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Abstract

Data transformations, such as pool allocation, have shown promise as a method of reducing the

number of cache misses for dynamically allocated data in non-numeric applications. To further

improve data locality this thesis proposes a data reorganization technique that extends pool allocation

by incorporating maximal structure splitting.

We develop a safe, fully automatic technique known as Memory-Pooling-Assisted Data Splitting

(MPADS) that can improve spatial locality for pointer-based data structures allocated in the heap.

To change the storage location of dynamically allocated data, a memory allocation library is created

and the address calculation of the data accesses are updated. MPADS is implemented in the IBM

XL production compiler suite.

MPADS is evaluated on the SPEC 2000, Olden and LLU benchmark suites. The pointer analysis

used in MPADS proves to be too conservative for the complex SPEC benchmarks and many op-

portunities are abandoned, but identifies opportunities in the Olden and LLU benchmarks. MPADS

outperformed pool allocation for every benchmark tested and for one benchmark, MPADS increased

performance by over a factor of 2 from the baseline.



Acknowledgements

First and foremost I would like to thank my supervisor Dr. José Nelson Amaral for providing me with
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Chapter 1

Introduction

From the 1960s until 2002, hardware manufacturers have kept pace with Moore’s law, roughly

doubling the number of transistors, and correspondingly, the processor’s performance every 18

months [47] but traditional techniques to increase performance are yielding diminishing returns [3,

33, 69].

Modern architectures are reaching the limits of thermal density, power efficiency, instruction

level parallelism and frequency scaling. While techniques such as pipelining and frequency scaling

have worked well in the past, they are insufficient to keep pace with Moore’s law. One of the major

causes of the diminishing returns is that processor speeds are increasing dramatically faster than

memory speeds. This problem is known as the memory wall [69].

Modern architectures can take hundreds of cycles to fetch data from main memory because

memory speeds have not been able to keep pace with processor speeds. Ghoting et al. demonstrate

the effects of the memory wall by increasing the CPU clock frequency by a factor of 2.38 (from

1300MHz to 3100MHz) but only obtain a performance speedup of 1.6 [17]. The limits of perfor-

mance scaling for this example are a direct result of the naive data layouts used by compilers. If

a better data organization could be realized the performance scaling may continue for faster clock

speeds.

This thesis develops a technique to reorganize dynamically-allocated heap data to reduce the

effects of the memory wall. The transformation targets general purpose applications that use link-

based structures, such as linked lists, trees and graphs.

The data reorganization is fully automatic and guaranteed to not affect the semantics of the

program. It doesn’t require profile or trace information and it has been implemented in the IBM XL

production compiler. To transform the data, two different splitting techniques have been designed to

improve data locality and cache performance. The techniques trade address computation overhead

for data locality.
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1.1 Contributions

The structure splitting presented in this thesis can be viewed as an extension of Lattner and Adve’s

pool allocation [29]. The identification of candidate structures that are safe to transform has been

slightly modified but is based on Lattner and Adve’s Data Structure Analysis (DSA) that identifies

type-homogeneous structures. Lattner and Adve implement DSA and pool allocation in the LLVM

compiler Infrastructure that is based on GCC [28].

When this research was started the only published structure splitting techniques were Zhong et
al. [71] and Rabbah and Palem [51]. Neither of these techniques could safely and automatically split

a pointer-based data structure and both required trace or profile information. Both of these structure-

splitting techniques perform affinity-based splitting and this research aimed to develop a technique

for maximal splitting. Rabbah and Palem’s framework had another drawback. It adds padding to the

data structures that pollutes the cache.

To address the shortcomings of these systems, Memory-Pooling-Assisted Data Splitting (MPADS)

was developed. MPADS combines an analysis to identify structures that are safe to transform and

does not require profile information or a memory trace. MPADS performs maximal splitting instead

of affinity-based splitting and does not add padding to any structure.

In April of 2007 Jeon, Shin and Han published their structure-splitting work at the Compiler

Construction conference [24]. The structure splitting framework that they created is similar to the

non-uniform splitting described in Chapter 3.3.2. Their framework uses a static analysis to determine

the field-access affinity and performs affinity-based splitting.

A more detailed comparison of these systems with MPADS is given in chapter 6.

1.2 Thesis Organization

Chapter 2 gives the background information necessary and explains pointer analysis. The struc-

ture splitting transformation is described in Chapter 3, including the identification of safe structures

to transform in Chapter 3.1. The two types of splitting, uniform and non-uniform are described

in Chapters 3.3.1 and 3.3.2. Chapter 4 motivates the creation of the splitting transformation with

several micro-benchmarks that demonstrate that it works. Structure splitting is applied to standard

benchmarks and the performance is evaluated in Chapter 5. In Chapter 6 the related work is pre-

sented before the future work is described in Chapter 7. Chapter 8 concludes the thesis.
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Chapter 2

Background

2.1 Definitions

Affinity – The likelihood that two memory locations will be accessed close in time. Two memory

locations are said to have good affinity if they are often referenced together.

Aliased – Two pointers are aliased if the objects that they may point to can overlap or occupy the

same memory location.

Basic Block – A consecutive group of instructions where the control flow must start at the first

instruction and execute every instruction in the group until the last. Only the first instruction

in a basic block can be the target of a branch and only the last statement of a basic block may

be a branch.

Cycles Per Instruction – Cycles Per Instruction (CPI) are calculated as the quotient of the number

of cycles divided by the number of instructions completed.

Data Dependence – A data dependence occurs when one instruction uses, or defines, either the

result of another instruction or one of the operands of another instruction.

Intermediate Representation – An intermediate representation (IR) is a representation of a pro-

gram that is independent of the language that the program was written in and independent of

the machine the program will be executed on. Typically the IR for a compiler is either stack-

based [18], three-operand-based [49] or tree-based [48]. Static Single Assignment (SSA) is a

increasingly common IR in compilers [13].

Interprocedural – Refers to looking at the entire program rather than just a single procedure or

region.

Killed – In pointer and data flow analysis the definition of a variable is killed along a path if there

is an assignment to that variable that is always performed. For example, consider the code in

figure 2.1. On line 1 x is defined with the value 6 but that definition is killed by the assignment

on line 3.

3



BASICBLOCK B()
1 x = 6;
2 y = 7;
3 x = y;

Figure 2.1: Example to illustrate killing a definition of a variable.

Point – Points in a basic block occur before the first statement, in-between consecutive statements

and after the last statement.

Spatial Locality – Two pieces of data or memory locations are said to have good spatial locality if

they are located near each other.

Temporal Locality – Two memory locations are said to have good temporal locality if they are

both frequently accessed in a short time frame.

Working Set – The working set of a process is the set of pages that the process accesses during the

last λ memory references.

2.2 Pointer Analysis

To analyze and transform programs written in languages with pointers or references, such as C, C++

and Java, often the targets of the pointers must be known. Computing a precise runtime relation

between pointers and their target locations is infeasible and a conservative approximation is com-

monly used. Pointer analysis1 provides a static abstraction of the possible targets for each pointer

in the program [15, 55]. There is a trade-off between the precision of the analysis and the time and

space required to perform the analysis. The precision of a given alias analysis is often classified in

three main dimensions, namely flow-sensitivity, context-sensitivity and field-sensitivity [55].

A flow-insensitive pointer analysis algorithm does not consider the order in which statements

are executed. The analysis computes a single points-to set for each variable and the points-to set

must be accurate for the entire execution of the program. A flow-insensitive analysis cannot exploit

the fact that a variable may be killed, also known as a strong update, because the points-to set must

be valid at every point in the program.

A flow-sensitive analysis does consider the order that the statements are executed. The anal-

ysis computes a points-to set for each variable at every point in the program. Storing a points-to

set for each pointer variable in the program at every statement is very expensive and can signifi-

cantly increase the space requirements of the analysis. Often the intermediate representation in the

compiler will rename all of the variables so that each variable is defined only once. Performing
1Pointer analysis is also known as points-to analysis, reference analysis or refers-to analysis.
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a flow-insensitive analysis on an intermediate representation with variable renaming will result in

close to the same precision as a flow-sensitive analysis [22, 37].

VOID MAIN()
1 int ∗ a = malloc(...); //Allocation site A
2 int ∗ b = malloc(...); //Allocation site B
3 int ∗ c = malloc(...); //Allocation site C
4 int ∗ d = malloc(...); //Allocation site D
5 int ∗ e = malloc(...); //Allocation site E
6 a = b;
7 foo(&c, &d);
8 foo(&e, &c);

VOID FOO(int ∗ ∗p1, int ∗ ∗p2)
1 ∗p1 = ∗p2;

Figure 2.2: Example program to illustrate the different abstractions used for pointer analysis.

To clearly describe the differences in precision due to flow-sensitivity consider the example

program in Figure 2.2. To illustrate the differences, it is sufficient to only consider the points-to set

for a. The flow-sensitive points-to set for a is: empty before line 1;{A} between line 1 and 6; and

{B} after line 6. The assignment on line 1 adds A to the points-to set of a. The assignment on line 6

adds everything from the points-to set of b to the points-to set of a. In a flow-sensitive analysis, the

assignment on line 6 also kills the previous points-to set of a, therefore the flow-sensitive points-to

set for a after line 6 is executed contains only B. The flow-insensitive points-to set of a is {A, B}

for all points in the program.

Each time a procedure is called from a different calling context, it may take different parame-

ters or return different objects. A context-sensitive analysis will analyze each procedure separately

for every calling context. The context-insensitive analysis uses a single points-to set to model the

parameters and return value of the callee. 2

Once again, consider a flow-insensitive analysis of the example program in Figure 2.2. The

function foo takes two parameters, p1 and p2. An assignment is performed resulting in p1 pointing-

to p2. A context-sensitive analysis would use a separate points-to set for the parameters on lines

7 and 8. Thus for a context-sensitive, and inter-procedural, analysis line 7 adds D to the points-

to set of c and line 8 adds the points-to set of c, {C, D}, to the points-to set of e. Therefore a

context-sensitive analysis could determine that the points-to set of c is {C, D} and the points-to set

of e is {C, D, E} because it differentiates between calling contexts. However a context-insensitive

analysis uses a single points-to set for every calling context, thus the points to set for p1 and p2 are

{C, E} and {C, D, E}, respectively. Accordingly, the context-insensitive points-to set for c and e

are calculated as {C, D, E} and {C, D, E}, respectively.
2The callee is compiler-speak for the function that is called at a given call site. The function where the call site is located

is the caller.
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Table 2.1 shows the points-to sets for c and e in Figure 2.2. The results are given varying the

context- and flow-sensitivity. For the flow-sensitive analysis the points-to sets correspond to the

points between lines 6-7, 7-8 and after line 8. The precise context- and flow-sensitive analyzes have

the smallest points-to sets for each pointer. Conversely the context- and flow-insensitive analyzes

have the least precision and the largest points-to sets.

flow
insensitive sensitive

context

insensitive

pt(c) = {C, D, E} pt6−7(c) = {C}
pt(e) = {C, D, E} pt6−7(e) = {E}

pt7−8(c) = {C, D}
pt7−8(e) = {E}
pt8(c) = {C, D}
pt8(e) = {C, D}

sensitive

pt(c) = {C, D} pt6−7(c) = {C}
pt(e) = {C, D, E} pt6−7(e) = {E}

pt7−8(c) = {D}
pt7−8(e) = {E}
pt8(c) = {D}
pt8(e) = {D}

Table 2.1: The points-to set for c and e from Figure 2.2. The flow-insensitive results are valid for
the entire program while the flow-sensitive results given for the points between lines 6-7, 7-8 and
after line 8.

If a pointer analysis differentiates between the accesses to each field of a structure then it is a

field-sensitive analysis. A field-insensitive analysis will treat a structure as a single object and each

access to a field is a reference to the entire object. For the example program in Figure 2.3 the points-

to sets of p –>f1 and p –>f2 are the same set for a field-insensitive analysis, namely {P, Q}. The

field-sensitive points-to set for p –>f1 is {P} and p –>f2 is {Q}.

MAIN()
1 struct s1{
2 struct s1 ∗ f1;
3 struct s1 ∗ f2;
4 };
5 struct s1 ∗ p = malloc(...); //Allocation site P
6 struct s1 ∗ q = malloc(...); //Allocation site Q
7 p− > f1 = p;
8 p− > f2 = q;

Figure 2.3: Example program to illustrate field-sensitivity in pointer analysis.

Steensgaard’s alias analysis is widely used because the runtime complexity is nearly linear with

the size of the code, the storage requirements scale well to large programs and often it provides the

required precision [23, 61]. The analysis is unification-based, meaning that when there is a pointer

assignment, the right-hand side pointer is added to the alias set of the left-hand side and both of the

6



alias sets are unified. The unification allows the algorithm to avoid having to propagate changes in

the points-to set and the algorithm can reach a solution without the numerous iterations required to

reach a fixed-point solution. Steensgaard’s alias analysis is flow-insensitive and context-insensitive.

It can be implemented to be field-sensitive.

For example, consider the program given in Figure 2.4. A diagram of the points-to analysis is

given in Figure 2.5. Figure 2.5(a) shows the points to sets in the algorithm after processing line 5 in

Figure 2.4. The alias sets of b and c are unified in Figure 2.5(b) as a result of assignments on lines

5 and 6. Figure 2.5(c), (d), (e) and (f) correspond to processing lines 7, 8, 9 and 10 in Figure 2.4,

respectively. The final points-to set for a is {b, c, d, e, f, g}.

VOID MAIN()
1 int ∗ a;
2 int ∗ b = malloc(...); int ∗ c = malloc(...);
3 int ∗ d = malloc(...); int ∗ e = malloc(...);
4 int ∗ f = malloc(...); int ∗ g = malloc(...);
5 a = b;
6 a = c;
7 d = e;
8 c = e;
9 e = f ;

10 g = f ;

Figure 2.4: Example program to illustrate Steensgaard’s pointer analysis.

! " ! "#$%

&!' &"'

! "#$%

&%'

( )

! "#$%#$(

&('

)

! "#$%#$(

&)'

) *

! "#$%#$(

&*'

)#$+ *

Figure 2.5: Steensgaard’s pointer analysis for the program in Figure 2.4.

Many researchers are developing techniques to make precise pointer analysis scale well and only

recently is pointer analysis with greater precision becoming a practical option. Binary Decision

Diagrams (BDDs) have been proposed as a space-efficient method to represent relations in pointer

7



analysis [4, 38, 68, 73, 72]. Alternatives to BDDs such as Zero Suppressed BDDs (ZBDDs) and

Don’t-Care BDDs (XBDDs) have also been proposed as another space efficient representation [35].

Hardekopf and Lin eliminate cycles from inclusion-based pointer analysis and reduce the running

time of the analysis so it can be performed on large programs in a reasonable amount of time [21].

Lattner, Lenhart and Adve show that a context- and field-sensitive analysis can scale to programs

with hundreds of thousands lines of code [31].

2.3 Compiler Infrastructure

The IBM XL Compiler suite is a widely used production compiler that supports C, C++, Unified

Parallel C (UPC) and Fortran. The XL Compiler suite is a highly developed compiler with an ag-

gressive program transformation and optimization framework. The compiler is comprised of three

main components: the front-end, the middle-end and the back-end. Information is exchanged be-

tween components using an intermediate representation known as W-code.

The front-end of the compiler is also known as the parser. The XL compiler suite has a separate

parser for each of the languages supported. The front-end parses the source code and converts it to

the language-independent W-code intermediate representation. The W-code is then either sent to the

middle-end or the back-end depending on the desired level of program optimization.

If the user is willing to trade compile time for a faster executable, then the middle-end is invoked.

The middle-end in the XL compiler is a link-time optimizer and is also known as the whole-program

optimizer or the Toronto Portable Optimizer (TPO). The TPO performs many important optimiza-

tions such as inlining, loop optimizations and inter-procedural analysis.

The back-end, also known as the code generator or TOBEY (Toronto Optimizing Back End with

Yorktown), takes the intermediate representation from the front-end or middle-end and generates

machine code for the target platform. TOBEY performs optimizations such as instruction schedul-

ing, constant folding and register allocation.

8



Chapter 3

Memory-Pooling-Assisted Data
Splitting

Splitting data structures is a data reorganization technique that can significantly increase the spatial

locality of data and reduce the runtime of programs that use link-based data structures [10, 14, 26,

63].

Memory-Pooling-Assisted Data Splitting (MPADS) is a framework designed to safely and auto-

matically split pointer-based data structures without adding padding. MPADS uses a pointer analysis

that enables the compiler to guarantee that it can safely split a given structure even when the program

is written in a weakly-typed language like C or C++.

3.1 Identifying Structures to Transform

The compiler must be able to identify candidate data structures and ensure that the transformation

will not cause a correct program to crash or exhibit errors. The challenge of transforming C and C++

programs is that they are not type safe. For splitting data structures we are not concerned about the

type of the data. Rather we are concerned about the layout of the data because we are not changing

how it is used, only where it is located.

The definition of structure layout used for MPADS is that the byte-level view of the structures

must be the same for the structures to be considered the same layout. Formally, if two structures,

s1 and s2, have the same number of fields and every field, fi, in both structures at a given offset

are the same length, then they are considered to have the same layout ( i.e., lengthof (s1.fi) =

lengthof (s2.fi) AND offset(s1.fi) = offset(s2.fi) ).

For a transformation to be safe the candidate structures must have the same layout and all the

pointer accesses to the candidate structures must be consistent with that layout. The reason why

pointer accesses to the candidate structures must all have the same layout is because when we split

the structures and reorganize the data in memory, we need to modify the pointer accesses by chang-

ing the address calculation for accesses to the fields. If two structures with different layouts are
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in the same alias set, the structure cannot be transformed because modifying the field accesses is

unsafe. Transforming the pointer may be unsafe because the pointer may access two different struc-

tures with a different layouts and the fields that were originally located at the same offset from the

start of the structure are now in different locations.

Safe candidates are identified by analyzing the results of a pointer analysis and then combin-

ing the alias sets with information from the compiler’s symbol table. The symbol table provides

information about the layout of the object and the pointer analysis allows the compiler to determine

which pointers are aliased.

The pointer analysis used is an inter-procedural Steensgaard’s style analysis [61]. Steensgaard’s

pointer analysis is a field-sensitive, flow-insensitive and context-insensitive unification-based analy-

sis. The analysis was chosen because it scales to large programs and is field-sensitive.

It is important for the alias analysis to be field-sensitive, because structures often contain many

fields of different types and the coarse granularity of field-insensitivity would result in missed op-

portunities. If the pointer analysis did not differentiate between the fields, it is likely that every field

in the object would be aliased with the pointer to the structure. When the pointer to the structure

and the fields are aliased in a structure with different field types, the splitting opportunity would be

unnecessarily abandoned.

The pointer analysis provides more information then simply a check for safety, it is also used

to determine in which pools the candidate structures should be allocated [29]. Using a unification-

based alias analysis typically results in all of the pointers that access a particular data structure to be

in the same alias set because the pointers used to access the data are be unified. Different alias sets

represent different objects and are be allocated in different pools.

3.2 Memory Pooling

Memory pooling is the basis for the MPADS transformation and is an integral part of the transfor-

mation. Thus before describing how MPADS splits pointer-based structures, it is useful to describe

the memory pooling mechanism used in MPADS.

When objects are allocated in the heap, it is possible that two different objects could be allocated

in an interleaved pattern. With such allocation, objects from two different data structures could

end up in the same cache line, resulting in poor locality and a polluted cache if the structures are

transversed independently. Memory pooling groups similar objects together in pools to improve the

spatial locality of the data.

For example, consider the interleaved allocation of two structures, A and B. If the allocations

are performed using a standard allocation routine such as malloc then the data layout may look

like Figure 3.1(a). However, if a pool allocation strategy is used the data layout will look like

Figure 3.1(b). After pooling, the spatial locality between the type A structures has improved and the

same is true for the type B structures. If structures A and B have the same layout and are aliased, it
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Figure 3.1: An example of two different structures, A and B, with interleaved heap allocations. (a)
The allocations performed without pooling. (b) The allocations performed in the same order but
using a memory pooling allocation method.

is possible that they will be allocated in the same pool.

3.2.1 Memory Allocation Library

The standard memory allocation functions do not provide support to allocate a group of objects

together. Thus, a memory allocation library that can allocate similar objects in a pool must be

created. The memory allocation calls are similar to those provided in the standard C library, only

the memory allocated for each object will be in a pool that is managed by the memory allocation

library.

The memory allocation functions take a structure identifier as a parameter. The structure identi-

fier is used to tell the memory allocation library which allocations get grouped together.

APIs

The Memory Allocation Library must provide support for the common memory allocation calls

found in the standard C library. This includes malloc, calloc’ and free. Although realloc

is a common memory allocation function, memory pooling and structure splitting is designed for

cases where the data is allocated one item at a time. In all of the benchmarks tested, not one

candidate used realloc. If more functionality is needed, the library can be extended to support

more allocation functions in the future. Currently the supported APIs are:

• void* pool alloc(unsigned int struct id, size t struct size, size t

pool size);

• void* pool calloc(unsigned int struct id, size t num objs, size t

struct size, size t pool size);
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• void pool free(void* ptr, unsigned int struct id);

Memory Pools

The Memory Allocation Library will manage a set of pools for each data structure. Distinct data

structures are identified by the structure identifier, struct id, that is passed into the allocation

function. The pools have a fixed size, typically the same size as, or larger than, a page. Data is

allocated contiguously within the pool until the pool is full. When the pool is full, another pool can

be allocated and more memory can be allocated in this newly created pool.

Memory can be freed from the pools by using the Memory Allocation Library’s free function.

The freed objects are stored in a list and the memory can then be assigned to another allocation.

When all of the memory in the pool is freed, the pool can be reclaimed.

Using multiple pools to store the data for each data structure allows MPADS to use only a small

amount of additional memory while not limiting the framework to a fixed number of structures that

can be allocated.

3.2.2 Compiler Transformation

The compiler can use the results of the pointer analysis to differentiate objects and allocate each

structure in its own pool. To do this, the compiler must first determine which structures should

be allocated in the same pool and then must replace the memory allocation calls with calls to the

custom-made Memory Allocation Library.

The compiler starts the transformation by executing the pointer analysis and collecting all of the

alias sets. The alias sets are then analyzed to determine which ones are valid candidates. Each alias

set that is identified as a candidate is assigned a structure identifier. All of the structures that are

accessed by the elements in the alias set will be allocated in the same pool. Essentially, each alias

set represents a distinct object and will be allocated in its own pool.

The alias analysis has been modified to collect the allocation sites during the same pass that

performs the analysis. The allocation sites are associated with an alias set and when two alias sets

are unified the list of associated allocation sites is also unified. Allocation sites are identified by

calls to malloc, calloc, realloc, alloca, valloc, strdup, memcpy, memalign and

posix memalign. Currently the transformation is only performed if the allocation site is a call

to the malloc or calloc functions in the standard C library. If another allocation function is

found the transformation is abandoned. The usage of other memory allocators suggests that the

programmer may not be creating a standard pointer-based structure or that they are manually tuning

their application and splitting may actually harm performance.

The compiler iterates through the list of allocation sites for each candidate and transforms the

allocation to the corresponding call from the memory allocation library. The structure identifier from

the alias set is passed as the struct id parameter to the allocation function.
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A list of the deallocation sites is also created during the alias analysis. The same process that

was performed for the allocation sites is performed for deallocation sites. If the object is flagged

to be transformed, the deallocation sites are also changed to use the corresponding functions in the

Memory Allocation Library.

3.3 Structure Splitting

Memory pooling can increase the spatial locality of data by grouping or pooling similar structures

together. Memory pooling works well when a traversal of a data structure accesses all or many of

the fields in a node of the aggregate structure before moving to the next structure. However, quite

often a traversal of an aggregate data structure may only access a small fraction of the fields in each

structure. The un-accessed fields may share a cache line with the fields that were accessed, polluting

the cache and using valuable memory bandwidth. Structure splitting is a technique that can address

this problem.

When a structure is split, all of the similar fields in each structure are grouped together. For

example, all of the first fields in a structure are allocated near each other, all of the second fields in

a structure are allocated near each other and so on. The result is that the fields with the same offsets

in different structures have good spatial locality.

Figure 3.2 gives an example of how three structures, A, B and C are allocated both with and

without splitting. Each structure in the example has 4 fields, f1, f2, f3 and f4. When structures

are allocated without splitting, like in Figure 3.2(a), the fields of each structure are located next to

each other (i.e., A.f1, A.f2, A.f3 and A.f4 have good spatial locality). When MPADS is used the

data is organized as shown in Figure 3.2(b). In the split version, fields A.f1, B.f1 and C.f1 now

have good spatial locality.

Splitting data structures can improve performance in several ways. If the traversal of a data

structure only accesses a few fields of the structure, then splitting greatly increases locality, reduces

the size of the working set, reduces the memory traffic and does not pollute the cache. Splitting the

data also creates data streams that can be prefetched by the hardware prefetchers. Most hardware

prefetch engines can support prefetching of multiple streams of data simultaneously.

For splitting structures there are three common methods: affinity-based splitting, frequency-

based splitting and maximal splitting. Affinity-based splitting typically requires a profiling run to

analyze and determine the affinity of the fields in a structure. Fields with a high affinity are grouped

together and then the structure is broken into groups based on the field affinity. Frequency-based

splitting also needs information about how often each field is accessed and this is typically obtained

from a profile. The fields are grouped into frequently-accessed fields, known as hot fields, and

infrequently-accessed fields, or cold fields. The structure is split to separate the hot and cold fields.

Maximal splitting does not group any of the fields in a structure together, it completely separates

every field in the structure. Figure 3.2(b) is an example of maximal splitting. No fields from a single
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Figure 3.2: An example of (a) three structures allocated without splitting and (b) three structures
allocated with MPADS Maximal Splitting.

structure are grouped together. Each field from the structure is grouped with the fields from other

structures at the same offset. A study of data splitting techniques has shown that maximal splitting

can achieve the best or near best performance when compared with affinity- and frequency-based

splitting [70]. MPADS uses maximal splitting.

When MPADS splits structures it removes the padding and eliminates any fields that are not

referenced in the program. Padding is typically inserted by the compiler to minimize cache conflicts

or because the instruction set architecture requires that fetches be aligned by a certain size to be

efficiently executed. Moving the data essentially invalidates the reasoning for adding padding to a

structure because the data will no longer be located at the original site. Thus the padding can be

eliminated by the structure splitting transformation.

MPADS only works for splitting link based structures and is not designed for splitting arrays of

structures. Zhao et al. [70] and Zhong et al. [71] have developed techniques for splitting arrays of

structures.

A major challenge when splitting the structures is transforming the address computation. The

new address computation must be efficient because memory references occur frequently. The ad-

ditional overhead from adding instructions for the new address computation may not be offset by

performance improvement from increasing data locality. To reduce the overhead of address calcu-
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lation MPADS uses two different techniques for structure splitting depending on the layout of the

structure.

3.3.1 Uniform Structure Splitting

If all of the fields in the structure are of the same length then the address computation is simpler and

more efficient then the case where the fields are different lengths. When MPADS splits structures

where every field in the structure is the same length it is referred to as uniform structure splitting.

In general, accessing a field via pointer p is calculated as: *(p + offset) where the offset is the

number of bytes from the start of the structure, typically a small value such as 4, 8, 30, etc. The

transformed pointer dereference is still computed as *(p + offset) only now the offset will be a much

larger value. The new offset for field fi using uniform splitting can be calculated as:

field i offset = field length ∗ num structs per pool ∗ i (3.1)

The address calculation can be seen graphically in Figure 3.3. Since each of the fields are the

same length the start of field fi will be at the same distance from the start of its section of the pool

as the pointer is away from the start of the pool. Therefore, adding up the size of all of the fields that

can be stored in-between gives the offset that needs to be added to the pointer to access the correct

field.
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Figure 3.3: Pointer access with MPADS uniform maximal splitting.

If the target processor has a base plus offset addressing mode, there is likely a limited number of

bits available to use for the offset. This will not limit the applicability of the method; either the pools

could be made smaller or an additional add instruction could be used before the memory access.
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3.3.2 Non-Uniform Structure Splitting

Non-uniform structure splitting refers to splitting structures that are comprised of fields that have

different lengths. The fields are still allocated in the pool and split maximally, but because the field

lengths are not the same, the address calculation is more complicated.

One drawback of using multiple pools for splitting structures with different size fields is that

when a data field in a pool needs to be accessed, the start of the pool that it resides in must be

identified in order for the index of the object to be computed.

For example, consider a pool that has several objects allocated in it, shown in Figure 3.4. Let the

length of fields 1, 2, 3 and 4 be 2, 4, 4 and 8, respectively.

!!!

!!!

"#$%& !!!

!!!

"

'%%()*

+),-./,)01*234
056/(*758*(/")7/"'',

"393'%%()*

+),-:/,)01*234
056/(*758*(/")7/"'',

+),-&/,)01*234
056/(*758*(/")7/"'',

+),-;/,)01*234
056/(*758*(/")7/"'',

Figure 3.4: Example illustrating why the index in the pool must be known for non-uniform splitting.

Assume that there is a pointer p and the application wants to access field f3, p− > f3. Assume

that there are 100 structures in the pool and p points to the third object allocated. Calculating the

offset similar to Equation 3.1 would give (2 ∗ 100) + (4 ∗ 100) = 600. However, this offset is

actually 4 bytes short of the location that should be accessed. The dotted arrow in Figure 3.4 shows

the data that would be accessed if the offset was 600 bytes. Thus, to access the correct location we

need to know how many objects have been allocated in the pool before the structure referenced by

the pointer.

It is useful to give an intuitive explanation of the new address calculation before describing the

formal address calculation that can be found using Equations 3.2, 3.3 and 3.4. Figure 3.5 shows an

example of a structure allocated in a pool. The basic idea behind the address calculation is to find

distance of the field we are trying to access from the start of the pool. To do this we need to know

how many other structures have been allocated in the pool up to and including the structure we are
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Figure 3.5: Pointer access with MPADS Non-Uniform Maximal Splitting

trying to access, we refer to this as the index. For example, the index of structure p in Figure 3.5

is 3. Now to find the distance from the start of the pool we need to add up the amount of the pool

occupied for the fields before the field we are accessing. In addition, we need to add to the offset

the space occupied by the number of fields allocated before the field we are trying to access. For

example, in Figure 3.5 this would be two times the size of the third field in the structure. Finally,

since we are adding an offset to p and not from the start of the pool we need to subtract the distance

from p to the start of the pool.

UNSIGNED INT GENBITMASK(INT poolSize)
1 unsigned int ret = 0
2 int seen a 1 = 0
3 for i = 0 to sizeof (unsigned int) ∗ 8
4 do
5 seen a 1 = seen a 1 ‖ (poolSize & (0x01 << i)
6 if seen a 1 ! = 0
7 then
8 ret = BitwiseOR(ret , (0x01 << i))
9

10 ret = BitwiseXOR(ret, 0xFFFFFFFF )
11 return ret

Figure 3.6: Algorithm to create the bit mask used for masking the pointers.

Using the runtime library to search for the start of the pool that the pointer belongs to and

then returning its index in the pool would be expensive. To make address calculation inexpensive,

MPADS aligns the memory allocated for the pools on boundaries that are multiples of the size of
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the pool. If the pools are aligned then a simple binary and can be used to find the index of the

object. The bit mask, mask , can be calculated using the function given in Figure 3.6. The bit mask

is calculated at compile time and the constant that is returned is used in the address calculation. The

index of the object can be found as follows:

index =
p & mask

sizeof (f1)
(3.2)

num structs per pool =
pool size

∑

i sizeof (fi)
(3.3)

field i offset =







0 for i = 1
∑i−1

j=1
(sizeof (fj) ∗ num structs per pool ) + for i > 1

(sizeof (fi) ∗ index ) − (p&mask)

(3.4)

The calculation of field i offset from Equation 3.4 is shown graphically in Figure 3.5. All of

the sub expressions in Equation 3.4 except for index and p are known at compile time and can be

folded to further reduce overhead. As well, sizeof (fi) is typically a power of 2 and the compiler

can use a strength reduction to replace the division with a bit-shift operation. 1

3.3.3 Changes to the Memory Allocation Library

Calls to the allocation and deallocation functions are still intercepted the same way as pool allocation

but a slightly different function must be used. The allocation function for structure splitting still

groups similar objects together, but the location and pattern of the memory for each field that is

allocated differs from the pool allocation routines.

The main difference between the allocation function for structure splitting and pool allocation

is that the pool allocation library returns addresses that are separated by the length of the structure

while the allocation function for structure splitting returns addresses separated by the length of the

first field. This is best explained with an example.

Assume that the pool size is 4k and we are allocating a 16-byte structure consisting of four 4-

byte fields. A call to the pool allocation function returns memory address m. Thus the memory in

locations [m, m + 15] has been allocated. The memory in [m, m + 3] has been reserved for the first

field, [m+4, m+7] for the second field and so forth. The second call to the pool allocation function

will return m + 16 and the memory in [m + 16, m + 31] has been allocated.

Using the same example, the structure splitting allocation function would return different address

and reserve different areas in the pool. In this example there are 4 fields, each field will occupy one

quarter of the pool or 1024 bytes. The first field of the first object allocated in the pool will be

located at m and the function would return the address m. The second, third and fourth fields of the
1The sizeof (fi) is known at compile time because the length of each field in the structure must be known for the

transformation to be identified as safe.
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first object would be located at m + 1024, m + 2048 and m + 3072, respectively. The first field in

the second object allocated in the pool will be located at m + 4 with the second, third and fourth

fields of the second object being located at m + 1028, m + 2052 and m + 3076, respectively.

There are a few other minor changes that need to be made. For non-uniform splitting, pools must

be aligned by the pool size and are allocated using the posix memalign system call. As well, for

both types of structure splitting we require that the pool size be known at compile time to reduce the

cost of address computation. To make the memory library more flexible, the pool size can be passed

in as a parameter. The compiler automatically generates this parameter and uses the same value for

the address calculation.

The APIs for the splitting functions are the same as the pool allocation functions except that

they also include parameters for the size of the first field in the structure, this must be known for the

allocation function to return the correct address.

• void* split alloc(unsigned int struct id, size t first field size,

size t struct size, size t pool size);

• void* split calloc(unsigned int struct id, size t first field size,

size t num objs, size t struct size, size t pool size);

• void split free(void* ptr, unsigned int struct id);

Selecting the size for the pools is an important consideration for splitting and can vary depending

on the application, input selection and target machine. Ideally, an oracle would allow the pool

allocation library to determine exactly how much data will be allocated in each pool and the memory

allocation library would only need to create one pool for each data structure. Unfortunately such an

oracle does not exits so we propose a range of pool sizes.

If memory requirements are tight, as may be the case for embedded applications, the space

overhead would be amortized out quicker using smaller pools. The minimum size for pool allocation

and splitting to start yielding returns is the size of the cache line divided by the size of the smallest

field in the structure times the size of the structure. This way each field in the pool fills at least one

cache line. Using the same idea but replace cache line with virtual page is a practical upper limit for

the suggested range.

3.3.4 Compiler Transformation

For splitting, the compiler identifies the candidate structures and intercepts the calls to the memory

allocation and deallocation functions, the same as memory pooling only using the structure splitting

allocation calls. Once the candidates have been identified, and the allocation functions changed, the

compiler then needs to update all of the accesses to fields of the structure.

To change pointer accesses the compiler recursively traverses the parse-tree searching for a load

of an address from the stack followed by a load or store, refereed to as an indirect load or store. Once
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an indirect load or store is found the compiler determines which alias set the pointer is a member of.

If the corresponding alias set has been flagged as a candidate for splitting, the address calculation

used in the indirect load or store is changed to use either the uniform split or non-uniform splitting

addressing described in Sections 3.3.1 and 3.3.2.

The offset for the first field in each structure is always 0 and can be accessed without a costly

address computation. To try and improve the performance MPADS should put the most frequently

accessed field at offset 0. Since profile information is not available, we assume that the recursive

fields in most structures are accessed very frequently and MPADS makes that the first field. If there

are multiple recursive fields MPADS arbitrarily picks one of them to be the first field.

3.4 Implementation in the IBM XL Compiler

The MPADS transformation is implemented in the Toronto Portable Optimizer (TPO) in the IBM

XL compiler. MPADS required an inter-procedural pointer analysis to guarantee safety and thus it

is a natural choice to implement MPADS in the TPO, which performs whole program optimization

and analysis.

The TPO performs two passes over the program, the first pass collects information and analyzes

the code while the second pass modifies the program. The MPADS framework could easily be

integrated into the 2 passes that the TPO performs. On the first pass the pointer analysis is performed

and candidate structures are identified and then on the second pass the candidate allocation sites and

pointer de-references are modified.

MPADS added very little additional overhead to the compiler. The pointer analysis that MPADS

uses is already performed by the TPO as part of the Forma array reshaping transformation [70].

Additionally, MPADS does not need to make any additional passes over the code because the pointer

analysis provides enough information for the transformation process to be done locally, almost as

though it is a peep-hole optimization.
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Chapter 4

Performance on Micro Benchmarks

To determine the potential performance improvement provided by MPADS, two linked-list and one

binary-tree micro benchmarks were created. MPADS was used to automatically reorganize the

data structures in the micro-benchmarks and the performance results were collected. The micro-

benchmarks showed that MPADS can significantly reduce cache misses and improve performance

when compared with both pool allocation and the original version of the programs without data

reorganization.

4.1 Experimental Setup

The benchmarks are evaluated on two different hardware architectures and are compiled with the

IBM XL compiler at the highest optimization level, -O5.

The machines used for evaluation are a 1.7 GHz Power4 machine and a 1.9 GHz Power5 ma-

chine. The pertinent information about the memory hierarchy configuration of each machine is given

in Table 4.1 and the memory latency for each level of the memory hierarchy is given in Table 4.2. 1

Both processors use a hardware prefetcher that can identify strided access patterns and automati-

cally perform prefetching. An interesting architectural detail is that the L3 cache on the Power5

architecture is a victim cache [43].

All of the timing results are calculated by taking the smallest running time from 10 runs of the

application. The performance metrics are gathered using the tcount tool that monitors the hardware

counters and are gathered during a separate run so that it does not affect the timing results [65].

4.2 Micro Benchmarks
4.2.1 Linked List 1

The Linked List 1 benchmark creates a linked-list with 1.5 million nodes where each node contains

five fields. The five fields in the structure are different sizes. The list is initialized and then traversed
1Information about the Power4 and Power5 machines was collected from various sources [19, 27, 41, 42].
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Power 4 Power 5
L1 Data Cache 32kb 32kb

2-way associative 4-way associative
128 byte cache line 128 byte cache line

L2 Cache 1.44Mb shared per chip 1.9Mb shared per chip
8-way associative 10-way associative
128 byte cache line 128 byte cache line

L3 Cache 32Mb per chip 32Mb per chip
8-way associative 12-way associative
512 byte cache line 256 byte lines

TLB 1024 entries 1024 entries
4-way set-associative 4-way set-associative

Table 4.1: Cache Configuration

Power 4 Power 5
L1D Cache 1 4
L2 Cache 8 - 12 14
L3 Cache 118 80
Main Memory 250 351

Table 4.2: Memory Hierarchy Latency

1000 times. To simulate an interleaved allocation with another structure, 100 bytes are allocated

between the list nodes.

There are two versions of the Linked List 1 benchmark, namely Linked List 1A and Linked

List 1B. The data structure is the same but the traversal method is different. In the Linked List 1A

program all of the fields in each node are accessed before the traversal continues to the next node.

The list is traversed 1000 times in this fashion. Alternatively, for Linked List 1B a separate traversal

is performed that will only access one field from the structure and the next pointer. Essentially this

traversal only accesses one field in the node before moving to the next node. This is preformed 1000

times for each field before traversing the next field in the structure.

The two benchmarks were not designed to be compared. The reason that the two different access

patterns were chosen is to test if structure splitting could improve the performance of both traversal

patterns.

The source code for Linked List 1A and Linked List 1B can be found in listings B.1 and B.2 of

Appendix B.

4.2.2 Linked List 2

Linked List 2 uses a large linked-list data structure with 2.1 million nodes where each node has

10 4-byte fields. Each field in the structure is traversed 100 times, i.e., the structure is traversed

100 times accessing only the first field, then the structure is traversed 100 times accessing only the

second field, and so forth.
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This benchmark was tested both with and without data allocated between the list nodes. Data

allocated between the list nodes is 40-bytes long and is refereed to as interleaved allocation.

4.2.3 Binary Tree

The Binary Tree benchmark is essentially the same as the Linked List 2 benchmark but a binary tree

data structure replaces the linked list data structure used. The structure is traversed in a depth-first

order accessing one field at a time. Each field in the structure is traversed 100 times.

Similar to Linked List 2, this benchmark is tested both with and without data allocated between

the nodes of the list. The interleaved allocations are 40-bytes long.

4.3 Performance Results

For every one of the micro benchmarks, MPADS improved application performance compared with

the baseline and memory pooling. MPADS improved performance because of the improved memory

locality and better utilization of the memory hierarchy.

The speedup from using MPADS and memory pooling is shown in Figure 4.1. The baseline for

comparison is a program compiled with the highest level of optimization, -O5. MPADS performed

significantly better then memory pooling on both the Power4 and Power5 architectures. The speedup

for MPADS ranged from a 1.47 fold to 12.36 fold improvement while pool allocation received a

speed-up of 1.21 fold to 4.11 fold.
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Figure 4.1: Speedup on a (a) Power4 and (b) Power5.

Both MPADS and memory pooling were able to successfully pool the interleaved allocations. In
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Figure 4.1 it can be seen that the benchmarks with the interleaved allocations had a larger speedup

then the benchmarks without the interleaved allocations. The reason that those benchmarks had

greater performance improvements is because both MPADS and pool allocation placed the inter-

leaved allocations into separate pools and kept the interleaved data from wasting memory bandwidth

and polluting the cache.

Looking at the number of instructions executed and the average number of cycles per instruction

(CPI) can help provide a picture of the impact that the transformation is having, these results are

provided in Figures 4.2 and 4.3. As expected, the additional address calculation instructions in

MPADS increased the number of instructions executed, but the improved data locality resulted in

fewer stalls and a lower CPI. The largest reduction of CPI on the Power4 was for benchmark Linked

List 2 with the interleaved allocations, dropping from 10.23 to 0.81. On the Power5, the largest

reduction of CPI was for benchmark Linked List 1B dropping from 9.35 to 1.21.

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

Binary Tree w/o interleaved alloc

Binary Tree w/ interleaved alloc

Linked List 2 w/o interleaved alloc

Linked List 2 w/ interleaved alloc

Linked List 1B

Linked List 1A

N
um

be
r o

f I
ns

tru
ct

io
ns

 E
xe

cu
te

d

Baseline
Pool Allocation

MPADS

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

Binary Tree w/o interleaved alloc

Binary Tree w/ interleaved alloc

Linked List 2 w/o interleaved alloc

Linked List 2 w/ interleaved alloc

Linked List 1B

Linked List 1A

N
um

be
r o

f I
ns

tru
ct

io
ns

 E
xe

cu
te

d

Baseline
Pool Allocation

MPADS

(a) (b)

Figure 4.2: Dynamic instruction count on a (a) Power4 and (b) Power5.

A somewhat unexpected result was that pool allocation reduced the number of instructions ex-

ecuted. Examining the standard C library showed that comparatively, the pool allocation library

calls are relatively efficient because they allocate large pools of memory and then just assign a small

chunk of the pool for each allocation call. This helps to minimize the overhead of allocating memory

and results in fewer instructions being executed then the baseline.

Even though the number of instructions executed increased with MPADS, the time required to

execute the program decreased. The programs runs faster because the transformation reduced the

size of the working set and was able to better utilize the hardware provided in the memory hierarchy.

The Translation Lookaside Buffer (TLB) is a small table in the CPU that is used to translate
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Figure 4.3: Cycles per instruction on a (a) Power4 and (b )Power5.

virtual addresses into physical addresses. If the working set is small enough, all of the address

translations can be quickly handled using the TLB. If a virtual address is not found in the TLB then

the CPU will typically trap to the operating system and walk the page tables to compute the address

translation. TLB misses can be very expensive. The Power4 and 5 architectures use separate TLBs

for data and instructions, abbreviated as the DTLB and ITLB, respectively. Since MPADS performs

a data transformation we are only interested in the DTLB performance.

The number of DTLB misses are given in Figure 4.4. Every benchmark had the fewest number of

DTLB misses when compiled with the MPADS optimization. Comparing MPADS with the baseline

and pool allocation, it is clear that structure splitting had fewer TLB misses and this result is likely

caused from reducing the size of the working set. For the benchmarks, MPADS reduced the number

of DTLB misses by at least a factor of 4 from the baseline. Some benchmarks saw an improvement

of more then 9 times fewer misses.

With memory accesses taking hundreds or even thousands of cycles, having the data in cache is

critical to continue frequency scaling as a means of improving application performance. MPADS

reduces the size of the working set and this reduction should allow more items to fit in cache. As

well, data splitting can help prefetch the data implicitly, because the fields will be located on the

same cache line. Data splitting will also help with explicit prefetching provided by hardware support

because the data is organized into streams.

The L1D cache in the Power architectures is local to each processor core and there are separate

data and instruction cache. The number of L1D misses are given in Figure 4.5. MPADS had fewer

L1D misses then memory pooling on every benchmark except for Linked List 1A. Since Linked
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Figure 4.4: DTLB Misses on a (a) Power4 and (b) Power5.

List 1A accessed every field in the structure during each traversal its not surprising that structure

splitting performed worse than memory pooling at the L1 level where the cache is small. It is worth

noting that MPADS was only marginally worse than memory pooling on Linked List 1A and still

reduced the number of L1D misses by 35 times from the baseline. The Linked List 2 and Binary

Tree benchmarks compiled with MPADS had up to 17x fewer L1D misses then memory pooling and

up to 35x fewer L1D misses then the baseline.

Like the L1 cache, there were far fewer L2 and L3 cache misses using MPADS. The number

of L2 cache misses are given in Figure 4.6 and the number of L3 misses are given in Figure 4.7.

For both the L2 and L3 caches the largest reduction of cache misses was on the Linked List 1A

benchmark. For this benchmark, the differences between MPADS and memory pooling were small,

but MPADS performed better than memory pooling on the Power4 machine while on the Power5

machine memory pooling performed better. For all of the other benchmarks MPADS performed

better than memory pooling on both architectures. This is not surprising since structure splitting

reduces the size of the working set and allow data to be prefetched more efficiently.

It may seem surprising that, for Linked List 1A, memory pooling performed slightly better then

MPADS on the number of L1D misses yet MPADS had a larger speedup then memory pooling.

This result can be explained by looking at the number of DTLB misses, MPADS has about 5%

fewer DTLB misses than memory pooling. The reduction in the number of DTLB misses is enough

to offset the increased number of cache misses.

The reason that Linked List 1A and 1B were created was to test if MPADS can perform better

then memory pooling when (i) all of the fields in the structure are accessed contemporaneously
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Figure 4.5: L1D misses on a (a) Power4 and (b) Power5.
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Figure 4.6: L2 misses on a (a) Power4 and (b) Power5.
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Figure 4.7: L3 misses on a (a) Power4 and (b) Power5.

and (ii) each field is accessed individually. The results from the first micro benchmark indicate that

MPADS has performance at least equal to pooling for both the A and B versions and can significantly

outperform memory pooling when not all of the fields are accessed together.

Another interesting comparison to make is looking at the results for benchmarks with and with-

out interleaved allocations. Once again, MPADS outperformed memory pooling in every bench-

mark. For the benchmarks without interleaved allocations, MPADS obtained a significantly larger

reduction in the number of cache and DTLB misses compared with memory pooling. Data splitting

significantly reduced the number of cache misses at all levels of the memory hierarchy for most of

these benchmarks.

Memory pooling increased the number of L3 misses for the Power4 processor running the Binary

Tree without interleaved allocations benchmark. However, pooling did not increase the number of

L3 misses on the Power5 or on the benchmark with interleaved allocation. The increased number of

misses for pool allocation is likely caused because there is no data allocated between the data and

the baseline allocates everything contiguously. When pool allocation is applied the data is allocated

in pools but the pools may not be contiguous. Thus there may be more space between the data and

less locality leading to more cache misses. MPADS had fewer misses then both the baseline and the

memory pooling.

MPADS performance improvement are not limited by the layout of the data structure. When

the layout changed from a list to a tree, MPADS still outperformed memory pooling and obtained a

speedup ranging from 1.46 to 2.35 times faster then the baseline, compared to a speed up ranging

from 1.10 to 1.66 for memory pooling.
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Chapter 5

Experimental Evaluation

After verifying that the MPADS performed as expected on the micro benchmarks, it must be eval-

uated on larger benchmark suites. For all of the larger benchmarks tested, MPADS outperforms

memory pooling. For one of the benchmarks, MPADS cut the execution time in half, more then

27% better than memory pooling. However, the results for the rest of the benchmarks are mixed.

Many potential opportunities were abandoned because the pointer analysis did not have enough

precision and thus the transformation did not have as large an impact as expected. As well, the

transformation caused one of the benchmarks, health, to have worse cache behavior and run 9%

slower then the baseline.

5.1 Benchmarks

For the experiments, benchmarks from 3 sources were used, SPEC 2000, Olden [53] and LLU [74].

The Olden and LLU benchmarks were chosen because they have been used to evaluate many code

transformations that aim to improve cache performance and because they contain pointer-based data

structures [10, 29, 63]. The SPEC 2000 benchmarks were chosen because they are the de facto

standard for performance measurement in the industry.

The benchmarks tested are comprised of C and C++ programs that use linked data structures.

The size and layout of the data structures in the benchmarks varies. Some benchmarks use a standard

linked list while others use structures such as a linked list of linked lists, or quad-trees. MPADS per-

forms an analysis to identify candidates to split and should be able to split the structures regardless

of the layout.

Optimization opportunities are not discovered in several of the benchmarks. Those benchmarks

are not included in the results because a transformation was not performed on them and accordingly

there is no change in their performance.
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5.1.1 Missed Opportunities

For the Olden benchmarks, MPADS was unable to identify opportunities on half of the benchmarks,

namely bisort, mst, perimeter, treeadd and voroni benchmarks. Thus, results for these benchmarks

are not reported because they were not modified.

Opportunities are identified in only 5 of the SPEC 2000 benchmarks and the opportunities that

were identified were responsible for referencing only a small fraction of each application’s data. As

a result the transformation did not have a measurable impact on any of the SPEC 2000 benchmarks.

The number of opportunities identified and abandoned in each benchmark given in Table 5.1. The

first two columns refer to the number of alias sets that were tagged as safe candidates for the trans-

formation and the number of alias sets that were abandoned. The third column is the number of

allocation sites that MPADS replaced with calls to the pool allocation library and the last column is

the number of allocation calls in the program.

Although MPADS did not identify any opportunities in SPEC we believe that opportunities exist

because Lattner and Adve’s Data Structure Analysis (DSA) has successfully identified candidates

in SPEC 2000 [32, 44]. Lattner and Adve’s Data Structure Analysis uses a context-sensitive, field-

sensitive, flow-insensitive unification-based pointer analysis that is more precise then the Steens-

gaard’s style analysis used in MPADS. Unfortunately, neither DSA nor the results from DSA could

be integrated into the implementation without a considerable amount of effort because the results

are context-sensitive. Using the context-sensitive analysis would require modification of all of the

function prototypes in the program to pass in a representation of the calling context so that data can

be allocated in the correct pool depending on the calling context.

One of the SPEC benchmarks that may contain an optimization opportunity is ammp. Three of

the main data structures in ammp contain dozens of fields and are very large. The structures atoms,

nodelist and atomlist are 2208, 232 and 232 bytes each [1]. Only a small fraction of the fields in each

structure are accessed during a traversal and this benchmark is an excellent candidate for MPADS.

If this structure could be split it would likely result in a significant speedup. Unfortunately, this

opportunity was not identified by MPADS.

The SPEC benchmark with the most opportunities identified was gcc. Twenty opportunities

were identified in gcc but only 87 out of over 1500 allocation sites were modified and the allocation

sites that were modified did not allocate any significant portion of data. The other opportunities were

abandoned either because the alias sets contained different access patterns or the allocation site for

an alias set could not be found. The pointer analysis not having enough precision is the reason that

safe opportunities were abandoned.

30



Num Pools Num Pools Allocs Allocs in
Transformed Abandoned Replaced Program

ammp 8 24 8 81
art 0 9 0 12
bzip 0 0 0 38
eon 0 3 0 152
gcc 20 60 87 1563
gzip 0 1 0 17
mcf 0 0 0 7
parser 0 0 0 144
perlbmk 1 3 2 125
twolf 2 24 7 203
vortex 0 0 0 16
vpr 1 37 36 293

Table 5.1: Limitations when transforming SPEC 2000

5.2 Results

For the experiments on the Olden, SPEC and LLU benchmarks, the experimental setup is the same

as described in Chapter 4.1. The same machines and the same procedures were used to collect the

results.

There was no noticeable increase in compilation time because the transformation used the results

of a pointer analysis that the compiler already performs. During the transformation, the compiler

did not have to do any additional passes over the code as it was integrated into the transformation

phase already doing a pass over the code. The result was a very efficient implementation that did

not significantly affect the compile time.

The MPADS transformation either outperformed or tied the performance of memory pooling on

every benchmark. The speedup for each of the benchmarks after the transformations is given in

Figure 5.1. Both memory pooling and MPADS had larger impacts on the Power4 processor than on

the Power5. On the Power4, MPADS improved 5 benchmarks and memory pooling only improved

3. On the Power5 MPADS and memory pooling only improved 2 benchmarks but MPADS improved

LLU by 27% more then memory pooling.

The CPI for the pool allocation and the baseline either stayed roughly the same or pool alloca-

tion had a sightly higher CPI, shown in Figure 5.2. For the MPADS optimized code the CPI was

always smaller than memory pooling. Because of the address calculation, MPADS also executed

more instructions than memory pooling on all of the benchmarks. Figure 5.3 shows the number of

instructions executed.

The results for the Data Translation Lookaside Buffer (DTLB) shown in figure 5.5 are rather

interesting. For health on the Power4 both memory pooling and MPADS caused more DTLB misses

but on the Power5 the transformations caused fewer misses. Conversely, for tsp, MPADS caused

fewer misses on the Power4 and more missed on the Power5. At first glance, these results appear
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Figure 5.1: Speedup on a (a) Power4 and (b) Power5.
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Figure 5.2: Cycles Per Instruction on a (a) Power4 and (b) Power5.

surprising considering that the TLBs on both processors have the same number of entries [41].

However, the Power5 architecture added a first level data translation table that contains a 128 entry

fully associative array [60].

Perhaps most surprising is that for many of the benchmarks MPADS increased the number of

L1D misses, shown in Figure 5.6, yet still obtained a speed up. Looking at the number of L2 and

L3 misses in Figures 5.7 and 5.8 shows that MPADS decreased the number of misses at the lower

levels of cache and these reductions outweighed the increases in L1D misses. The number of L1D

cache misses increased most likely because memory pooling moved the two structures farther apart

and the small L1D cache no longer contained both structures.

The benchmark health performed worse after structure splitting. Looking at the performance

metrics the number of instructions, DTLB misses, L1D cache and L2 cache misses didn’t change
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Figure 5.3: Dynamic instruction count on a (a) Power4 and (b) Power5.

very much. However, the MPADS transformation increased the number of L3 cache misses and the

number of instructions executed resulting in the degraded performance. Health performed poorly

because of the unique layout of the data structure used. Figure 5.4 from Zilles shows the data

structure used in health to maintain the patient list [74]. Allocating the list structures and the patient

structures in separate pools hurt performance because the patient structure is accessed via the list

structure. Allocating them in separate pools moves them further away. It’s interesting to note that

splitting structures won some of the lost performance back and the largest slowdown for splitting

was 9% while pool allocation slowed the benchmark down by 14%.

Data structures like the one used in health are commonly used by programmers and MPADS

should be able to either improve them or abandon the opportunity. The slowdown appears to be

caused by pool allocation separating the two lists. If both lists could be allocated in the same pool

this would likely improve performance. Another alternative discussed in Chapter 7.1.2 is to abandon

the transformation if the compiler can determine that it will degrade performance.
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Figure 5.4: The data structure used in health to maintain the patient list from Zilles [74].
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Benchmarks bh, em3d, power and tsp had much smaller performance improvements on the

Power5 compared to the Power4. Looking at the results for the cache and DTLB misses shows that

there was a much less significant reduction in misses on the Power5. As a result the number of

cycles spent stalled only sightly decreased on the Power5 and most of that gain was eaten up by the

overhead of the extra address calculation instructions.

The LLU benchmark simulates a linked list and was proposed as a replacement to the health

benchmark that may not be representative of a typical linked list data structure [74]. This bench-

mark received the largest speedup from MPADS, 2.07 on the Power4 and 1.72 on the Power5. It’s

interesting that the number of L1 cache misses increased but the number of DTLB, L2 and L3 cache

misses decreased. The L1 misses increased because the benchmark accesses many of the fields in

the list nodes at the same time and the reorganization of the data caused poorer L1 cache perfor-

mance. However, for the larger L2 and L3 caches the data reorganization allowed them to prefetch

more data and significantly reduced the number of cache misses.
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Figure 5.5: DTLB Misses on a (a) Power4 and (b) Power5.
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Figure 5.6: L1D Misses on a (a) Power4 and (b) Power5.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

llutsppower
health

em3d
bh

L2
 C

ac
he

 M
iss

es

Baseline
Pool Allocation

MPADS

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

llutsppower
health

em3d
bh

L2
 C

ac
he

 M
iss

es

Baseline
Pool Allocation

MPADS

(a) (b)

Figure 5.7: L2 Misses on a (a) Power4 and (b) Power5.
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Figure 5.8: L3 Misses on a (a) Power4 and (b) Power5.
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Chapter 6

Related Work

The focus of this thesis is data transformations for general purpose computing and the related work

will be restricted to this domain. Many data transformations have been developed for scientific

computing but they are generally not applicable to non-numeric applications and thus will not be

covered.

6.1 Manual Data Transformations

Unless the performance of an algorithm is critical, most developers are not willing to incur the addi-

tional implementation and code maintenance costs that are required to perform locality-improving

transformations. Researchers have acknowledged this and developed more general techniques and

tools to help programmers modify their applications to reduce the running time. Unfortunately,

many of the techniques and tools developed still require non-trivial programmer intervention.

Truong, Bodin and Seznec investigate two data transformations that they call field reorganization

and instance interleaving [63]. Field reorganization groups fields that are referenced together into

the same cache line. It reorganizes the order of the fields in the structures. Instance interleaving

splits the data structure so that fields of different instances of a structure are grouped together. To

support the instance interleaving technique, they develop a memory allocation library to change how

the data is allocated. Instance interleaving is similar to MPADS structure splitting but it requires the

programmers to manually modify their data structures by adding padding and replacing the memory

allocation functions.

Chilimbi, Davidson and Larus modify the internal organization of fields in a data structure at

compile time to improve the locality [9]. Two techniques are used to reorganize the fields in the

data structures, structure splitting and field reordering. Structure splitting is used to increase the

number of hot or frequently accessed fields found in a cache block. Structure splitting increases

spatial locality and was shown to reduce cache miss rates by 10 to 27%, improving performance by

6 to 18%. Field reordering places fields with high temporal locality in the same cache block and

moderately improve performance by 2 to 3 %. The algorithm used by Chilimbi, Davidson and Larus
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requires profile information and the splitting is only safe for Java classes. As well, the structure

splitting seperates the data into hot and cold fields and outlines the cold fields. A pointer to the

structure with the cold fields is kept with the hot fields and everytime a cold field is accessed an

aditional pointer dereference is required. MPADS structure splitting performs maximal splitting and

although it requires more instructions for the address calculation it does not require an additional

pointer dereference.

Chilimbi, Hill and Larus note that techniques for reducing memory latency have had limited

success with pointer-based data structures and investigate methods to solve this problem [10]. They

improve the locality of reference through two data placement techniques known as clustering and

coloring. Clustering is a technique that places objects that have a high affinity in the same cache

block. Coloring is a technique used to avoid conflict misses between heavily used memory loca-

tions. They create two methods named ccmalloc and ccmorph that use clustering and coloring

techniques to create a cache conscious heap allocator. These techniques improved performance by

up to 194% on some benchmarks but most benchmarks improved by 10 - 20%. The ccmorph

function takes the first node in a list or a tree and an iterator as parameters. The ccmorph function

reorganizes the data structure to be cache conscious by placing nodes and their children in the same

cache block. This technique requires the API and functionality of iterators and the structure layout

to be known by the ccmorph function. Transforming the data in the application requires signifi-

cant effort on behalf of the programmer. Their techniques do not split data structures. Rather they

allocate structures with high affinity together.

The novelty of the proposed techniques is that they try and address pointer-based applications

with semi-automatic techniques. Although they still require significant programmer intervention

they are a step in the right direction.

6.2 Automatic Data Transformations

The area of research most closely related to this work is the area of automatic data transformations.

Automatic data transformations are appealing because they are transparent to the programmer and

the compiler can often optimize programs better then the average programmer.

Finding a good data layout is a difficult problem. Even if we know the order that memory

locations are accessed, the problem of organizing data in memory to minimize the number of cache

misses can’t be solved efficiently or even approximated very well unless P = NP [50]. Thus all of

the proposed solutions are heuristics designed to improve the naive layout that is commonly used in

production compilers.

Lattner and Adve developed one of the first fully automatic and safe data transformations to

successfully transform dynamically allocated objects for general purpose programs written in type

unsafe languages [29]. They created an analysis called Data Structure Analysis that is based on

a context-sensitive pointer analysis. Their pool allocation automatically identifies safe candidates
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to transform and allocates them in pools based on the objects that they were aliased with. The

pool allocation idea forms the base for MPADS pool allocation and other structure splitting frame-

works [24, 58].

Lattner and Adve used their Data Structure Analysis and pool allocation to safely compress

pointers in linked data structures [30]. Their system reduces 64-bit pointers to 32-bit pointers by

allowing pointers in the same pool to index other objects in that pool using an offset from the base

of the pool. The system reduces the size of objects and allows more objects to fit in cache resulting

in smaller working sets and improved application performance. MPADS attempts to reduces the size

of the working set by reorganizing how data is placed in memory, opposed to modifying the size of

the data.

Zhong et al. define a model to measure the closeness of references in a memory trace, the model

is known as reference affinity [71]. Zhong et al. show how reference affinity can be used for structure

splitting and array regrouping. Fields with high affinity are grouped together and then the structure

is split into groups. Although they perform structure splitting in a compiler they assume that the

language is type-safe and use programmer intervention to ensure that the transformation does not

alter the semantics of the program. MPADS does not require a program trace and guarantees that

the transformation is safe. As well, MPADS performs maximal splitting instead of affinity based

splitting.

Zhao et al. implement Forma, a compilation framework to automatically and safely reshape sin-

gle instantiated arrays [70]. Instead of using the affinity-based splitting used by Zhong et al., Forma

uses maximal splitting and shows that maximal splitting achieves best or near-best performance on

the SPEC 2000 and Olden benchmarks.

Rabbah and Palem develop a completely automated data remapping technique that splits pointer-

based structures [51]. Their system uses a trace of all the field accesses in the program to determine

the field-access affinity. Field access affinity is used to decide which structures to split. The candi-

date structures are then split maximally similar to MPADS uniform structure splitting from Chap-

ter 3.3.1. However, uniform splitting is the only splitting mechanism supported and the fields must

be padded so that they are all the same length. If many fields in a structure are padded this can result

in the data remapping polluting the cache more then in the original organization. MPADS only uses

uniform structure splitting if all of the fields in the structure are the same size and thus does not pol-

lute the cache with padding. Rabbah and Palem also use a field-insensitive pointer analysis whereas

MPADS uses a more precise field-sensitive pointer analysis.

Shin et al. restructure the field layout for dynamically allocated objects [58]. Their field restruc-

turing removes the padding in the structure, groups fields with high affinity together and performs

affinity-based splitting. To determine which fields are accessed together the system uses profile in-

formation. Shin et al. describe the technique used to split the structures but do not describe how

to integrate it into a compilation framework nor do they mention how they guarantee safety. Al-
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though their technique is similar to the Non-Uniform Splitting technique described in Chapter 3.3.2,

MPADS is different because it is designed to be safely integrated into a production compiler and

performs maximal splitting. As well, MPADS supports uniform splitting to reduce the address cal-

culation overhead when all of the fields in a structure are the same length. The numbers obtained by

Shin et al.’s structure reshaping are slightly better then MPADS but they were obtained on a system

with a higher clock speed and smaller caches.

Jeon, Shin and Han expand on Shin et al.’s previous work using structure splitting to reorga-

nize objects allocated in the heap [24]. The major difference from their previous work is that this

system is implemented in the CIL compiler framework and does not use profile information. The

improvement to the field restructuring is the addition of a static analysis that uses regular expres-

sions to represent the field access pattern. The regular expression can then be used to extract the

access pattern and estimate the field affinity. Once again, affinity-based splitting is performed. The

safety of their system is based on Lattner and Adve’s observation that most pools are used in a type-

consistent style [29]. Jeon, Shin and Han rely on their regular expressions to select candidates if the

closure only contains fields from a single node and this will likely be enough for the majority of the

cases. However, without a pointer analysis it is impossible to guarantee safety because fields can be

accessed through pointers that may not be captured through their regular expression framework.

6.3 Prefetching

One of the first areas to attempt to reduce the stalls caused by high memory latency was prefetching.

If the program could predict the future memory references then they could be loaded to cache before

a fetch instruction is issued. Many of the techniques developed were software based but recently

hardware prefetchers have been integrated into modern CPUs.

Luk and Mowry created three prefetching techniques for recursive data structures, greedy, history-

pointer and data-linearizion prefetching [40]. Greedy prefetching was the only technique that was

implemented into a compiler framework and didn’t require programmer intervention. This automatic

technique issued prefetches for the children of the node that was just fetched. For small memory la-

tency this simple technique could improve application performance by as much as 45% but has little

impact when memory latency is large. The two other techniques are designed to deal with larger

memory latency but they required programmer intervention and were not automaticaly inserted by

the compiler.

Rather then inserting software prefetches at compile time Chilimbi and Hirzel create a runtime

system that profiles the memory accesses of data, determines hot streams and then inserts prefetch

statements into the binary application at runtime [11]. The reduction of memory stalls was able to

overcome the overhead of the profiling and analysis, resulting in performance improvements of up

to 19% on some SPECint 2000 benchmarks.

Cahoon and McKinley use whole program analysis to identify profitable opportunities to in-
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sert prefetching [6]. They implement their analysis, greedy-pointer prefetching and jump-pointer

prefetching in a Java compiler. Jump-pointer prefetching is similar to Luk and Mowry’s history-

pointer prefetching, a jump-pointer field is added to each data structure. During the first traversal

of the list the last n pointer accesses are recorded and inserted into the jump-pointer field in the

structure. Thus each structure now has a pointer to the item that is referenced n items in the future.

On subsequent traversals of the list the jump-pointer field is prefetched. Cahoon and McKinley note

that although they obtain performance improvements as large as 48% a consistent improvement is

hard to obtain.

Stoutchinin et al. present a prefetching algorithm to automatically prefetch data in a linked

list [62]. The algorithm is based on the observation that list traversals regularly accesses memory

that is separated by a constant distance, or stride. Their system automatically identifies pointer-

chasing loops, determines if prefetching will be profitable, and inserts prefetch statements. Their

system is integrated with the loop scheduling framework and only issues prefetches if the compiler

estimates that there is enough memory bandwidth available and that the prefetches will not cause

cache conflicts.

6.4 Cache-Conscious Algorithms

The performance bottleneck from high memory latency has led many researchers to look for solu-

tions to address this problem. Some researchers are looking at addressing the fundamental problem

via hardware-based solutions such as architectural changes or semiconductor development. Other

researchers are attempting to mitigate the impact by modifying or re-writing their algorithms and

creating tools to assist others with this task.

Applications with good data locality can perform substantially faster then those with poor lo-

cality [7, 57, 59]. Developers and researchers have started modifying algorithms in all areas of

computing science and this has led to a new research area known as cache-conscious algorithms.

This new area blends the knowledge of computer architecture with domain specific knowledge of a

specific algorithm. Often, data structures are either split or reorganized to improve the data locality.

Rao and Ross changed the structure of B+ Trees used in main memory by reorganizing the data

structure [52]. Rao and Ross realized that the child pointers in the tree were frequently accessed

but many others fields stored near the child pointers were not frequently accessed. The modified

program separated the child pointers from the nodes into their own data structure, improving the

spatial locality for the pointer-chasing code. In their simulations, the modification reduced cache

misses by approximately 50% when compared with a standard B+ Tree. Rao and Ross showed that

splitting the B+ Trees reduced the size of the working set, improved data locality and reduced the

number of cache misses.

Agrawal et al.’s Apriori frequent item-set mining algorithm is commonly used by businesses on

large data sets where performance is critical [2]. Apriori is a perfect example of an algorithm that
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has been extensively modified to reduce the running time. Ghoting et al. modified FPGrowth [20],

considered the most efficient version of the Apriori algorithm, to replace the FP Tree data structure

with a tile-able cache-conscious prefix tree that improves the spatial locality of the data [17]. The

tile-able cache-conscious prefix tree is organized with paths from the root of the tree to the leafs

being stored in tiles. Improving the cache behavior of this program improved the performance by a

factor of 4.8x when compared with the previously best known implementation. Ghoting et al. then

applied a similar technique to two other frequent item-set mining algorithms, Apriori and Genmax,

and obtained speedups of 3.7 and 4.5 respectively. An important contribution from Agrawl et al.
was that both single thread performance and hyper-threaded performance could be substantially

improved by increasing data locality.
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Chapter 7

Future Work

7.1 Opportunity Identification
7.1.1 Alias Analysis

As mentioned in the experiment section, chapter 5, Steensgaard’s pointer analysis has enough preci-

sion to identify opportunities in the smaller benchmarks like LLU and Olden. However, the pointer

analysis does not have enough precision to identify opportunities in the larger and more complex

SPEC benchmarks.

Replacing the pointer analysis with a more precise analysis such as Lattner and Adve’s Data

Structure Analysis (DSA) could improve the performance of MPADS because it can transform more

opportunities. However, such a change is not as simple as just plugging in a new alias analysis. DSA,

for example, is context-sensitive and as such the alias sets are not valid at every point in the program.

Thus some representation of the context must be known at runtime, this can be accomplished by

either passing context strings as parameters or function cloning. The context must be known to

ensure that the data is allocated in the correct pool and that the proper data access is performed.

A flow-sensitive analysis would also require a substantial re-engineering of the transformation

because there is a different alias set at every point in the program.

7.1.2 Benefit Analysis

Although structure splitting can improve performance in many benchmarks there are some that

it causes a performance degradation. It would be beneficial if the compiler could analyze each

candidate to determine if structure splitting would be beneficial.

A static shape analysis like Ghiya and Hendren’s [16] shape analysis could be used to help

determine beneficial opportunities as well as a splitting plan. Only the objects that are likely to be

improved with splitting will be identified as candidates.

Rubin, Bodik and Chilimbi acknowledge that finding an optimal layout is NP-hard and poorly

approximately in polynomial time and create a profile-directed framework to search for good layouts

in general purpose applications [54]. The framework captures a representative memory trace and
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simulates different layouts using the captured trace. Their contribution is the ability to evaluate and

combine optimization strategies without modifying the program and executing it. Such a system

could be integrated into MPADS to determine which splitting strategy to perform. Such a framework

could also be used to determine the benefits of splitting.

7.2 Affinity Analysis

The structure splitting framework can be extended by including affinity analysis to group fields with

high affinity together where it may be profitable to do so. Other structure splitting frameworks have

used profile-directed, trace-based, and static affinity analysis to perform affinity-based splitting [24,

51, 58, 71].

It is be possible to reduce the number of instructions executed by using uniform splitting instead

of non-uniform splitting and padding the short fields to make every field in the structure the same

length. Alternatively, field coalescing can be used to make structures with varying field lengths

candidates for the uniform splitting technique. To make the field lengths the same, two or more

fields could be coalesced based on affinity and field size. Field coalescing would eliminate much of

the padding used in Rabbah and Palem’s [51] structure splitting scheme.

Field affinity information can also be used with non-uniform splitting to group fields with high

affinity together by performing affinity-based splitting.

Finally, using the affinity analysis the compiler could add padding or alignment to avoid cache

conflicts. If two fields are often referenced together then it could try and align the memory to avoid

conflict misses between these fields.

7.3 Other Techniques to Improve MPADS

There are several other techniques that can be implemented that may improve the MPADS splitting

technique. Some are designed to help overcome some of the overhead and others are alternative

ways to implement structure splitting.

The most interesting improvement to MPADS can eliminate some of the overhead of accessing

fields in the Non-Uniform Splitting technique described in chapter 3.3.2. If the field being accessed

is the same size as the first field in the structure then less addressing instructions are needed. The

field can be accessed by summing up the sizes of the fields in-between in the pool. Formally, the

new offset can be calculated as:

field i offset =

i−1
∑

j=1

(sizeof (fj) ∗ num structs per pool ) (7.1)

Equation 7.1 can be calculated at compile time and thus would not increase the number of in-

structions executed. Exploiting this observation could significantly reduce the number of instruc-
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tions executed and much of the overhead associated with Non-Uniform Splitting. However, it opens

the door to a new question.

Since fields that have the same size as the first field in the pool can be accessed without additional

overhead it would be beneficial to know the frequency each field in the structure is accessed to

select the first field so that the number of additional addressing instructions is minimized during

the execution of a program. However, finding the field access information typically requires profile

information and may change depending on the input to the program

Another interesting idea that may improve the structure splitting is having the custom memory

allocator return a pointer to a field in the middle of the structure rather then the first field in the

structure. If the processor has a limited number of bits for addressing the base plus offset address

calculations then this may allow the compiler to double the size of the pools without requiring an

additional addition instruction.

The final idea revolves around another modification to the memory allocation library. Rather

then using the typical 32 or 64-bit pointers returned by malloc it could use n ∗ 32 or n ∗ 64-bit

pointers, where n is the number of distinct field sizes in each structure. Then all of the fields for

each structure could be allocated in a pool with a uniform size. Each 32 or 64-bit chunk of the

pointer could point to the first field of the pool with that distinct size. Thus Uniform Splitting could

be applied to a non-uniform structure.
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Chapter 8

Conclusions

A safe, automatic data structure splitting transformation, MPADS, is developed and implemented in

a production compiler. The transformation performs two types of maximal splitting, uniform and

non-uniform. The transformation uses a pointer analysis to automatically identify opportunities and

to guarantee that the transformation is safe. MPADS does not require a program trace or profile

information.

MPADS was not able to identify optimization opportunities in the SPEC 2000 benchmarks be-

cause of a lack of precision in the alias analysis. However, for the majority of Olden and LLU

benchmarks, MPADS improves the application’s performance. One of the benchmarks executed

over 2x faster then the baseline after structure splitting. MPADS reduces the number of cycles

required to execute each instruction by reducing stalls caused by cache misses but increases the

number of instructions. This is a good trade-off for improving program performance by increasing

clock frequency. Techniques similar to MPADS could allow hardware designers to continue reaping

the benefits of frequency scaling.
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Appendix A

Other Contributions

In addition to the MPADS structure splitting framework, several other contributions were developed

throughout the course of my studies. This work was directed at improving static and feedback-

based program analysis and have been implemented in widely used compilation frameworks such

as McGill’s Soot compilation framework [64], the Joeq / bddbddb program analysis framework [66,

67, 68] and the Open Research Compiler (ORC) [8]. The contributions are not directly related to the

structure splitting work but it is possible that the structure splitting framework could be extended to

use these contributions.

A.1 Using XBDDs and ZBDDs in Points-to Analysis

Points-to analysis is an important static analysis that is often needed for transforming programs

written in languages with pointers or references. However, obtaining a precise analysis is infeasible

for many large programs because of the space requirements of the analysis [39].

Binary Decision Diagrams (BDDs) can be used to efficiently represent the sets and relations

that are commonly used in pointer analysis. BDD-based may-point-to and call-graph-construction

analyzes were developed to improve the scalability of precise pointer analyzes [4, 38, 68, 72, 73]. To

further reduce the storage requirements of pointer analysis, Lhoták, Curial and Amaral adapt XBDD

and ZBDD data structures for points-to analysis [35, 36]. The XBDD and ZBDD data structures are

a variation of BDDs that can represent the relations in points-to analysis more compactly then BDDs.

Although both XBDDs and ZBDDs had been successfully used in other domains they had not been

proposed for points-to analysis. To use ZBDDs in points-to analysis we had to develop the relation

product operation for ZBDDs.

A BDD is a data structure used to represent a boolean function [5]. This function can be viewed

as a set of bit vectors, namely those bit vectors that the function maps to true. A BDD represents

such a function as a directed acyclic graph of nodes.

In this graph, a terminal node represents the constant true and another terminal node represents

the constant false. Each non-terminal node, which specifies a BDD variable, has two outgoing
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edges to other nodes, a one edge and a zero edge. The value of the function for a given valuation

of the BDD variables is determined by a traversal starting at the root node of the BDD. At each

node, the traversal follows either the one edge or the zero edge, depending on the value of the BDD

variable associated with that node. Eventually, the traversal reaches a terminal node whose value

indicates the value of the function.

Most implementations and algorithms that use BDDs are stored in their canonical form, called

Reduced Ordered BDDs. An example of a binary function is given in figure A.1 (a) with the BDD

shown in figure A.1 (b) and the ROBDD in figure A.1 (c).

f(x1 x2 x3) =
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 0

x1

1 0

x3

x2x2

x3x3x3

x1

1 0

x3

x2x2

x3

x1

1 0

x2

x3

(a) (b) (c) (d)

Figure A.1: The function f(x1 x2 x3) (a), and the OBDD (b), ROBDD (c) and ZBDD (d) represent-
ing it. Solid edges represent one edges and dotted edges represent zero edges.

BDDs represent a binary function on n bits, thus there are exactly 2n inputs to the function that

will be mapped to either true or false. However, the number of elements in the domain to represent

may not be a power of 2 and thus there are unused bit patterns. These unused inputs are represented

in the BDDs and traditionally have been assigned to false, however, since the inputs will never be

encountered they can be assigned to either true or false without affecting the accuracy or precision

of the analysis. The size of BDDs can be reduced by eliminating these don’t-care bit patterns.

Lhoták, Curial and Amaral adapt two techniques to eliminate the don’t care elements in pointer

analysis, don’t-care BDDs (XBDDs) and Zero-Suppressed BDDs (ZBDDs). Both techniques have

been very effective at reducing BDDs size in applications such as circuit design, model checking,

and verification but have not been used by the program analysis community.

Don’t-care BDDs (XBDDs) refers to the technique of assigning true or false values to the unused

inputs. Sauerhoff and Wegener showed that this problem is NP-hard [56] and thus, the restrict
operator, a heuristic solution developed by Coudert and Madre, is used to efficiently find good

solutions [12].

If more then the minimum number of required bits are used in the BDD then XBDDs were able

to reduce the number of nodes in the BDD by 5 - 30%. However, when the programmer used the

minimum number of bits necessary to create the BDD, XBDDs obtained only modest reductions of
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a couple of percent.

A variation of BDDs, known as Zero-Suppressed BDDs (ZBDDs), is another promising alterna-

tive to eliminate the overhead of don’t-care bit patterns [45, 46]. ZBDDs provide compact represen-

tations of sparse sets that are represented by a function with many zeros and few ones. A one-of-N

encoding, rather than a binary encoding, is effective for ZBDDs. In a one-of-N encoding each ele-

ment is assigned a bit pattern in which exactly one bit is set. The number of legal bit patterns is N ,

which need not be a power of two. Choosing N to be equal to the size of the domain of elements

ensures that every legal bit pattern corresponds to some element, thereby eliminating don’t-care bit

patterns altogether. An example of a ZBDD is given in figure A.1 (d).

BDD-based points-to analysis requires the use of a relational product operation but there was no

existing algorithm for ZBDDs. One of the contributions of this work is developing the relational

product algorithm for ZBDDs. This algorithm allowed ZBDDs to be applied to points-to analysis.

ZBDDs showed a large potential for improving the larger sparser relations in pointer analysis.

For context-sensitive analysis ZBDDs reduced the size of every relation used in the analysis. When

represented with ZBDDs some relations had eight times fewer nodes. This reduction could allow

otherwise infeasible analysis to be completed.

A.2 An Optimal Encoding to Represent a Single Set in an ROBDD

While investigating techniques to eliminate the overhead of unused bit patterns in BDDs; Lhoták,

Curial and Amaral discovered an optimal solution to a related optimization problem [34].

The contribution is an optimal encoding for a set in a Reduced Ordered Binary Decision Diagram

(ROBDD) when the number of elements in the set’s domain is not a power of two. Unfortunately,

the encoding cannot be used for BDD based points-to analysis because the domain of a BDD is

created from the concatenation of several domains. Lhoták, Curial and Amaral discuss the more

general optimization problem that must be solved for such a technique to be successful for BDD

based points-to analysis [35].

A.3 Tree-Traversal Orientation Analysis

Data reorganization techniques such as structure splitting and pool allocation are designed to work

for any shape of link-based data structure, be it a graph, dag or tree. It is possible that a data trans-

formation could be optimized for specific data structure shapes and provide a greater performance

improvement. Before specialized data transformations can be created, the compiler must be able to

identify the shape of the data structure and analyze how it is accessed. Andrusky, Curial and Amaral

create a feedback-directed analysis, named Tree-Traversal Orientation Analysis, that can determine

if the traversal of a data structure is a list or tree given that a shape analysis can identify the structure

as a directed acyclic graph. [25]. If the analysis identifies that the structure is a tree then it will also
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identify if the traversal orientation is breadth-first, depth-first or a combination of those.

The analysis was implemented in the Open Research Compiler (ORC) and tested on several

micro-benchmarks as well as the Olden benchmark suite. For all of the benchmarks tested, the

analysis was able to correctly identify the orientation of the traversal.
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Appendix B

Micro Benchmark Code Listing

B.1 Linked List 1A

# i n c l u d e < s t d l i b . h>
# i n c l u d e < s t d i o . h>

s t r u c t s t u d e n t r d s {
unsigned s h o r t y e a r b o r n ;
unsigned i n t s i d ;
i n t d a t a 1 ;
double d a t a ;
s t r u c t s t u d e n t r d s ∗ n e x t ;

} ;

s t a t i c i n t NUM STUDENTS = 1 5 0 0 0 0 0 ;

s t r u c t s t u d e n t r d s ∗ i n i t S t u d e n t L i s t L o o p ( ) ;
void t r a v e r s e S t u d e n t L i s t ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;

i n t main ( i n t argc , char ∗ a rgv [ ] ) {

s t r u c t s t u d e n t r d s ∗ s t u d e n t l i s t ;

s t u d e n t l i s t = i n i t S t u d e n t L i s t L o o p ( ) ;

f o r ( i n t i = 0 ; i < 1 0 0 0 ; i ++)
t r a v e r s e S t u d e n t L i s t ( s t u d e n t l i s t ) ;

f r e e ( s t u d e n t l i s t ) ;

re turn 1 ;
}

void t r a v e r s e S t u d e n t L i s t ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
( l i s t −>s i d ) + + ;
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( l i s t −>y e a r b o r n )−−;
l i s t −>d a t a = l i s t −>d a t a + l i s t −>d a t a 1 ;
l i s t = l i s t −>n e x t ;

}
}

s t r u c t s t u d e n t r d s ∗ i n i t S t u d e n t L i s t L o o p ( )
{

s t r u c t s t u d e n t r d s ∗ r t n , ∗ l i s t ;
char ∗ c h a r s ;

r t n = ( s t r u c t s t u d e n t r d s ∗ ) ma l loc ( s i z e o f ( s t r u c t s t u d e n t r d s ) ) ;
r t n −>n e x t = 0 ;
l i s t = r t n ;

f o r ( i n t i = 1 ; i < NUM STUDENTS ; i ++){
l i s t −>n e x t =

( s t r u c t s t u d e n t r d s ∗ ) ma l loc ( s i z e o f ( s t r u c t s t u d e n t r d s ) ) ;

c h a r s = mal loc ( 1 0 0 ) ; / / ma l loc memory in−be tween s t r u c t u r e s

i f ( i % 2 )
l i s t −>y e a r b o r n = 3 ;

e l s e
l i s t −>y e a r b o r n = 4 ;

l i s t −>d a t a = 1 2 3 4 + i ;
l i s t −>d a t a 1 = i \% 3 3 ;
l i s t −>s i d = i ;
l i s t = l i s t −>n e x t ;
l i s t −>n e x t = 0 ;

}

re turn r t n ;
}

B.2 Linked List 1B

# i n c l u d e < s t d l i b . h>
# i n c l u d e < s t d i o . h>

s t r u c t s t u d e n t r d s {
unsigned s h o r t y e a r b o r n ;
unsigned i n t s i d ;
i n t d a t a 1 ;
double d a t a ;
s t r u c t s t u d e n t r d s ∗ n e x t ;

} ;

s t a t i c i n t NUM STUDENTS = 1 5 0 0 0 0 0 ;
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s t r u c t s t u d e n t r d s ∗ i n i t S t u d e n t L i s t L o o p ( ) ;
void t r a v e r s e S t u d e n t L i s t 1 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 2 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 3 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;

i n t main ( i n t argc , char ∗ a rgv [ ] ) {

i n t i t e r a t i o n s = 1 0 0 ;

s t r u c t s t u d e n t r d s ∗ s t u d e n t l i s t ;

s t u d e n t l i s t = i n i t S t u d e n t L i s t L o o p ( ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 1 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 2 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 3 ( s t u d e n t l i s t ) ;

f r e e ( s t u d e n t l i s t ) ;

re turn 1 ;
}

void t r a v e r s e S t u d e n t L i s t 1 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
( l i s t −>s i d ) + + ;
l i s t = l i s t −>n e x t ;

}
}

void t r a v e r s e S t u d e n t L i s t 2 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
( l i s t −>y e a r b o r n )−−;
l i s t = l i s t −>n e x t ;

}
}

void t r a v e r s e S t u d e n t L i s t 3 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a = l i s t −>d a t a + l i s t −>d a t a 1 ;
l i s t = l i s t −>n e x t ;

}
}

s t r u c t s t u d e n t r d s ∗ i n i t S t u d e n t L i s t L o o p ( )
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{
s t r u c t s t u d e n t r d s ∗ r t n , ∗ l i s t ;
char ∗ c h a r s ;

r t n = ( s t r u c t s t u d e n t r d s ∗ ) ma l loc ( s i z e o f ( s t r u c t s t u d e n t r d s ) ) ;
r t n −>n e x t = 0 ;
l i s t = r t n ;

f o r ( i n t i = 1 ; i < NUM STUDENTS ; i ++){
l i s t −>n e x t =

( s t r u c t s t u d e n t r d s ∗ ) ma l loc ( s i z e o f ( s t r u c t s t u d e n t r d s ) ) ;

c h a r s = mal loc ( 1 0 0 ) ; / / ma l loc memory i n be tween s t r u c t u r e s

i f ( i % 2 )
l i s t −>y e a r b o r n = 3 ;

e l s e
l i s t −>y e a r b o r n = 4 ;

l i s t −>d a t a = 1 2 3 4 + i ;
l i s t −>d a t a 1 = i \% 3 3 ;
l i s t −>s i d = i ;
l i s t = l i s t −>n e x t ;
l i s t −>n e x t = 0 ;

}

re turn r t n ;
}

B.3 Linked List 2

# i n c l u d e < s t d l i b . h>
# i n c l u d e < s t d i o . h>

s t r u c t s t u d e n t r d s {
i n t d a t a 1 ;
i n t d a t a 2 ;
i n t d a t a 3 ;
i n t d a t a 4 ;
i n t d a t a 5 ;
i n t d a t a 6 ;
i n t d a t a 7 ;
i n t d a t a 8 ;
i n t d a t a 9 ;
s t r u c t s t u d e n t r d s ∗ n e x t ;

} ;

s t a t i c i n t NUM STUDENTS = 2 1 0 0 0 0 0 ;

s t r u c t s t u d e n t r d s ∗ i n i t S t u d e n t L i s t L o o p ( ) ;
void t r a v e r s e S t u d e n t L i s t 1 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
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void t r a v e r s e S t u d e n t L i s t 2 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 3 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 4 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 5 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 6 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 7 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 8 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;
void t r a v e r s e S t u d e n t L i s t 9 ( s t r u c t s t u d e n t r d s ∗ l i s t ) ;

i n t main ( i n t argc , char ∗ a rgv [ ] ) {

i n t i t e r a t i o n s = 1 0 0 ;

s t r u c t s t u d e n t r d s ∗ s t u d e n t l i s t ;

s t u d e n t l i s t = i n i t S t u d e n t L i s t L o o p ( ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 1 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 2 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 3 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 4 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 5 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 6 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 7 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 8 ( s t u d e n t l i s t ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t L i s t 9 ( s t u d e n t l i s t ) ;

f r e e ( s t u d e n t l i s t ) ;

re turn 1 ;
}

void t r a v e r s e S t u d e n t L i s t 1 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 1 ++;
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l i s t = l i s t −>n e x t ;
}

}

void t r a v e r s e S t u d e n t L i s t 2 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 2 ++;
l i s t = l i s t −>n e x t ;

}
}
void t r a v e r s e S t u d e n t L i s t 3 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 3 ++;
l i s t = l i s t −>n e x t ;

}
}
void t r a v e r s e S t u d e n t L i s t 4 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 4 ++;
l i s t = l i s t −>n e x t ;

}
}
void t r a v e r s e S t u d e n t L i s t 5 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 5 ++;
l i s t = l i s t −>n e x t ;

}
}
void t r a v e r s e S t u d e n t L i s t 6 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 6 ++;
l i s t = l i s t −>n e x t ;

}
}
void t r a v e r s e S t u d e n t L i s t 7 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 7 ++;
l i s t = l i s t −>n e x t ;

}
}
void t r a v e r s e S t u d e n t L i s t 8 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{

whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 8 ++;

}
}
void t r a v e r s e S t u d e n t L i s t 9 ( s t r u c t s t u d e n t r d s ∗ l i s t )
{
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whi le ( l i s t −>n e x t ! = 0 ) {
l i s t −>d a t a 9 ++;
l i s t = l i s t −>n e x t ;

}
}

s t r u c t s t u d e n t r d s ∗ i n i t S t u d e n t L i s t L o o p ( )
{

s t r u c t s t u d e n t r d s ∗ r t n , ∗ l i s t ;
char ∗ c h a r s ;

r t n = ( s t r u c t s t u d e n t r d s ∗ ) ma l loc ( s i z e o f ( s t r u c t s t u d e n t r d s ) ) ;
r t n −>n e x t = 0 ;
l i s t = r t n ;

f o r ( i n t i = 1 ; i < NUM STUDENTS ; i ++){
l i s t −>n e x t =

( s t r u c t s t u d e n t r d s ∗ ) ma l loc ( s i z e o f ( s t r u c t s t u d e n t r d s ) ) ;

c h a r s = mal loc ( 4 0 ) ; / / ma l loc memory i n be tween s t r u c t u r e s

i f ( i % 2 )
l i s t −>d a t a 1 = 3 ;

e l s e
l i s t −>d a t a 1 = 4 ;

l i s t −>d a t a 2 = 1 2 3 4 + i ;
l i s t −>d a t a 3 = i % 5 3 ;
l i s t −>d a t a 4 = 1 2 3 + i ;
l i s t −>d a t a 5 = i % 9 9 ;
l i s t −>d a t a 6 = 2 3 4 + i ;
l i s t −>d a t a 7 = i % 4 ;
l i s t −>d a t a 8 = 1 + i ;
l i s t −>d a t a 9 = i % 3 9 ;
l i s t = l i s t −>n e x t ;
l i s t −>n e x t = 0 ;

}

re turn r t n ;
}

B.4 Binary Tree

# i n c l u d e < s t d l i b . h>
# i n c l u d e < s t d i o . h>

s t r u c t s t u d e n t {
i n t d a t a 1 ;
i n t d a t a 2 ;
i n t d a t a 3 ;
i n t d a t a 4 ;

57



i n t d a t a 5 ;
i n t d a t a 6 ;
i n t d a t a 7 ;
i n t d a t a 8 ;
i n t d a t a 9 ;
s t r u c t s t u d e n t ∗ l e f t ;
s t r u c t s t u d e n t ∗ r i g h t ;

} ;

s t a t i c i n t NUM STUDENTS = 1 0 0 0 0 0 0 ;

s t r u c t s t u d e n t ∗ i n i t S t u d e n t T r e e ( i n t num ) ;
void t r a v e r s e S t u d e n t T r e e 1 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 2 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 3 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 4 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 5 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 6 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 7 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 8 ( s t r u c t s t u d e n t ∗ t r e e ) ;
void t r a v e r s e S t u d e n t T r e e 9 ( s t r u c t s t u d e n t ∗ t r e e ) ;

i n t main ( i n t argc , char ∗ a rgv [ ] ) {

i n t i t e r a t i o n s = 1 0 0 ;

s t r u c t s t u d e n t ∗ s t u d e n t t r e e ;

s t u d e n t t r e e = i n i t S t u d e n t T r e e (NUM STUDENTS ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 1 ( s t u d e n t t r e e ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 2 ( s t u d e n t t r e e ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 3 ( s t u d e n t t r e e ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 4 ( s t u d e n t t r e e ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 5 ( s t u d e n t t r e e ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 6 ( s t u d e n t t r e e ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 7 ( s t u d e n t t r e e ) ;

f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 8 ( s t u d e n t t r e e ) ;
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f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i ++)
t r a v e r s e S t u d e n t T r e e 9 ( s t u d e n t t r e e ) ;

f r e e ( s t u d e n t t r e e ) ;

re turn 1 ;
}

void t r a v e r s e S t u d e n t T r e e 1 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 1 ++;

t r a v e r s e S t u d e n t T r e e 1 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 1 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 2 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 2 ++;

t r a v e r s e S t u d e n t T r e e 2 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 2 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 3 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 3 ++;

t r a v e r s e S t u d e n t T r e e 3 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 3 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 4 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 4 ++;

t r a v e r s e S t u d e n t T r e e 4 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 4 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 5 ( s t r u c t s t u d e n t ∗ t r e e )
{
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i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 5 ++;

t r a v e r s e S t u d e n t T r e e 5 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 5 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 6 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 6 ++;

t r a v e r s e S t u d e n t T r e e 6 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 6 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 7 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 7 ++;

t r a v e r s e S t u d e n t T r e e 7 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 7 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 8 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 8 ++;

t r a v e r s e S t u d e n t T r e e 8 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 8 ( t r e e −>r i g h t ) ;

}

void t r a v e r s e S t u d e n t T r e e 9 ( s t r u c t s t u d e n t ∗ t r e e )
{

i f ( t r e e = = 0 )
re turn ;

t r e e −>d a t a 9 ++;

t r a v e r s e S t u d e n t T r e e 9 ( t r e e −> l e f t ) ;
t r a v e r s e S t u d e n t T r e e 9 ( t r e e −>r i g h t ) ;

}
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s t r u c t s t u d e n t ∗ i n i t S t u d e n t T r e e ( i n t num )
{

s t r u c t s t u d e n t ∗ t r e e ;
char ∗ c h a r s ;

i f ( num <= 0)
re turn 0 ;

t r e e = ( s t r u c t s t u d e n t ∗ ) ma l loc ( s i z e o f ( s t r u c t s t u d e n t ) ) ;

c h a r s = mal loc ( 4 0 ) ; / / ma l loc memory i n be tween s t r u c t u r e s

i f ( num % 2 )
t r e e −>d a t a 1 = 3 ;

e l s e
t r e e −>d a t a 1 = 4 ;

t r e e −>d a t a 2 = 1 2 3 4 + num ;
t r e e −>d a t a 3 = num % 5 3 ;
t r e e −>d a t a 4 = 1 2 3 + num ;
t r e e −>d a t a 5 = num % 9 9 ;
t r e e −>d a t a 6 = 2 3 4 + num ;
t r e e −>d a t a 7 = num % 4 ;
t r e e −>d a t a 8 = 1 + num ;
t r e e −>d a t a 9 = num % 3 9 ;

t r e e −> l e f t = i n i t S t u d e n t T r e e ( num / 2 ) ;
t r e e −>r i g h t = i n i t S t u d e n t T r e e ( num / 2 ) ;

re turn t r e e ;
}
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Appendix C

Trademarks

IBM, XL Fortran, XL C, XL C/C++, XL UPC, POWER4 and POWER5 are trademarks of Interna-

tional Business Machines Corporation in the United Sates, other countries, or both.
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