
CMPUT 466/551—Machine Learning

Assignment 2

Winter 2004
Department of Computing Science
University of Alberta

Due: in class, Thursday, February 12

Worth: 15% of final grade
Instructor: Dale Schuurmans, Ath409, x2-4806, dale@cs.ualberta.ca

Note These questions require you to write small Matlab programs which are to be submitted
by email. When finished, please send a single tar file containing all of your .m files to
the TA, Alexander Kovarsky, at kovarsky@cs.ualberta.ca with a subject heading
“CMPUT 466/551 A2 solutions”. All plots, tables, and explanations should be printed out
in hard copy and handed in at the start of class on February 12.

1

Question 1 (Learning real classifiers—support vector machines)

In this exercise you will write simple Matlab functions to learn maximum margin linear
discriminants and test them on simulated data. You will need to be familiar with quadprog.

We will consider three ways of generating data X, y. The training data will have the form

X =

x1,1 · · · x1,n

...
...

xt,1 · · · xt,n

y =

y1

...
yt

for xi,j ∈ IR and yi ∈ {−1, 1}.

Data generation: n = 2 % dimension

t = 10 % training size

u = ones(n,1) % target weights (models 1 & 2)

v = 0.5*n % target offset (models 1 & 2)

p_pos = 0.5 % prob of positive example

mu_pos = ones(n,1) % mean loc for pos (model 3)

mu_neg = zeros(n,1) % mean loc for neg (model 3)

Generative model 1: target linear discriminant

X = rand(t,n)

y = sign(X * u - v)

Generative model 2: target quadratic discriminant

X = rand(t,n)

y = sign(X.^2 * u - v)

Generative model 3: noisy linear discriminant (Naive Bayes—Gaussian)

X = randn(t,n)

y = 2 * (rand(t,1) < p_pos) - 1

pos = find(y > 0)

neg = find(y < 0)

X(pos,1) = X(pos,1) + mu_pos(1); X(pos,2) = X(pos,2) + mu_pos(2)

X(neg,1) = X(neg,1) + mu_neg(1); X(neg,2) = X(neg,2) + mu_neg(2)

(a) (1%) Write a Matlab function [w,b] = maxL2marg(X,y) which takes a t × n matrix
X and t× 1 vector of target labels y and returns: an n× 1 vector of weights w and a
scalar offset b, corresponding to the maximum L2 margin linear discriminant classifier
ŷ = sign(w · x− b).

Your function must be able to handle arbitrary n and t.

(b) (1%) Write a Matlab function [yhat] = classify(Xtest,w,b) which takes a te× n

matrix Xtest, an n× 1 vector of weights w, and a scalar b, and returns a te× 1 vector
of classifications yhat on the test patterns.

Your function must be able to handle arbitrary n and te.

2

(c) (1%) Write a Matlab function [w,b] = softL2marg(X,y,c) which takes an additional
scalar argument c and returns w and b corresponding to the maximum “soft” margin
linear discriminant classifier.

Recall that the maximum soft margin discriminant is defined by a weight vector w and
offset b that minimizes ‖w‖2

2
+c

∑t
i=1

si subject to the constraints yi(w ·xi−b) ≥ 1−si

and si ≥ 0 for i = 1, ..., t. Here the si are new “slack” variables that allow the minimum
margin bound to be violated by an amount si on example i. These slacks allows the
learning algorithm to “give up” on a few training points to acheive a better minimum
margin on the remaining points.

Your function must be able to handle arbitrary n and t.

(d) (1%) For each of the generative models 1, 2 and 3:

A: Generate a random training set X, y using the model, and solve for each kind of
discriminant function: [wm, bm] = maxL2marg(X,y),

[ws, bs] = softL2marg(X,y,1),

B: Produce a 2D plot of the training data and the two hypotheses corresponding to
wm,bm and ws,bs.

clf; axis([0 1 0 1]); hold; axis(’square’);

pos = find(y > 0); plot(X(pos,1)’,X(pos,2)’,’g+’); % pos examples

neg = find(y < 0); plot(X(neg,1)’,X(neg,2)’,’rx’); % neg examples

plot([0 1],[v v-u(1)]/u(2),’k:’); % target discr

plot([0 1],[bm bm-wm(1)]/wm(2),’b-’); % max marg

plot([0 1],[bs bs-ws(1)]/ws(2),’m-’); % max soft mrg

print -deps experiment.2.1.<k>.ps

C: Report the mean misclassification error (i.e., the sum of misclassification errors
divided by t) that each of the two hypotheses obtained on the training data:

classifier

misclassification error
wm,bm

ws,bs

D: Generate te = 1000 test examples from the same generative model and report
the mean misclassification error on the test data (i.e., the sum of misclassification
errors divided by te) in the same form as above.

Hand in a plot and two tables for each generative model.

(e) (1%) For each generative model: Repeat (d) parts A, C and D 100 times and accumu-
late the sum of mean misclassifcation errors for each classifier in two matrices: one for
the training errors and one for the testing errors. Report the averages of each kind of
mean error for each classifier in two tables (one training and the other testing error).

3

Question 2 (Learning support vector machines—dual formulation)

In this exercise you will write simple Matlab functions to learn maximum margin linear
discriminants once again. However, this time you will implement the “dual” form of the
algorithms. Here we will use the same generative models as in Question 1. As before, you
will need to be familiar with quadprog.

(a) (1%) Write a Matlab function [lambda,b] = dualL2marg(X,y) which takes a t × n

matrix X and t× 1 vector of target labels y and returns: an 1× t vector of Lagrange
multipliers lambda and a scalar offset b, corresponding to the maximum L2 margin
linear discriminant classifier ŷ = sign

(

(
∑t

i=1
λiyixi · x)− b

)

.

Note: For dualL2marg all you need to do is compute the vector of Lagrange multipliers
λ that maximizes the objective

L(λ) =
t
∑

i=1

λi −
1

2

t
∑

i=1

t
∑

k=1

λiλkyiyk xi · xk (1)

subject to the constraints
∑t

i=1
λiyi = 0 and λi ≥ 0. You can do this using Matlab’s

quadprog operator to recover the vector of Lagrange multipliers λ. To recover the

offset value b, just solve for b in the equation: λk

(

yk

(

(
∑t

i=1
λiyixi · xk)− b

)

− 1
)

= 0
corresponding to the largest Lagrange multiplier λk.

Your function must be able to handle arbitrary n and t.

(b) (1%) Write a Matlab function [yhat] = dualclassify(Xtest,lambda,b,X,y) which
takes a te× n matrix Xtest, a 1× t vector lambda, a scalar b, a t× n matrix X, and a
t× 1 vector y, and returns a te× 1 vector of classifications yhat on the test patterns.

Your function must be able to handle arbitrary n, t, and te, and must not explicitly
compute a weight vector w (instead you must use the Lagrange multiplier vector λ, as
shown above).

(c) (1%) Write a Matlab function [lambda,b] = dualsoftL2(X,y,c) which takes an ad-
ditional scalar argument c and returns lambda and b corresponding to the maximum
“soft” margin linear discriminant classifier.

Note: For softL2marg all you have to do is compute the vector of Lagrange multipliers
λ that maximizes the same objective as above (1) subject to the same set of constraints,
except for the slight modification that 0 ≤ λi ≤ c. This recovers the vector of Lagrange
multipliers lambda. (Note that the slack variables si actually disappear in the dual
formulation.) To recover the offset value b, just use the same procedure as in Part (a)
(using any λk such that 0 < λk < c).

Your function must be able to handle arbitrary n and t.

(d) (1%) For each of the generative models 1, 2 and 3:

A: Generate a random training set X, y using the model, and solve for each kind of
discriminant function: [lm, bm] = dualL2marg(X,y),

[ls, bs] = dualsoftL2(X,y,1),

4

B: Produce a 2D plot of the training data and the two hypotheses corresponding to
lm,bm and ls,bs.

clf; axis([0 1 0 1]); hold; axis(’square’);

pos = find(y > 0); plot(X(pos,1)’,X(pos,2)’,’g+’); % pos examples

neg = find(y < 0); plot(X(neg,1)’,X(neg,2)’,’rx’); % neg examples

plot([0 1],[v v-u(1)]/u(2),’k:’); % target discr

Z=X; for j = 1:n, Z(:,j) = X(:,j) .* y; end

wm = lm * Z; % max margin:

plot([0 1],[bm bm-wm(1)]/wm(2),’b-’); % discrim

spm = find(lm > 0); plot(X(spm,1)’,X(spm,2)’,’co’); % supports

ws = ls * Z; % soft margin:

plot([0 1],[bs bs-ws(1)]/ws(2),’m-’); % discrim

sps = find(ls > 0); plot(X(sps,1)’,X(sps,2)’,’mo’); % supports

print -deps experiment.2.2.<k>.ps

C: Report the mean misclassification error (i.e., the sum of misclassification errors
divided by t) that each of the two hypotheses obtained on the training data:

classifier

misclassification error
lm,bm

ls,bs

D: Generate te = 1000 test examples from the same generative model and report
the mean misclassification error on the test data (i.e., the sum of misclassification
errors divided by te) in the same form as above.

Hand in a plot and two tables for each generative model.

(e) (1%) For each generative model: Repeat (d) parts A, C and D 100 times and accumu-
late the sum of mean misclassifcation errors for each classifier in two matrices: one for
the training errors and one for the testing errors. Report the averages of each kind of
mean error for each classifier in two tables (one training and the other testing error).

5

Question 3 (Dual support vector machines—Kernel classifiers)

In this exercise you will write simple Matlab functions to learn maximum margin kernel

classifiers. You will need to be familiar feval. Once you have written these programs,
you will then apply them to the real world classification problem of recognizing images of
handwritten digits.

(a) (1%) Write a Matlab function [K] = polykernel(X
1
, X2, d) which takes a t1 × n matrix

X1, a t2 × n matrix X2, and a degree parameter d, and returns a t1 × t2 matrix K of
kernel values for the polynomial kernel. Kij is the polynomial kernel value obtained by
comparing row vector xi1 from X1 with row vector xj2 from X2; that is Kij = (xi1 ·xj2+
1)d. Your function must be able to handle arbitrary t1, t2, n and d.

(b) (1%) Write a Matlab function [lambda,b] = kernelL2marg(X,y,c,kernfun,par)

which takes as input t × n matrix of observations X, a t × 1 vector of target labels
y, a slack parameter c, the name of a kernel function kernfun, and a parameter value
for the kernel par. The outputs are a t× 1 vector of Lagrange multipliers lambda and
a scalar offset b corresponding to the maximum margin classifier in the feature space.

Note: This function is the same as dualsoftL2 (Question 2(c)) except that instead of
taking simple inner products between row vectors, xi·xj, you use the value calculated by
the kernfun, k(xi,xj). An example call would be [lambda,b] = kernelL2marg(X,y,

100,’polykernel’,2) using the polykernel function written in Part(a) above.

Your function must be able to handle arbitrary n, t, te and d.

(c) (1%) Write a Matlab function [yhat] = kernelclassify(Xtest,lambda,b,X,y,

kernfun,par) which takes as input a te × n matrix of test observations Xtest, a
t× 1 vector of Lagrange multipliers lambda, a scalar offset b, a t× n matrix of train-
ing observations X, a t × 1 vector of training labels y, the name of a kernel function
kernfun, and a parameter for the kernel function par. The output is a te × 1 vector
of classifications yhat on the test patterns.

Your function must be able to handle arbitrary n, t, te and d.

(d) (2%) On the course webpage, download the file data2.mat. Then type “load data2.mat”
in Matlab. This will load the training data into a matrix X and a vector y and the test
data into a matrix Xtest and a vector ytest. Each row of the matrices corresponds
to a 256 dimensional vector representing a 16 × 16 grayscale image of a handwritten
digit. The images are of handwritten ’2’s and ’3’s. The corresponding entry in the
associated y-vector gives a label indicating which digit the image represents, where -1
corresponds to ’2’ and +1 corresponds to ’3’.

Note: that you can easily view the training images in Matlab by first typing ”colormap
gray” to set up the colormap, and then viewing image i in matrix X (or Xtest) by
typing “imagesc(reshape(X(i,:),16,16)’)”.

The goal of this question is to learn a function which can accurately distinguish images
of ’2’s from images of ’3’s. Here, functions will be learned on the training data and
then tested on the separate test data.

6

Use the following parameters to learn different classification functions:

[ll bl] = kernelL2marg(X,y,100,’polykernel’,1)

[lq bq] = kernelL2marg(X,y,100,’polykernel’,2)

[lc bc] = kernelL2marg(X,y,100,’polykernel’,3)

Report the number of misclassification errors that each of these three functions make
on both the training and the test data (in a 3× 2 table).

7

