University of Alberta

Library Release Form

Name of Author: Paul Normand James Berube
Title of Thesis: Aestimo: A Feedback-Directed Optimization Evaluation Tool
Degree: Master of Science

Year this Degree Granted: 2005

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Paul Normand James Berube
10821 33A Avenue NW
Edmonton, AB

Canada, T6J 3C2

Date:

University of Alberta

Aestimo: A FEEDBACK-DIRECTED OPTIMIZATION EVALUATION TOOL

by

Paul Normand James Berube

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2005

University of Alberta

Faculty of Graduate Studies and Resear ch

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and
Research for acceptance, a thesis entitled Aestimo: A Feedback-Directed Optimization Evalua-
tion Tool submitted by Paul Normand James Berube in partial fulfillment of the requirements for
the degree of Master of Science.

Dr. José Nelson Amaral
Supervisor

Dr. Robert Holte

Dr. Bruce Cockburn
External Examiner

Date:

Abstract

Feedback-directed optimization (FDO) is a compiler technique that enhances the ability of a com-
piler to make good optimization decisions. A training run provides the compiler with a profile that
summarizes the run-time behavior of the program. Most studies that use FDO techniques use either
a single input for both training and performance evaluation, or a single input for training and a sin-
gle input for evaluation. However, the run-time behavior of a program is influenced by the data it
is processing. Benchmark creators and compiler designers rely on the assumption that selecting a
“representative” training input will result in effective FDO.

This exploratory study addresses an important open question: How important is the selection of
training data for FDO? Likely, the answer to this question is not constant across all optimizations
that use profile information. How sensitive are individual compiler transformations to the selection
of training data used with FDO? Does training on different inputs result in different optimization
decisions at compile time? Furthermore, do these different decisions result in changes in program
performance?

This thesis introduces Aestimo, a tool developed to quantify the differences between FDO logs
for inlining and i f conversion from the Open Research Compiler (ORC) for SPEC CINT2000
benchmark programs trained on a large number of inputs. Aestimo also compares the performance
of programs trained on different inputs, and the performance of programs compiled with and without
FDO.

Training on different inputs does lead to different optimization decisions and different levels of
program performance in most cases. Training on different inputs results in as much as a 5% differ-
ence in performance with i f conversion, and in as much as a 6% difference in performance with
inlining, on a workload of inputs. Also, evaluating FDO performance on different inputs can lead to
substantially different performance results. Aestimo finds differences in best-case FDO performance
on different inputs for the same program larger than 13% for i f conversion, and larger than 20%
for inlining. Finally, Aestimo reveals that the current i f -conversion heuristics in the ORC always

results in performance degradation for the Itanium 2 processor when FDO is used.

Acknowledgements

I would like to thank my supervisor, Dr. Amaral, for his guidance and assistance during my stud-
ies. Also, several people provided assistance and additional inputs for benchmark programs: Mar-
tin Schoenert, Steve Linton, and Alexander Hulpke for GAP, Robert M. Hyatt for cr af t y, and
David Temperley for par ser . Thanks to Reinhold Weicker and Kaivalya Dixit from SPEC for our
conversations about the procedures and guidelines for selecting the ref and train inputs for SPEC
benchmarks. Also, I am indebted to George Hicks and Henryk Modzelewski for providing me with
access to the Itanium machines in the Monster cluster at the University of British Columbia.

I would also like to thank the members of my examining committee for their insightful questions
regarding my work, and for their suggestions for improving this thesis.

Finally, I want to thank my Mom and Dad for supporting me and putting up with me over the
last two years, and for the last months in particular. I couldn’t have done it without you.

This work was supported by a Post-Graduate Scholarship from the Natural Sciences and Engi-

neering Research Council of Canada (NSERC).

Table of Contents

1 Introduction 1
2 Background 5
2.1 Profiling and Feedback-Directed Optimization 5
2.2 Compiler Infrastructure L 5
22.1 If conversion 6

222 Inliningo 9

3 Experimental Setup 11
31 MEetriCs L 11
3.1.1 Difference 12

3.1.2 Alignment e 13

3.1.3 Differences BetweenLogs L 0. 14

3.2 BenchmarksandInputs 14
3.3 Architectures L e e e e e 20

4 Results 22
4.1 Profile Differences 24
4.1.1 If conversion 25

412 Inliningo 36

4.1.3 Conclusions e 52

4.2 Run-Time Performance 52
421 If conversion 53

422 Inlining e 62

423 Conclusions L e 71

4.3 Resubstitution 71
43.1 If conversion 73

432 Inlining e 79

433 SPECInputs e 91

434 Conclusions. e 92

4.4 Feedback-Directed Optimization 93
441 If conversion 93

442 Inlining L e 99

443 Conclusions e 105

5 Related Work 106
5.1 Input Selection and Benchmarking, 106
5.2 Feedback-Directed Optimization 107
5.3 Compiler-Decision Optimization 108

6 Conclusion 110
6.1 FutureWork 110

6.2 Conclusions e e 111
Bibliography 113
A Metric Values 116

B Alignment vs Performance 129

List of Tables

Nobkrbio~

Rl bl ol ol el i sl i o
Pt e e e et e e e = \D 00 <] O\ R WO DN =

O N WND—O

4.44

Values for the differencemetric oL 12
Workload forbzi p2andgzip 16
Workload for MCF 17
Workload forcrafty 17
Workload forparser 18
Workload for GAP 19
Workload for VPR 20
Total processor time of experiments 24
| f conversion metric scores for bzi p2 on the Itanium 27
| f conversion metric scores for bzi p2 on the Itanium?2 28
| f conversion metric scores for bzi p2 low cut group (cut = 55%) on the Itanium . 28
| f conversion metric scores for bzi p2 high cut group (cut = 55%) on the Itanium 28
| f conversion metric scores for cr af t y on the Itanium 29
| f conversion metric scores for cr af t y on the Itanium?2 29
| f conversion metric scores for GAP on the Itanium 30
| f conversion metric scores for GAP SPEC inputs on the Itanium 30
| f conversion metric scores for GAP snf inputs on the Itanium 31
| f conversion metric scores for GAP on the Itanjium2 31
| f conversion metric scores for gzi p on the Itanium 32
| f conversion metric scores for gzi p on the Itanium?2 33
| f conversion metric scores for MCF on the Itanium 34
| f conversion metric scores for MCF on the Itanjum 2 34
| f conversion metric scores for par ser on the Itanium 35
| f conversion metric scores for par ser onthe Itanium?2 35
| f conversion metric scores for VPR (place) on the Itanium 36
| f conversion metric scores for VPR (place) on the Itanium2 37
| f conversion metric scores for VPR (route) on the Itanium 38
| f conversion metric scores for VPR (route) on the Itanium 2 39
Inlining metric scores for bzi p2 on the Itanium 41
Inlining metric scores for bzi p2 low cut group on the Itanium 41
Inlining metric scores for bzi p2 high cut group on the Itanium 41
Inlining metric scores for bzi p2 on the Itanium?2 42
Inlining metric scores forcrafty onthe Itanium 43
Inlining metric scores for cr afty onthe Itanium2 43
Inlining metric scores for GAP on the Itanium 44
Inlining metric scores for GAP on the Itanium 2 44
Inlining metric scores for gzi p on the Itanium 45
Inlining metric scores for gzi p on the Itanium?2 45
Inlining metric scores for MCF on the Itanium 46
Inlining metric scores for MCF on the Itanium 2 47
Inlining metric scores for par ser on the Itanium 47
Inlining metric scores for par ser onthe Itanium?2 48
Inlining metric scores for VPR (place) on the Itanium 48
Inlining metric scores for VPR (place) on the Itanium2 49
Inlining metric scores for VPR (route) on the Itanium 50
Inlining metric scores for VPR (route) on the Itanium?2 51
Rank of resubstitution binaries fori f conversiononbzip2 80
Rank of resubstitution binaries fori f conversiononcrafty 80
Rank of resubstitution binaries fori f conversionon GAP 80
Rank of resubstitution binaries fori f conversionongzip 81

Rank of resubstitution binaries fori f conversionon MCF 81

4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56

Rank of resubstitution binaries fori f conversionon parser 81

Rank of resubstitution binaries fori f conversionon VPR (place) 82
Rank of resubstitution binaries fori f conversionon VPR (route) 82
Rank of resubstitution binaries for inliningon bzip2 88
Rank of resubstitution binaries for inliningoncrafty 88
Rank of resubstitution binaries for inliningon GAP 89
Rank of resubstitution binaries for inliningongzip 89
Rank of resubstitution binaries for inliningon MCF 89
Rank of resubstitution binaries for inliningon parser 90
Rank of resubstitution binaries for inlining on VPR (place) 90
Rank of resubstitution binaries for inlining on VPR (route) 91

Number of cases where training on SPEC-provided inputs results in best FDO per-
formance 92

List of Figures

N =
—_ =

[SSEUSHN
W =

R bl ol ol i sl o
et e e e et e e e = \O OO0 ~] O\ B WO DD =

O N WND—O

A motivating example for FDO oo oo 2
High-level example of i f conversion 7
Callsites in a simple program L 11
Some possible inlininglogs oo 12
Log files converted to vectorso 12
Overview of AeStimo 23
Compilation process e e 23
| f conversion performed in the logexcerpt 26
| f conversionlogexcerpt 26
Inlining log excerpt 40
Average performance of FDOi f conversion 53
Performance of bzi p2 with i f conversion on the Itanium 54
Performance of bzi p2 withi f conversion on the Itanium2 54
Performance of cr af t y withi f conversion on the Itanium 55
Performance of cr af t y with i f conversion on the Itanium?2 55
Performance of GAP with i f conversion on the Itanium 56
Performance of GAP with i f conversion on the Itanium2 56
Performance of gzi p with i f conversion on the Itanium 57
Performance of gzi p withi f conversion on the Itanium2 57
Performance of MCF with i f conversion on the Itanium 58
Performance of MCF with i f conversion on the Itanium2 58
Performance of par ser withi f conversion on the Itanium 59
Performance of par ser withi f conversion on the Itanium?2 59
Performance of VPR (place) with i f conversion on the Itanium 60
Performance of VPR (place) with i f conversion on the Itanium2 60
Performance of VPR (route) with i f conversion on the Itanium 61
Performance of VPR (route) with i f conversion on the Itanium2 61
Average performance of FDO inlining 62
Performance of bzi p2 with inlining on the Itanium 63
Performance of bzi p2 with inlining on the Itanium?2 63
Performance of cr af t y with inlining on the Itanium 64
Performance of cr af t y with inlining on the Itanium2 64
Performance of GAP with inlining on the Itanium 65
Performance of GAP with inlining on the Itanium?2 65
Performance of gzi p with inlining on the Itanium 66
Performance of gzi p with inlining on the Itanium?2 66
Performance of MCF with inlining on the Itanium 67
Performance of MCF with inlining on the Itanium?2 67
Performance of par ser with inlining on the Itanium 68
Performance of par ser with inlining on the Itanium?2 68
Performance of VPR (place) with inlining on the Itanium 69
Performance of VPR (place) with inlining on the Itanium2 69
Performance of VPR (route) with inlining on the Itanium 70
Performance of VPR (route) with inlining on the Itanium?2 70
Resubstitution fori f conversiononbzip2 73
Resubstitution fori f conversiononcrafty 73
Resubstitution fori f conversionon GAP 74

Resubstitution fori f conversionongzip. 74

4.44 Resubstitution fori f conversionon MCF 75

4.45 Resubstitution fori f conversiononparser 76
4.46 Resubstitution fori f conversionon VPR (place) 77
4.47 Resubstitution fori f conversionon VPR (route) 78
4.48 Resubstitution for inliningonbzip2 83
4.49 Resubstitution for inliningoncrafty 83
4.50 Resubstitution forinliningon GAP Lo 84
4.51 Resubstitution for inliningongzip 84
4.52 Resubstitution for inliningon MCF Lo 85
4.53 Resubstitution for inliningonparser 85
4.54 Resubstitution for inliningon VPR (place) 86
4.55 Resubstitution for inliningon VPR (route) 87
4.56 Static vs. FDO performance fori f conversiononbzip2 93
4.57 Static vs. FDO performance fori f conversiononcrafty 94
4.58 Static vs. FDO performance fori f conversiononGAP 94
4.59 Static vs. FDO performance fori f conversionongzip 95
4.60 Static vs. FDO performance fori f conversionon MCF 95
4.61 Static vs. FDO performance fori f conversiononparser 96
4.62 Static vs. FDO performance fori f conversionon VPR (place) 97
4.63 Static vs. FDO performance fori f conversionon VPR (route) 98
4.64 Static vs. FDO performance for inliningonbzip2 99
4.65 Static vs. FDO performance for inliningoncrafty 100
4.66 Static vs. FDO performance for inliningon GAP 100
4.67 Static vs. FDO performance for inliningongzip 101
4.68 Static vs. FDO performance for inliningon MCF 101
4.69 Static vs. FDO performance for inliningon parser 102
4.70 Static vs. FDO performance for inlining on VPR (place) 103
4.71 Static vs. FDO performance for inlining on VPR (route) 104
A.1 Metric scores fori f conversiononbzip2 117
A.2 Metric scores fori f conversiononcrafty 117
A.3 Metric scores fori f conversionon GAP L L. 118
A4 Metric scores fori f conversionongzip 118
A.5 Metric scores fori f conversionon MCF L oL 119
A.6 Metric scores fori f conversiononparser 120
A.7 Metric scores fori f conversionon VPR(place) 121
A.8 Metric scores fori f conversionon VPR (route) 122
A9 Metric scores forinliningonbzip2 123
A.10 Metric scores forinliningoncrafty 123
A.11 Metric scores forinliningon GAP L. 124
A.12 Metric scores forinliningon gzip 124
A.13 Metric scores forinliningon MCFo oL 125
A.14 Metric scores forinliningon parser 126
A.15 Metric scores for inliningon VPR (place) 127
A.16 Metric scores for inlining on VPR (route) 128
B.1 Alignment vs. performance fori f conversiononbzip2 130
B.2 Alignment vs. performance fori f conversiononcrafty 130
B.3 Alignment vs. performance fori f conversionon GAP 131
B.4 Alignment vs. performance fori f conversionongzip............... 131
B.5 Alignment vs. performance fori f conversionon MCF 132
B.6 Alignment vs. performance fori f conversiononparser 132
B.7 Alignment vs. performance fori f conversionon VPR(place) 133
B.8 Alignment vs. performance fori f conversionon VPR (route) 133
B.9 Alignment vs. performance for inliningonbzi p2 134
B.10 Alignment vs. performance for inliningoncrafty 134
B.11 Alignment vs. performance for inliningon GAP 135
B.12 Alignment vs. performance for inliningongzip 135
B.13 Alignment vs. performance for inliningon MCF 136
B.14 Alignment vs. performance for inliningonparser 136
B.15 Alignment vs. performance for inlining on VPR (place) 137
B.16 Alignment vs. performance for inlining on VPR (route) 137

Chapter 1

| ntroduction

Traditionally, programs are compiled statically, that is, without any information beyond what the
compiler can extract from the source code. When static optimization is used, the compiler must use
heuristics to guess which are the important, frequently executed sections of the code and which are
infrequently or never-executed sections of the code, such as initialization routines and error handlers.
This situation is problematic, as many optimizations attempt to make the frequent case fast, often
at the expense of less-frequently-executed sections of code. Therefore, static optimization must be
conservative in cases where the runtime behavior of the program cannot be confidently predicted at
compile time.

Feedback-directed optimization (FDO), also known as profile-guided optimization, is tradition-
ally a compiler technique that enhances the ability of a compiler to make good optimization de-
cisions [12]. In a very general sense, FDO can be considered to be a spectrum of performance-
enhancing techniques that rely on measurements of run-time program behavior [36]. This spectrum
includes a large variety of methods to enhance program performance, including: a developer manu-
ally tweaking program code, hardware mechanisms such as branch predictors, and run-time program
optimizations such as just-in-time compilation of Java bytecode to native assembly code. However,
this thesis uses a much narrower, traditional definition of FDO.

When traditional FDO is used, several additional steps are required during the compilation pro-
cess. First, the program is compiled with additional instrumentation code to record statistics about
run-time program behavior to a file. Then, this instrumented binary is run on a training input to
generate a file containing run-time program statistics, which is called a profile. Finally, the program
is recompiled. The compiler reads the profile file and replaces its static estimates of program be-
havior with the values recorded in the profile. Usually an internal compiler variable is set to tell
optimizations that profile information has replaced the static estimates.

Because FDO requires multiple compilations of the same program, it is important to distinguish
between a program, which is the algorithm encoded in the source code, and a binary, which is
a particular compiled version of a program. When any of the inputs to the compilation process

are changed (e.g., compiler, command-line parameters, profile information, target architecture, or

dat a = get Dat aBl ock(bl ockNum ;
icrc = integrityCheck(data);
if(icrc == DATAXK) {

/1l ... sonme preparation code ..

processDat a(data, bl ockNunj;

/1 ... some finalization/cleanup code ..
} else {

/1 ... log the error

/1 ... ‘initialize recovery ..

reTry(bl ockNun ;

Figure 1.1: A motivating example for FDO

source code), a different binary is produced. Thus, compiling a program using FDO and training on
one input will result in one binary, but training on a different input will result in a different binary.

Consider the code fragment in Figure 1.1. Statically, a compiler might consider both branches of
thei f equally likely. In that case, the true branch will probably not be optimized if it would reduce
performance on the false branch. Should inlining of pr ocessDat a(dat a, bl ockNun) or
reTry(bl ockNum), or both, be performed? To limit code growth, only a frequently executed
function call should be inlined, but which branch is more frequently executed?

Alternately, some compilers perform additional branch analysis [6]. Since error codes are con-
ventionally represented by negative integers, the test against DATA_OK (which is presumably a non-
negative constant) could be correctly identified as checking for an error condition. In this case, the
compiler assumes that an error is an infrequent exception, and optimizes the true path. If this code is
acquiring data from a reliable source, such as a hard drive or a wired network connection, error rates
would be very low and the false branch would almost never be executed. On the other hand, if the
data comes from an unreliable source, such as a noisy wireless connection, then the false branch may
execute very frequently. By recording statistics during the execution of the program running on real
data, FDO provides more accurate information to the compiler to allow for better code generation in
such cases.

Most studies that use FDO techniques use either a single input for both training and performance
evaluation, or a single input for training and a single input for evaluation [11, 17, 18, 37, 28, 25, 14,
33, 16, 40]. This is not a wise practice because the run-time behavior of a program is influenced
by the data it is processing. Few studies have investigated the impact of the training input used
in FDO on the performance of the resulting binary, either on an individual input or on a workload
of inputs. Instead, both benchmark creators and compiler designers rely on the assumption that
selecting a single “representative” training input will result in effective FDO. The tasks of defining
what representative means and of selecting some input that meets this definition are typically left to
the benchmark creator, who is usually familiar with the program.

There are several problems with this approach. First, most compiler users will likely be less

successful than a benchmark designer at selecting a representative training input when they use
FDO on a non-benchmark program. Second, there are several possible definitions of a representative
input. Is a representative input representative of a typical workload of inputs to the program, or is
it representative of the input that will be used for performance evaluation? In the latter case, should
the training input be distinct from the evaluation input? Should it be a subset of the evaluation input?
Or, should it be a mix of those two options?

While it may seem that one solution is obviously correct, there are competing schools of thought
on the issue [38]. On one side of the issue are those who believe that including any portion of the
evaluation input in the training input represents an unrealistic scenario. A program would rarely
be run on the same data twice, since the results of the first computation could be stored and reused
directly. Including evaluation data in the training input thus provides the compiler with more accu-
rate data than would be available in a production environment, and may exaggerate the performance
benefits of FDO.

On the other hand, some benchmark designers point out that including a portion of the evaluation
data in the training data is an easy way to ensure that the training data is representative of a real
workload. They argue that since a large portion of the evaluation data is not used for training, the
characteristics of that portion of the data could vary substantially from the data used for training.
This would counteract any possible impact of providing the compiler with artificially accurate profile
information. Furthermore, they argue that there are several classes of programs where it is perfectly
reasonable to select a subset of the actual data as the training set in a production environment. Data
is frequently organized as records, which are processed independently. Selecting a sample of records
from the full data set is a natural and easy method to create a representative training data set.

At this time, there are no regulations for the SPEC benchmarks [19] to specify whether training
data should or should not include data from the reference input set. In fact, there are examples of
both situations in the benchmarks used in this study.

Therefore, an important question remains open: How important is the selection of training data
for FDO? It is likely that the answer to this question is not constant across all optimizations that
use profile information. Therefore, a more appropriate question is: How sensitive are individual
compiler transformations to the selection of training data used with FDO?

This large question should be decomposed into more manageable parts. First, does the selection
of training data change the optimization decisions that are made during compilation? For example,
does the selection of a different training input change which callsites are inlined in a program? If the
answer to this question is “no,” then the task is complete: Input selection is irrelevant for feedback-
directed optimization. More likely, however, different optimizations applied to different programs
exhibit varied measures of input selection sensitivity.

Even if different optimization decisions are made, these differences might not be significant.

Thus, an important second question is: Do the differences in optimizations decisions result in dif-

ferent levels of performance? If training on different inputs results in significantly different levels of
performance, then input selection for FDO is an important issue.

These questions will not be easily answered. Furthermore, the answers will likely vary depend-
ing on the selection of compiler and architecture investigated. This thesis reports the results of an

initial exploratory investigation that provides the following contributions:

e Defines two metrics to quantify differences in optimization decisions.

e Introduces an experimental methodology to investigate the impact of input selection on a

single optimization.

e Performs an extensive experimental study using the SPEC CINT2000 benchmarks with a
large number of additional program inputs to investigate the feedback-directedi f conversion
and inlining optimizations in the Open Research Compiler (ORC) for the IA-64 family of

processors.

e Determines that training input selection does impact the optimization decisions made during

FDO compilation.

e Observes that training input selection often has a significant impact on program performance,

both on a workload of inputs and on individual inputs.

e Confirms that FDO has the potential to significantly improve program performance, and de-

termines that this is usually the case with inlining.

e Demonstrates that feedback-directedi f conversion in the ORC usually reduces program per-

formance.

e Confirms that using the same input for both training and evaluation usually leads to the best

performance results.

Chapter 2 provides additional background information about FDO and the ORC infrastructure.
Chapter 3 describes the experimental setup, and defines the metrics used to measure profile differ-
ences. The results of an experimental study are presented in Chapter 4. Related work is discussed

in Chapter 5. Chapter 6 identifies future work and concludes.

Chapter 2

Background

2.1 Profiling and Feedback-Directed Optimization

Feedback-directed optimization uses a program execution profile to determine which portions of
the code are frequently executed and how control flows through the program at run time. This
information is useful to optimize code that contains control flow such as i f statements. On the other
hand, control flow due to loops does not benefit from profile information because loop behavior is
easily predicted at compile time. Moreover, optimizing loop code is virtually always beneficial. In
fact, the Open Research Compiler (ORC), used in this study, includes loop frequency counts in its
profile information but ignores this information when performing loop optimizations.

Ball and Larus show how to place counters to capture the frequency of each branch in a program
with a minimum number or counters [7]. They also show that simply counting branch frequencies
is insufficient to correctly identify the most frequently taken path through a section of code. They
then present an efficient instrumentation technique to capture the frequency of each execution path
through a function [8].

Despite the existence of these profiling techniques, the ORC inserts counters to record the fre-

quencies of every branch in a program. The ORC does not implement path profiling.

2.2 Compiler Infrastructure

The Open Research Compiler (ORC) is an open-source compiler [1]. The principal contributors to
the development of the ORC are Intel and the Chinese Academy of Sciences. The ORC is based
on the code base of SGI's Pro64 compiler [5], which was released as the open-source Open64
compiler [2] in 2001. The ORC focuses on producing high-performance code, and is frequently
used for compiler research. To support this aim, the ORC has a rich profiler to support its FDO

infrastructure that provides, among other things:

e Dynamic instruction counts for each function

e Invocation count of each function

Taken and not-taken frequency counts for each branch

Loop statistics

e Swi t ch- case case frequencies

Cal | andr et ur n frequencies for each callsite

Stride profiles

Value profiles

The IA-64 processor family is the only target for the ORC. Consequently, the ORC combines a
mature code base with state-of-the-art compiler technology tuned for Itanium processors. When a
3-stage FDO compilation process is used, the performance of the ORC 2.1 on the SPEC CINT2000
benchmarks is within 5% of Intel’s ECC 7.0 compiler, and exceeds the performance of GCC 3.1 [4,
3]. This study uses the latest release of the ORC, version 2.1.

This thesis investigates two optimizations that make use of the frequency information provided
by profiling: i f conversion and function inlining. The code base of the ORC is roughly 130MB,
spread across nearly 8500 files and 267 directories. Thus, locating, understanding, and correctly
instrumenting an optimization has the potential to be a very involved task. This task is made more
involved by the scarcity of detailed documentation for the compiler. | f conversion was selected
because (1) it was moderately easily located in the source code, (2) it is contained in a small number
of source files, and (3) it is easily instrumented to output and use the optimization logs required for
the study. Inlining was selected because it is an optimization known to have a significant impact on
performance. Furthermore, inlining provides a natural starting point for the investigation because

the facilities to output and use the inlining log were pre-existing in the ORC.

221 |f conversion

| f conversion is a program transformation that attempts to reduce branch misprediction penal-
ties and hazards that arise in code with control flow. Furthermore, as a side effect of eliminating
branches, i f conversion can increase the amount of Instruction Level Parallelism (ILP) in program
code and allow greater flexibility for instruction scheduling. Both these properties are important for
EPIC architectures such as the Itanium' and the Itanium 2, as discussed in Section 3.3. In addition,
i f conversion can enhance the performance improvements gained by software pipelining loops.

In order to execute i f -converted code, an architecture must support predicated instructions. A
predicate is a special-purpose single-bit register, p0, p1, etc.. Predicates can be set or cleared by the
results of comparisons, or can be calculated from other predicate values. A predicated instruction

is a normal machine instruction, prefaced by a reference to a predicate register. If the bit in that

!Ttanium and Itanium 2 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Ef(j < k) It j.k set p0,p]
— okl - p0: a = 2*k-j
('51 = I% l_<+}: Yes No pl: a = 2%k+]j
} 2%k+1i a = 2*k j e
= + - - - = o |
%Ise g - k—j .l b — j+k pl. b k]
a = 2*k-j; +
b = b +k;
) EECITI
(a) Original code (b) Original CFG (c)I f convertedCFG

Figure 2.1: High-level example of i f conversion

predicate register is on, or the predicate is true, then the results of the instruction are committed;
otherwise the result of any computation is discarded and does not change any state in the machine.

Figure 2.1(a) shows a simple branch. Figure 2.1(b) shows the same branch as a control flow
graph (CFG). A CFG is composed of basic blocks (BBs). A basic block is a single-entry single-exit
sequence of instructions where execution can only start with the first instruction in the sequence.
Moreover, if the first instruction is executed, then every instruction in the BB must be executed in
order. Consequently, the first instruction in a BB must be either the first instruction in a function,
or the target of a branch instruction. Either the last instruction of a BB is a branch or a return
instruction, or the next instruction after the BB is the target of a branch. Every branch is the last
instruction of some BB.

Since i f conversion changes branches into predicate calculations, i f conversion allows BBs to
be merged together. In Figure 2.1(c), the p1 predicate is set to 1 and the pO predicate is set to 0 if
j is less than k. Otherwise, when the result of the test is false, the values assigned to the predicates
are reversed. The instructions on the Yes path are guarded by the p1 predicate, and the instructions
on the No path are guarded by the pO predicate. Then, the instructions from both branches can be
merged into the BB that contained the test before i f conversion. The instructions from the two paths
can be intermingled arbitrarily, and can be scheduled anywhere in the new BB after the instruction
that computes the predicate values.

When the code is not i f -converted, the direction of the branch determines whether the instruc-
tions onthe i f orel se path should be executed. Either set of instructions may enter the execution
pipeline, but not both. If the processor mispredicts the branch, then the wrong instructions will be
fetched and put into the pipeline. Subsequently, the pipeline will be flushed, and execution will
restart with instructions from the correct path. Many branches are easily predicted. For example,
the exit test at the beginning of a loop is only taken once in each loop execution, but is not taken for
every iteration of the loop. However, some branches are inherently difficult to predict [6], [23] (pp.
313-314), and thus benefit most from i f conversion.

On the other hand, if the codeisi f conver t ed, then all the instructions from both sides of the

branch are fetched and enter the execution pipeline. All of these instructions do consume processing
resources, though the expectation is that the processor would otherwise have idle functional units.
In exchange, there is no danger of a branch misprediction since the branch has been eliminated.
Predicates are computed in time to determine which instructions should be committed and which
should be discarded without delaying execution.

When making an i f -conversion decision, the branch is first checked to ensure that i f conver-
sion is legal. Then, the execution times for both the predicated and non-predicated versions of the
code are estimated to determine the profitability of the transformation. These estimates are based on

the following factors:

1. Taken vs. Not-Taken Time: If the code for one side of the branch is much longer than the
other, if-conversion will delay the execution of the shorter path. The execution time for each

path is estimated statically.

2. Resource Use: If i f conversion would lead to stalls due to insufficient processor resources,

it may not be beneficial. Resource use is estimated statically.

3. Branch Probability: The probability that the branch is taken is used to estimate the branch
misprediction cost and to weigh the above characteristics when estimating execution times.
The branch probability is taken from profile information if available, or estimated based on

the type of branch otherwise.

If the average estimated execution time is reduced by i f conversion, the transformation is per-
formed. The transformed region may be part of a path from another branch, and may become part
of a larger predicated region if additional i f conversion is performed.

Hyperblocks are single-entry multiple-exit scheduling regions that rely on i f conversion to
remove control flow within a region. Hyperblocks were introduced by Mahlke [31]. He found,
through simulation, that they could provide on average a 3-fold speedup for a collection of programs
on a hypothetical EPIC processor capable of issuing 4 instructions per cycle and implementing full
support for predicated execution. These simulations provided incentive for the design of hardware
implementations of similar processors, such as the Itanium. However, later studies using the Itanium
revealed that the performance benefits of i f conversion on this architecture are fairly small. In
particular, Choi et al. concluded that the performance benefits of i f conversion due to reduced
branch misprediction for the SPEC CINT2000 benchmarks on the Itanium are upper-bounded at
about 2-3% [13].

The ORC contains algorithms to produce predicated code using either hyperblocks (path-based
predication) or i f conversion (individual branch-based predication). | f conversion is used by de-
fault unless hyperblocks are explicitly selected by a command line option. We expect that the com-
piler designers had good reasons to prefer i f co