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Abstract

Feedback-directed optimization (FDO) is a compiler technique that enhances the ability of a com-
piler to make good optimization decisions. A training run provides the compiler with a profile that
summarizes the run-time behavior of the program. Most studies that use FDO techniques use either
a single input for both training and performance evaluation, or a single input for training and a sin-
gle input for evaluation. However, the run-time behavior of a program is influenced by the data it
is processing. Benchmark creators and compiler designers rely on the assumption that selecting a
“representative” training input will result in effective FDO.

This exploratory study addresses an important open question: How important is the selection of
training data for FDO? Likely, the answer to this question is not constant across all optimizations
that use profile information. How sensitive are individual compiler transformations to the selection
of training data used with FDO? Does training on different inputs result in different optimization
decisions at compile time? Furthermore, do these different decisions result in changes in program
performance?

This thesis introduces Aestimo, a tool developed to quantify the differences between FDO logs
for inlining and i f conversion from the Open Research Compiler (ORC) for SPEC CINT2000
benchmark programs trained on a large number of inputs. Aestimo also compares the performance
of programs trained on different inputs, and the performance of programs compiled with and without
FDO.

Training on different inputs does lead to different optimization decisions and different levels of
program performance in most cases. Training on different inputs results in as much as a 5% differ-
ence in performance with i f conversion, and in as much as a 6% difference in performance with
inlining, on a workload of inputs. Also, evaluating FDO performance on different inputs can lead to
substantially different performance results. Aestimo finds differences in best-case FDO performance
on different inputs for the same program larger than 13% for i f conversion, and larger than 20%
for inlining. Finally, Aestimo reveals that the current i f -conversion heuristics in the ORC always

results in performance degradation for the Itanium 2 processor when FDO is used.
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Chapter 1

| ntroduction

Traditionally, programs are compiled statically, that is, without any information beyond what the
compiler can extract from the source code. When static optimization is used, the compiler must use
heuristics to guess which are the important, frequently executed sections of the code and which are
infrequently or never-executed sections of the code, such as initialization routines and error handlers.
This situation is problematic, as many optimizations attempt to make the frequent case fast, often
at the expense of less-frequently-executed sections of code. Therefore, static optimization must be
conservative in cases where the runtime behavior of the program cannot be confidently predicted at
compile time.

Feedback-directed optimization (FDO), also known as profile-guided optimization, is tradition-
ally a compiler technique that enhances the ability of a compiler to make good optimization de-
cisions [12]. In a very general sense, FDO can be considered to be a spectrum of performance-
enhancing techniques that rely on measurements of run-time program behavior [36]. This spectrum
includes a large variety of methods to enhance program performance, including: a developer manu-
ally tweaking program code, hardware mechanisms such as branch predictors, and run-time program
optimizations such as just-in-time compilation of Java bytecode to native assembly code. However,
this thesis uses a much narrower, traditional definition of FDO.

When traditional FDO is used, several additional steps are required during the compilation pro-
cess. First, the program is compiled with additional instrumentation code to record statistics about
run-time program behavior to a file. Then, this instrumented binary is run on a training input to
generate a file containing run-time program statistics, which is called a profile. Finally, the program
is recompiled. The compiler reads the profile file and replaces its static estimates of program be-
havior with the values recorded in the profile. Usually an internal compiler variable is set to tell
optimizations that profile information has replaced the static estimates.

Because FDO requires multiple compilations of the same program, it is important to distinguish
between a program, which is the algorithm encoded in the source code, and a binary, which is
a particular compiled version of a program. When any of the inputs to the compilation process

are changed (e.g., compiler, command-line parameters, profile information, target architecture, or



dat a = get Dat aBl ock( bl ockNum ;
icrc = integrityCheck(data);
if(icrc == DATAXK) {

/1l ... sonme preparation code ..

processDat a(data, bl ockNunj;

/1 ... some finalization/cleanup code ..
} else {

/1 ... log the error

/1 ... ‘initialize recovery ..

reTry(bl ockNun ;

Figure 1.1: A motivating example for FDO

source code), a different binary is produced. Thus, compiling a program using FDO and training on
one input will result in one binary, but training on a different input will result in a different binary.

Consider the code fragment in Figure 1.1. Statically, a compiler might consider both branches of
thei f equally likely. In that case, the true branch will probably not be optimized if it would reduce
performance on the false branch. Should inlining of pr ocessDat a(dat a, bl ockNun) or
reTry( bl ockNum), or both, be performed? To limit code growth, only a frequently executed
function call should be inlined, but which branch is more frequently executed?

Alternately, some compilers perform additional branch analysis [6]. Since error codes are con-
ventionally represented by negative integers, the test against DATA_OK (which is presumably a non-
negative constant) could be correctly identified as checking for an error condition. In this case, the
compiler assumes that an error is an infrequent exception, and optimizes the true path. If this code is
acquiring data from a reliable source, such as a hard drive or a wired network connection, error rates
would be very low and the false branch would almost never be executed. On the other hand, if the
data comes from an unreliable source, such as a noisy wireless connection, then the false branch may
execute very frequently. By recording statistics during the execution of the program running on real
data, FDO provides more accurate information to the compiler to allow for better code generation in
such cases.

Most studies that use FDO techniques use either a single input for both training and performance
evaluation, or a single input for training and a single input for evaluation [11, 17, 18, 37, 28, 25, 14,
33, 16, 40]. This is not a wise practice because the run-time behavior of a program is influenced
by the data it is processing. Few studies have investigated the impact of the training input used
in FDO on the performance of the resulting binary, either on an individual input or on a workload
of inputs. Instead, both benchmark creators and compiler designers rely on the assumption that
selecting a single “representative” training input will result in effective FDO. The tasks of defining
what representative means and of selecting some input that meets this definition are typically left to
the benchmark creator, who is usually familiar with the program.

There are several problems with this approach. First, most compiler users will likely be less



successful than a benchmark designer at selecting a representative training input when they use
FDO on a non-benchmark program. Second, there are several possible definitions of a representative
input. Is a representative input representative of a typical workload of inputs to the program, or is
it representative of the input that will be used for performance evaluation? In the latter case, should
the training input be distinct from the evaluation input? Should it be a subset of the evaluation input?
Or, should it be a mix of those two options?

While it may seem that one solution is obviously correct, there are competing schools of thought
on the issue [38]. On one side of the issue are those who believe that including any portion of the
evaluation input in the training input represents an unrealistic scenario. A program would rarely
be run on the same data twice, since the results of the first computation could be stored and reused
directly. Including evaluation data in the training input thus provides the compiler with more accu-
rate data than would be available in a production environment, and may exaggerate the performance
benefits of FDO.

On the other hand, some benchmark designers point out that including a portion of the evaluation
data in the training data is an easy way to ensure that the training data is representative of a real
workload. They argue that since a large portion of the evaluation data is not used for training, the
characteristics of that portion of the data could vary substantially from the data used for training.
This would counteract any possible impact of providing the compiler with artificially accurate profile
information. Furthermore, they argue that there are several classes of programs where it is perfectly
reasonable to select a subset of the actual data as the training set in a production environment. Data
is frequently organized as records, which are processed independently. Selecting a sample of records
from the full data set is a natural and easy method to create a representative training data set.

At this time, there are no regulations for the SPEC benchmarks [19] to specify whether training
data should or should not include data from the reference input set. In fact, there are examples of
both situations in the benchmarks used in this study.

Therefore, an important question remains open: How important is the selection of training data
for FDO? It is likely that the answer to this question is not constant across all optimizations that
use profile information. Therefore, a more appropriate question is: How sensitive are individual
compiler transformations to the selection of training data used with FDO?

This large question should be decomposed into more manageable parts. First, does the selection
of training data change the optimization decisions that are made during compilation? For example,
does the selection of a different training input change which callsites are inlined in a program? If the
answer to this question is “no,” then the task is complete: Input selection is irrelevant for feedback-
directed optimization. More likely, however, different optimizations applied to different programs
exhibit varied measures of input selection sensitivity.

Even if different optimization decisions are made, these differences might not be significant.

Thus, an important second question is: Do the differences in optimizations decisions result in dif-



ferent levels of performance? If training on different inputs results in significantly different levels of
performance, then input selection for FDO is an important issue.

These questions will not be easily answered. Furthermore, the answers will likely vary depend-
ing on the selection of compiler and architecture investigated. This thesis reports the results of an

initial exploratory investigation that provides the following contributions:

e Defines two metrics to quantify differences in optimization decisions.

e Introduces an experimental methodology to investigate the impact of input selection on a

single optimization.

e Performs an extensive experimental study using the SPEC CINT2000 benchmarks with a
large number of additional program inputs to investigate the feedback-directedi f conversion
and inlining optimizations in the Open Research Compiler (ORC) for the IA-64 family of

processors.

e Determines that training input selection does impact the optimization decisions made during

FDO compilation.

e Observes that training input selection often has a significant impact on program performance,

both on a workload of inputs and on individual inputs.

e Confirms that FDO has the potential to significantly improve program performance, and de-

termines that this is usually the case with inlining.

e Demonstrates that feedback-directedi f conversion in the ORC usually reduces program per-

formance.

e Confirms that using the same input for both training and evaluation usually leads to the best

performance results.

Chapter 2 provides additional background information about FDO and the ORC infrastructure.
Chapter 3 describes the experimental setup, and defines the metrics used to measure profile differ-
ences. The results of an experimental study are presented in Chapter 4. Related work is discussed

in Chapter 5. Chapter 6 identifies future work and concludes.



Chapter 2

Background

2.1 Profiling and Feedback-Directed Optimization

Feedback-directed optimization uses a program execution profile to determine which portions of
the code are frequently executed and how control flows through the program at run time. This
information is useful to optimize code that contains control flow such as i f statements. On the other
hand, control flow due to loops does not benefit from profile information because loop behavior is
easily predicted at compile time. Moreover, optimizing loop code is virtually always beneficial. In
fact, the Open Research Compiler (ORC), used in this study, includes loop frequency counts in its
profile information but ignores this information when performing loop optimizations.

Ball and Larus show how to place counters to capture the frequency of each branch in a program
with a minimum number or counters [7]. They also show that simply counting branch frequencies
is insufficient to correctly identify the most frequently taken path through a section of code. They
then present an efficient instrumentation technique to capture the frequency of each execution path
through a function [8].

Despite the existence of these profiling techniques, the ORC inserts counters to record the fre-

quencies of every branch in a program. The ORC does not implement path profiling.

2.2 Compiler Infrastructure

The Open Research Compiler (ORC) is an open-source compiler [1]. The principal contributors to
the development of the ORC are Intel and the Chinese Academy of Sciences. The ORC is based
on the code base of SGI's Pro64 compiler [5], which was released as the open-source Open64
compiler [2] in 2001. The ORC focuses on producing high-performance code, and is frequently
used for compiler research. To support this aim, the ORC has a rich profiler to support its FDO

infrastructure that provides, among other things:

e Dynamic instruction counts for each function

e Invocation count of each function



Taken and not-taken frequency counts for each branch

Loop statistics

e Swi t ch- case case frequencies

Cal | andr et ur n frequencies for each callsite

Stride profiles

Value profiles

The IA-64 processor family is the only target for the ORC. Consequently, the ORC combines a
mature code base with state-of-the-art compiler technology tuned for Itanium processors. When a
3-stage FDO compilation process is used, the performance of the ORC 2.1 on the SPEC CINT2000
benchmarks is within 5% of Intel’s ECC 7.0 compiler, and exceeds the performance of GCC 3.1 [4,
3]. This study uses the latest release of the ORC, version 2.1.

This thesis investigates two optimizations that make use of the frequency information provided
by profiling: i f conversion and function inlining. The code base of the ORC is roughly 130MB,
spread across nearly 8500 files and 267 directories. Thus, locating, understanding, and correctly
instrumenting an optimization has the potential to be a very involved task. This task is made more
involved by the scarcity of detailed documentation for the compiler. | f conversion was selected
because (1) it was moderately easily located in the source code, (2) it is contained in a small number
of source files, and (3) it is easily instrumented to output and use the optimization logs required for
the study. Inlining was selected because it is an optimization known to have a significant impact on
performance. Furthermore, inlining provides a natural starting point for the investigation because

the facilities to output and use the inlining log were pre-existing in the ORC.

221 |f conversion

| f conversion is a program transformation that attempts to reduce branch misprediction penal-
ties and hazards that arise in code with control flow. Furthermore, as a side effect of eliminating
branches, i f conversion can increase the amount of Instruction Level Parallelism (ILP) in program
code and allow greater flexibility for instruction scheduling. Both these properties are important for
EPIC architectures such as the Itanium' and the Itanium 2, as discussed in Section 3.3. In addition,
i f conversion can enhance the performance improvements gained by software pipelining loops.

In order to execute i f -converted code, an architecture must support predicated instructions. A
predicate is a special-purpose single-bit register, p0, p1, etc.. Predicates can be set or cleared by the
results of comparisons, or can be calculated from other predicate values. A predicated instruction

is a normal machine instruction, prefaced by a reference to a predicate register. If the bit in that

!Ttanium and Itanium 2 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.
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Figure 2.1: High-level example of i f conversion

predicate register is on, or the predicate is true, then the results of the instruction are committed;
otherwise the result of any computation is discarded and does not change any state in the machine.

Figure 2.1(a) shows a simple branch. Figure 2.1(b) shows the same branch as a control flow
graph (CFG). A CFG is composed of basic blocks (BBs). A basic block is a single-entry single-exit
sequence of instructions where execution can only start with the first instruction in the sequence.
Moreover, if the first instruction is executed, then every instruction in the BB must be executed in
order. Consequently, the first instruction in a BB must be either the first instruction in a function,
or the target of a branch instruction. Either the last instruction of a BB is a branch or a return
instruction, or the next instruction after the BB is the target of a branch. Every branch is the last
instruction of some BB.

Since i f conversion changes branches into predicate calculations, i f conversion allows BBs to
be merged together. In Figure 2.1(c), the p1 predicate is set to 1 and the pO predicate is set to 0 if
j is less than k. Otherwise, when the result of the test is false, the values assigned to the predicates
are reversed. The instructions on the Yes path are guarded by the p1 predicate, and the instructions
on the No path are guarded by the pO predicate. Then, the instructions from both branches can be
merged into the BB that contained the test before i f conversion. The instructions from the two paths
can be intermingled arbitrarily, and can be scheduled anywhere in the new BB after the instruction
that computes the predicate values.

When the code is not i f -converted, the direction of the branch determines whether the instruc-
tions onthe i f orel se path should be executed. Either set of instructions may enter the execution
pipeline, but not both. If the processor mispredicts the branch, then the wrong instructions will be
fetched and put into the pipeline. Subsequently, the pipeline will be flushed, and execution will
restart with instructions from the correct path. Many branches are easily predicted. For example,
the exit test at the beginning of a loop is only taken once in each loop execution, but is not taken for
every iteration of the loop. However, some branches are inherently difficult to predict [6], [23] (pp.
313-314), and thus benefit most from i f conversion.

On the other hand, if the codeisi f conver t ed, then all the instructions from both sides of the



branch are fetched and enter the execution pipeline. All of these instructions do consume processing
resources, though the expectation is that the processor would otherwise have idle functional units.
In exchange, there is no danger of a branch misprediction since the branch has been eliminated.
Predicates are computed in time to determine which instructions should be committed and which
should be discarded without delaying execution.

When making an i f -conversion decision, the branch is first checked to ensure that i f conver-
sion is legal. Then, the execution times for both the predicated and non-predicated versions of the
code are estimated to determine the profitability of the transformation. These estimates are based on

the following factors:

1. Taken vs. Not-Taken Time: If the code for one side of the branch is much longer than the
other, if-conversion will delay the execution of the shorter path. The execution time for each

path is estimated statically.

2. Resource Use: If i f conversion would lead to stalls due to insufficient processor resources,

it may not be beneficial. Resource use is estimated statically.

3. Branch Probability: The probability that the branch is taken is used to estimate the branch
misprediction cost and to weigh the above characteristics when estimating execution times.
The branch probability is taken from profile information if available, or estimated based on

the type of branch otherwise.

If the average estimated execution time is reduced by i f conversion, the transformation is per-
formed. The transformed region may be part of a path from another branch, and may become part
of a larger predicated region if additional i f conversion is performed.

Hyperblocks are single-entry multiple-exit scheduling regions that rely on i f conversion to
remove control flow within a region. Hyperblocks were introduced by Mahlke [31]. He found,
through simulation, that they could provide on average a 3-fold speedup for a collection of programs
on a hypothetical EPIC processor capable of issuing 4 instructions per cycle and implementing full
support for predicated execution. These simulations provided incentive for the design of hardware
implementations of similar processors, such as the Itanium. However, later studies using the Itanium
revealed that the performance benefits of i f conversion on this architecture are fairly small. In
particular, Choi et al. concluded that the performance benefits of i f conversion due to reduced
branch misprediction for the SPEC CINT2000 benchmarks on the Itanium are upper-bounded at
about 2-3% [13].

The ORC contains algorithms to produce predicated code using either hyperblocks (path-based
predication) or i f conversion (individual branch-based predication). | f conversion is used by de-
fault unless hyperblocks are explicitly selected by a command line option. We expect that the com-
piler designers had good reasons to prefer i f co