: 10

Threads: 8

k: 10

Threads: 16

k: 10

Threads: 32

k: 10

Threads: 64

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●●
●●

●●●

●●●
●●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●
●●

●●●

●●●●●
●
●
●
●●●●●
●
●●●●●●
●●
●

●

●●●●●
●●●
●●●●●
●●

●

●●●●●
●●●
●●●●●●
●●
●●●●●
●●●
●●●●●
●
●
●
●●●●●●
●●

●●●●●●●●●●●●●●●
●
●●●●●●
●●
●●●●●●
●●
●●●●●●●● ●●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

● ●

●●●●●●

●
●

●●●●●●

●
●

●●●●●●

●
●

●●●●●●

●
●

●●●●●●

●
●●
●

●
●●●
●

●●
●

●
●●●
●

●●
●

●
●●●
●

●●
●

●
●●●
●

●●
●

●
●●●
●

●●●
●●

●
●●

●●●
●●

●
●●

●●●
●●

●
●●

●●●
●●

●
●●

●●●
●●

●
●●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●
●
●

●

●● ●● ●●

●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●

●

●●●
●
●●

●

●

●●●
●
●●

●

●

●●●
●
●●

●

●

●●●
●
●●

●

●

●●●
●
●●

●

●●●●

●●
●
●

●●●●

●●
●
●

●●●●

●●
●
●

●●●●

●●
●
●

●●●●

●●
●
●

●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●

●● ●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●
●
●●●●
●●●●
●
●
●
● ●●

●●●
●
●●●●●●●
●●
●
●●●●●●●●●
●●●●●●●
●●
●
●●●●
● ●

●●●●●●●●●●●●●●
●
●
●●●●
●
●●●●●●
●
●●●
●
●●●●
●●● ●●●

●●●●
●
●●●●●
●
●●
●
●●●●
●
●●
●●●●●●●●●●●●●●
●● ●

●●●●●●
●
●●●●●
●●●●●●
●
●●
●●●●●
●
●
●●●●●●●●
●
●
● ●●●●

●
●
●
●●●●●
●
●●●●●●
●●●
●
●●●●●
●●●●
●
●
●●●●
●
●

●●●●●
●●●●●●●●●
●●●●●
●
●●●●●●
●●●●●●●●
●●●
●
●
● ●

●●●●
●
●●●●
●
●
●●●●
●●●●●●●●●
●●●●
●
●
●●
●
●●●
●●●

●●●●●
●
●●●●
●●
●
●●●●●●●●
●●●●
●
●●
●●●●
●●
●
●●●●●

●
●●●
●
●●●
●●
●
●
●●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●

●
●●●
●
●
●●●
●
●●●
●
●
●●●●●●●●●●
●
●●●
●
●●
●●●●●●●● ●●●

●●●●●●
●●●

●
●
●●
●
●●
●●●●●●●
●●●●

●

●●●●●●●●● ●●
●●
●●
●
●●●
●●●
●
●●●
●
●
●
●●●●●●●●●
●●●●
●
●●●●●●

●
●
●
●
●●●●
●
●
●
●
●●●●
●●●●●●●●
●●●●●●
●
●
●●

●

●●●●●
●
●
●
●●
●●●●●●
●
●
●●●
●●
●●●
●●●●●●
●●●●●●●●●
●●

●

●
●
●
●●
●

●
●
●●●●●●
●●●
●●
●●●●
●●
●●
●●●●
●●●●●
●●
●
●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●
●●●
●●●●

●
●●●
●●●●

●
●●●
●●●●

●
●●●
●●●●

●
●●●
●●●●

●●●
●●
●
●●

●●●●
●
●
●●

●●●
●●
●
●●

●●●●
●
●
●●

●●●
●●
●
●●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●● ●● ●● ●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●●●●●●

●●

●●●●●●

●●●

●●●●●

●●

●●●●●●

●●

●●●●●●

●●●

●

●

●

●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●

●●●●

●●●●

●●●●●

●

●●

●●●●●

●●●

●●●●●

●

●●

●●●●●

●

●

●

●●●●●

●

●
●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●●●●●
●●
●

●●●●●
●●
●

●●●●●
●●
●

●●●●●
●●
●

●●●●●
●●
●

●●●●●
●●
●
●●●●●
●●
●
●●●●●
●●
●
●●●●●
●●●
●●●●●
●●
●

●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●

●● ●● ●● ●● ●●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●● ●● ●●

●●●●
●●
●●

●●●●●
●●●

●●●●
●●
●●

●●●●
●●
●●

●●●●
●●
●●

●

●●●●●
●●

●

●●●●●
●
●

●

●●●●●
●●

●

●●●●●
●
●

●

●●●●●
●●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●●
●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●●

●●●●●

●●●

●●

●●●

●●●

●
●

●●●

●●●

●●

●●
●

●●●
●
●

●●
●

●●●

●●

●●●

●●●●●

●●●

●●●●●

●●

●●●●●●

●

●

●

●●●●●

●
●●
●●●●●

●●●

●●●●●●●

●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●●

●

●●●●●
●●
●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●●●
●
●

●●
●

●●●
●
●

●●
●

●●●
●
●

●●
●

●●●
●
●

●●
●

●●●
●
●

●●
●

●●●●
●●

●

●

●●●●
●●

●

●

●●●●
●●

●

●

●●●●
●●

●

●

●●●●●
●

●

●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●● ●● ●● ●● ●●

●●●●●
●

●
●

●●●●●
●

●
●

●●●●●
●

●
●

●●●●●
●

●
●

●●●●●
●

●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●● ●● ●● ●● ●● ●●

●
●●
●
●●

●●●
●●
●
●●●●
●
●

●
●

●●
●

●

●

●●●
●

●
●

●

●
●●
●
●

●●

● ●

●●
●●●●

●
●

●

●●

●

●
●

●
●

●●
●

●

●

●

●●

●
●
●
●●
●

●●

●
●
●
●●
●
●

●●●

●

●

●

●
●

●●●

●●
●
●●

●●●

●●●
●●

●●●

●

●

●

●
●

●●●

●
●●
●

● ●●●●●
●

●

●
●●
●
●

●

●

●●

●●●●
●

●
●●

●●●
●
●

●●

●
●●●●
●

●●
●

●●●●●●

●
●

●●●●●●

●

●

●●●●●●

●

●
●●●●●●

●
●

●●●●●●

●●

●●●●●●●

●

●●●●●●●●●●●●●
●
●
●
●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●●●●
●
●●●●●●
●
●

●
●●●
●

●●
●

●
●
●
●
●●
●
●

●
●●
●●
●

●
●
●
●

●
●●

●
●

●

●●
●●●
●

●●

●

●
●●●
●●

●

●●●●●●●●
●●●
●

●
●
●

●

●
●

●
●●

●
●

●

●●●

●

●

●
●
●

●●●
●

●●
●

●

●●●●●
●●●●●

●●●●●
●●
●●●●●●
●●
●●

●●●●●

●●

●
●●●
●●●●
●
●
●●
●●
●
●●●

●

●
●
●
●●●
●
●
●
●●
●●
●
●●●
●●

●

●
●●●●
●●

●
●
●
●●
●

●
●
●●●

●

●

●
●
●●●●
●●
●
●

●
●●
●

●
●
●●●

●
●

●
●
●●●
●●●
●●●●

●
●
●

●●

●

●

●

●
●
●

●
●●
●

●

●
●
●
●
●●●
●●●

●
●

●
●
●

●

●●●●
●

●
●●
●

●

●

●●●●●

●

●
●

●
●
●
●
●

●
●●
●●●●●

●●
●●
●●
●●
●●●
●
●●●
●●
●
●
●●
●
●●
●

●
●●
●

●
●●
●●
●

●
●●
●

●
●

●

●●●●●
●
●●

●●●●●
●
●●

●●●●●
●
●●

●●●●●
●
●●

●●●●●
●
●●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●● ●● ●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●●●●●

●●

●●●●●●

●

●

●●●●●●

●●

●●●●●●

●

●

●

●●●●●

●●

●

●

●

●●●

●●●●

●●●●

●●
●
●

●●●●

●●●

●

●

●●●

●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●

●●●

●●●●

●●●●

●●●●●

●

●●

●●●●●
●

●●

●●●●●

●●●

●●●●●

●

●●

●●●●●

●

●●

●●●●●●●

●

●●●●●●
●

●

●●●●●●

●●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●
●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●●

●●●●
●
●●
●

●●●
●●
●●●

●●●
●●
●
●●

●●●●
●
●●●

●●●
●●
●●
●

●

●●●●●
●
●

●

●●●●●
●
●

●

●●●●●
●
●

●

●●●●●
●
●

●

●●●●●
●
●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●●●●●●
●

●●●●●●
●●

●●●●●●●●

●●●●●●
●●

●●●●●●●
●

●

●●●●●●
●

●

●●●●●
●●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●●
●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●
●

●●●
●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●● ●● ●● ●● ●● ●● ●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●● ●● ●● ●● ●● ●● ●●

●
●

●●●●●

●
●●●●●●●
●●●●●
●
●●
●●●●
●●
●
●

●
●●

●

●●
●
●

●
●

●
●●●
●●
●

●
●
●●●

●
●

●

●●

●

●
●
●
●●●

●●●
●●
●

●
●●
●

●
●
●●●

●
●●●●●●●

●
●
●●●●●●●

●
●

●
●●
●●
●●●●●
●

●

●●
●
●●
●
●●

● ●
●
●

●

●

●●●
●
●●●
●●●●●
●

●●
●
●
●●●●
●●●●
●●
●
●
●
●●
●

●

● ●●
●●
●●●
●
●
●

●

●
●●●●
●
●
●●●●
●●●
●
●
●●●●●●

●●
●
●●

●

● ●
●
●●
●●
●

●

●●●
●

●
●●
●●
●
●●●

●
●●●
●
●●
●●

●

●●
●●●●
●
●
●

●●●●
●
●

●
●●●
●
●
●

●
●●
●●
●●
●
●

●●●
●●
●

●

●●

●●●
●
●

●●●● ●
●●
●
●
●●
●●●●
●
●
●●
●●●
●
●●●
●

●
●●
●
●
●●

●
●●●
●●●●
●
●

●

●

●●●

●
●
●

●

●●

●●
●●
●

●

●

●●
●

●●

●

●●

●
●●
●●
●

●
●
●

●●●●

●

●●
●

●

●

●
●●

●

●

●●●

●

●

●
●
●
●
●
●

●
●
●

●●●

●

●
●●●

●
●●

●●●
●●

●●
●
●
●
●
●●

●●●

●

●●
●

●

●●
●●●
●●

●

●
●
●●●●
●

●

●

●●
●●
●
●

●

●
●
●

●
●
●●

●●
●

●●
●●●●●
●●
●
●

●●

●
●●●

●

●●●●●
●●●●●
●

●

●

●

●

●

●

●

●

●
●●
●●
●
●●●
●
●●●
●●

●

●

●●
●
●●
●●●

●

●●●
●
●
●

●

●●●●●
●●●●●●●●●
●
●
●
●
●

●
●●●●
●
●

●●
●
●
●●●●

●

●
●●●●

●●●
●●
●●
●
●

●●●
●●
●
●●●●

●●
●●
●

●

●●●
●
●
●●

●

●
●
●●

●
●●

●

●●
●

●●

●
●●●
●

●

●●
●●●
●
●

●●

●
●●
●
●●
●
●●●●
●
●●
●●●
●

●

●●●●●●

●
●

●●●●●●

●
●

●●●●●●

●
●

●●●●●●

●
●

●●●●●●

●
●

●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●

●● ●● ●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●●
●●●●

●

●●

●●●●●

●●
●

●●●●●

●
●

●

●●●●●

●●

●

●●●●●

●●●

●

●

●●●

●●●

●●

●●●

●●●
●●

●●●

●●
●●●

●●●

●●●●
●

●●●

●●●●●

●

●●

●●●●

●

●

●●

●●●●

●
●

●●

●●●●●

●

●●

●●●●●

●

●●

●●●●●

●

●●

●●●●●
●
●

●

●●●●●
●

●●

●●●●●●

●●

●●●●●
●

●●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●●●●●●
●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●
●

●●
●
●●
●●●

●●
●●
●●●●

●●
●●
●
●●●

●●
●
●●
●
●●

●

●●●●

●●●

●

●●●●

●
●●

●

●●●●
●
●●

●

●●●●
●
●●

●

●●●●

●●●

●●●

●●●●
●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●
●
●

●●●

●●●●

●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●● ●● ●● ●● ●● ●● ●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●● ●● ●● ●● ●● ●● ●●

●●
●●

●●●

●
●●●●
●●●

●
●

●●
●●●●

●●
●
●
●

●●●

●
●
●
●
●

●●●

●
●●

●
●
●●

●
●

●●●●●

●●
●

●●●●●●
●●

●
●●

●
●●

●●
●
●●●
●●
●
●

●●●●●
●
●
●●●
●●●●

●●
●●●
●●

●●
●
●
●●
●●
●
●
●
●●
●

●
●
●
●

●

●●●
●
●
●

●●

●
●●
●
●
●●●●
●●
●●
●●
●
●●●●●●

●

●
●●●●
●

●●
●

●●●●
●●●
●●
●
●
●
●●●
●●
●
●
●
●●●

●●
●●

●

●●
●

●●
●
●
●
●

●
●
● ●

●
●●
●●
●●●
●●●●●
●
●●●●●●
●●●
●
●●●●
●
●
●
●●●

●

●●
●●

●●●
●

●●

●●
●●

●

●

●

●
●●
●●●●●

●

●●●●●●
●●●●●

●
●
●
●●
●
● ●

●
●●●●●●●●
●
●
●
●●

●

●
●●●●●●●
●●●
●
●●●
●
●●
●
●●
●
●●

●

●
●●
●
●●

●●
●●●

●

●●
●

●●
●

●●

●●

●●●
●●
●

●●
●

●
●●
●

●●
●

●

●
●●●

●
●●

●

●
●●
●●
●

●●

●●●●
●

●

●

●

●●
●
●
●

●

●

●

●
●
●●
●
●
●

●

●●●●●

●●●●●●
●
●
●●
●
●
●●●●
●
●
●●●●●●●●

●
●●
●●
●●
●
●

●

●

●
●
●●●
●
●●●

●●

●
●●
●

●●●
●
●

●●
●●●●
●●●
●
●
●
●
●●

●●

● ●●●●
●
●
●●●●
●
●●●●●
●
●
●●
●●●
●●●●●●●
●●
●
●
●●●●
●
●

●
●
●●●●
●
●
●
●●●●●●●
●
●●
●
●●
●●●●
●
●

●●●
●●●
●●●●●
● ●●

●●●●●●
●●
●
●
●
●
●
●
●
●●●
●

●
●●●
●
●
●●●
●
●●
●●●
●
●●

●
●
●
●●●
●
●●
●
●●●●

●

●

●●
●●●●●
●
●●
●
●
●
●
●
●●●●
●●
●●●
●

●●●●●
●

●●

●●●●●
●

●●

●●●●●
●

●●

●●●●●
●

●●

●●●●●
●

●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●● ●● ●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●

●●●●●

●●●

●●●●●

●●

●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●●●
●

●●●

●●●
●
●

●●●

●●●●●

●●●

●●●

●●

●●●

●●●
●

●

●●●

●●●●
●●

●●

●●●●
●
●●●

●●●●●

●

●

●

●●●
●●
●

●●

●●●●●

●

●

●

●●●●●●

●

●

●●●●●
●●●

●●●●●●
●

●

●●●●●●
●
●
●●●●●
●
●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●

●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●●

●●

●● ●● ●● ●● ●● ●● ●● ●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●
●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●
●●●●●●
●
●
●●●●●●
●
● ●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●● ●●●●●

●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●
●●●●
●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●
●●●●
●
●● ●●

●●●●
●
●
●
●
●●●
●●
●●
●●●
●
●
●●●●●●
●
●

●●●●

●
●●●●
● ●●●●●●●●●●●

●●●●
●
●
●●
●
●
●●
●
●●
●
●
●●
●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●
●
●

●
●●
●●●
●
●
●●●●●●●
●
●●
●●● ●

●●●
●
●●●●●●●●●●●
●
●
●●
●
●●●●●●●●●●

●
●
●●
●
●●●● ●●●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●
●●●●
●
●●●

●●●●
●●●
●●●
●
●
●
●
●●●
●●
●
●●●●
●●●●●●●
●
●●
●●●●●● ●●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●●
●
●●
●
●
●
●
●●
●●

●
●●

●
●●

●●

●●
●●
●●●●●●●●●●●●
●●●●●
●●
●●
●
●●
●
●
●
● ●●●

●●
●
●
●●
●●
●●●
●●●●●●
●●●●●●
●
●●
●

●
●
●●●●
●
●●●

●
●●●●

●
●●●●●●●●●
●
●●●
●
●
●●●
●
●●●
●
●
●●●●●●
●
●●● ●●

●●●●●●●
●●●●●
●●●
●
●●
●●●●
●
●
●
●
●●●●
●
●
●●●●

●
● ●

●●●●
●
●●●
●
●●●
●●
●●●●●●●●●●●●
●
●
●●●●●●
●
●●
●●

●●●●●●
●
●●●●●●
●●●
●●●●●
●●
●●●●●●●●
●

●●●
●
●●●
● ●

●●●●●●●●●●
●●●●
●
●
●●●
●
●
●●
●●
●●●●
●

●●
●
●
●●●
●●

●
●●●●●
●
●
●●●
●
●●●●●●
●
●●●
●
●
●●●●●
●
●●
●

●

●
●●●●●

●● ●● ●● ●● ●● ●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●● ●●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●●●●
●●●●
●●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●

●●●●
●●●
●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●

●● ●● ●● ●●

●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●●

●●●●●●●●
●●●●●
●●●
●●●●●●●●
●
●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●
●●
●●●●●●●●
●●●●●●●● ●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
● ●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●

●●

●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●● ●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●

●● ●● ●● ●● ●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●● ●●

●● ●● ●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●
●
●●

●●
●●
●
●
●●

●●●
●
●
●
●●

●●
●●
●
●
●●

●●
●●
●
●
●●

●● ●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●

●

●
●
●●
●
●●
●●
●
●
●

●
●
●
●●
●
●
●●●
●●●
●●●●●
●●●
●
●

●●●●
●●●●●●●
●
●
●●●

●

●●
●●
●●●
●

●

●

●
●
●
●
●
●●
●

●●

●●●
●
●
●

●
●

●
●
●

●●●
●●
●●●●
●●●●●●●
●

●●●●

●
●
●

●●●●●●●● ●
●
●

●

●●●●

●
●●
●
●
●●●
●●●

●

●

●
●●
●

●●
●●
●●

●

●●
●

●
●

●

●

●

●●
●
●●●●
●

●
●

●●●●●

●

●

●●●●
●
●
●●
●
●●
●

●

●
●
●
●
●●
●
●

●
● ●

●

●●●
●●●

●
●●
●
●
●●
●●●
●
●
●

●

●
●
●

●
●

●●
●●
●

●●
●●
●
●●
●

●
●●●●●●●

●

●●●●●●●●
●
●●●●●
●
●
●●
●●●●●
●●●●●●
●
● ●

●
●●●●●
●
●●●
●●
●
●●●●●●
●
●
●●●●●●●●
●●
●
●●●●
●
●

●

●

●
●
●

●

●●
●●●●
●
●●●●
●
●●

●
●●●●
●

●

●
●●●
●
●
●●
●
●
●●
●● ●

●●●●●●●●
●

●
●
●
●●●
●●
●
●

●
●
●
●
●
●
●
●
●
●
●●
●●●

●

●●
●
●

●
●

●
●

●

●●
●

●

●

●

●
●
●
●
●
●

●

●
●●●
●
●

●

●●
●●●

●

●●

●
●●
●
●
●
●

●
●●

●
●
●●

●●

●

●
●●
●
●

●

●●
●
●●
●
●
●

●●●●
●
●●
●●

●

●●●●
●
●

●●●
●●●

●●
●
●

●
●
●●
●

●

●

●
●●

●

●

●
●

●●●
●●●●●
●
●
●
●
●

●
●

●

●●●●●

●
●
●●●●

●
●●●
●
●●
●●

●

●●
●
●
●
●
●
●●●

●

●
●●
●●
●●
●

●
●

●
●
●●

●
●●
●

●
●

●
●●
●
●●
●
●
●●
●

●
●
●
●
●●●●●
●
●●●●
●
●

● ●
●

●●
●
●

●
●●
●

●
●●
●

●

●
●

●●

●
●
●●
●
●●●●●
●

●
●●

●●●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●

●●●●
●●
●●

●●●●
●●
●●

●●●●
●●
●●

●●●●
●●
●●

●●●●
●●
●●

●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●●

●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●

●
●●●
●●●●

●
●●●
●●●●

●●
●●
●●●●

●
●●●
●●●

●
●●●
●●●●

●●
●
●●
●●●

●●
●
●
●●●
●

●●
●
●●
●●●

●●
●
●●
●●
●

●●
●
●●
●●
●

●●●●
●●
●
●

●●●●
●●
●
●

●●●●
●●
●
●

●●●●
●●
●
●

●●●●
●●
●
●

●● ●● ●● ●●

●●●●●●●
●

●●●●●●●
●

●●●●●●●●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●

●
●●●●●●
●

●●●●●
●●
●

●●●●
●●
●
●

●●●●●
●●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●
●●

●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●●
●●●●●●●
●

●●●
●●●●
●
●●
●●●●●●●●●
●●●●
●●●●
●●●●●●●
●●●●●

●
●●●●●
●●●
●●●●●●
●●
●●●●
●●●●●●●●
●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●
●●●●●●●
●
●●●●●●●

●●●●●●●●

●
●●●●●●●

●
●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●
●●●●●

●●●
●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●●
●●
●●

●●●●●
●●●

●●●●●
●●●

●●●●●
●●●
●●●●●
●●
●

●●●●●
●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●

●● ●●●●●
●●●
●●●●●●
●●●●●●●●●
●
●●●●●●
●●●●●●●●
●●

●●●●●●●
●●●●●●●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●
● ●●

●●
●●
●●
●●

●●
●●
●●●
●

●●
●●
●●
●●

●●
●●
●●
●●

●●
●●
●●
●●

●●●●●
●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●
●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●● ●●

●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●

●●
●●●
●●●

●●
●●●
●●●

●●
●●●
●●●

●●
●●●
●●●

●●
●●●
●●●

●
●
●
●
●●
●●

●
●
●
●
●●
●●

●
●
●
●
●●
●●

●
●
●
●
●●
●●

●
●
●
●
●●
●●

●●●●
●●
●
●

●●●●
●●
●
●

●●●●
●●
●
●

●●●●
●●
●
●

●●●●
●●
●
●

●● ●● ●●

●

●
●
●●●●●●●●●
●
●●
●
●●●
●

●●

●●
●
●●●
●●
●●●●
●●
●●

●

● ●

●●
●
●
●●

●

●
●
●
●
●●
●

●

●●●●●
●

●
●●●

●●●

●

●
●●
●●

●
●●●

●

●●●●●

●

●

●

●
●●●
●
●

●

●

●

●●
●
●

●
●
●
●
●●
●

●

●
●

●●●●●
●●
●●

●●
●●
●●
●
●●●
●

●

●

●
●

●

●●
●●●●
●
●●●●●
●●

●

●
●●●●●●
●●

●●
●
●●
●
●●●●
●
●

●
●

●●

●

●●●●●●●●●
●●●●●●●
●●●●●
●
●

●

●
●

●
●
●

●

●
●
●
●●●
●

●●●
●
●
●

●

●
●

●●
●●
●●●●
●

●

●●●●●

●

● ●
●●●

●
●
●
●
●●
●●●●
●●
●●●●
●

●

●●●●
●
●●●●
●●
●●

●

●

●
●● ●

●
●●●●
●
●●
●●
●
●●●●
●
●●
●
●

●

●●●●●●

●

●
●
●●●
●
●●●●
●

●●
●

●
●
●
●
●
●
●●●
●
●
●
●●
●●
●●
●●

●●●●●
●●●
●
●●●●
●●
●●

●
●●
●

●
●●

●

●●●
●
●
●

●

●

●

●●●●●
●●●●

●

●
●●
●●

●

●
●
●●
●
●●

●●

●
●
●●
●
●●●
●
●
●
●●
●●●●
●
●●●●
●
●
●
●●●●
●
●●
●

●
●

●
●
●

●
●
●
●

●●

●
●
●●●
●●
●
●●
●●

●
●●●
●●●
●
●
●
●
●●

●

●
●●
●

●
●
●●

●●●●●
●●●

●

●
●●
●
●
●
●

●
●●●●●
●

●
●
●

●

●
●●
●●●●
●
●●
●
●

● ●
●●●
●
●
●●
●●●●●●●●●

●
●●
●
●●
●

●

●●
●
●●

●

●
●●
●●●
●

●
● ●●

●●●
●
●●●●
●
●●

●

●

●
●
●●●

●

●●

●
●●
●●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●
●●

●
●

●●

●
●●●●
●
●

●
●●
●●
●
●●

●●
●●●●
●
●●
●

●
●●

●
●

●● ●● ●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●

●
●
●
●●●●●

●
●
●
●●●●●

●
●
●
●●●●●

●
●
●
●●●●●

●
●
●
●●●●●

●●●●●
●

●
●

●●●●●
●

●
●

●●●●●
●

●
●

●●●●
●●

●
●

●●●●●
●

●
●

●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●●

●●

●●●●

●●

●●●●●

●●

●●●●

●●

●●●●●●

●●

●●●●●

●
●

●
●●

●●

●
●

●
●●

●

●
●

●

●●●

●
●

●
●●

●●●

●
●

●
●●

●●●

●●●●●
●

●●

●●●●●
●

●●

●●●●●
●

●●

●●●●●
●

●●

●●●●●

●

●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●
●
●●
●
●●●
●●
●
●●●●
●●●
●
●●●●
●●●
●
●●●●
● ●●●●●

●
●

●●●●
●
●●

●●●●●
●
●●

●●●●●
●
●●

●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●

●●●●●●●
●

●●●●●●
●
●

●●●●●●●
●

●●●●●●●

●

●●●●●●●
●

●●●●●
●●
●

●●●●●●●
●

●
●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●
●●●●●●
●●●●●●●●●●●●
●
●●
●●●●●●●●●●
●●●●
● ●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●

●

●●●
●
●●
●●●●●●●
●
●

●

●●●●●

●

●●●●●●
●
●
●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●
●●●●●

●●●
●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●
●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●
●

●●●●●●●●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●
●●
●

●●●●●●●
●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●● ●●

●● ●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●● ●●●●●●●

●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
● ●●

●●
●●●
●●●
●●
●●●
●●●
●●
●●●
●●●
●●
●●●
●●●
●●
●●●
●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●● ●●

●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●

●●
●●●●
●●

●●
●●●
●●●

●●
●●●
●●●

●
●●●●
●●●

●●
●●●
●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●
●
●
●●●

●●
●
●
●
●●●

●●
●
●
●
●●●

●●
●
●
●
●●●

●●
●
●
●
●●●

●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●

●● ●● ●●

●●
●
●●●●●

●●
●
●●●●
●
●●●●●●●●
●
●●●●●
●●
●
●
●●●●
●●

●
●
●●
●
●●●

●
●
●●

●

●
●
●

●●●●
●●●
●

●

●

●
●●●●
●

●
●
●●
●

●
●
●

●
●●●●●●●

●●

●
●●●

●
●

●
●●
●
●
●●
●

●●
●
●●●●●
●●●●●●
●
● ●●

●
●●
●●

●
●
●
●

●●●●●●●●
●
●●
●●●
●●●

●●●
●
●●

●●

●
●●●

●

●

●●

●
●●●
●

●
●
●
●●●●
●

●●●●●●●●

●●●●

●●
●●●●
●

●
●●

●
●
●●●●●
●●

●●
●
●●●●●
●●●
●

●
●
●●
●
●●
●●
●●
●
●

●

●

●●
●
●●

●●
●
●●●●
●
●●
●●●●
●●
●
●●

●
●

●
●●
●
●●●●●
●
●
●●
●●

●
●●
●

●

●
●
●●●●
●
●●
●
●●
●

●
●
●
●●
●
●●

●

●
●●●●●●
●●●●●●
●
●●●

●●●●●●
●
●●
●●●●
●
●
●●
●
●●●●●●
●
●●

●●

●●
●
●●●●●
●
●●

●●

●

●●●●●

●
●●
●●
●●
●●●

●
●
●

●
●●●●●
●
●
●●
●●●
●

●●
●
●● ●●●

●
●
●●●●
●
●
●●
●
●
●●
●●●●●●●●
●
●
●
●
●●●●●
●
●●
●●

●
●●●●
●
●●●●
●
●
●

●●
●●●●●
●
●
●
●
●
●

●
●
●●
●●
●
●●●
●
●●
●● ●●●

●
●●
●
●
●●
●

●
●●●●

●
●
●●
●
●●●●●
●
●●
●●
●●
●●●

●
●●
●

●●●
●●●
●
●●●

●

●●●●●

●●

●●
●●
●●

●
●
●●
●
●
●
●●●
●●
●

●
●●

●
●
●●

●
●●
●

●
●●●●●●
●
●
●
●●

●
●●●●
●●●
●
●
●
●

●●●
●

●
●
●
●

●●
●
●●
●
●

●●●●●
●
●
●●
●
●
●●
●●●
●●
●

●
●●●
●

●
●
●

●

●
●
●

●●

●● ●● ●●

●
●

●

●●●●●

●
●

●

●●●●●

●
●

●

●●●●●

●
●

●

●●●●●

●
●

●

●●●●●

●●●●●

●

●●

●●●●●

●

●●

●●●●●
●

●●

●●●●●
●

●●

●●●●●

●

●●

●● ●● ●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●● ●● ●● ●●

●

●
●

●●●●●

●

●

●●●●●●

●●

●●●●●●

●
●

●

●●●●●

●●

●●●
●●●

●●●●●

●●●

●●●
●
●

●

●●

●●●●●

●

●●

●●●●

●
●

●

●

●●●●●
●

●●

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●
●

●●●

●●●●●

●●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●
●

●● ●● ●● ●● ●● ●●

2.5
5.0
7.5

10.0
12.5

2

4

6

1.5

2.0

2.5

1.0

1.5

2.0

2.5

4
6
8

10
12

4
6
8

10
12

2.5
5.0
7.5

10.0

1.0

1.5

2.0

2.5

1

2

3

4

0.4
0.6
0.8
1.0
1.2

 G
enom

e
 G

enom
e

 Intruder
 Intruder

 K
m

eans
 K

m
eans

 Vacation
 Vacation

 Y
ada

 Y
ada

 Long
 S

hort
 Long

 S
hort

 Long
 S

hort
 Long

 S
hort

 Long
 S

hort

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

Threshold

A
bs

ol
ut

e
S

pe
ed

up

0.2 0.4 0.6 0.8
α

Figure 7.12: Varying the threshold and alpha parameters in STAMP running
PEW for two values of k in Long and Short Running mode, for 8-64 threads.
Results for 1-4 threads and the RMS-TM benchmarks are not presented because
they are insensitive to parameter values.

88

k: 0

Threads: 8

k: 0

Threads: 16

k: 0

Threads: 32

k: 0

Threads: 64

k: 10

Threads: 8

k: 10

Threads: 16

k: 10

Threads: 32

k: 10

Threads: 64

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●●●

●
●●

●●●●●

●
●●

●●●●●

●
●●

●●●●●

●
●●

●●●●●

●
●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●
●

●●●

●●●●

●

●●●

●●●

●●

●●●

●●●●

●

●

●

●

●●●●●

●
●
●

●●●●

●●
●

●

●●●●●

●●●

●●●●
●

●●
●

●●●●●

●●●

●●●●●
●

●●

●●●●●

●●●

●●●●●

●

●

●

●●●●●

●

●●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●●

●●●●●●

●●

●●●●●●●
●

●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●

●
●●●
●

●●

●

●
●●●
●

●●

●

●
●●●
●

●●

●

●
●●●
●

●●

●

●
●●●
●

●●●

●
●

●
●
●

●●●

●
●

●
●
●

●●●

●
●

●
●
●

●●●

●
●

●
●
●

●●●

●
●

●
●
●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●

●● ●● ●●

●●

●●
●●●●

●●

●●
●●●●

●●

●●
●●●●

●●

●●
●●●●

●●

●●
●●●●

●

●●●
●
●
●
●

●

●●●
●
●
●
●

●

●●●
●
●
●
●

●

●●●
●
●
●
●

●

●●●
●
●
●
●

●●●

●

●●
●

●

●●●

●

●●
●

●

●●●

●

●●
●

●

●●●

●

●●
●

●

●●●

●

●●
●

●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●
●

●●●●●

●●
●

●● ●● ●● ●●

●● ●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●

●●
●●●●●●
●●●●●●●●
●●●●●●●●
●●
●●●●●●
●●
●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●

●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●

●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●

●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●

●●
●
●●●●

●

●●
●
●●●●

●

●●
●

●●●●

●

●●
●
●●●●

●

●●
●
●●●●

●●
●

●

●
●
●●

●●

●

●

●
●
●●

●●
●

●

●
●
●●

●●●

●

●
●
●●

●●
●

●

●
●
●●

●●●
●
●

●

●

●

●●●
●
●

●

●

●

●●●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●

●

●
●
●●●●
●
●

●

●●●●●

●
●
●●

●●●●●●●
●

●●●●●
●
●●●●●●●●
●
●

●●●●●●●●●●●●●●
●
●

●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●●●●●●● ●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●
●

●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●●●●●●

●●

●●●●●●

●●●

●●●●●

●●

●●●●●●

●●

●●●●●●

●●●

●

●
●
●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●

●●●●

●●●●

●●●●●

●

●●

●●●●●

●●●

●●●●●

●

●●

●●●●●

●

●

●

●●●●●

●

●
●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●●●●●●

●

●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●●
●
●

●●●

●●●
●
●

●●●

●●●
●
●

●●●

●●●
●
●

●●●

●●●
●
●

●●●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●● ●● ●●

●●
●
●●
●●●

●●
●
●●
●●●

●●
●
●●
●●●

●●
●
●●
●●●

●●
●
●●
●●●

●

●●●●
●
●
●

●

●●●●
●
●
●

●

●●●●
●
●
●

●

●●●●
●
●
●

●

●●●●
●
●
●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●
●
●
●
●●●

●●
●
●
●
●●●

●●
●●
●
●●●

●●
●●
●●●●

●●
●
●
●●●●

●

●●●●
●
●●

●

●●●●
●
●●

●

●●●●
●
●●

●

●●●●
●
●●

●

●●●●
●
●●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●●

●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●●

●●●●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●
●

●●●

●●●

●●

●●●

●●●●
●

●●●

●●●●●

●●

●●●●●

●

●

●

●

●●●●

●

●
●●

●●●●

●

●●●

●●●●●

●
●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●●

●

●

●●●●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●

●●
●
●
●
●

●
●

●●
●
●
●

●

●
●

●●
●
●
●

●

●
●

●●
●
●
●

●

●
●

●●
●
●
●
●

●
●

●

●●●
●
●
●

●

●

●●●
●
●
●

●

●

●●●
●
●
●

●

●

●●●
●
●
●

●

●

●●●
●
●
●

●

●●●

●●●
●
●

●●●

●
●●
●
●

●●●

●
●●
●
●

●●●

●
●●
●
●

●●●

●
●●
●
●

●●●●●
●●
●

●●●●●
●●
●

●●●●●
●●
●

●●●●●
●●
●

●●●●●
●●
●

●● ●● ●● ●●

●●
●●●
●

●
●

●●
●●●
●

●
●

●●
●●●
●

●
●

●●
●●●
●

●
●

●●
●●●
●

●
●

●

●●●
●●●

●

●

●●●
●●●

●

●

●●●
●●●

●

●

●●●
●●●

●

●

●●●
●●●

●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●

●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●●
●

●●●

●●●●
●

●●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●● ●●

●●
●●●●●●
●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●●
●●●●●●

●

●●
●●●●●

●

●●
●●●●●

●

●●
●●●●●

●

●●
●●●●●

●

●●
●●●●●

●●
●

●
●●●●

●●
●

●
●●●●

●●
●

●
●●●●

●●
●

●
●●●●

●●
●

●
●●●●

●●●
●
●

●
●●

●●●
●
●

●
●●

●●●
●
●

●
●●

●●●
●
●

●
●●

●●●
●
●

●
●●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●● ●● ●●

●●
●
●
●

●
●●

●●
●
●
●

●
●●

●●
●
●
●

●
●●

●●
●
●
●

●
●●

●●
●
●
●

●
●●

●

●●●●
●
●

●

●

●●●●
●
●

●

●

●●●●
●
●

●

●

●●●●
●
●

●

●

●●●●
●
●

●

●●
●
●
●●●
●

●●
●
●
●●●
●

●●
●
●
●●●
●

●●●

●
●●●
●

●●
●
●
●●●
●

●●●
●
●

●●●

●●●●
●●●●

●●●
●
●
●●●

●●●●
●●●●

●●●

●●●●●

●●●●●
●
●●●●●●●●●●
●●●●●
●●●
●●●●●
●●●

●●●●
●●●●

●●●●●
●
●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●
●
●●●●●●●

●●

●

●●●●●

●●

●●●●●●

●

●

●●●●●●

●●

●●●●●●

●

●

●

●●●●●

●●

●

●

●

●●●

●●●

●

●●●●

●●

●

●

●●●●

●●●

●

●

●●●

●●●

●●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●

●●●

●●●●

●●●●

●●●●●

●

●●

●●●●
●

●

●●

●●●●
●

●●●

●●●●●

●

●●

●●●●●

●

●●

●●●●●
●●

●

●●●●●●

●

●

●●●●●●

●●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●
●

●

●●●●●●●

●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●●●
●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●●●

●

●
●

●●●●●

●

●
●

●●●●●

●

●
●

●●●●●

●

●
●

●●●●●

●

●
●

●● ●● ●● ●●

●●●
●
●
●●●

●●●
●
●
●●●

●●●
●
●
●●●

●●●
●
●
●●●

●●●
●
●
●●●

●

●●●●
●

●●

●

●●●●
●

●
●

●

●●●●
●

●
●

●

●●●●
●
●
●

●

●●●●
●

●
●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●

●

●●●●●

●●●●

●

●●●

●●●

●●

●●●

●●●●
●

●●●

●●●

●●

●●●

●●●●●

●●●

●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●
●●

●●●●●
●
●●

●●●●●
●
●●●●●●●●●●
●●●●●
●
●●●●●●●●●●
●●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●● ●●

●●
●
●●
●

●

●

●●
●
●●
●

●

●

●●
●
●●
●

●

●

●●
●
●●
●

●

●

●●
●
●●
●

●

●

●
●●●●●
●●

●
●●●●●
●●

●
●●●●●
●●

●
●●●●●
●●

●
●●●●●
●●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●●

●●
●●●●●

●

●●
●●●●●

●

●●
●●●●●

●

●●
●●●●●

●

●●
●●●●●

●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●●●
●●●●
●

●●●
●
●●●●

●●●
●●●●
●

●●●
●●●●●

●●●
●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●●

●●
●●
●●
●
●

●●
●●
●
●
●
●

●●
●●
●
●●
●

●●
●
●
●●
●
●

●●
●●
●
●
●
●

●

●●●●
●
●
●

●

●●
●●
●
●
●

●

●●●
●●
●
●

●

●●●
●●
●
●

●

●●●
●●
●
●

●●●

●

●
●●

●

●●●

●

●
●●

●

●●●
●

●●
●
●

●●●

●

●
●●

●

●●●

●

●
●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●● ●● ●● ●●

●●

●
●
●
●
●
●

●●

●
●
●
●
●
●

●●

●
●
●

●
●
●

●●

●
●
●

●
●
●

●●

●●
●
●
●
●

●

●●●
●
●
●

●

●

●●●
●
●
●

●

●

●●●
●
●
●

●

●

●●●
●

●
●

●

●

●●●
●
●

●

●

●●●●
●●
●

●

●●●●
●●
●

●

●●●●
●●
●

●

●●●●
●●
●

●

●●●●
●●
●

●

●● ●● ●● ●● ●●

●●
●●
●
●

●●

●●
●●
●
●

●●

●●
●●
●
●

●●

●●
●●
●
●

●●

●●
●●
●
●

●●

●

●●●●
●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●●
●
●
●●●●

●●●

●
●●●●

●●
●
●
●●●●

●●●

●●●●●

●●●

●
●●●●

●●●
●●
●●●

●●●●●
●●●

●●●
●●
●●●

●●●
●●●●●

●●●
●
●

●●●

●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●
●●●●
●
●
●●

●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●●●●
●●●
●●●●●●●●

●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●
●

●●●●●●

●

●
●

●●●●●

●●

●

●●●●●

●

●

●

●●●●●

●●

●

●●●●●

●●
●

●

●

●●●

●●●

●
●

●●●

●●●

●
●

●●●

●●

●●●

●●●

●●●
●
●

●●●

●●●●●

●

●●

●●●●

●

●

●●

●●●●

●
●

●●

●●●
●●

●

●●

●●●●●

●

●●

●●●●●

●

●●

●●●●
●

●
●

●

●●●●●

●

●●

●●●●●●

●●

●●●●●

●

●●

●●●●●●●

●

●●●●●●
●

●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●

●

●●●●●●●

●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●

●●●
●●●

●

●●●
●●●●

●

●●●
●●●●

●

●●●
●●●●

●

●●●
●●●●

●●●

●●●
●●

●●●

●●●
●

●●●

●●●
●●

●●●

●●●
●●

●●●

●●●
●●

●●●●

●
●
●

●●●●●

●

●

●●●●●

●
●
●

●●●●●

●
●
●

●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●
●●●

●●●

●
●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●

●
●

●●●●●
●
●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●●●●●●

●●

●
●●●●●

●

●●●●

●●●

●

●●●●

●●●

●

●●●●

●●●

●

●●●●

●●●

●

●●●●

●●●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●
●

●

●●●

●●●●

●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●
●

●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●●

●●●

●●●●
●

●●●

●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●● ●●

●●
●●●●
●

●

●●
●●●●
●

●

●●
●●●●
●

●

●●
●●●●
●

●

●●
●●●●
●

●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●

●●●●●●●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●●

●●●
●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●● ●●

●●

●●●
●●

●

●●
●
●

●
●
●

●

●●

●●●
●●

●

●●

●

●
●

●●

●

●●
●

●
●
●
●

●

●

●●●●

●
●
●

●

●
●
●
●

●●

●

●

●●●
●
●
●
●

●

●●●
●
●●

●

●

●●●
●
●●

●

●●●●

●

●●●

●●●●

●●●
●

●●●●

●●●
●

●●●●

●●●

●

●●●●

●
●●●

●● ●● ●● ●● ●●

●●●
●
●

●

●

●

●●●
●
●

●

●

●

●●●
●
●
●

●

●

●●●
●
●

●

●

●

●●●
●
●

●

●

●

●
●●●●●
●

●

●
●●●●●
●

●

●
●●●●●
●

●

●
●●●●●
●

●

●
●●●●●
●

●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●● ●● ●●

●●
●●●

●

●●

●●
●●●

●

●●

●●
●●●

●

●●

●●
●●●

●

●●

●●
●●●

●

●●

●

●●●●
●
●

●

●

●●●●
●
●

●

●

●●●●
●
●

●

●

●●●●
●
●

●

●

●●●●
●
●

●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●●●

●●●

●●●●●
●●●

●●●●●

●●●

●●●●●
●●●

●●●●●
●●●

●● ●● ●● ●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●

●●●●●

●●
●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●

●

●●●●●

●●
●●

●

●●●

●●●

●
●

●●●

●●●
●●

●●●

●●●

●●

●●●

●●●

●

●

●●●

●●●●
●●

●●

●●●●
●

●●●

●●●●●

●

●

●

●●●

●
●
●

●●

●●●●
●

●

●
●

●●●●●
●

●

●

●●●●●

●●
●

●●●●●
●
●

●

●●●●●
●

●
●

●●●●●

●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●
●

●

●●●●●●

●

●

●●●●●
●

●

●

●●●●●●●

●

●●●●●●
●
●

●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●

●

●●●●●
●
●
●

●●●●●
●
●
●

●● ●● ●● ●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●●●●●
●
●
●

●● ●● ●● ●●

●● ●● ●● ●● ●● ●●
●●●●
●●●●
●●●
●●●●
●
●●●●
●●●●
●●●●
●●●
●
●●●●
●●●●

●●
●●●●
●●

●
●●●
●●●●

●●
●●
●
●●●
●●
●●
●●●●

●
●●●
●
●●●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●
●●●
●●●

●●
●●●
●●●

●●
●●●
●●●

●●
●●●
●●●

●●
●●●
●●●

●●
●●●
●●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●●
●

●●●
●●●
●●

●● ●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●● ●●●

●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●
●●
●●
●●

●●
●●
●●
●●

●●
●●
●●
●●

●●
●●
●●
●●

●●
●●
●●
●●

●●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
● ●●●

●●●●
●

●●●
●●●
●●

●●●
●●●
●●

●●
●●●
●●●

●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●● ●●

●● ●● ●● ●● ●●
●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
● ●●

●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●
●●

●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●

●●
●●●
●●●
●●
●●●
●●●
●●
●●●
●●●
●●
●●●
●●●
●●
●●●
●●●

●
●●●
●●●●
●●
●●●●
●●
●
●●●
●●●●
●●
●●●●
●●
●
●●●
●●●●

●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●
●●

●●●●●●
●●

●●●●●●
●●

●●●●●●●●

●●●●●●
●●

●●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●
●●
●●●●●●●
●

●
●●●●
●●
●
●
●●●●
●●
●
●
●●●●
●●
●
●
●●●●
●●
●
●
●●●●
●●
●

●● ●● ●● ●● ●● ●●

●● ●●

●● ●● ●● ●● ●●
●●

●●

●●
●●
●●
●
●

●●
●●
●●
●●

●●
●●
●●
●
●

●●
●●
●●
●
●

●●
●●
●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●
●●●

●●
●
●●
●●
●

●●
●
●●
●●
●

●●
●
●●
●●
●

●●
●
●●
●●
●

●●
●
●●
●●
● ●●●●●●

●●
●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●● ●● ●● ●● ●● ●● ●● ●●

●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●● ●● ●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●

●
●●●●

●●●●●●●●

●●●●●●●●

●●●●●●
●

●●●●●●●●

●●●●●●●●

●● ●● ●●
●●
●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●

●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●●●
●●●●●

●●●
●●●●●
●●●
●●●●●

●●●
●●●●●

●●●
●●●●● ●

●●●●●●●
●
●●●●●●●
●
●●●●●●●●
●●●●●●●
●●
●●●●●●

●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●●
●●
●●●●

●
●●●●●
●●
●
●●●●●
●●
●
●●●●●
●●
●
●●●●●
●●
●
●●●●●
●●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●●●●●●
●

●●
●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●

●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●
●●
●●
●

●●●
●●
●●
●

●●●
●●
●●
●

●●●
●●
●●
●

●●●
●●
●●
●

●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●● ●●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●● ●●

●●●●
●●

●●
●●●●
●●

●●
●●●●
●●

●●
●●●●
●●

●●
●●●●
●●

●● ●● ●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●
●●●●●●●

●●●●●
●
●●

●●●●●
●
●●

●●●●●
●
●●

●●●●●●
●●

●●●●●
●
●●

●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●● ●●●

●●●
●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●● ●

●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●

●● ●● ●● ●● ●● ●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●

●

●
●●●●

●

●
●
●●●

●

●
●●●●●●

●

●
●●●●●●

●●●
●
●
●
●●

●●●
●
●
●
●●

●●●
●
●
●
●●

●●●
●
●
●
●●

●●●
●
●

●
●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●

●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●
●● ●

●●●●
●●
●
●●●
●●●
●
●●●●
●●●
●●●●
●●●
●
●●●●
●●●

●●

●
●●●●●

●

●
●●●

●●

●
●●●●●

●●

●
●●●●●

●●

●
●●●●●

●
●●●●

●

●

●
●●●

●
●●

●
●●●●

●
●●

●
●●●●

●
●●

●
●●●●

●

●

●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●
●
●●●●●●●
●

●●●●●●●
●
●●●●●●●
●
●●●●●●●
●

●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●
●●
●●●●●●

●● ●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●
●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●

●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●

●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●● ●

●●●
●●●●
●
●●●●●●●
●●
●●●●●●
●
●●●●●●●
●
●●●●●●●

●● ●● ●● ●● ●● ●● ●● ●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●
●●●

●●
●
●●
●●
●

●●
●
●●
●●
●

●●
●
●●
●●
●

●●
●
●●
●●
●

●●
●
●●
●●
● ●

●●●●●●
●
●
●●●●●●
●
●
●●●●●●
●
●
●●●●●●
●
●
●●●●●●
●

●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●
●
●
●●●

●●●
●
●
●●●

●●●
●
●
●●●

●●●
●
●
●●●

●●●
●
●
●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●
●●
●●

●●●●
●●
●●

●●●●
●●
●●

●●●●
●●
●●

●●●●
●●
●●

●●●
●●●●●
●●
●●●●
●●
●●●
●●●●●
●●●
●●●●●
●●●
●●●●● ●●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●
●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●●

●●●
●●●
●● ●●

●●●●●
●
●●
●●●●●
●
●●
●●●●●
●
●●
●●●●●
●
●●
●●●●●
●

●● ●● ●●

●
●

●●●●●●

●
●
●●●●●●

●
●

●●●●●●

●
●

●●●●●●

●
●
●●●●●●

●●●●●

●
●●

●●●●●

●
●●

●●●●●

●

●●

●●●●●

●

●●

●●●●●

●●●

●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●
●● ●●●

●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●●●
●●●●
●

●
●●●●●
●●

●
●●●●
●●●

●
●●●●
●●●

●
●●●●
●●●

●
●●●●●
●●

●● ●● ●● ●● ●● ●● ●● ●●

●

●●
●●●●●

●

●
●●●●●●

●●

●●●●●●

●

●
●
●●●●●

●
●

●●●●●●

●●●●
●

●●●

●●●

●

●

●
●●

●●●●●

●●●

●●●●

●
●

●●

●●●●●

●

●●

●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●
●●●
●●●●
●●●●●●●●
●●●●●●●●●
●●● ●

●●●●●●●
●
●●●●●●●
●
●●●●●●
●
●●●●●●●
●
●●●●●●●

●●●
●●

●●●

●●●
●●

●●●

●●●
●●

●●●

●●●
●
●

●●●

●●●●●

●●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●
●
●●●●●●●

●

●● ●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●
●●●
●●●●
●●●●●●●●●
●●●
●●●●
●●●●●●●●●
●●● ●●

●●●●●●
●
●●●●●●●
●●
●●●●●●
●●
●●●●●●
●●
●●●●●●

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

 G
enom

e
 G

enom
e

 Intruder
 Intruder

 K
m

eans
 K

m
eans

 Vacation
 Vacation

 Y
ada

 Y
ada

 Long
 S

hort
 Long

 S
hort

 Long
 S

hort
 Long

 S
hort

 Long
 S

hort

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

Threshold

S
er

ia
liz

ed
 F

ra
ct

io
n

0.2 0.4 0.6 0.8
α

Figure 7.13: Varying the threshold and alpha parameters in PEW for two
values of E in Short Running mode on STAMP, showing fraction of transactions
serialized for 8-64 threads.

89

7.7 Tuning, a summary

The summary of the tuning exercise presented in this chapter is that manager

performance is highly dependent on the combination of tuning, benchmark,

and running-mode. This means that comparing performance between managers

is difficult, as being fair requires paying attention to tuning.

The benchmarks themselves appear to have preferences as to the tuning,

and the kind of behaviour the tuning promotes: benchmarks like genome in

short-running mode and kmeans find no benefit from speculative execution,

and almost invariably prefer a tuning that promotes serialization over specula-

tion. On the other hand, benchmarks like yada prefer tunings that promote

speculation, with almost any serialization reducing performance.

With the limited exception of LimitMeanST, the changed decision making

processes explored among the differing serialization managers have little effect

on changing outcomes through a ‘better’ serialization. LimitMeanST is the

exception due to its ability to improve the performance of intruder in a

limited sense.

90

Chapter 8

Serialization-Manager-Driven
Performance Effects

8.1 Performance Unpredictability

Chapter 3 raised two pitfalls that need to be kept in mind before drawing any

conclusions about serialization management. (1) We must consider the effect

that the BE-HTM platform has on a serialization manager’s performance at

a particular tuning setting on a particular benchmark. (2) Applications have

different transactional profiles that have different demands on the TM system

and its serialization manager, therefore a broad set of applications need to be

included in the experimental evaluation. Furthermore, it was discussed how

desirable it would be for there to be some level of generalizability in serialization

management — a good tuning for a particular benchmark should work well on

the same benchmark on another platform, or on another benchmark on the

same platform.

The results presented in Chapter 7 show that unpredictability in serialization

management seems to be the norm, as there don’t seem to be many generalizable

rules. The lack of generalizabilities indicate that 1) the platform has a very

substantial effect on serialization management for many benchmarks. Across

all the serialization managers explored in this section, each revealed a set

of benchmarks (typically genome, intruder and vacation) that found

opposite effects in long- and short-running mode when varying the parameters

of the serialization manager. 2) The individual benchmarks often require very

91

different handling, with opposite reaction to parameters in the same running-

mode being common. For instance, to achieve maximum performance kmeans

requires aggressive serialization and speculative retries are almost never a good

idea for kmeans. In contrast, yada’s highest performance occurs with zero

serialization. 3) There is almost no generalizability in tuning of parameters for

serialization management. Finding the correct parameter value is essential for

performance, even within the same benchmark running with a different number

of threads. This can be seen with intruder often changing the best tuning

from one extreme at 2-8 threads to another extreme at 16 or more threads (see

Figure 7.1).

8.2 Stable Trends

Though there is little in the way of generalizability in the tuning of parameter

values for serialization managers that would allow for a generalization of per-

formance trends across benchmarks or platforms, there is at least one property

that appears to hold relatively stable for each benchmark across serialization

managers. Figure 8.1 plots the relationship between the serialization fraction —

the fraction of transactions committed in serialization mode — and absolute

speedup at 16 threads for each of the RMS-TM and STAMP benchmarks

across all serialization managers. By looking at the datapoint trends across

the rows, corresponding to benchmarks, it can be seen that despite the varying

strategies deployed by the serialization managers, the performance trend for a

particular benchmark appears to remain relatively constant, aside from a small

number of exceptional cases previously discussed. For example, intruder

sees a different serialization fraction curve using LimitMeanST over the other

serialization managers.

92

BEATS Limit LimitMean LimitMeanST MaxRetry PEW−2 STSerControl

●●

●●●●●●●●
●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●

●●●●●●
●
●●●
●
●
●●●
●
●●●
●●●
●●●
●●
●
●●●●●
●●●●
●
●●●
●
●●●

●●
●
●●●●●
●
●●
●●
●●●
●
●

●●●●

●
●
●
●●●
●●●

●●
●●

●●●
●
●●●●●●

●●

●●

●●●●●

●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●●

●●●

●
●

●

●
●●

●

●●●

●

●

●

●●

●

●

●
●●●●
●
●

●
●

●●

●

●

●
●●

●
●
●
●
●●
●●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●
●
●

●●●
●●

●
●
●●

●●●●

●●
●

●
●
●
●
●

●●
●●
●●

●
●

●

●

●

●
●
●

●
●

●

●●
●
●●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●

●●
●●●●

●
●●●●●
●●●
●●●●●●●

●●●●●●
●●

●●●●
●
●●●●●
●●●●

●●●●●●●●●●●●●●
●●

●●●●●●
●

●●●●
●●
●
●●●●●●●●

●●●●●
●
●
●
●
●
●
●●

●●
●●
●

●●●
●

●

●●●●●
●●●

●●●●●
●●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●

●

●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

● ●
●

●
●

●

●

●

●
●

●●

●●
●●

●

●●●●●

●●●●●

●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●

●●

●●● ●●●

●●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●

●
●

●
●
●
●

●

●

●
●
●●
●

●

●●
●●

●

●
●

●

●●
●●●
●
●●
●●
●●
●
●

●

●
●

●
●
●
●
●

●●●

●
●
●

●

●

●●
●
●●

●
●

●●

●

●●
●

●
●
●
●●

●

●
●

●

●

●

●
●

●●

●

●

●●

●
●
●
●

●●
●
●
●

●●●

●

●●●●●
●●●●●●●

●●●
●●●
●
●●●●●

●

●
●●●●●●●
●
●

●●●●
●●●●●

●●
●
●●●
●●●●
●

●●
●
●●

●●●
●●

●●●●●●●
●
●●●●

●●●●●●
●
●●●●●●●

●
●
●●●
●

●
●●

●●●

●●●●●
●●

●●● ●●●

●●●

●
●●
●
●●
●●
●●●●●●●●●●●●●
●
●
●●●
●●
●
●●●●

●
●●●
●●
●●●●
●●
●●
●●●●●
●
●
●

●
●●●
●●●

●

●●●
●●
●●●

●●
●
●●●
●

●●
●
●
●●
●
●
●

●
●
●

●
●●
●●
●●
●●●●●●

●

●●●●●●●
●●
●
●●
●
●●
●●●
●●
●
●●●●●●●●●
●

●
●●
●●●●
●
●●●
●●●●
●
●●●
●
●
●
●●
●●●●●
●●●
●
●
●
●●●●●●
●

●
●●
●●
●
●●●
●●

●
●●●●
●
●

●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●

●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●

●
●●
●●●
●
●
●●
●●
●
●●●●●
●
●●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●
●●●●●●●●
●
●●●●
●

●●
●●●

●
●

●

●

●
●
●●●●
●
●
●●●●●●●
●
●
●
●●
●
●
●

●
●
●●
●
●
●
●●●

●

●
●
●

●●
●●●

●
●

●●

●
●

●●●

●
●
●

●
●

●
●

●

●●●●

●
●●●
●
●
●
●
●
●●
●
●●
●●

●

●

●

●
●●
●
●
●●
●●
●
●

●●
●●●●●
●

●
●●
●●

●●●●●

●
●●●●●

●

●
●
●●●●●●●
●●●●

●●●●●

●
●
●●

●

●
●

●
●

●
●

●

●●●●●

●

●
●
●●
●
●●

●

●●●●
●

●

●
●

●●

●
●
●
●●
●

●
●

●
●●
●

●

●

●●●●●

●●
●●

●●
●
●●
●

●●
●●
●
●
●

●

●●

●

●
●
●●●●
●
●
●●

●

●●
●●

●●
●

●
●
●

●●●
●

●
●
●

●

●●●●●

●●
●
●●

●

●●●
●●●

●
●

●●

●

●●●●●
●
●

●
●

●●
●●
●●●●
●

●

●
●●
●●
●●
●

●
●●
●
●●

●●●●●●
●●

●●●●●
●

●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●●

●
●●
●

●

●
●

●
●

●●●●

●

●●●
●●

●
●
●

●
●
●

●
●

●

●●
●●
●●

●

●

●●

●

●●

●
●●
●

●

●●
●

●
●

●

●●
●
●

●
●●
●

●●

●

●
●●
●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●
●
●
●
●
●
●

●
●

●

●

●●

●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●●
●

●

●

●
●

●

●●

●

●

●
●
●●

●

●
●
●●

●

●

●●
●

●

●●

●

●

●
●
●

●

●●

●

●
●

●●●

●

●●

●

●

●

●
●

●

●

●

●
●
●●●
●
●

●●
●●●

●●●
●
●

●
●●
●
●
●

●●
●
●
●
●●●
●●
●
●●
●●●●●●●●●●●●●
●●●●●●●
●●
●
●
●●

●
●●●●

●
●
●
●●●●
●
●
●●●●
●●●●●●●
●●
●●●●
●●
●

●

●
●●●●

●

●
●●
●●
●●●●●●
●●●

●●●●●

●●
●
●
●●●●
●
●
●●
●●●●
●
●
●●
●●●
●●●●
●●●●

●

●●●
●
●●●●
●●
●
●
●●
●
●
●●

●
●●●●●●

●●●
●●●●
●●●●●●●●

●
●●

●●●
●●

●●
●●●●●

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●

●●●●●

●●●●●

●
●●
●●
●●●●●
●●●●●
●●●●●●●
●●●●●●
●●●●●●●

●●●

●●●●●

●●
●●●

●●
●
●●

●●●●●
●●●●●
●
●●●●
●●●
●●●●●
●●●●●●●
●●●
●
●●●●●●●●
●
●
●●
●
●●●●●●●
●
●●
●●
●
●●●
●
●
●

●●●●●●
●
●●
●
●●●●●●●
●
●●●
●
●
●●●●●●
●

●●●
●
●●●●●
●
●●
●●
●
●●●●●●●●
●●
●
●●●
●

●

●
●●●
●●●●●
●
●●
●
●
●
●●●●●
●
●●
●
●●●●●
●●●●●●
●
●
●●●●●●
●●●●
●●
●
●

●●

●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●●
●●

●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●

●

●
●

●
●●

●●
●

●
●

●
●●●
●
●
●
●
●
●

●
●
●
●

●
●●●
●●●
●

●●
●●

●
●

●

●

●
●●
●

●●
●
●
●

●
●●●●

●

●
●●

●

●●
●
●●
●

●●●●
●●
●
●

●

●●
●●

●

●
●
●
●●●

●

●●●
●●

●

●

●●
●●
●

●●

●

●
●●

●●
●●●

●●
●
●

●

●

●
●

●
●●
●

●●
●●
●
●

●
●
●

●

●●
●●

●●
●

●●
●
●
●

●
●●●
●●
●
●

●

●
●
●●●
●
●

●
●●●●
●

●●●●
●
●●
●
●

●●●●

●

●
●●●●

●●
●
●

●

●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●

●●●●●

●
●

●●●●●●●●
●
●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●●
●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●

●

●●
●

●
●

●

●
●

●●

●
●
●

●

●

●

●
●

●

●
●
●

●

●

●
●

●
●

●

●

●
●
●●
●●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●●
●
●
●
●

●

●●
●
●

●

●●●
●
●●

●

●●
●

●

●●●
●

●

●

●

●
●
●
●●●
●

●

●●

●

●
●●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●●

●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●

●

●

●

●●
●●

●

●
●
●
●●

●
●
●

●●●●●

●●●●●
●●●
●
●●
●●●●●
●●
●
●●●
●●
●

●
●
●
●●●
●

●
●●●
●
●●●
●●
●●
●
●●●●●

●●●●●

●

●

●●
●
●●●●●
●●
●●●●●●●

●
●●●●●●●
●●●●
●
●●●
●
●
●
●
●●●

●

●●●●
●
●●

●●
●

●
●

●●●●●●
●
●●●●●
●●●
●●
●

●●
●
●●
●●●●●
●
●●●●
●
●●●●
●
●
●●●●●
●
●●●●

●●●●
●
●●●
●●

●●
●●●

●
●

●●●●●
●●●●

●
●
●
●

●●●●
●

●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●

●●●

●●●●●

●●●●●

●

●●
●
●●●●●●●●●●
●●●●●●●
●●
●●●●●●●
●●●●
●
●
●●
●
●
●●
●

●●

●●●●●

●●●●●●●
●●
●
●
●
●
●●●
●
●●●
●
●●
●
●
●●●
●●●●●●●
●
●●
●●●
●
●●
●●●●
●●

●●●●●

●
●●
●
●●
●●
●●●●
●

●
●
●
●●

●●
●●

●
●
●
●●
●

●

●●
●●
●●
●

●

●
●●
●●●●
●●●●●●
●●●●●

●●●●●
●●●●●
●●
●
●
●
●●
●●
●●●●●●

●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●
●
●●
●●●●
●
●●●●●●●
●●●
●
●●●
●
●
●
●
●
●●●●●
●●●●●●●●
●●●

●●●●●
●●●●●●●
●●
●●●●●●
●
●●
●●●●
●●●●●
●●●
●●●
●●●
●
●●●
●●●●●●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●
●●●●●

●●
●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●●●●●●●●
●● ●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●
●

●

●

●

●

●●

●

●
●●
●

●
●
●

●

●●●
●

●
●

●
●

●

●●
●●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●●●

●
●
●
●●

●●

●

●
●

●●

●

●●
●●
●

●

●

●

●

●

●
●

●
●
●

●
●

●
●●●

●

●
●
●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●●

●

●

●

●
●
●
●
●
●●

●

●
●
●

●

●

●
●

●

●

●●

●

●
●

●●
●

●

●●

●

●

●

●●●
●
●

●●●

●

●

●

●

●●

●
●

●
●
●
●
●

●
●

●

●

●

●
●
●
●

●
●

●
●
●

●●
●●
●

●●●
●●

●●
●●●

●●●
●
●
●●

●
●

●

●
●●●
●

●●●
●
●●
●
●●●
●●●●●●●●
●
●
●●
●
●
●●●●
●●

●●●●●

●●
●
●●●●

●
●
●
●●●●
●
●●
●

●●●
●●
●
●●●
●
●

●
●●
●

●●
●●

●
●
●●

●●●

●
●
●
●

●●

●●●
●●

●
●
●●●
●

●

●●●

●
●

●
●●

●
●●
●
●●
●
●
●
●●
●
●
●●●●
●

●
●
●●●

●
●
●

●●●

●

●
●●●●

●
●
●●●●●●●●●●

●
●●

●

●
●●●

●
●●●
●
●●●●
●

●●●●●

●●

●●●●●

●●

●●●●●

●●

●●●●●

●●●●●

●●●●●
●●●●●●●●●●
●●●●●

●●●●●

●●●●●
●●●

●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●●
●
●
●
●
●
●●
●●
●
●●
●
●●

●●
●
●●●●●
●
●
●●●
●
●●
●●

●
●●
●●
●
●●●●
●●
●●
●

●●●●
●●

●
●

●●●

●

●●

●
●

●●●●

●
●●
●

●
●●

●●

●
●
●●●●

●
●
●●●
●●●

●

●
●
●
●
●●●●●
●●●

●

●
●

●

●●●
●
●
●●●
●●
●
●●●●
●●

●
●

●●●
●●●

●●

●
●●
●
●●

●
●

●●●
●

●
●

●●

●●
●
●
●
●

●
●
●
●

●●
●

●

●
●●

●

●●●

●

●
●●
●
●●
●

●

●
●●
●
●●●

●

●

●●
●
●
●
●

●

●
●

●

●●●●
●
●●

●

●●●

●

●
●●

●

●●
●

●

●●●

●

●●●

●

●
●●

●

●
●●

●

●
●
●●●●●

●

●

●

●●●
●
●

●

●

●

●●●●●●●

●

●●
●
●●●●

●
●
●●●●

●

●●
●

●●●
●●●
●●●
●●
●●●
●●●

●

●●●●
● ●●

●●●●●
●● ●

●

●●
●
●
●

●
●●
●
●
●
●
●

●●●●●

●
●

●

●
●●●
●
●
●●

●

●●●●
●
●●

●●
●●●

●●
●

●●●●●
●
●●

●●●●
●●●●

●
●
●

●●●

●
●
●●
●●
●
●●

●

●
●●●
●
●

●●

●●●
●●

●
●

●

●●
●●●●●
●
●
●●●
●●

●
●

●●
●●●●●

●

●●
●
●●●

●

●
●●●●

●
●
●
●

●
●●●●

●
●
●
●●●●

●●

●
●●●
●●
●

●
●

●●
●
●●●●
●● ●●

●●
●●
●
● ●

●

●●●
●
●
●

●●●
●

●●
●● ●●●
●●●●

● ●●

●
●

●●
●
● ●●●●●●

●●
●●●●●
●●● ●●●●●●

●
● ●●●●●●●
● ●●

●●●
●

●

●
●●●●●

●●●

●●●
●●●●●

●●●●●●●●
●●●●●●●●

●●
●

●●●●●

● ●●●●
●●

●● ●●●
●

●●●● ●●●●
●

●●● ●●●●
●

●
●

● ●●●●●
●

●

●●●
●

●
●
●●

●●●
●●

●●
●

●●●●
●

●
●
●

●●●
●●●

●●

●●
●

●
●●

●●

●

●●●
●●

●
●

●

●●●●
●●

●

●

●●●
●●

●
●

●

●●●●
●

●

●

●

●●●
●●

●

●

●●●

●●●●

●

●●●

●●●●

●

●●●

●●●
●

●

●●●

●●●●

●

●●●

●●●●

●

●●●●●

●
●●

●●●●●

●●
●

●●●●●

●●●

●●●●●

●●
●

●●●●●

●●●

●●

●●

●●

●●

●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●
●●

●●●●

●
●●

●●
●●●

●●
●
●●

●●●

●●
●●

●●●●

●●
●
●●●●●

●●●●
●
●
●●

●●●●
●
●
●●

●●●●●
●
●●

●●●●
●
●
●
●

●●●●
●
●
●
●

●
●

●
●●●●●

●
●

●●●●●●

●
●

●
●●●●●

●
●

●
●●●●●

●
●

●●●●●●
● ●●●●●●●
● ●●●●●●●
● ●●●●●●●
● ●●●●●●●
● ●●●●●●●

●●
●

●

●

●●

●

●●
●

●

●

●●

●

●●
●

●

●

●●

●

●●
●

●

●

●
●

●

●●
●

●

●

●●

●

●
●●●

●
●

●

●

●
●●●

●
●

●

●

●
●●●●

●

●

●

●
●●●

●
●

●

●

●
●●●●

●

●

●

●●●●●●
●

●

●●●●
●●

●

●

●●●●●●
●

●

●●●●●●
●

●

●●●●
●●

●

●

●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●

●
●

●
●

●

●
●
●
●
●

●
●●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●●
●
●
●
●
●●
●
●●
●

●

●●
●●

●
●
●
●
●
●
●
●

●

●●
●

●

●
●
●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●●

●
●
●
●
●
●●
●●
●●

●

●●
●

●

●

●

●

●
●●●
●●●
●●

●

●

●

●
●●●

●

●●

●

●

●
●
●

●●●

●

●

●
●●

●

●●
●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●●●●●

●

●

●●●
●
●

●

●●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●●●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●●

●●
●

●●

●
●

●

●
●

●

●

●●●●●●●

●

●●●●
●
●●

●●

●●●
●●
●

●

●
●

●
●
●●
●

●●
●●
●
●

●

●●

●

●●●●●

●

●
●
●

●
●

●

●●●●●
●
●

●
●
●●
●

●
●
●
●
●
●
●
●●
●
●

●

●

●

●

●
●

●
●
●

●●
●

●●

●

●●●●

●
●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●
●
●

●

●●

● ●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●
●●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●
●

●
●●

●
●

●

●●●

●●

●●●

●

●

●

●

●

●●●

●

●●

●

●
●●●●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●

●●

●●●

●

●

●
●

●

●●●●

●

●●

●

●
●
●●●●

●

●

●●●
●
●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●
●

●●●●●●●

●

●●●●●●●
●
●●●●●
●
●

●

●
●●
●●
●
●

●

●●●●●
●
●

●

●
●
●●●●●●●
●
●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●
●
●
●●●

●

●

●●●●
●●●
●●●●●

●●●
●●●●●

●
●
●
●●

●●●●●
●●●●● ●●●●

●

●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●●
●●●●

●

●
●●
●●●●

●

●
●●
●●●●

●

●
●●
●●●●

●

●
●●
●●●●

●

●
●●
●●●●

●●
●

●

●

●
●●

●●
●

●

●

●
●●

●
●

●
●

●

●
●●

●
●

●
●

●

●
●●

●●
●

●

●

●
●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●
● ●●●●●

●●
● ●●●●●

●●
● ●●●●●

●●
● ●●●●●

●●
● ●●●●●

●●
●●

●●
●

●

●
●

●●
●●

●

●

●
●

●●
●●

●

●

●
●

●●
●●

●

●

●
●

●●
●●

●

●

●
●

●

●●●●
●

●

●

●

●●●●
●

●

●

●

●●●●
●

●

●

●

●●●●
●

●

●

●

●●●●
●

●

●

●●●
●●●●

●

●●●
●●●●

●

●●●
●●●●

●

●●●
●●●●

●

●●●
●●●●

●

●●●● ●
●●●

●●●●●
●●●

●●●● ●
●●●

●●●●●●●●
●●●●●

●●●
●●●●●● ●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●●● ●●●●●● ●● ●●●●●●● ● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●

●

●
●●●●●●

●

●
●●●●●●

●

●
●●●●●●

●

●
●●●●●●

●

●
●●●●●●

●

●●
●
●
●●●

●

●●
●
●

●●●

●

●
●
●
●
●●●

●

●●
●
●
●●

●

●●
●
●
●●●

●
●

●

●

●
●●
●

●

●

●

●

●
●●
●

●

●

●

●

●
●●
●

●

●

●

●

●●
●
●

●
●

●

●

●
●
●
●

●●
●●

●
●

●

●

●●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●●●
●

●
●

●

●

●●
●

●
●

●

●

●

●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●

●
●

●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●
●

●

●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●

●●

●●●●●●●●●
●

●●
●●●

●

●

●●●

●●●●●
●●●●●
●
●●●●
●

●●●
●
●

●

●●●

●●●●●●●●●
●
●
●

●●●●
●●●
●
●●●●●

●●●●

●
●●●●●

●●●●●

●●●●●

●
●●●●

●●●
●●●

●●
●

●●●●●●●

●●●

●●●
●●●

●

●●●●

●

●
●●●●●
●●●
●●●●●

●●●●●

●

●

●●●
●●
●
●
●●●●●●

●

●●●●

●●●●●
●
●

●

●●●
●
●

●●

●●●●●

●●●●●●●●●●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●
●●●●●●●
●
●
●
●
●
●
●●●●●
●●●●●●●
●●●●●●
●●
●●
●●●●
●●●

●
●
●
●●
●●●●●
●●●
●
●●
●●●●●●●
●

●●
●●●
●●
●
●
●●●
●
●●●
●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●
●●●●●●●
●
●
●
●
●
●
●●●●●
●●●●●●●
●●●●●●
●●
●●
●●●●
●●●

●
●
●
●●
●●●●●
●●●
●
●●
●●●●●●●
●

●●
●●●
●●
●
●
●●●
●
●●●
●●●●
●
●●●●●●●
●
●
●
●
●
●●
●
●
●

●

●

●●
●●●●
●●
●
●●●●●
●●
●●
●●

●

●●●●●●
●
●
●●●

●

●
●●●●
●●●
●●
●●●●●
●
●
●
●●
●
●●●●●●
●
●
●●●●●●●●
●●●●●●●●
●
●
●
●
●
●●●
●
●●

●
●●●●●
●●●
●
●
●●●●
●●●●
●
●
●
●●

●

●
●●●●
●●
●●
●
●●●●●●●●●
●●●●●●
●●
●●●
●

●

●
●●
●
●
●
●
●
●

●
●
●
●

●●●●
●●●●
●

●●●●●
●●
●
●
●●
●
●
●
●
●●
●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●

●●
●●
●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●
●
●

●

●

●
●

●

●●●

●

●
●
●●

●

●

●●

●

●
●

●

●●
●
●
●
●

●

●●

●

●
●
●

●

●

●

●

●
●●●
●

●

●

●
●
●
●

●●●

●
●
●

●●●

●
●

●

●

●

●
●●●
●●●●
●
●
●

●●

●●
●

●

●

●

●●

●

●
●●●

●

●

●
●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●
●
●

●

●

●
●

●

●●●

●

●
●
●●

●

●

●●

●

●
●

●

●●
●
●
●
●

●

●●

●

●
●
●

●

●

●

●

●
●●●
●

●

●

●
●
●
●

●●●

●
●
●

●●●

●
●

●

●

●

●
●●●
●●●●
●
●
●

●●

●●
●

●

●

●

●●

●

●
●●●

●

●

●
●
●●●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●
●
●

●
●●

●

●

●●

●

●
●
●●
●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●

●

●

●

●●

●
●
●●
●●

●

●
●

●

●●●
●

●●
●●

●
●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●
●
●●●
●●
●
●

●
●
●

●
●
●
●●
●
●●
●
●

●
●
●●

●
●●

●

●

●
●
●

●
●
●

●
●

●

●
●

●

●
●

●●

●

●

●
●
●
●●●
●
●
●
●

●

●
●
●

●

●●●●●
●

●

●
●●

●●
●

●
●●
●

●●●
●
●
●●●

●●
●

●

●
●

●
●

●●

●

●

●

●

●
●

●●

●
●●●

●●
●
●
●●
●

●
●●●
●●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●
●●
●
●
●
●●●
●●●

●●●●● ●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

1
2
3
4
5

2.5
5.0
7.5

10.0

7
9

11
13
15

2.5
5.0
7.5

10.0

7.5
10.0
12.5
15.0

1.5

2.0

2.5

6
8

10
12

11.7
12.0
12.3
12.6

1
2
3
4

1

2

3

fluidanim
ate

genom
e

hm
m

calibrate
hm

m
pfam

hm
m

search
intruder

km
eans

S
calP

arC
vacation

yada

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Serialization Fraction

A
bs

ol
ut

e
S

pe
ed

up
 a

t
16

 th
re

ad
s

Mode ● LONG SHORT

Figure 8.1: Serialization Fraction and its relationship to absolute speedup for
16 threads, run in both long and short running mode

93

8.3 Wasted-Work Hypothesis

Section 5.6 raised a common hypothesis in TM systems: that wasted work is

important to avoid. Wasted work here means instructions executed in aborted

transactions. The expectation is that performance should be best executing

the minimum possible number of instructions, because it indicates that the

computation was performed with maximum efficiency. Using the data on

instructions executed aggregated across all threads collected using the Blue

Gene Performance Monitor hardware event counters (BGPM counters) we can

explore this hypothesis in more detail.

Figure 8.2 shows a strong relationship for the benchmark genome between

the number of executed instructions and speedup. As expected, the best perfor-

mance appears when the fewest instructions are executed. This relationship is

not a universal trend though. Figure 8.3 plots the same data for yada, which

finds some configurations running best with more instructions executed, with

the results at 8 threads being particularly different.

Another measure of wasted work would be the fraction of dynamic transac-

tion executions that are aborted, or the ratio between the number of aborts

and the number of committed transactions. This ratio is also presented in Fig-

ures 8.2 and 8.3 in the form of the point sizes. These point sizes corroborate the

conclusions drawn from the instructions executed, showing yada performing

better when more aborts occur at lower thread counts, and genome performing

better with less total computation and fewer aborts across all configurations.

94

8 16 32 64

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

B
E

AT
S

Lim
it

Lim
itM

ean
Lim

itM
eanS

T
M

axR
etry

P
E

W
−

2
S

T
S

erC
ontrol

5e
+

10

7e
+

10

9e
+

10

5e
+

10

7e
+

10

9e
+

10

5e
+

10

7e
+

10

9e
+

10

5e
+

10

7e
+

10

9e
+

10

Instructions Executed

A
bs

ol
ut

e
S

pe
ed

up

Aborts per commit 0.25 0.50 0.75

Figure 8.2: Instructions Executed compared to Absolute Speedup for genome
run with 8-64 threads in long running, plotting the top 30% of executions,
where the size of each point corresponds to the number of Aborts per commit,
with smaller dots having fewer aborts.

95

8 16 32 64

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

0.8

1.0

1.2

B
E

AT
S

Lim
it

Lim
itM

ean
Lim

itM
eanS

T
M

axR
etry

P
E

W
−

2
S

T
S

erC
ontrol

5e
+

11

1e
+

12

5e
+

11

1e
+

12

5e
+

11

1e
+

12

5e
+

11

1e
+

12

Instructions Executed

A
bs

ol
ut

e
S

pe
ed

up

Aborts per commit 1.0 1.5 2.0 2.5 3.0

Figure 8.3: Instructions Executed compared to Absolute Speedup for yada run
with 8-64 threads in short-running mode, plotting the top 30% of executions,
where the size of each point corresponds to the number of Aborts per commit,
with smaller dots having fewer aborts.

96

8.4 Serialization Management and Performance

The results in Chapter 7 showed how performance was affected for each indi-

vidual serialization manager described in Chapter 5 as the parameters that

control the serialization managers were varied. Figures 8.4 and 8.5 summarize

the results of all the experimentation presented in Chapter 7. They show the

distribution of Absolute Speedups achieved for each benchmark in each running

mode by each serialization manager, across all the parameter values explored

in the form of violin plots.1 A tight distribution for a particular serialization

manager indicates that the benchmark performance does not change much over

the tunings explored in Chapter 7.

This thesis hypothesized that improved serialization management can im-

prove the performance of BE-HTM parallelized programs, much in the same

way that improved Contention Management can improve the performance of

STM parallelized programs. The distribution of speedups in the figures show

that overall the RMS-TM benchmarks (Figure 8.5) are markedly less sensitive

to the effects of serialization management than the STAMP benchmarks (Fig-

ures 8.4). In the STAMP benchmarks the improvement from the worst to the

best performance can often exceed 1000% (in the case of genome executing

in long-running mode). This result can be explained by the low proportion

of time spent in transactions in the RMS-TM benchmarks relative to the

STAMP benchmarks. This result also indicates that for heavily transactional

applications, such as the STAMP benchmarks, serialization management is a

critical aspect of performance.

The best-achieved performance for each runtime is the highest point on

the violin plot. Most combinations of benchmarks and mode see some change
1A violin plot uses the variable width of a "violin" to show the empirical distribution

of values: thin violin sections have low density (or few data-points), and thicker sections
have high density (or many data points). Figures 8.4 and 8.5 use modified violin plots that
normalize the width of the violin such that each violin has the same widest point. This
can cause distortion — in comparison to a violin plot that normalizes area — because wide
uniform distributions will have substantially more visual weight than deserved. However, it is
appropriate for the plots presented here because (1) we are interested in relative distributions
rather than absolute distributions; and (2) each serialization manager has a different number
of samples relating to the size of the explored parameter space.

97

in performance across different serialization managers and tunings. However,

despite these changes, most serialization managers appear to achieve equally

high speedup on most benchmarks for at least one tuning. While we don’t

have an oracle that would indicate if this is the highest possible speedup, the

fact that multiple serialization managers achieve the same speedup indicates

that it may be the highest speedup achievable within the serialization manager

paradigm.

The large range of speedups in the STAMP benchmarks, caused by chang-

ing serialization manager or by tuning for a particular serialization manager,

provides substantial support for the hypothesis of this thesis: improved serial-

ization management can improve performance much like improved Contention

Management can improve STM program performance. Similarly, poor serial-

ization management can destroy all possible performance gains, especially for

applications similar to the STAMP benchmarks that spend the majority of

application time in transactions.

For many benchmarks each individual serialization manager has a large range

of speedups across the possible tunings indicating that it is far more important

to choose the correct tuning for the deployed serialization manager than it

is to choose the serialization manager. Even a simple serialization manager,

like Max-Retry, is a high performer for most benchmarks with at least one

particular value of allowed rollbacks. The exceptions are: kmeans, that sees

a better result with either BE-ATS or Limit, and intruder executing in

long-running mode, genome and yada executing in short-running mode, all

three of which see a better speedup with LimitMeanST.

Across all the presented configurations there is no consistent ordering of

serialization managers in terms of the best-achieved speedup. The results are

completely dependent on the application, the thread-count, and the platform

(running mode). This extensive experimental evaluation appears to put to

rest the hope that there could be a ‘best’ serialization manager for the BG/Q

BE-HTM. Further experimentation is required to determine if this is also the

case for other BE-HTMs.

98

0

5

10

2

4

6

1.5

2.0

2.5

1.0

1.5

2.0

2.5

5.0

7.5

10.0

2.5
5.0
7.5

10.0
12.5

2.5
5.0
7.5

10.0

1.0

1.5

2.0

2.5

1

2

3

4

0.6
0.8
1.0
1.2

genom
e

genom
e

intruder
intruder

km
eans

km
eans

vacation
vacation

yada
yada

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

16 32 64
Threads

A
bs

ol
ut

e
S

pe
ed

up

Serialization Manager
BEATS

Limit

LimitMean

LimitMeanST

MaxRetry

PEW−2

STSerControl

Figure 8.4: Absolute Speedup distribution for STAMP benchmarks over all
serialization managers and all their tunings displayed as violin plot (exponential-
delay and capacity-induced serialization enabled)

99

1

2

3

4

1
2
3
4
5

15

20

25

10
15
20
25
30

2.5

5.0

7.5

10.0

5
6
7
8
9

10

10

20

30

15
20
25
30

5

10

15

13

15

17

19

fluidanim
ate

fluidanim
ate

hm
m

calibratehm
m

calibrate
hm

m
pfam

hm
m

pfam
hm

m
search

hm
m

search
S

calP
arC

S
calP

arC

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

LO
N

G
S

H
O

R
T

16 32 64
Threads

A
bs

ol
ut

e
S

pe
ed

up

Serialization Manager
BEATS

Limit

LimitMean

LimitMeanST

MaxRetry

PEW−2

STSerControl

Figure 8.5: Absolute Speedup distribution for RMS-TM benchmarks over all
serialization managers and all their tunings displayed as violin plot (exponential-
delay and capacity-induced serialization enabled)

100

Chapter 9

Related Work

Related work for this thesis can be split into categories: HTM Performance

analyses, non-speculative serialization and similar systems, enhancements to

non-speculative serialization and transactional profiling.

9.1 HTM Performance Analyses

Christie et al. evaluate the AMD ASF proposal on a number of transactional

memory benchmarks [19]. To provide forward progress they provide a non-

speculative serialization mode, using a Max-Retry policy (though the allowed

number of retries is not discussed) with capacity-induced serialization. Unlike

the study in this thesis that focuses on serialization management, their eval-

uation fixes serialization management and instead varies the implementation

parameters for ASF, changing the amount of supported speculative state.

Yoo et al. investigate Intel’s RTM system with CLOMP-TM [65] and

STAMP [77]. Their investigation uses a serialization manager similar to Max-

Retry with a fixed number of allowed rollbacks (5) that they state that

performes ‘best’. Given the results of the study in this thesis, it is not clear

how they determine what ‘best’ means under the competing constraints of

different benchmarks, though by tuning their version of Max-Retry they

acknowledge the problem described here.

Wang et al. investigate a limited form of tuning for a serialization man-

ager very similar to Max-Retry running on Intel’s RTM system [76]. They

investigate an array-access microbenchmark and a molecular-dynamics simula-

101

tion, and found a dramatic improvement in both speedup and abort rate by

increasing the number of allowed retries within the range of 1-10. They note

that there is likely no fixed optimum and on-line tuning may be desirable, as

has also been indicated through the much more extensive study here.

Diegues and Romano describe a similar — though smaller scale — explo-

ration of serialization management (named by them as software-based fallback)

to the study presented in this thesis, as well as a serialization manager called

Tuner that uses online-learning techniques from reinforcement learning to learn

an appropriate tuning for each transaction in an application at runtime [26].

Their study involves two key elements: Varying the strategy for handling ca-

pacity aborts (which is substantially more important on Intel’s Haswell because

it can store much less speculative state) and adjusting the number of aborts

allowed to each transaction. Their study draws many of the same conclusions

as this study: 1) application performance can be dramatically affected by the

choice of serialization management, 2) the best performing serialization man-

ager changes from application to application. Driven by this conclusion, they

present the serialization manager Tuner, which uses reinforcement-learning

techniques to learn for each static transaction the highest performing strategy

for dealing with capacity aborts, and the appropriate number of aborts for

each static transaction. This path of self-tuning is expected to be very fruitful

for serialization management, likely becoming the default approach in light of

the challenges to static tuning exposed by this study.

9.2 Non-Speculative Serialization

Non-speculative execution as a method for handling poorly behaved speculation

is a common theme in the literature of speculative parallelism. In addition, the

notion has appeared in STM systems as a method for supporting actions that

do not fit in the transactional model, such as I/O.

102

9.2.1 Hardware Systems with Non-speculative Execution

The proposed Transactional-Memory Coherence and Consistency (TCC) model

executes the majority of code speculatively [37]. Similar to BG/Q, in order to

support transactions that exhaust the speculative storage, or that execute irre-

vocable actions such as I/O, TCC supports a form of non-speculative execution

that makes transactions inevitable and propagates their writes immediately.

Transactions that are executed in non-speculative mode are overflowing or

irrevocable transactions. In contrast to BG/Q’s software implementation,

TCC’s non-speculative execution is a hardware mechanism built directly into

its coherency protocol. TCC only uses non-speculative mode for overflowing

transactions, and so has no policy to evaluate.

The STAMPede Thread-Level Speculation framework, which allows specu-

lating loops and other control flow, provides a home-free token that indicates

when a thread is executing the oldest work, at which point speculative state

may overflow, and irrevocable actions may be taken safely [71]. STAMPede’s

home-free token serves much the same purpose as the global lock used for

serialization in BG/Q, however it is used to provide irrevocability to the eldest

piece of work. Compared to BG/Q, STAMPede has no tuning with regards to

the home-free token, as there is only ever one eldest piece of work.

9.2.2 STM Analogues to Non-speculative Execution

Non-speculative serialization in Best-Effort HTM systems is similar to a concept

from the STM literature described slightly differently by two different authors:

Irrevocable Transactions, described by Welc et al., are software transactions

that have been granted immunity to rollback by the TM system [?]. As in

non-speculative serialization, these transactions can be allowed to perform I/O

or system calls because their commit is guaranteed — and only one irrevocable

transaction may be executing at any given time. Welc et al. describe irrevocable

transactions as a programmer-accessible enhancement to the TM programming

model both to allow actions that cannot be rolled back and to force completion

of transactions that may be expected to induce large amounts of aborts if

103

allowed to proceed speculatively – a hash-table resize operation for example.

Inevitable Transactions is the name given to much the same concept by Spear et

al. concurrently to the work of Welc et al. [?]. Spear et al. contributes multiple

methods for supporting inevitable transactions, each allowing more concurrency

than the base method — a Global Write Lock. Non-speculative serialization,

as implemented in BG/Q, is effectively the Global Write Lock as described by

Spear et al.. The remaining mechanisms described are applicable only to STM

systems, unless hardware modifications are made to expose transactional read

and write sets.

Welc et al. explores a naïve policy for automatic transition into irrevocable

execution to improve performance by providing a quicker forward-progress

guarantee similar to non-speculative serialization in BG/Q. Similar to the

findings in this study, that serialization management is an important part

of transactional performance. Welc et al. found that automatic transition

into irrevocable execution could dramatically affect transactional performance,

however their investigation was limited to a simple heuristic. The evaluation in

Spear et al. found, as this study did, a dependence on workload characteristics

for the selection of an inevitability mechanism, though their inevitability is

only user-specified and tested on synthetic benchmarks.

9.3 HTM Serialization Enhancements

Calciu et al. presents a compiler-assisted improvement to non-speculative

serialization that reduced the rate of lock acquisition, as well as a number of

theoretical schemes to improve HTM systems [15]. Lazy lock checking was

combined with a compiler transformation to ensure that any indirect jumps

that occur within a transaction are instrumented with checks to the global lock

in order to avoid the possibility of reading a value written by a non-speculative

transaction, and using that value to jump to a transaction-ending instruction,

prematurely ending the transaction and violating atomicity1. Despite providing
1Indirect jumps are disallowed as part of the programming specification for BG/Q TM,

thus no instrumentation is required for BG/Q even in lazy-lock checking mode.

104

http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/compiler_ref/bg_tm_atomic.html

an enhanced non-speculative serialization, unlike this thesis the authors did not

discuss the policy under which they reverted to non-speculative serialization,

nor the settings of whatever policy they did use. As seen in our evaluations,

this can be critical when evaluating performance.

9.4 Transactional Profiling

Time-series analysis of transactional memory programs has been rare. Previous

work has been done on Software Transactional Memory Systems, or has required

specialized hardware to be added to the processors [2, 18, 79]. The existence of

the TM runtime in BG/Q’s HTM makes inserting the event profiling trivial

as compared to other HTM systems where the TM code is tightly woven with

application code.

Lev describes a prototype transactional profiler called T-PASS —Transactional

Program Analysis System — that used stub calls read by the DTrace dynamic

tracing framework to implement the profiling. Lev’s profiler could profile at

a deeper level than the TEP presented in this thesis, including being able to

profile conflict sets and finding silent-writes. However, these features rely on

it having been built specifically for the SkySTM runtime [47]. Lev’s profiler

included some aggregate analyses, including computing dynamic transaction

lengths, as were computed for Figure 4.4.

Zyulkyarov et al. describe a transactional profiler for an STM augmented

C# system, and describe a visualization technique that inspired the visualiza-

tion in Figure 4.5, though they did not explore the possible insight of aggregate

data visualization [79].

Gottschlich et al. presents TMProf, a transactional memory profiler intended

for end-user usage [32]. They create application traces similar to ours. However,

instead of offline analyzers, they provide an interactive graphical front-end in

order to display a micro-level analysis of the transactional execution in order

to visually indicate areas of possible improvement in the algorithms. The focus

of TMProf is on micro-level interactions and thus aggregate analyses are not

discussed.

105

Chapter 10

Study Limitations

Though the study in this thesis is very comprehensive, it does not entirely

cover the possible experimental space for Blue Gene/Q BE-HTM. Had time

and resources permitted, further study could have explored:

• Eager vs. Lazy conflict resolution. Section 2.3.1 stated that BG/Q

can resolve memory conflicts either eagerly or lazily. Eager conflict

resolution was used throughout the experimental evaluation because a

previous study, comparing the absolute speedup of Max-Retry obtained

with eager and lazy conflict resolution on the STAMP benchmarks, found

that eager performed as well as, or better than, lazy conflict resolution.

While I believe that the outcome of testing with lazy conflict resolution

would only be a different tuning curve for each manager, it is possible

that it could provide substantially better performance when paired with

a new serialization manager.

• Eager vs. Lazy Lock acquisition. Section 2.3.2 explained that BG/Q

can check the irrevocable token either at transaction start (eagerly) or

transaction finish (lazily). The runtime defaults were used to check the

lock eagerly in short-running mode and lazily in long-running mode.

While my expectation would be that experimentation with eager vs

lazy lock checking would prove to just be another dimension for tuning,

similar to conflict resolution, it is also possible that an interaction between

serialization managers and lock checking could have remained hidden in

this study.

106

• Software Stack Modifications. More aggressive modification of the

software stack could have provided some interesting possibilities for

optimization. In particular, exposing more information available at the

kernel level to the serialization managers could have allowed for the design

of more intelligent managers.

Another option would be to raise the contention management decision to

the runtime level to allow the run-time system to collect statistics, and

possible be more intelligent than the kernel.

• Exploring Sandboxing for Protection. Similar to capacity-induced

serialization, all serialization managers presented here serialized on the

detection of a sandboxing violation. This is a safe assumption when TM

programs expect to operate entirely on consistent state when executing a

transaction. However, it is possible to write TM programs that use the

hardware sandboxing as a safety guarantee for speculation— for example,

allowing some non-transactional writes to a data structure, and relying

on sandboxing and memory-protection to ensure that transactions do not

commit when accessing invalid or unmapped pointers. Some STAMP

benchmarks do precisely this— which may be a high-performance choice.

If this form of TM programming were to become common, immediate

serialization on a sandboxing violation may be too aggressive and may

dramatically reduce performance.

Though exploration on Intel’s Haswell [42], IBM’s zEC12 [43] or POWER8 [14]

would be possible and desirable in order to understand more points in the

BE-HTM design space, it would require porting the transactional memory

runtime built for BG/Q, and, in the case of Haswell, the XLC compiler to the

new platform, both of which are beyond the scope of this thesis.

107

Chapter 11

Future Work

There are a number of possible directions that could be pursued in future work.

11.1 Formalization and Abstraction

Serialization management is very tightly intertwined with the TM runtime

in BG/Q. This is an artifact of history, however in the course of this study

I elected not to disentangle the dependencies. Future investigation of serial-

ization management should specify an interface in order to provide pluggable

serialization management.

11.2 Invasive Serialization Managers

Some contention managers or transactional schedulers created for STM cannot

be implemented in BG/Q because of limitations imposed by the hardware

and kernel implementations. For instance, a policy called Collision Avoidance

and Resolution for Software Transactional Memory (CAR-STM) reschedules

transactions that are predicted to cause failure with the goal of reducing the

chances of repeated conflicts [27]. In its simplest version, CAR-STM only

reschedules transactions that have already conflicted. The policy enters an

aborted transaction into an execution queue owned by the thread that aborted

the transaction. An implementation of CAR-STM on BG/Q would require

changing how BG/Q saves transaction context in order to support rescheduling

transactions on different threads, which would involve changes to the compiler

108

and to the TM run-time system.

Another policy that would require changes to the BG/Q run-time system is

adaptSTM that uses a variety of adaptation strategies to change, at runtime,

thread-local parameters in an STM in order to improve performance [57].

Opportunities for performance benefits may exist by changing running modes

online in a similar fashion at quiescent points in transactional execution, such as

serialization. However, the BG/Q TM runtime was not designed with dynamic

mode switching in mind, and would require substantial modification to do so

safely.

Investigation of an adaptive policy, like that described by Diegues and

Romano for Haswell, would be desirable [26]. Their adaptive policy learns,

per transaction, an appropriate serialization response over the course of a

program’s execution, leading to a single policy that can adapt to multiple

dynamic conditions. As described in this thesis, policy tuning is important on

BG/Q, so it would be interesting to reproduce their policy for BG/Q.

11.3 Hardware Non-speculative Serialization

Some of the tradeoffs faced through non-speculative serialization could be

ameliorated with hardware-supported non-speculative serialization. By having

the hardware be aware of the semantics and requirements for non-speculative

serialization there is a possibility that more overlap could be allowed during

serialization.

109

Chapter 12

Conclusion

This thesis introduces a new area of research: serialization management, the

mechanism for guaranteeing forward progress and high performance, decoupled

from correctness, in Best-Effort HTM systems.

Seven serialization managers were described, some inspired by STM Con-

tention Managers (the inspiration for serialization management). These con-

tention managers were subjected to a very rigorous evaluation, the first of its

kind, involving hundreds of thousands of experiments across two benchmark

suites, two experimental platforms — represented by the two running modes

of BG/Q — and seven different thread counts.

The conclusion of the experimental evaluation is that serialization manage-

ment is a critical part of BE-HTM performance. The improvements provided

by judicious serialization indicate that, for many applications, it may be worth-

while to provide non-speculative serialization and a serialization manager even

on HTM platforms that guarantee forward progress through other mechanisms,

such as LogTM [54].

Across the serialization managers it was shown that most serialization

managers can achieve high performance on many benchmarks with the correct

tuning. The take away from this is that tuning may be more important than

serialization managers, though, there were exceptions for which the choice of

serialization manager did affect maximum performance.

Each serialization manager was evaluated across a swath of its tuning

parameters, in each of BG/Q’s two modes. These two modes are neighbours in

110

the design space of TM systems, and yet we found that the parameter tunings

were often fragile, in that the correct tuning for one BG/Q mode was often not

the correct tuning for the other. This finding further emphasizes that tuning is

a must, especially when deploying an application on a new platform.

Results from at least one combination of benchmark and serialization

manager (intruder and LimitMeanST) combined with insight provided by

the Transactional Event Profiler, a tool designed for this thesis, indicate that

more intelligent policies than those designed here may yet be able to improve

performance further.

111

Bibliography

[1] C. Scott Ananian, Krste Asanović, Bradley C. Kuszmaul, Charles E.
Leiserson, and Sean Lie. Unbounded Transactional Memory. In High-
Performance Computer Architecture (HPCA), pages 316–327, San Fran-
cisco, CA, USA, February 2005.

[2] Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Luján, Chris
Kirkham, and Ian Watson. Profiling Transactional Memory Applications.
In Parallel, Distributed, and Network-based Processing (PDP), pages 11–20,
Feb 2009.

[3] Mohammad Ansari, Christos Kotselidis, Mikel Luján, Chris Kirkham, and
Ian Watson. On the Performance of Contention Managers for Complex
Transactional Memory Benchmarks. In International Symp. on Parallel
and Distributed Computing (ISPDC), pages 83–90, Lisbon, Portugal, July
2009.

[4] Adrià Armejach, Anurag Negi, Adrián Cristal, Osman S. Unsal, Per
Stenström, and Tim Harris. HARP: Adaptive abort recurrence prediction
for Hardware Transactional Memory. In HiPC, pages 196–205, 2013.

[5] D. A. Bader and K. Madduri. Design and Implementation of the HPCS
Graph Analysis Benchmark on Symmetric Multiprocessors. In Intern.
Conf. on High Performance Computing (HiPC), pages 465–476, Goa, India,
December 2005.

[6] David A. Bader and Kamesh Madduri. Design and Implementation of
the HPCS Graph Analysis Benchmark on Symmetric Multiprocessors. In
HiPC, pages 465–476, 2005.

[7] Alexandro Baldassin, Edson Borin, and Guido Araujo. On the Impact
of Dynamic Memory Management on Software Transactional Memory
Performance. In ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT), 2014.

[8] Lee Baugh, Naveen Neelakantam, and Craig B. Zilles. Using Hardware
Memory Protection to Build a High-Performance, Strongly-Atomic Hybrid
Transactional Memory. In ISCA, pages 115–126, 2008.

[9] Philip A. Bernstein and Eric Newcomer. Principles of Transaction Pro-
cessing. Morgan Kaufman, 2009.

[10] Colin Blundell, E Christopher Lewis, and Milo MK Martin. Subtleties of
transactional memory atomicity semantics. Computer Architecture Letters,
5(2):17–17, 2006.

112

[11] J. Bobba, K. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D. A.
Wood. Performance pathologies in hardware transactional memory. In
International Conference on Computer Architecture (ISCA), pages 81–91,
San Diego, CA, USA, 2007.

[12] S. Borkar. Design challenges of technology scaling. Intern. Symposium on
Microarchitecture (MICRO), 19(4):23–29, Jul 1999.

[13] C.S. C. S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and
S. Lie. Unbounded Transactional Memory. In High-Performance Computer
Architecture (HPCA), pages 316–327, San Francisco, CA, USA, February
2005.

[14] H. W. Cain, B. Frey, D. Williams, M. M. Michael, C. May, and H. Le.
Robust Architectural Support for Transactional Memory in the Power
Architecture. In International Conference on Computer Architecture
(ISCA), Tel-Aviv, Israel, 2013.

[15] Irina Calciu, Tatiana Shpeisman, Gilles Pokam, and Maurice Herlihy. Im-
proved Single Global Lock Fallback for Best-effort Hardware Transactional
Memory. In ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT), 2014.

[16] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and
S. Chatterjee. Software Transactional Memory: Why Is It Only a Research
Toy? Communications of the Association for Computing Machinery,
51(11):40–46, November 2008.

[17] Calin Cascaval, Colin Blundell, Maged M. Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software Transac-
tional Memory: Why is it only a Research Toy? Communications of the
Association for Computing Machinery, 51(11):40–46, 2008.

[18] Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom, Jae-
Woong Chung, Lance Hammond, Christos Kozyrakis, and Kunle Olukotun.
TAPE: a Transactional Application Profiling Environment. In Interna-
tional Conference on Supercomputing (ICS), ICS ’05, pages 199–208, New
York, NY, USA, 2005. ACM.

[19] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth,
Martin Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pas-
cal Felber, Patrick Marlier, and Etienne Rivière. Evaluation of AMD’s
Advanced Synchronization Facility Within a Complete Transactional Mem-
ory Stack. In Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, pages 27–40, New York, NY, USA, 2010. ACM.

[20] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie,
and D. Grossman. ASF: AMD64 Extension for Lock-Free Data Structures
and Transactional Memory. In Intern. Symposium on Microarchitecture
(MICRO), pages 39–50, Atlanta, GA, USA, December 2010.

[21] C. Click. Azul’s experiences with hardware transactional memory. In HP
Labs Bay Area Workshop on Transactional Memory, 2009.

113

[22] S. Chaudhry R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay. Simultaneous speculative threading: a novel
pipeline architecture implemented in sun’s rock processor. In International
Conference on Computer Architecture (ISCA), pages 484–495, Austin, TX,
USA, 2009.

[23] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining STM
by abolishing ownership records. In Principles and practice of parallel
programming, pages 67–78, Bangalore, India, January 2010.

[24] Luke Dalessandro and Michael L. Scott. Sandboxing Transactional Memory.
In PACT, pages 171–180, 2012.

[25] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a
Commercial Hardware Transactional Memory Implementation. In Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 157–168, Washington, DC, USA, March 2009.

[26] Nuno Diegues and Paolo Romano. Self-Tuning Intel Transactional Syn-
chronization Extensions. 11th International Conference on Autonomic
Computing (ICAC 14), 2014.

[27] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: Scheduling-
Based Collision Avoidance and Resolution for Software Transactional
Memory. In Symposium on Principles of Distributed Computing (PODC),
pages 125–135, Toronto, ON, Canada, August 2008.

[28] Aleksandar Dragojevic, Pascal Felber, Vincent Gramoli, and Rachid Guer-
raoui. Why STM can be more than a research toy. Communications of
the Association for Computing Machinery, pages 70–77, 2011.

[29] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In Principles and practice of
parallel programming, pages 237–246, Salt Lake City, UT, USA, February
2008.

[30] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-
Based Software Transactional Memory. IEEE Transactions on Parallel
and Distributed Systems, 21(12):1793–1807, December 2010.

[31] Mark Giampapa, Thomas Gooding, Todd Inglett, and Robert W. Wis-
niewski. Experiences with a Lightweight Supercomputer Kernel: Lessons
Learned from Blue Gene’s CNK. In Supercomputing Conference, pages
1–10, 2010.

[32] Justin E. Gottschlich, Maurice P. Herlihy, Gilles A. Pokam, and Jeremy G.
Siek. Visualizing Transactional Memory. In Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Compilation Techniques,
PACT ’12, pages 159–170, New York, NY, USA, 2012. ACM.

[33] Jim Gray. A Transaction Model. In Jaco Bakker and Jan Leeuwen, editors,
Automata, Languages and Programming, volume 85 of Lecture Notes in
Computer Science, pages 282–298. Springer Berlin Heidelberg, 1980.

[34] Jim Gray. The Transaction Concept: Virtues and Limitations (Invited Pa-
per). In Proceedings of the Seventh International Conference on Very Large
Data Bases - Volume 7, VLDB ’81, pages 144–154. VLDB Endowment,
1981.

114

[35] Transactional Memory Specification Drafting Group. Draft Specification
of Transactional Language Constructs for C++ (Version 1.1), 2012.

[36] Theo Haerder and Andreas Reuter. Principles of Transaction-oriented
Database Recovery. ACM Computer Surveys, 15(4):287–317, December
1983.

[37] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.
Davis, Hen Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Knule Olukotun. Transactional Memory Coherence and
Consistency. In International Conference on Computer Architecture
(ISCA), pages 102–, Munich, Germany, March 2004.

[38] R.A. Haring, M. Ohmacht, T.W. Fox, M.K. Gschwind, D.L. Satterfield,
K. Sugavanam, P.W. Coteus, P. Heidelberger, M.A. Blumrich, R.W. Wis-
niewski, A. Gara, G.L.-T. Chiu, P.A. Boyle, N.H. Chist, and Changhoan
Kim. The IBM Blue Gene/Q Compute Chip. IEEE Micro, 32(2):48–60,
March-April 2012.

[39] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support
for Lock-Free Data Structures. In International Conference on Computer
Architecture (ISCA), pages 289–300, San Diego, CA, USA, May 1993.

[40] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer
III. Software Transactional Memory for Dynamic-Sized Data Structures.
In Symposium on Principles of Distributed Computing (PODC), pages
92–101, Boston, MA, USA, July 2003.

[41] William N. Scherer III and Michael L. Scott. Contention Management in
Dynamic Software Transactional Memory. In Workshop on Concurrency
and Synchronization in Java Programs (CSJP), St. John’s, NL, Canada,
July 2004.

[42] Intel Corporation. Intel Architecture Instruction Set Extensions Program-
ming Reference, 319433-012 edition, February 2012.

[43] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Architecture
and Implementation for IBM System z. In Intern. Symposium on Microar-
chitecture (MICRO), pages 25–36, Vancouver, BC, Canada, December
2012.

[44] D. Kanter. Analysis of Haswell’s Transactional Memory.
http://www.realworldtech.com/page.cfm?ArticleID=RWT02151 2050738,
February 2012. Real World Technologies.

[45] G. Kestor, V. Karakostas, O. Unsal, A. Cristal, I. Hur, and M. Valero.
RMS-TM: A Comprehensive Benchmark Suite for Transactional Memory
Systems. In Intern. Conf. on Performance Engineering (ICPE), pages
335–346, Karlsruhe, Germany, March 2011.

[46] Mohammad Ansari Behram Khan, Mikel Luján, Christos Kotselidis, Chris
Kirkham, and Ian Watson. Improving Performance by Reducing Aborts
in Hardware Transactional Memory. In High Performance Embedded
Architectures and Compilers (HiPEAC), pages 35–49, Pisa, Italy, January
2010.

115

[47] Yossi Lev. Debugging and Profiling of Transactional Programs. PhD thesis,
Brown University, 2010.

[48] Heike McCraw, Daniel Terpstra, Jack Dongarra, Kris Davis, and Roy G.
Musselman. Beyond the CPU: Hardware Performance Counter Monitoring
on Blue Gene/Q. In ISC, pages 213–225, 2013.

[49] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh,
Hassan Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural
Semantics for Practical Transactional Memory. In International Conference
on Computer Architecture (ISCA), pages 53–65, Boston, MA, USA, June
2006.

[50] Paul E. McKenney. Is Parallel Programming Hard, And, If So, What Can
You Do About It? 2014.

[51] C. C. Minh, J. Chung, C.Kozyrakis, and K. Olukotun. STAMP: Stanford
Transactional Applications for Multi-Processing. In International Sympo-
sium on Workload Characterization (IISWC), pages 35–46, Seattle, WA,
USA, September 2008.

[52] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory
system with strong isolation guarantees. In International Conference on
Computer Architecture (ISCA), pages 69–80, San Diego, CA, USA, 2007.

[53] Gordon E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114–117, April 1965.

[54] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-Based Transactional Memory. In High-Performance Com-
puter Architecture (HPCA), pages 258–269, Austin, TX, USA, February
2006.

[55] Daniel Nicácio, Alexandro Baldassin, and Guido Araújo. Transaction
Scheduling Using Dynamic Conflict Avoidance. International Journal of
Parallel Programming (IJPP), 41(1):89–110, 2012.

[56] Martin Ohmacht, Amy Wang, Thomas Gooding, Ben J. Nathanson, In-
dira Nair, Geert Janssen, Marcel Schaal, and Burkhard D. Steinmacher-
Burow. IBM Blue Gene/Q memory subsystem with speculative execution
and transactional memory. IBM Journal of Research and Development,
57(1/2):7, 2013.

[57] Matias Payer and Thomas R. Gross. Performance Evaluation of Adaptivity
in Software Transactional Memory. In Intern. Symp. on Performance
Analysis of Systems and Software (ISPASS), pages 165–174, Austin, TX,
USA, April 2011.

[58] Marcio Machado Pereira, J. Nelson Amaral, and Guido Araújo. Measuring
Effective Work to Reward Success in Dynamic Transaction Scheduling. In
Intern. Conf. on Parallel Processing (ICPP), icpp2014loc, 2014.

[59] Martin Pohlack and Stephan Diestelhorst. From Lightweight Hardware
Transactional Memory to Lightweight Lock Elision. In ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT), 2011.

116

[60] P.E. Ross. Why CPU Frequency Stalled. Spectrum, IEEE, 45(4):72–72,
April 2008.

[61] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is
transactional programming actually easier? In PPOPP, pages 47–56,
2010.

[62] Wenjia Ruan, Yujie Liu, and Michael Spear. STAMP need not be consid-
ered harmful. In ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT), 2014.

[63] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg.
McRT-STM: A high performance software transactional memory system
for a multi-core runtime. In Principles and practice of parallel programming,
pages 187–197, New York, NY, USA, January 2006.

[64] William N. Scherer III and Michael L. Scott. Advanced Contention
Management for Dynamic Software Transactional Memory. In Proceedings
of the 24th ACM Symposium on Principles of Distributed Computing, Las
Vegas, NV, Jul 2005.

[65] Martin Schindewolf, Barna Bihari, John Gyllenhaal, Martin Schulz, Amy
Wang, and Wolfgang Karl. What Scientific Applications Can Benefit from
Hardware Transactional Memory? In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 90:1–90:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[66] Nir Shavit and Dan Touitou. Software Transactional Memory. In Pro-
ceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’95, pages 204–213, New York, NY, USA,
1995. ACM.

[67] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible
Decoupled Transactional Memory Support. In International Conference
on Computer Architecture (ISCA), pages 139–150, Beijing, China, June
2008.

[68] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable
transactions with a single atomic instruction. In ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA), pages 275–284, Munich, Germany,
June 2008.

[69] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L.
Scott. A Comprehensive Strategy for Contention Management in Software
Transactional Memory. In Principles and practice of parallel programming,
pages 141–150, Raleigh, NC, USA, February 2009.

[70] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C.
Mowry. A Scalable Approach to Thread-level Speculation. In International
Conference on Computer Architecture (ISCA), pages 1–12, Vancouver, BC,
Canada, June 2000.

[71] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C.
Mowry. The STAMPede Approach to Thread-Level Speculation. ACM
Transactions on Computer Systems (TOCS), 23(3):253–300, 2005.

117

[72] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John Turek.
Multiple Reservations and the Oklahoma Update. IEEE Parallel & Dis-
tributed Technology (PDT), pages 58–71, 1993.

[73] Takayuki Usui, Reimer Behrends, Jacob Evans, and Yannis Smaragdakis.
Adaptive Locks: Combining Transactions and Locks for Efficient Concur-
rency. In PACT, pages 3–14, 2009.

[74] Amy Wang, Matthew Gaudet, Peng Wu, Martin Ohmacht, José Nelson
Amaral, Christopher Barton, Raul Silvera, and Maged M. Michael. Evalu-
ation of Blue Gene/Q Hardware Support for Transactional Memories. In
Parallel Architectures and Compilation Techniques (PACT), Sept 2012.

[75] Amy Wang, Matthew Gaudet, Peng Wu, Martin Ohmacht, José Nelson
Amaral, Christopher Barton, Raul Silvera, and Maged M. Michael. Soft-
ware Support and Evaluation of Hardware Transaction Memory on Blue
Gene/Q. IEEE Transactions on Computers, 99(PrePrints):1, 2013.

[76] Mike Dai Wang, Mihai Burcea, Linghan Li, Sahel Sharifymoghaddam,
Greg Steffan, and Cristiana Amza. Exploring the Performance and Pro-
grammability Design Space of Hardware Transactional Memory. In ACM
SIGPLAN Workshop on Transactional Computing (TRANSACT), 2014.

[77] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar.
Performance evaluation of intel Transactional Synchronization eXtensions
for high-performance computing. In SC, page 19, 2013.

[78] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling
for transactional memory systems. In ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), Munich, Germany, June 2008.

[79] Ferad Zyulkyarov, Srdjan Stipic, Osman S. Unsal, Adrián Cristal, Tim
Harris, Ibrahim Hur, and Mateo Valero. Profiling and Optimizing Trans-
actional Memory Applications. International Journal of Parallel Program-
ming, 40:25–56, February 2012.

118

Appendix A

Software Support and Evaluation
of Hardware Transaction Memory
on Blue Gene/Q

This appendix contains the contents of the paper “Software Support and

Evaluation of Hardware Transaction Memory on Blue Gene/Q”, which is to be

published in the IEEE Journal Transactions On Computers [75].

The contents of this appendix is the result of a collaborative work, and

authorship is shared among Amy Wang, myself, Peng Wu, Martin Ohmacht,

José Nelson Amaral, Christopher Barton, Raul Silvera, and Maged M. Michael.

A.1 Introduction

Transactional memory (TM) was proposed more than twenty years ago as a

hardware mechanism to enable atomic operations on an arbitrary set of memory

locations [39, 72].

The following code snippet is an example of a typical transactional memory

programming interface.

transaction
{

a[b[i]] += c[i];
}

A transaction is a synchronization construct that allows operations inside a

transaction to be executed as one (atomic) operation with respect to operations

119

in other concurrent transactions. The semantics of a transaction can be imple-

mented in several ways. The simplest implementation is to acquire and release

a global lock when entering and exiting a transaction. Such an implementation,

however, can be overly pessimistic in the amount of concurrency allowed. For

instance, if all concurrent transactions in the previous example update different

elements of array a, a global lock implementation would allow only one trans-

action to proceed, while ideally all non-conflicting transactions should be able

to execute at the same time. Transactional memory is such a mechanism to

allow maximal concurrency among non-conflicting transactions. The basic idea

is to allow all transactions to execute speculatively and concurrently. During a

speculative execution, the TM system will monitor and detect conflicts among

memory accesses of all concurrent transactions. Once a conflict is detected, the

TM system has the ability to abort one of the transactions as if the transaction

was never executed and retry the transaction at a later time. In a nutshell, the

ability to speculatively execute and abort a computation and to detect memory

conflicts among transactions is the building block of any TM implementation.

There has been a long history of research exploitation of TM implemen-

tations. Given the high cost of implementing TM in hardware, the research

community early on developed several implementations of software transac-

tional memory (STM) [23,30,63,68] and conducted simulation-based studies

of hardware transactional memory (HTM) [11, 13, 52]. More recently real

HTM implementations start to emerge. An early implementation of HTM was

reported but never distributed commercially [22]. For the HTM by Azul, there

is little public disclosure on the implementation and no performance study

of the TM support [21]. The specification of a hardware extension for TM

in the AMD64 architecture has yet to be released in hardware [20]. Recently

IBM [14,38,43] and Intel [42] disclosed that they are releasing implementations

of HTM.

This paper studies and evaluates BG/Q HTM, one of the first commercially

available HTM implementations today. We make three important contributions.

First, it provides a detailed description of the BG/Q HTM implementation

(Section A.3) and an in-depth analysis of its major sources of overheads (Sec-

120

tion A.6). One large pain point of STM is the high overhead associated with

monitoring memory accesses and maintaining speculative state inside a trans-

action [16]. While it is widely expected that transactional execution overheads

can be significantly reduced in an HTM implementation, a surprising finding

of this study is that the BG/Q HTM overhead, while much smaller than that

of STM’s, is still non-trivial. Some of the overheads are the result of hardware

design choices. For instance, in order to allow transactions with a large memory

footprint, the BG/Q HTM is implemented mainly in the L2 cache. To simplify

the design of the in-core L1 without breaking transactional memory functional-

ity, the L1 cache is either bypassed during a transactional execution or flushed

when entering a transaction. The result is that a transaction executing on

BG/Q HTM may suffer a loss of locality in the L1 cache.

Second, the paper presents a thorough evaluation of two TM benchmark

suites — STAMP [51] and RMS-TM [45] — running on BG/Q TM (Sections A.5

and A.6). The performance study aims at answering the question of how

effective BG/Q TM is to improve performance with respect to sequential

execution as well as alternative concurrent implementations using locks and

TinySTM [29]. The performance study leads to a division of typical concurrent

applications into three categories. 1) There are applications that use medium-

to-large transactions but that often execute successfully in the BG/Q HTM

without many aborts. These applications are suitable for BG/Q HTM and can

achieve good performance with little additional programming efforts. 2) There

are applications that scale well with conventional locks, therefore should not use

either STM or BG/Q TM because both incur a larger single-thread overhead

than a lock-based implementation. 3) Some applications use small transactions

that usually do not result in memory conflicts. These small transactions appear

frequently, for instance, by residing inside a loop, and thus constitute the

critical path of an application. Such applications may be better suited for STM

because the single-thread overhead of an STM system may be compensated by

the concurrency that the STM enables.

Third, the paper describes how the HTM support in BG/Q can be com-

plemented by the software stack — which includes the kernel, the compiler,

121

and the runtime system — to deliver the simplicity of a TM programming

model (Sections A.2 and A.4). The HTM support in BG/Q is best effort in

nature because not all computation may execute successfully in a hardware

transaction. This limitation is mainly due to the boundedness of the hardware

implementation, such as having a limited capacity to maintain speculative state

during transactional execution. The TM software stack provides a fall-back

mechanism to execute the transaction non-speculatively under a special mode

called the irrevocable mode.

In terms of programmability, HTM is a clear win over STM. A TM program-

ming model based on an STM implementation often requires the programmer

to annotate codes and/or instrument memory references that may execute

inside a transaction. The BG/Q TM programming model, on the other hand,

is much simpler and requires only a block annotation of transactional codes.

It is also worth pointing out the performance-productivity aspect of different

TM implementations because there is a noticeable difference in the effort re-

quired to achieve good performance using STM versus HTM. For example, the

STM version of the STAMP benchmark is manually instrumented to minimize

the read- and write-set maintained by the STM in order to achieve a good

performance, whereas the BG/Q TM version of these benchmarks is not.1

The rest of the paper is organized as follows. Sections A.2, A.3, and A.4

describe the TM programming model, BG/Q HTM implementation, and the

software stack that supports the TM programming model, respectively. Sec-

tion A.5 describes the evaluation methodology and the benchmarks. The

performance study of BG/Q TM is presented in Section A.6 (comparison

between the short- and long-running modes), Section A.7 (single-thread perfor-

mance), and Section A.8 (scalability). A discussion of related work appears in

Section A.9, and we conclude in Section A.10.

122

for (i = start; i < stop; i++) {
index = common_findNearestPoint(feature[i],

nfeatures, clusters, nclusters);
if (membership[i] != index) delta += 1.0;
membership[i] = index;

#pragma tm_atomic
{
new_centers_len[index]++;
for (j = 0; j < nfeatures; j++) {

new_centers[index][j] += feature[i][j];
}

}
}

Figure A.1: The main transaction of STAMP/kmeans benchmark using the
BG/Q TM annotation.

A.2 Transactional Memory Programming Model

BG/Q provides a simple programming model based on the abstraction of

transaction. The semantics of a transaction is similar to that of a critical

section or a relaxed transaction as defined in [35]. In a concurrent execution,

transactions appear to execute sequentially in some total order with respect to

each other. Specifically, operations inside a transaction appear not to interleave

with any operation from other concurrent transactions. Two transactions

are nested if one transaction is entirely inside the other transaction. Nested

transactions are flattened : the entire nest commits at the end of the outermost

level of nesting. A failed nested transaction rolls back to the beginning of the

outermost nesting level.2 BG/Q TM, as a programming model, is privatization-

safe, but not obstruction free because when a transaction fails to execute as a

hardware transaction, it will be executed non-speculatively in the irrevocable

mode, which may block the progress of other transactions (see Section A.4.3).

The BG/Q TM programming model syntactically defines a transaction

as a single-entry and single-exit code block using the annotation #pragma

tm_atomic. The specification of transactional code region is orthogonal to
1Note that BG/Q TM provides no mechanism to selectively allow non speculative memory

accesses in a transactional execution.
2The nesting support is implemented purely in software in the TM runtime.

123

the threading model, such as the use of OpenMP or pthreads. Any standard

language construct is allowed in a transaction, and the computation inside

a transaction can be arbitrarily large and complex. The only constraint is

that the boundary of a transaction must be statically determinable in order

for the compiler to insert proper codes to end a transaction. As a result,

certain unstructured control-flow constructs that may exit a transactional block

may result in a compile- or run-time error. Similarly, exceptions thrown by a

transaction are unsupported.

Figure A.1 shows a critical section from a STAMP benchmark expressed in

the BG/Q TM programming interface. Note the simplicity of this programming

interface. In contrast, programming models based on STM implementations

require more code annotations for the compiler and, to achieve good perfor-

mance, often require careful manual instrumentation of memory accesses inside

transactions.

A.3 Hardware Transactional Memory Implemen-
tation in BG/Q

In BG/Q each compute chip has 16 processor cores and each core can run

four hardware Simultaneous Multi-Threaded (SMT) threads. A core has a

dedicated 16K-byte L1 cache that is 8-way set-associative with a cache line size

of 64 bytes and a 2K-byte prefetching buffer. All 16 cores share a 32M-byte L2

cache with a cache line size of 128 bytes.

BG/Q provides the following hardware mechanisms to support transactional

execution:

• Buffering of speculative state. Stores made during a transactional

execution form the speculative state. In BG/Q, transactional speculative

state is buffered in the L2 cache and is only made visible (atomically) to

other threads after a transaction commits.

• Conflict detection. During a transactional execution, the hardware

detects read-write, write-read, or write-write conflicts among concurrent

124

transactions and conflicts resulted from a transactional access followed by

a non-transactional write to the same line. When a conflict is detected,

the hardware sends interrupts to threads involved in the conflict that

execute transactions. A special conflict register is flagged to record various

hardware events that cause a transaction to fail.

The above hardware support is used to provide both ordered and unordered

memory transactions on BG/Q. The former is also known as thread-level

speculation (TLS) [70]. Since the BG/Q support for TLS is beyond the

scope of this paper, the rest of the paper focuses exclusively on the unordered

transactional-memory support of BG/Q.

A.3.1 Hardware Support for Transactional Execution in
L2

BG/Q’s hardware support for transactional execution is implemented primarily

in the L2 cache, which serves as the point of coherence. The L2 cache is divided

into 16 slices, where each slice is 16-way set-associative. To buffer speculative

state, the L2 cache can store multiple versions of the same physical memory

line. Each version occupies a different L2 way.

Upon a transactional write, the L2 allocates a new way in the corresponding

set for the write. A value stored by a transactional write is private to the

thread until either it is made visible to other threads when the transaction

commits or it is discarded when the transaction is aborted.

For each access, the L2 directory records whether it is read or written and

whether it is speculative. For speculative accesses, the L2 directory also tracks

which thread has read or written the line by recording a unique ID, called

the spec-ID, associated with the transaction. This tracking provides the basic

bookkeeping to detect conflicts among transactions and between transactional

and non-transactional accesses.

The commit of a transaction is done by the hardware in two phases. First a

central speculation control unit notifies all L2 slices its intention to commit a

spec-ID and waits for responses. Slices that acknowledge the feasibility of a

125

commit enter a fail-prevention state that disallows any action that may disrupt

the on-going commit. After collecting all responses, the central unit notifies all

slices whether the commit is successful or not. The commit latency is defined

by the round-trip latency from the cores to the central speculation control unit,

which is about 100 cycles and can be fully pipelined, and the duration of the

two-phase commit, which is about 18 cycles.

At the hardware level, an abort has practically no overhead because it requires

the issuing of a single store to invalidate the spec-ID. However, the detection of

a conflict, the invocation of the software handler, and the recycling of spec-IDs

do have a cost. Moreover, conflicts detected by the L2 slices are reported to

the cores as they occur, setting a flag in a core accessible register. This register

may be polled by the software during lazy conflict detection, which takes about

30 cycles.

BG/Q provides 128 spec-IDs to distinguish memory accesses made by

concurrent transactions. Each new transaction, including retrying transactions,

needs to apply for a spec-ID when it starts. If the system runs out of available

spec-IDs, the start of the transaction is blocked until a spec-ID becomes

available. When a spec-ID is invalidated, it is still stored in the L2 slices’

directories and needs to be removed before it can be re-used. Invalid spec-IDs

are removed whenever a load or store accesses the set that contains the spec-ID.

An automatic background scrub accesses sets at a programmable rate — with

a minimum of 12 cycles between set visits — to reclaim invalid spec-IDs.At

predetermined intervals, the L2 cache examines all cache lines and checks

whether they are associated with spec-IDs from transactions that are either

aborted or committed. After all lines associated with a spec-ID are either

marked as invalid or merged with the non-speculative state (i.e., committed),

the spec-ID is reclaimed and made available again. This reclamation process

is called spec-ID scrubbing. The interval between two starts of the scrubbing

process is the scrubbing interval. The default scrubbing interval is 132 cycles

but can be altered by the runtime via a system call. Note that setting the

scrub interval too high may lead to the blocking of new transactions, while

setting it too low may cause more interference to normal operations of the L2

126

cache.

The buffering of speculative state in the L2 requires cooperation from

components of the memory subsystem that are closer to the processor pipeline

than the L2, namely, the L1 cache and the L1 prefetcher (L1P).3 In BG/Q

there is little hardware modification to support transactional execution in the

L1 because it uses a pre-existing core design. As such, BG/Q supports two

transactional execution modes for proper interaction between the L1, the L1P,

and the L2, each with a different performance consideration. From herein

L1 refers to both L1 and L1P unless otherwise stated. The main difference

between the two modes is in how the L1 cache keeps a transactional write

invisible to other threads that share the same L1.

• Short-running mode (via L1-bypass). In this mode, when a trans-

action stores a speculative value, the core evicts the line from the L1.

Subsequent loads from the same thread have to retrieve the value from

that point on from L2. As the L2 stores multiple values for the same

address, it is able to return the thread-specific data along with a flag

that instructs the core to place the data directly into the register of the

requesting thread, without storing the line in the L1 cache. In addition,

for any transactional load served from the L1, the L2 is notified of the

load via an L1 notification. The notification from L1 to L2 goes out

through the store queue.

• Long-running mode (via TLB aliasing). In this mode, speculative

state can be kept in the L1 cache. The L1 cache can store up to 5 versions,

4 transactional ones for the 4 SMT threads and a non-transactional one.

To achieve this, the software creates an illusion of versioned address space

via Translation Lookaside Buffer (TLB) aliasing. The TLB translates

virtual into physical memory addresses. The illusion created allows a

single virtual address to be translated to multiple physical addresses at

the L1 level. For each memory reference issued by a transaction, some

bits of the physical address in the TLB are used to create an aliased
3Prefetched data may evict speculative state from L2 leading to unnecessary aborts.

127

physical address by the memory management unit. Therefore, the same

virtual address may be translated to four different physical addresses for

each of the four threads that share the same L1 cache. However, when

the load or store exits the core, the bits in the physical address that are

used to create the alias illusion are masked out because the L2 maintains

the multi-version through the bookkeeping of spec-IDs. The L1 cache is

invalidated upon entering a transaction. Such invalidation makes all first

transactional accesses to a memory location visible to the L2 as an L1

load miss.

The short- and long-running modes are designed to exploit different locality

patterns. The long-running mode is the default running mode, but one can

specify an environment variable to enable the short-running mode before

starting an application. The main drawback of the short-running mode is

that it nullifies the benefit of the L1 cache for read-after-write access patterns

within a transaction. Thus it is best suited for short-running transactions with

few memory accesses. The long-running mode, on the other hand, preserves

the locality within a transaction. However, by invalidating L1 at the start of

a transaction, it prevents reuse between codes that run before entering the

transaction, and codes that run within the transaction, or after the transaction

ends. Thus, this mode is best suited for long-running transactions with plenty

of intra-transactional locality.

A.3.2 Causes of Transactional Execution Failures

BG/Q supports bounded and best-effort transactional execution. A hardware

transaction may fail in the following scenarios:

• Transactional conflicts are detected by the hardware at the L2 cache

level as described earlier. The conflict-detection granularity is the min-

imum distance between two memory accesses distinguishable by the

conflict detection system. That is, accesses closer than the granularity

may be flagged as a conflict even when there is no actual overlap. In the

short-running mode, conflicts are detected at a granularity of 8 bytes if no

128

more than two threads access the same cache line, or 64 bytes otherwise.

In the long-running mode the granularity is 64 bytes and can degrade

depending on the amount of prefetching done by a speculative thread.

• Capacity overflow causes a transaction to fail when the L2 cache

cannot allocate a new way for a speculative store. By default, the L2

guarantees 10 of its 16 ways to be used for speculative storage without an

eviction.4 Therefore, up to 20M-bytes (32M*10/16) of speculative state

can be stored in the L2. A set may contain more than 10 speculative

ways if speculative ways have not been evicted by the least-recently-used

replacement policy. In practice, capacity failures may occur at a much

smaller speculative-state footprint, for instance, when the number of

speculative stores mapped to the same cache set exceeds the number of

ways available in the set.

• Jail mode violation (JMV) occurs when a transaction performs irre-

vocable actions, that is, operations whose side-effects cannot be reversed,

such as writes to I/O-device address space. Irrevocable actions are de-

tected by the kernel under a special mode called the jail mode and lead

to a JMV interrupt to the owner thread of the event.

A.4 Software Support for TM Programming Model

While a computation may fail in a hardware transactional execution in various

ways, a transaction, as defined by the programming model, is guaranteed to

eventually succeed. The TM software stack is developed to bridge the gap

between the TM programming model and the hardware TM implementation.

The software stack includes the TM run-time system, extensions to the kernel,

and the compiler.

Figure A.2 illustrates the main state transition flow of the TM software

stack. Register check-pointing is a necessary step to restore register state

during a transaction rollback. Since BG/Q does not support hardware register
4This default can be changed but it is advisable to leave a reasonable number of ways for

other threads using this shared cache in a non-speculative way.

129

Register	
 Context	

Save	
 &	
 Restore	

(compiler	
 generated	
 code)	

Transac9on	

Begin	

(TM	
 run9me	
 code)	

Transac9on	

Commit	

(TM	
 run9me	
 code)	

Transac9on	

Execu9on	

(compiler	
 generated	
 code)	

Token	
 Acquisi9on	

(TM	
 run9me	
 code)	

Conflict	

Arbitra9on/

JMV	
 Detec9on	

(Kernel	
 code)	

Conflict	

Detec9on	

(hardware)	

Abort	

Context	
 and	
 Priority	

JMV,	
 Max	
 Rollbacks	

Reached	

Commit	
 Failed,	
 Abort	
 Commit	

Succeeded	

Buffer	
 Overflow	

Conflict	
 Interrupts	

a	

b	

e	

c	

f	

d	
 g	

Figure A.2: Transactional Memory Execution Overview.

check-pointing, this functionality is implemented in software as Step a of

Figure A.2.

The task of determining which other registers require saving and restoring

is left to the compiler. The compiler uses live-range analysis to determine the

set of registers that are modified inside a transaction and remain live after the

transaction commits, and generates codes to check-point these registers.

A.4.1 Managing Transaction Abort and Retry

The TM runtime activates a hardware transactional execution by writing to

a memory-mapped I/O location. When a transaction is started, the current

time is recorded through a read of the timebase register. This recorded time is

then used by the kernel as a priority value during conflict resolution. When

the execution reaches the end of the transaction, it enters the TM runtime

routine that handles transaction commit in Step d . The TM runtime attempts

to commit a transaction. If the commit fails, the transaction is invalidated

130

(by invalidating its spec-ID) and retried at a later time. Specifically, if a

transaction TA fails to commit due to a conflict with another transaction TB,

the runtime invalidates the spec-ID associated with TA, by executing a store

to the status control register and a store to the conflict register — both in the

central speculation control unit5, causing the hardware to clear the conflict

register of TB so that TB now has a chance to commit.

For transactional failures caused by memory conflicts, the runtime can

configure the hardware to trigger a conflict interrupt for eager conflict detection

as shown in Step g . Under the eager detection scheme, once the hardware

triggers an interrupt, the interrupt handler performs conflict arbitration by

comparing the starting time of the conflicting transactions and favours the

survival of an older transaction. Alternatively, transactional conflicts can be

detected lazily when the execution reaches the end of a transaction. Lazy

detection is achieved by suppressing interrupts caused by conflicts with other

transactions and by relying on the runtime to check the status of the conflict

register before committing a transaction. The lazy conflict detection scheme

cannot suppress interrupts caused by conflicts with non-transactional accesses.

Such interrupts are necessary to ensure the strong-isolation guarantee of BG/Q

HTM so that a transaction will not observe any inconsistent state. By default,

the TM runtime uses the eager conflict detection scheme.

For transactional failures caused by capacity overflow, the hardware imme-

diately aborts the transaction and triggers an interrupt. A failed transaction

due to capacity overflow is retried in the same way as a failed transaction due

to conflicts because capacity overflow may also be a transient failure.

For transaction failures caused by JMV, the kernel immediately aborts the

current transaction and invokes the restart handler. The handler restores the

appropriate context, transfers the execution back to the start of the failing

transaction, and executes the transaction in the irrevocable mode.
5These two stores are fully pipelined and the core does not need to wait for their

completion.

131

A.4.2 Sandboxing of Speculative Execution

Since transactional execution is speculative by nature, critical system resources

must be protected from being corrupted by a transaction that is later aborted.

BG/Q uses a sandbox called the jail mode to prevent speculative transactions

from performing irrevocable actions. The jail mode is entered and exited via

system calls during the start and commit/abort of a transaction. There are two

forms of irrevocable actions: writes to protected address space and system calls.

Under the jail mode, protected address space such as the memory-mapped I/O

space is indicated in the TLB. Any access to protected TLB entries as well as

system calls under the jail mode generate an access-violation exception called

Jail-Mode Violation (JMV). This is shown as Step f in Figure A.2.

The kernel also provides sandboxing during interrupt handling. The in-

terrupt handler always checks whether the thread triggering an interrupt is

speculative or not. System-level side effects during a transactional execution

— such as TLB misses, divide-by-zero and signals triggered by program fault

— cause the interrupt handler to abort the transaction and invoke the restart

handler.

A.4.3 Ensuring Forward Progress via Irrevocable Mode

The TM software stack ensures that a transaction eventually succeeds. Such

guarantee is provided by judiciously retrying failed transactions in a special

mode called the irrevocable mode. Under the irrevocable mode, a transaction

executes non-speculatively and can no longer be rolled back. To execute in the

irrevocable mode, a thread must acquire a single lock called the irrevocable

token that is associated with all tm_atomic blocks in the program. Token

acquisition, as shown in Step e , is implemented using BG/Q’s fast L2 atomic

operations. Transactions executing under the irrevocable mode are essentially

serialized by a single lock and behave like unnamed critical sections. Interference

between the irrevocable token and user-level locking may cause deadlock. In

some cases, however, certain degree of concurrency can be allowed between a

speculative transaction and an irrevocable transaction. Such concurrency is

132

possible because speculative transactions acquire the irrevocable token at the

end of the transaction, whereas irrevocable transactions acquire the irrevocable

token at the beginning of the transaction. For instance, if a speculative

transaction TA reads the token after a concurrent irrevocable transaction TB

releases the token, both TA and TB can commit successfully while overlapping

much of their execution.

A.4.4 Runtime Adaptation

How to retry a transaction can have a significant impact on BG/Q TM perfor-

mance. Unlike STM systems that have almost unlimited resources, too many

immediate retries can lead to serious resource contention for BG/Q TM such

as the depletion of the number of available spec-IDs.

To address this issue, the runtime employs a simple adaption scheme: it

retries a failed transaction a fixed number of times before switching to the

irrevocable mode. After the completion of a transaction in the irrevocable

mode, the runtime computes a metric called the serialization ratio, which is

the percentage of total transactions executed in the irrevocable mode, for the

executing thread. If the serialization ratio is above a threshold, the runtime

records this transaction into a hash table that tracks problematic transactions.

Once a transaction is entered into the hash table, the next time the transaction

fails, it will be retried immediately in the irrevocable mode. This scheme allows

a problematic transaction to have a single rollback. The amount of time that a

transaction remains in the hash table is controlled via a runtime parameter.

133

Suite Benchmark Description Running Op-
tions

Relative critical

section size
STAMP bayes Machine learn-

ing. Learns a
Bayesian net.

-v32 -r4096 -
n10 -p40 -i2 -e8
-s1

100%

genome Genomic
sequencing

-g16384 -s64 -
n1677721

99.7%

intruder Network secu-
rity simulation

-a10 -l128
-n262144 -s1

66.6%

kmeans (low) Clustering -m40 -n40
-t0.00001 -i
⟨input⟩

2.8%

kmeans (high) Clustering -m15 -n15
-t0.00001 -i
⟨input⟩

5.06%

labyrinth Maze solver -i
inputs/random-
x512-y512-z7-
n512.txt

100%

ssca2 Kernel 1 from
SSCA2 in
HPCS [5]

-s20 -i1.0 -u1.0
-l3 -p3

16.6%

vacation (low) Simulates
travel reserva-
tions

-n2 -q90 -u98
-r1048576
-t4194304

94.6%

vacation (high) Simulates
travel reserva-
tions

-n4 -q60 -u90
-r1048576
-t4194304

95.0%

yada Delauney Mesh
Refinement

-a15 -i inputs/t-
timeu1000000.2

100%

RMS-TM apriori Association
rule mining
algorithm

⟨input⟩ -s
0.0075

0.05%

fluidanimate Hydrodynamics
simulation

⟨threads⟩ 5
in_300K.fluid

NA

hmmcalibrate Calibrates
genome se-
quence profile
model

–num 500 –seed
33 globin.hmm

1.3%

hmmpfam Hidden
Markov Model
Database
search

Pfam_ls_300
7LES_DROME

8.7%

hmmsearch Finds similar
sequences from
a database

globin.hmm
2000_uniprot_sprot.fasta

0.5%

scalparc Decision Tree
Algorithm

F26-A32-
D125K.tab
125000 32 2

0.01%

utilitymine Rule mining al-
gorithm

⟨input⟩
logn1000_binary
0.01

35%

Table A.1: Benchmark Descriptions
134

A.5 Experimental Setup and Benchmarks

This evaluation of the BG/Q TM performance uses two benchmark suites. The

STAMP benchmark suite [51] is the most widely used TM benchmark and has

largely coarse-grain transactions. The RMS-TM benchmark suite consists of 7

real-world applications from the Recognition, Mining, and Synthesis (RMS)

domain [45]. Each benchmark provides the original sequential code and the

parallel codes using different critical-section implementations including pthread

lock, OpenMP critical section, and HTM. For the HTM implementation, the

TM_BEGIN and TM_END macros were replaced by BG/Q TM pragmas. For

the OpenMP critical-section implementation, the macros were replaced by

omp critical pragma. The STM version of the STAMP benchmarks uses

TinySTM 1.0.3 [30] and is manually instrumented to minimize the amount of

tracked state. Table A.1 summarizes the benchmarks and the running options.

All runs use the large input set for the STAMP benchmarks.

All experiments run on a single 16-core, 1.6 GHz, compute node of a

production BG/Q machine. The binaries are compiled by a prototype version

of the IBM XL C/C++ compiler. The study reports the mean of five runs

with an error bar. In the absence of more information, the measurements are

assumed to be normally distributed. Thus, the length of the error bar is four

standard deviations, two above and two below the mean, to approximate 95%

confidence. When reporting the speedups, the baseline is always a sequential,

non-threaded version of the benchmark running with the one thread input.

To build a model of expected speedups for various critical-section imple-

mentations, we evaluate two critical section characteristics of the parallel

benchmarks running in a single-thread execution.

• Relative critical section size. This metric measures the ratio between

the time spent in critical sections and the time spent in parallel regions

during a single-thread execution of the code. Relative critical section size

is an indicator of how much the serialization of critical sections would

limit the concurrency in the parallel execution.

135

1.0E+00	

1.0E+01	

1.0E+02	

1.0E+03	

1.0E+04	

1.0E+05	

1.0E+06	

1.0E+07	

1.0E+08	

1.0E+09	

ba
ye
s	

ge
no
m
e	

in
tru
de
r	

km
ea
ns
_h
ig
h	

km
ea
ns
_l
ow
	

la
by
rin
th
	

ss
ca
	

va
ca
tio
n_
hi
gh
	

va
ca
tio
n_
lo
w
	

ya
da
	

ap
rio
ri	

hm
m
ca
lib
ra
te
	

hm
m
pf
am
	

hm
m
se
ar
ch
	

sc
al
pa
rc
	

ut
ili
ty
m
in
e	

A
bs

ol
ut

e
C

ri
tic

al
 S

ec
tio

n
Si

ze
 (c

yc
le

s)
	

Figure A.3: Average time spent (in cycles) per dynamic instance of critical
sections in the STAMP and RMS-TM benchmark suites.

• Absolute critical section size. This metric measures the average time

spent (in cycles) per dynamic instance of critical sections during a single-

thread execution of the code. The absolute critical section size is an

indicator of the size of a dynamic transaction.

Figure A.3 shows the absolute critical section sizes of both benchmark suites

in a log scale. This metric helps to reason about the transactional footprint of

a benchmark. In general, benchmarks with a larger absolute critical section

size, such as labyrinth, tend to have a larger transactional footprint.

As shown in Table A.1, the relative critical section sizes of the two benchmark

suites differ significantly. While many STAMP benchmarks spend more than

50% of the parallel region in critical sections, all RMS-TM benchmarks, except

utilitymine, spend a tiny fraction of the parallel region in critical sections.

To better understand characteristics of applications running on BG/Q TM,

we instrumented the TM runtime to collect the following statistics:

• Transaction serialization ratio is the percentage of total committed

transactions that are executed in the irrevocable mode. This metric is

136

an indicator of the degree of concurrency in a TM execution.

• Transaction abort ratio is the percentage of total executed transactions

that are aborted. This metric is an indicator of the amount of wasted

computation in a TM execution.

A.6 Long- vs. Short-Running TM Mode

This section focuses on understanding the performance implications of the

short-running (SR) and the long-running (LR) modes of BG/Q TM. It turns

out that choosing the right running mode is an important aspect of performance

tuning for BG/Q TM. Altering the running mode of a BG/Q node involves

a system call that requires the node to be in a certain state. Therefore, the

running mode is only specified via an environment variable at the start of the

program and may not be changed during the execution of the program.

Figure A.4 shows the speedup of BG/Q TM running under the SR and LR

modes over the sequential baseline.

The relative performance between the SR and LR modes corresponds

nicely with the absolute critical section sizes of the benchmarks. For example,

the SR mode performs better than the LR mode for benchmarks ssca2,

fluidanimate, kmeans, and utilitymine. All of those benchmarks use

short-running transactions that are reflected as relatively small absolute critical

section sizes in Figure A.3. Likewise, the LR mode outperforms the SR mode

for the rest of the benchmarks that use relatively long transactions. In fact,

executing a long-running transaction in the SR mode may result in serious

performance degradation from the LR mode as shown in the case of vacation

and genome.

The rest of the section examines three factors that contribute to the perfor-

mance difference between the LR and the SR modes: loss of L1 cache locality,

capacity overflow, and conflict-detection granularity.

137

1 2 4 8 16 32 64
Threads

0
2
4
6
8

10
12
14

A
bs

ol
ut

e
Sp

ee
du

p

genome

1 2 4 8 16 32 64
Threads

0
2
4
6
8

10
12
14
16

A
bs

ol
ut

e
Sp

ee
du

p

vacation-high

1 2 4 8 16 32 64
Threads

0

2

4

6

8

10

12

A
bs

ol
ut

e
Sp

ee
du

p

ssca2

1 2 4 8 16 32 64
Threads

0
2
4
6
8

10
12
14

A
bs

ol
ut

e
Sp

ee
du

p

labyrinth

1 2 4 8 16 32 64
Threads

0
2
4
6
8

10
12
14

A
bs

ol
ut

e
Sp

ee
du

p

kmeans-low

1 2 4 8 16 32 64
Threads

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

A
bs

ol
ut

e
Sp

ee
du

p

kmeans-high

1 2 4 8 16 32 64
Threads

−4
−2

0
2
4
6
8

10

A
bs

ol
ut

e
Sp

ee
du

p

bayes

1 2 4 8 16 32 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

A
bs

ol
ut

e
Sp

ee
du

p

yada

1 2 4 8 16 32 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

A
bs

ol
ut

e
Sp

ee
du

p

intruder

1 2 4 8
Threads

0
1
2
3
4
5
6
7

A
bs

ol
ut

e
Sp

ee
du

p

apriori

1 2 4 8 16 32 64
Threads

0
2
4
6
8

10
12
14
16

A
bs

ol
ut

e
Sp

ee
du

p

fluidanimate

1 2 4 8 16 32 64
Threads

0
5

10
15
20
25
30
35

A
bs

ol
ut

e
Sp

ee
du

p

hmmsearch

1 2 4 8 16 32 64
Threads

0

2

4

6

8

10

12

A
bs

ol
ut

e
Sp

ee
du

p

hmmpfam

1 2 4 8 16 32 64
Threads

0

5

10

15

20

A
bs

ol
ut

e
Sp

ee
du

p

scalparc

1 2 4 8
Threads

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
bs

ol
ut

e
Sp

ee
du

p

utilitymine

1 2 4 8 16 32 64
Threads

�4
�2

0
2
4
6
8

10
A

bs
ol

ut
e

Sp
ee

du
p

bayes

TinySTM
BG/Q Short
BG/Q Long
Locks

Figure A.4: Speedup of different critical section implementations of the STAMP
and RMS-TM benchmark suites over the original sequential version of the
benchmarks (vacation-low results were similar to vacation-high and
hmmcalibrate were similar to hmmsearch — both are omitted).

A.6.1 Loss of cache locality

There are significant differences in L1 cache behaviors under the LR and the

SR modes. When a transaction is executed in the LR mode, the L1 cache

is flushed before starting the transaction. The L1 cache flush destroys any

138

0%	

10%	

20%	

30%	

40%	

50%	

60%	

ba
ye
s	

ge
no
m
e	

hm
m
se
ar
ch
	

la
by
rin
th
	

ca
pa

ci
ty

 o
ve

rfl
ow

 r
at

io
	

1	

2	

4	

8	

16	

32	

64	

Threads	

Figure A.5: LR mode: ratio of total transactions aborted due to capacity
overflow.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

ap
rio
ri	

ba
ye
s	

ge
no
m
e	

hm
m
ca
lib
ra
te
	

hm
m
pf
am
	

hm
m
se
ar
ch
	

in
tru
de
r	

km
ea
ns
_h
ig
h	

km
ea
ns
_l
ow
	

la
by
rin
th
	

sc
al
pa
rc
	

ya
da
	

ca
pa

ci
ty

 o
ve

rfl
ow

 r
at

io
	

1	

2	

4	

8	

16	

32	

64	

Threads	

Figure A.6: SR mode: ratio of total transactions aborted due to capacity
overflow.

139

L1 misses per 100 instructions (thread=1) Instruction path length relative to serial (thread=1)Benchmark
sequential BG/Q Short BG/Q Long omp critical/lock BG/Q Short BGQ Long

bayes 1.0 12.2 0.8 71.5 % 231.7 % 219.3 %
genome 0.5 1.8 0.7 99.9 % 101.0 % 101.3 %
intruder 1.2 2.6 2.1 96.7 % 105.2 % 108.1 %
kmeans_low 0.1 0.3 2.6 101.7 % 104.8 % 106.1 %
kmeans_high 0.2 0.7 3.2 103.8 % 110.6 % 113.5 %
labyrinth 0.9 1.0 1.0 99.5 % 100.2 % 100.2 %
ssca2 3.1 1.8 4.5 122.4 % 175.9 % 193.3 %
vacation_low 1.9 8.1 3.0 89.3 % 92.8 % 93.9 %
vacation_high 2.0 8.5 2.9 89.2 % 91.7 % 92.5 %
yada 0.9 19.9 0.7 73.5 % 74.6 % 74.9 %
apriori 2.4 2.4 2.4 105.6 % 103.3 % 100.2 %
fluidanimate 0.2 0.2 0.2 118.6 % 106.6 % 106.6 %
hmmcalibrate 0.5 0.6 0.5 100.0 % 100.0 % 100.0 %
hmmpfam 1.0 1.9 1.0 100.0 % 100.7 % 100.7 %
hmmsearch 0.5 0.6 0.5 100.0 % 100.0 % 100.0 %
scalparc 0.5 0.5 0.5 101.9 % 102.3 % 99.9 %
utilitymine 2.4 2.1 4.6 174.7 % 141.5 % 145.0 %

Table A.2: Hardware performance monitor stats.

locality between codes executed before and after entering a transaction. For

short-running transactions, the performance penalty of flushing the L1 cache

can be severe, therefore the SR mode is better suited for such transactions.

On the other hand, when a transaction is executed in the SR mode, the

L1 cache is bypassed, which prevents locality of access within a transaction

from benefiting from the L1. For long-running transactions, the performance

penalty of bypassing the L1 cache during transactional execution can be severe,

therefore the LR mode is better suited for such transactions.

Hardware performance counter statistics collected for all the performance

runs validate this explanation. Table A.2 shows the number of L1 misses

per 100 instructions and the instruction-path-length statistics6 of the bench-

marks running under different configurations. As shown in Table A.2, the

LR mode suffers from much fewer L1 misses than the SR mode for all but

ssca2, kmeans, and utilitymine. These three benchmarks all use small

transactions according to the measured absolute critical section sizes. Kmeans

has a significant increase in L1 misses for both the SR and the LR modes over

the sequential baseline. This increase is because kmeans has locality of access

both within and across transactions.

A.6.2 Capacity overflow

Due to hardware implementation differences of the two running modes, the

SR mode triggers significantly more capacity overflows than the LR mode.

Figure A.6 and Figure A.5 show the percentage of total transactional executions

that are aborted due to capacity overflow for the SR and LR modes, respectively.

Benchmarks without any capacity overflow are omitted from the figures.

As shown in Figure A.5, under the LR mode, only two benchmarks,

labyrinth and bayes, experience significant capacity overflow. The ca-

pacity overflow in labyrinth is persistently triggered in one of its two main

transactions that involves the copying of a global grid of 14M bytes. As a re-

sult, 50% of the transactions in labyrinth experience capacity overflow. For
6Instruction path length is measured as the total number of dynamic instructions executed

in the parallel region.

141

0%	

10%	

20%	

30%	

40%	

50%	

60%	

1	

 2	

 4	

 8	

 16	

 32	

 64	

ab
or

t r
at

io
	

Threads	

Genome LR	

Genome SR	

Vacation LR	

Vacation SR	

Figure A.7: The abort ratio of genome and vacation.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

1	

 2	

 4	

 8	

 16	

 32	

 64	

ab
or

t r
at

io
	

Threads	

Kmeans LR	

Kmeans SR	

Hmmcalibrate LR	

Hmmcalibrate SR	

Figure A.8: The abort ratio of kmeans and calibrate.

bayes only 3% of committed transactions trigger capacity overflow. However,

each of the aborted transaction with capacity overflow is retried up to 10 times,

resulting in close to 25% of the transactions in bayes with capacity overflow.

The percentage of executed transactions with capacity overflow in bayes

and labyrinth decreases as the thread count increases. This is because

transactional conflicts become the leading cause for a transaction to abort. An

insignificant amount of capacity overflow occurs in genome, intruder and

yada running with more than 16 threads. This is due to the limited number

of ways in L2 for speculative writes by concurrent threads.

As shown in Figure A.6, the SR mode exhibits significantly more capacity

142

overflow than the LR mode because of hardware implementation issues. Under

the SR mode, the hardware state used to indicate capacity overflow is also used

to indicate another hardware event: a race at the L2 between hit notifications

from the L1 of multiple cores. In such a situation, an abort is triggered

because the hardware cannot determine the precedence between the hits.

This abort occurs because the hardware must establish the ordering amongst

committing transactions. Even though such ordering is not required for TM,

it is implemented as such because the same hardware is also used to support

TLS where such ordering is necessary.

A.6.3 Conflict detection granularity

The SR and the LR modes use different conflict detection granularity that

could result in different number of transactional aborts. For instance, the SR

mode detects conflicts at an 8- or 64-byte granularity depending on the number

of concurrent accesses to the same cache line. The LR mode detects conflicts

at a 64-byte granularity at best.

One would expect that the SR mode with a finer conflict detection granular-

ity would trigger fewer transaction aborts than the LR mode. This is the case

for vacation and genome where the abort ratio (measured as the percentage

of total executed transactions that are later aborted) of the two benchmarks

under the LR mode is several times higher than that of the SR mode. This also

means in this case, it is more prudent to preserve intra-transactional locality

offered by the LR mode, despite of its coarser granularity. Figure A.7 shows

the abort ratio of vacation and genome.

However, for the rest of the benchmarks, the abort ratio of the SR mode

is in fact higher than that of the LR mode, especially on benchmarks using

small transactions such as kmeans and hmmcalibrate. The abort ratio of

the latter two benchmarks is shown in Figure A.8. This may seem counter

intuitive because we expect that, with a finer conflict detection granularity,

the SR mode should reduce the number of false conflicts and consequently

the number of aborts. There are three other factors that may affect the abort

ratio. First, the SR mode may trigger more capacity overflow (as described in

143

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

apr
ior

i	

cal
ibr

ate
	

fluid
ani

mate
	

pfa
m	

sca
lpa

rc	

sea
rch
	

uti
lity

mine
	

Si
ng

le
-th

re
ad

 S
lo

w
do

w
n	

BG/Q SR	

 BG/Q LR	

 Locks	

Figure A.9: Single-thread slowdown of the RMS-TM benchmarks.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

bay
es	

gen
om

e	

int
rud

er	

km
ean

s_l
ow
	

km
ean

s_h
igh
	

lab
yri

nth
	

ssc
a2	

vac
ati

on
_lo

w	

vac
ati

on
_h

igh
	

yad
a	

Si
ng

le
-th

re
ad

 S
lo

w
do

w
n	

BG/Q SR	

 BG/Q LR	

 omp-critical	

 TinySTM	

8.79	

 6.17	

 5.09	

 5.10	

Figure A.10: Single-thread slowdown of the STAMP benchmarks.

Section A.6.2), as is the case for kmeans, hmmcalibrate, hmmpfam, and

scalparc. Second, the SR mode may run slower because of the longer latency

to satisfy read-after-write dependences, resulting in a longer overlapping window

among transactions, thus causing more aborts. Third, runtime adaptation may

affect how many times a transaction is retried, especially for those aborted due

to capacity overflow.

A.7 Single-thread TM Overhead

When parallelizing a program, one needs to be mindful of the overhead intro-

duced by parallelization and synchronization. While this is true for parallel

144

execution, such overhead may also manifest in the single-thread execution of a

parallel code, especially when TM is used for synchronization. The slowdown

caused by a single-thread execution of a parallel code over the execution of

the sequential code is the single-thread overhead. This section studies the

single-thread overhead of BG/Q TM in comparison to those of STM and locks.

Figure A.9 shows the single-thread overhead of the RMS-TM benchmarks.

The single-thread overhead of both BG/Q TM and locks is insignificant except

for pfam running under the SR mode and utilitymine. This is because

the critical sections of the RMS-TM benchmarks are relatively small compared

to the overall parallel regions (as shown in Figure A.3). There is an anomaly in

utilitymine where the lock implementation increases the instruction path

length by more than 70% in a single-thread execution (as shown in Table A.2).

Figure A.10 shows the single-thread overhead of parallel implementations

of the STAMP benchmarks. The single-thread overhead of TinySTM is sig-

nificantly higher than that of other implementations. This is because STM

overhead is usually proportional to the number of memory accesses in transac-

tions and many STAMP benchmarks use large transactions. Interestingly, yada

and bayes, under the lock implementation, experience an improvement in the

single-thread performance because the compiler outlines OpenMP regions into

functions. Function outlining sometimes can result in reduced register pressure

and better code generation. The single-thread speedup of yada running under

the LR mode is the result of a similar code outlining effect.

The rest of this section examines the single-thread overhead of BG/Q TM

in detail. There are three causes to the single-thread overhead in BG/Q TM

due to increase either of L1 cache misses or of instruction path lengths.

A.7.1 Cache performance penalty

The loss of L1 cache locality due to L1 cache flush or bypass is one of the most

dominant source of the BG/Q TM overhead. Table A.2 shows the number

of L1 cache misses per 100 instructions in both running modes of BG/Q TM

relative to that of the sequential baseline.

When running a large transaction in the SR mode, the locality loss is

145

especially severe because there is significant locality within a large transaction.

When the L1 is bypassed this locality of access does not benefit from L1’s

lower latency. For instance, yada, under the SR mode, suffers from 20 times

as many L1 misses as the sequential version does (Table A.2), which in turn

causes a three-fold single-thread slowdown (Figure A.10). The L2 cache and

L1P buffer load latencies are 13 and 5 times higher than the L1 load latency,

respectively.

For not-so-small transactions, the LR mode preserves more locality than

the SR mode. However, there are still non-trivial increases in L1 misses due to

the flush of the L1 cache at the start of a transaction.

A.7.2 Capacity overflow

It is possible to have capacity overflow during a single-thread execution. Among

all the benchmarks evaluated, only bayes and labyrinth experience capacity

overflow in a single-thread execution (Figure A.6 and Figure A.5).

Of the two, labyrinth incurs little single-thread overhead. This is because

capacity overflow happens in consecutive transactions, in which case, the TM

runtime detects a high serialization ratio and is able to retry transactions in

the irrevocable mode immediately with few retries.

On the other hand, bayes suffers a significant single-thread overhead

because capacity overflow is sporadically triggered on 3% of transactions,

leading to a low serialization ratio. As a result, each aborted transaction is

retried 10 times before being executed in the irrevocable mode. These retries

cause more than 2-fold increases in the instruction path length (Table A.2).

There is one more benchmark, hmmpfam, that has non-zero serialization

ratio at a single-thread. But that is caused by JMV rather than by capacity

overflow.

A.7.3 Transaction entry and exit overhead

When starting or committing a transaction, the TM runtime performs the

following tasks: 1) register check pointing, 2) applying for a spec-ID, 3) writing

to the memory-mapped I/O to start or commit a transaction, 4) toggling

146

Serialization ratio (# threads) Abort ratio (# threads)Benchmark
1 2 4 8 16 32 64 1 2 4 8 16 32 64

bayes 2 % 16 % 21 % 24 % 23 % 18 % 18 % 25 % 50 % 59 % 67 % 71 % 76 % 76 %
genome 0 % 0 % 0 % 0 % 1 % 1 % 0 % 0 % 2 % 3 % 8 % 27 % 23 % 16 %
intruder 0 % 0 % 0 % 7 % 19 % 20 % 20 % 0 % 4 % 18 % 57 % 64 % 66 % 66 %
kmeans_low 0 % 0 % 0 % 0 % 1 % 5 % 9 % 0 % 0 % 0 % 4 % 49 % 62 % 64 %
kmeans_high 0 % 0 % 0 % 1 % 6 % 18 % 20 % 0 % 0 % 5 % 38 % 64 % 66 % 67 %
labyrinth 24 % 22 % 14 % 25 % 27 % 27 % 23 % 50 % 55 % 71 % 67 % 69 % 70 % 74 %
ssca2 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
vacation_low 0 % 0 % 0 % 0 % 7 % 13 % 0 % 0 % 15 % 13 % 21 % 57 % 57 % 21 %
vacation_high 0 % 0 % 0 % 0 % 5 % 13 % 0 % 0 % 12 % 11 % 18 % 49 % 53 % 23 %
yada 0 % 3 % 3 % 5 % 17 % 19 % 19 % 0 % 40 % 45 % 51 % 58 % 62 % 62 %
apriori 0 % 3 % 5 % 13 % NA % NA % NA % 0 % 9 % 32 % 51 % NA % NA % NA %
hmmcalibrate 0 % 1 % 3 % 6 % 10 % 17 % 20 % 0 % 6 % 16 % 31 % 38 % 50 % 67 %
hmmpfam 4 % 9 % 16 % 24 % 30 % 27 % 21 % 4 % 27 % 44 % 57 % 65 % 69 % 74 %
hmmsearch 0 % 1 % 1 % 3 % 7 % 15 % 23 % 0 % 8 % 13 % 28 % 37 % 43 % 53 %
fluidanimate NA % 0 % 0 % 0 % 0 % 0 % 0 % NA % 0 % 0 % 0 % 0 % 0 % 0 %
scalparc 0 % 0 % 2 % 11 % 25 % 29 % 29 % 0 % 5 % 40 % 51 % 57 % 60 % 60 %
utilitymine 0 % 0 % 0 % 0 % NA % NA % NA % 0 % 0 % 0 % 1 % NA % NA % NA %

Table A.3: Percentage of irrevocable and aborted transactions in BG/Q TM execution.

kernel sandboxing via system calls, and 5) other runtime bookkeeping. These

operations also contribute to the single-thread TM overhead

To quantify this overhead, we measure the time spent in a transaction that

implements a single atomic update operation. The overhead is in the order of

hundreds of cycles for both BG/Q TM and TinySTM, but less in BG/Q TM.

Specifically, the overhead for BG/Q TM is 44% of that of TinySTM for the SR

mode, and 76% of that of TinySTM for the LR mode. The LR mode incurs a

higher overhead than the SR mode because accesses to internal TM run-time

data structures before and after transactional execution also suffer from L1

misses due to the L1 cache invalidation.

The overhead of entering and exiting transactions is most pronounced in

programs with small and frequent transactions. As shown in Table A.2, the

instruction path length increase in utilitymine, ssca2, and kmeans is

the result of this overhead.

A.8 Scalability

This section examines the scalability of different parallel implementations of

the benchmarks using BG/Q TM, locks, and TinySTM. The speedups of these

parallel implementations over the sequential baseline are shown in Figure A.4.

The relative critical section size is a good predictor of the scalability of

certain parallel implementations. Therefore, the rest of the section uses the

following classification of the benchmarks:

• Loosely synchronized. Applications whose relative critical section sizes

are less than 1/64. This category includes all the RMS-TM benchmarks

except for hmmpfam and utilitymine. fluidanimate performs

no synchronization at 1-thread and hence its critical section size is shown

as NA.

• Moderately synchronized. Applications whose relative critical section

sizes are less than 1/3. This category includes kmeans, ssca2, and

hmmpfam.

148

• Heavily synchronized. Applications whose relative critical section sizes

are more than 1/3. This category includes all the STAMP benchmarks

except for ssca2 and kmeans.

A.8.1 Locks

The relative critical section size is a good indicator of the scalability of the

lock implementation of a parallel code. For instance, loosely synchronized

applications are expected to scale well using locks. As shown in Figure A.4, all

applications in the loosely synchronized category scale to 64 threads except for

scalparc that scales up to 32 threads.

On the other hand, heavily synchronized applications exhibit no scalability

using locks except for intruder because all but intruder have a relative

critical section size of close to 100%. In contrast, intruder has a relative

critical section size of 66% and is able to scale beyond eight threads but only

reaches a speedup of 2.5 times.

Moderately synchronized applications start with good scalability until

reaching a plateau. The thread count at the point where the plateau is reached

corresponds roughly to the inverse of the relative critical section size of the

application. One exception is utilitymine, which scales up to 8 threads

despite having a relative critical section size of 35%.

A.8.2 BG/Q TM

The classification according to the amount of synchronized execution provides

a model to predict where BG/Q TM is likely to show benefits over conventional

locking. For instance, BG/Q TM is unlikely to outperform locks for loosely

synchronized benchmarks, but may improve over locks for moderately or heavily

synchronized benchmarks, provided that BG/Q TM does not suffer from other

serialization bottlenecks.

To quantify the amount of serialization in a TM execution, Table A.3 shows

the serialization ratio and the abort ratio (defined in Section A.5) computed

from statistics collected by the TM runtime. These ratios are determined

by the amount of optimistic concurrency inherent in the program, hardware

149

conflict detection granularity, and the retry adaptation of the TM runtime.

Sometimes the abort ratio decreases with higher number of threads — as shown

in Table A.3 for labyrinth and vacation — because aborts caused by

conflicts are highly dependent on the start and commit timing for the various

transactions. Therefore, changing the number of threads may change this ratio

in unexpected ways. Our runtime adaptation scheme usually limits the number

of retries for failed transactions. Thus, its effects are generally to lower the

abort ratio at the expense of increasing the serialization ratio. There are two

groups of applications that scale well under BGQ TM:

• Good scaling due to loose synchronization: apriori, hmmcalibrate,

and hmmsearch scale fine under lock and TM implementations. All

three are loosely synchronized, serialization of critical sections is not a

scalability bottleneck and transaction retries incur negligible overheads.

Having a certain amount of transaction aborts, or irrevocable execution,

does not necessarily limit scalability. For instance, hmmcalibrate and

hmmsearch exhibit significant serialization ratio (up to 23%) and abort

ratio (up to 67%) at high thread counts.

• Good scaling via effective HTM: genome, vacation, scalparc,

and utilitymine exhibit a good scalability and a low serialization ra-

tio7. Both genome and vacation are heavily synchronized leading the

lock implementation to completely serialize and the TM implementation

scales much better. Performance boosts beyond 16 threads come from

SMT threads multiplexing on the processor pipeline and from hiding

in-order processor stalls.

The rest of the applications all exhibit various scaling bottlenecks that

prevent them from scaling to high thread counts under BG/Q TM:

• Spec-ID bottleneck. Despite zero abort and serialization ratios,

ssca2 and fluidanimate scale only up to 4 and 16 threads, respec-

tively. Both benchmarks use short and frequent transactions leading
7 utilitymine and apriori do not have inputs for 16-64 threads and hence NA’s

are shown in Table A.3.

150

1 2 4 8 16 32 64
Threads

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

A
bs

ol
ut

e
Sp

ee
du

p

ssca2

1 2 4 8 16 32 64
Threads

0
1
2
3
4
5
6
7
8

A
bs

ol
ut

e
Sp

ee
du

p

fluidanimate

1 2 4 8 16 32 64
Threads

0

1

2

3

4

5

6

7

8

A
bs

ol
ut

e
Sp

ee
du

p

fluidanimate

6 Scrub
12 Scrub
17 Scrub
33 Scrub
66 Scrub
132 Scrub

Figure A.11: Effect of varying scrub intervals for ssca2and fluidanimate

the system to quickly exhaust spec-IDs. In this case, the start of a

new transaction is blocked until after a spec-ID is recycled. BG/Q TM

has only 128 spec-IDs and they are recycled periodically based on a

pre-determined interval called the scrub interval. Figure A.11 shows a

sensitivity study on the impact of the scrub interval on the performance

of ssca2 and fluidanimate. With the default scrub interval of 132

cycles, ssca2 and fluidanimate run out of spec-IDs beyond 2 and

16 threads respectively. As shown in Figure A.11, the scalability of both

benchmarks improves significantly with a much lower scrub interval.

• Contention bottleneck. For yada, bayes, intruder, kmeans,

and hmmpfam, high serialization ratios at higher thread counts are the

main bottleneck for scalability. Since all 5 benchmarks are moderately

or heavily synchronized, the serialization of critical sections limits the

scalability of the applications. The high variability in the execution time

of bayes is because the termination condition of bayes is sensitive to

the commit order of the transactions.

• Capacity bottleneck. The main transactions of labyrinth are

always executed in the irrevocable mode due to capacity overflow (see

Section A.7.2). As a result, the performance of BG/Q TM is similar to

that of locks and exhibits no scalability.

151

HTM BG/Q Rock Azul zEC12 Haswell POWER
Buffer capacity 20MB 32 lines 16 KB unknown unknown unknown
Speculative buffer L2 store queue L1 Gathering Store

Cache
unknown unknown

Register save/restore no yes no yes yes yes
Unsupported ISA none yes none none (except in

constrained transac-
tions)

yes yes

Conflict detection 8-64B n/a 32B 265B unknown unknown
User-level abort no yes n/a yes yes yes

Table A.4: Basic features of real HTM implementations.

Benchmark Read Write
bayes 26.8 2.1
genome 36.0 0.9
intruder 23.3 1.6
kmeans_low 4.0 13.0
kmeans_high 4.0 13.0
labyrinth 116.3 177.0
ssca2 1.0 2.0
vacation_low 280.6 5.2
vacation_high 389.2 7.7
yada 42.2 10.8

Table A.5: Average read- and write-set size (in words) of STAMP using
TinySTM (1 thread).

A.8.3 TinySTM

This section compares the scalability of TinySTM and BG/Q TM on the

STAMP benchmarks. The strength of BG/Q TM is best demonstrated on

genome, vacation, and kmeans where BG/Q TM has both a steeper and

a longer ascending curve than TinySTM does. For these benchmarks, BG/Q

TM does not suffer from any HTM-specific scaling bottlenecks and benefits

from a much lower single-thread overhead. In addition, the lower overhead of

BG/Q TM likely reduces the window of overlap among concurrent transactions

which in turn may reduce transactional conflicts.

For the rest of benchmarks, BG/Q TM incurs a much lower single-thread

overhead, but TinySTM exhibits a better relative scalability, that is, scalability

with respect to a single-thread TM execution. The better relative scalability

of TinySTM is due to its finer conflict detection granularity (word-level) and

152

the fact that it rarely suffers from capacity overflow and does not have spec-ID

issues.

The good scaling of labyrinth and bayes on TinySTM is the result

of a STM programming style that relies heavily on manual instrumentation.

Table A.5 shows the average read- and write-set size per transaction using

TinySTM. On the only two benchmarks with capacity overflow during a

single-thread BG/Q TM execution, the STM executions incur no single-thread

overhead because instrumented state is aggressively reduced to a tiny fraction

of the actual footprint of the transactions.

A.9 Related Work

Despite many HTM proposals in the literature for hardware support for trans-

actional memory [13,39,49,54,67], only recently real HTM implementations

became available. Besides the earlier Rock processor [25] and Vega Azul sys-

tem [21], now we have Intel Haswell [44], the IBM zEC12 enterprise server [43],

and IBM TM support for the POWER architecture [14]. While all are best-

effort HTMs, their design points differ drastically. Table A.4 compares the key

characteristics of these systems in detail.

Both Rock HTM and Vega from Azul have small speculative buffers, com-

pared to BG/Q’s 20Mbytes of speculative state. Rock imposes many restrictions

on what operations can happen in a transaction excluding function calls, divide,

and exceptions. Rock also restricts the set of registers that functions may

save/restore to enable the use of save/restore instructions that use register

windows [25]. In contrast, in BG/Q TM, the entire instruction set architecture

is supported within a transaction and the compiler saves/restores registers.

The method used to build a software system to offer guarantee of for-

ward progress on top of a best-effort HTM could be an elegant solution to

the requirement that TM programmers provide an alternative code sequence

for transaction rollbacks in Intel’s Transactional Synchronization Extensions

(TSX) [42], and could thus unburden the TM programmer from the need to

reason about hardware limitations [44].

153

The TM system in Azul deals with more expensive transaction entry/exit op-

erations by restricting speculation to contended locks that successfully speculate

most of the time.

A closely related study of HTM on BG/Q corroborates our findings [65].

The implementation of HTM in the IBM zEC12 enterprise server uses the

L1 and a modified MESI cache protocol to store speculative state [43]. In this

machine both L1 and L2 use a write-through policy, thus the complexity of

tracking dirty lines does not exist in this machine. Contrary to the BG/Q

design, the System z HTM support includes the implementation of transaction-

specific instructions. That system also implements more extensive support for

the testing of HTM support and for the debugging of TM code.

A.10 Conclusion

This detailed performance study of one of the first commercially available HTM

systems has some surprising findings. The reduced single-thread overhead

in comparison with STM implementations is still significant. The use of L2

to support TMs is essential to enable a sufficiently large speculative state.

However, for many TM applications recovering the lower latency of L1 for

reuse inside a transaction, through the use of the long-running mode in BG/Q,

is critical to achieve performance. The end-to-end solution presented here

is a programming model that supports the entire ISA and thus delivers the

simplicity promised by TMs.

154

	Introduction
	Transactional Memory
	Software Transactional Memory
	Best-Effort Hardware Transactional Memory

	Performance in TM systems
	Programming Models and Forward Progress
	Programming Models and Forward Progress for Best-effort HTMs
	Non-speculative Serialization and the Serialization Manager
	Serialization-Manager-Driven Performance

	Background
	Race Conditions
	Transactional Memory
	Software Transactional Memory
	Hardware Transactional Memory

	Blue Gene/Q
	Hardware Support
	Software Support

	The Effect of Serialization Management on Performance
	Evaluation Pitfalls
	New Serialization Managers
	Answering the Research Questions
	Experimental Methodology
	Metrics

	Benchmarks
	STAMP
	RMS-TM

	Benchmark Characterization
	Contention
	Capacity Overflow

	The Transactional Event Profiler
	TEP Design and Implementation
	Limitations of the TEP approach
	Probe Effects
	Hardware Limitations

	A Sample of Event Log Analyzers
	Visualizing Event Rates
	Visualizing and Comparing Dynamic Transaction Execution Lengths
	Micro-level analysis and visualization
	Visualizing Parameter Evolution

	Lessons from the TEP

	Explored Serialization Managers
	Max-Retry
	SerializationControl
	Limit, inspired by Karma
	LimitMean and LimitMeanST
	Best-Effort Adaptive Transactional Scheduling (BE-ATS)
	Percentage Of Effective Work (Pew)
	Other Investigated Serialization Managers

	Manager-Independent Policies
	Rollback Delay
	Capacity Serialization

	Serialization Manager Tunings
	Tuning Max-Retry
	Mode Generalizability

	Tuning SerializationControl's Blacklisting Threshold
	Tuning Limit's Per-Transaction Execution-Cycle Budget
	Tuning M in LimitMean and LimitMeanST
	Tuning in BE-ATS
	Tuning PEW's T and
	Tuning, a summary

	Serialization-Manager-Driven Performance Effects
	Performance Instability
	Stable Trends
	Wasted-Work Hypothesis
	Serialization Management and Performance

	Related Work
	HTM Performance Analyses
	Non-Speculative Serialization
	Hardware Systems with Non-speculative Execution
	STM Analogues to Non-speculative Execution

	HTM Serialization Enhancements
	Transactional Profiling

	Study Limitations
	Future Work
	Formalization and Abstraction
	Invasive Serialization Managers
	Hardware Non-speculative Serialization

	Conclusion
	Bibliography
	Software Support and Evaluation of Hardware Transaction Memory on Blue Gene/Q
	Introduction
	Transactional Memory Programming Model
	Hardware Transactional Memory Implementation in BG/Q
	Hardware Support for Transactional Execution in L2
	Causes of Transactional Execution Failures

	Software Support for TM Programming Model
	Managing Transaction Abort and Retry
	Sandboxing of Speculative Execution
	Ensuring Forward Progress via Irrevocable Mode
	Runtime Adaptation

	Experimental Setup and Benchmarks
	Long- vs. Short-Running TM Mode
	Loss of cache locality
	Capacity overflow
	Conflict detection granularity

	Single-thread TM Overhead
	Cache performance penalty
	Capacity overflow
	Transaction entry and exit overhead

	Scalability
	Locks
	BG/Q TM
	TinySTM

	Related Work
	Conclusion

