
CMPUT 466/551—Machine Learning

Assignment 4

Winter 2004
Department of Computing Science
University of Alberta

Due: in class, Tuesday, March 23
Worth: 15% of final grade
Instructor: Dale Schuurmans, Ath409, x2-4806, dale@cs.ualberta.ca

Note One question requires you to write a few small Matlab programs which are to be
submitted by email. When finished, please send a single tar file containing all of your .m
files to the TA, Alexander Kovarsky, at kovarsky@cs.ualberta.ca with a subject
heading “CMPUT 466/551 A4 solutions”. The write-up should be printed out in hard copy
and handed in at the start of class on March 23.

1

Question 1 (Probability models)

In class we discussed the “Naive Bayes” (NB) probability model, given by the generator

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³
½

½
½

½½=

£
£
£°

Z
Z
Z
ZZ~

?

X1 X2 Xn

Y

which specifies that the probability of a joint assignment to the variables is given by

P(y, x1, x2, ..., xn) = P(Y = y)
n

∏

j=1

P(Xj = xj|Y = y).

Recall that for boolean attributes Xj ∈ {0, 1}, Y ∈ {0, 1} this model is determined by 1+2n
free parameters: θ = P(Y = 1), θj1 = P(Xj = 1|Y = 1), and θj0 = P(Xj = 1|Y = 0). Also
remember that the minimum-expected-error classification rule for this model

ŷ = 1 ⇔ P(Y = 1|x1, ..., xn) ≥ P(Y = 0|x1, ..., xn)

is equivalent to a linear discriminant ŷ = sign(w · x− b) that uses weights wj = log
θj1

θj0

1−θj0

1−θj1

and bias b = log 1−θ
θ
+

∑n
j=1 log

1−θj0

1−θj1
. In this question we will explore a simple generalization

of this model that has some interesting properties.

A “Chain Augmented Naive Bayes” model (CAN) is a Naive Bayes-like model where we
include an additional chain of dependencies that runs through the variables as follows

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³
½

½
½

½½=

£
£
£°

Z
Z
Z
ZZ~

?

- - -X1 X2 Xn

Y

· · ·

This generative model specifies that we compute the probability of a joint assignment to the
variables according to

P(y, x1, x2, ..., xn) = P(Y = y)P(X1 = x1|Y = y)
n

∏

j=2

P(Xj = xj|Y = y,Xj−1 = xj−1).

2

Assume boolean attributes Xj ∈ {0, 1}, Y ∈ {0, 1}.

(a) (1%) Specify the parameters of the CAN model in a manner similar to the NB model
above. How many free parameters are there (as a function of n)? Also, given training
data

x11 · · · x1n y1
...

...
...

xt1 · · · xtn yt

what are the maximum likelihood estimates for the CAN parameters?

(b) (1%) Derive a simple form for the minimum-expected-error classification rule for this
model in a similar manner to the NB model above. What form does this decision rule
have? (Hint: it is not a linear discriminant, but it is close.)

For the remainder of this question we will investigate the consequences of learning proba-
bility models when incorrect assumptions are made about the structure of the distribution.
The lesson is that even principled learning under bad modeling assumptions can lead to
suboptimal results.

Assume that data is generated according to a CAN model where

P(Y = 1) = 2
3
,

P(X1 = 1|Y = 1) = P(X1 = 1|Y = 0) =
1
2
,

and Xj = Xj−1 ⊕ Y for j = 2, ..., n, n ≥ 2

where ⊕ denotes “exclusive or”. (That is, Xj is a deterministic function of Xj−1 and Y and
therefore P(Xj = xj−1⊕y|Xj−1 = xj−1, Y = y) = 1.) Assume also that we are (incorrectly)
attempting to learn from this data source by using a Naive Bayes model.

(c) (1%) What are the parameters of the optimal NB model for this CAN data source?
(Note: we haven’t formally discussed optimal approximations for probability distri-
butions in this course, but for this question just assume it means computing the cor-
responding conditional probabilities under the true model.) What is the minimum-
expected-error classification rule for the optimal NB model?

(d) (1%) What is the misclassification probability of this NB classifier when test examples
are drawn from the CAN model? What is the misclassification probability of the
optimal CAN classifier?
(Note: just compute the probability—you do not have to show a derivation of the
optimal CAN classifier.)

(e) (1%) For this part, assume that n = 2. (That is, we are only considering the variables
Y , X1 and X2.) Write down the coefficients w1, w2 and b of a linear discriminant that
achieves better misclassification probability than the solution of Part (c). What is the
misclassification probability of your alternative linear discriminant?

3

Question 2 (EM—application to Naive Bayes)

In this question you will derive an EM training algorithm for the Naive Bayes probability
model introduced in Question 1. The outcome will be a learning method that can produce
a predictor h : Xn → Y based on exploiting both labeled 〈xi, yi〉 and unlabeled 〈xi,−〉
training examples. Recall that the Naive Bayes model assumes there is a single random
variable Y ∈ {0, 1} whose value determines the conditional distribution over the remaining
variables X1, ..., Xn (Xj ∈ {0, 1}

n), where, in particular, the conditional distributions of
X1, ..., Xn are independent given Y = y. This model is defined by 2n + 1 parameters
θ = 〈θ, {θj0}

n
j=1, {θj1}

n
j=1〉.

Consider a scenario where all of the variables Xj are always observed but the Y labels
are sometimes missing. That is, consider training data of the form

x11 ... x1n z1
...

...
...

xt1 ... xtn zt

where the zi labels are chosen from the set {0, 1,−1} such that zi = −1 indicates that the
original yi value was unobserved. Recall that EM works as follows:

EM

• Start with an initial parameter vector θ(0).

• Repeatedly update the parameter vector θ(k) → θ
(k+1) in two sub-stages:

• E step: For each training example xi1, ..., xin, zi, compute the conditional prob-
ability of each possible completion yi = 0 or yi = 1 given the observed x-values
xi1, ..., xin:

Q
(k)
i (y) =

0 if zi ∈ {0, 1} and y 6= zi
1 if zi ∈ {0, 1} and y = zi
P(Y = y|X1 = xi1, ..., Xn = xin,θ

(k)) if zi = −1

(1)

• M step: Compute:

θ
(k+1) = argmax

θ

t
∑

i=1

1
∑

y=0

Q
(k)
i (y) log P(X1 = xi1, ..., Xn = xin, Y = y|θ)

(2)

In this question you will derive a simplified form of the EM update for the Naive Bayes
model, which will allow you to implement it efficiently in Question 3 below.

4

(a) (1%) Express the summation in (2) as a function of θ, θj0, θj1, xij, y and qyi, where

qyi = Q
(k)
i (y). (Hint: you can express P(Y = y) as θy(1− θ)1−y.)

(b) (1%) Compute the partial derivatives of the summation in (2) with respect to θ, θj0, θj1.

(c) (1%) Solve for the values of θ, θj0, θj1 that maximize (2). (Hint: The final solutions
will have a reasonably simple form. To simplify the expressions you will need to make
use of the identity

∑1
y=0 qyi =

∑1
y=0 Q

(k)
i (y) = 1.)

(d) (1%) Express Q
(k)
i (y) as a function of θ, θj0, θj1, xij and y.

(e) (1%) Combine the E and the M steps into one step by writing the updated parameter

values θ(k+1), θ
(k+1)
j0 , θ

(k+1)
j1 as a function of the previous parameter values θ(k), θ

(k)
j0 , θ

(k)
j1

and xij and y.

5

Question 3 (Maximum likelihood learning—Naive Bayes)

In this exercise you will write simple Matlab functions for learning maximum likelihood
Naive Bayes models from training data, and classifying text vectors with these models. In
particular, you will implement the EM algorithm derived in Question 2. For this question you
will consider training and test data generated according to the following generative model.

Data generation:

n = 5 % dimension

t = 100 % training size

p = 0.5 % prob y=1

p0 = 0.33*ones(1,n) % prob x_j=1 given y=0

p1 = 0.67*ones(1,n) % prob x_j=1 given y=1

pm = 0.8 % prob y missing

y = rand(t,1) > p % true labels

pos = find(y == 1)

neg = find(y == 0)

X = rand(t,n)

X(neg,:) = X(neg,:) <= repmat(p0,length(neg),1) % positive examples

X(pos,:) = X(pos,:) <= repmat(p1,length(pos),1) % negative examples

b = rand(t,1) <= pm

z = (~b&y)-b % blocked labels (-1 means unobserved)

(a) (1%) Write a Matlab function classify(Xtest,p,p0,p1) which takes a te×n matrix
of test vectors Xtest and the 2n + 1 parameters of a Naive Bayes model—one scalar
parameter p and two 1 × n vectors of parameters p0 and p1—and returns a te × 1
vector of classifications ytest on the test vectors. Classifications are to be determined
according to the optimal decision rule

ŷ = 1 ⇔ P(Y = 1|x1, ..., xn) ≥ P(Y = 0|x1, ..., xn)

where p specifies θ in the Naive Bayes model, p0 specifies {θj0}
n
j=1 and p1 specifies

{θj1}
n
j=1 (see Question 1). Your function must handle Xtest, p, p0 and p1 with arbi-

trary dimensions te and n.

(b) (1%) Write a Matlab function [p,p0,p1] = maxlike(X,z) which takes a t×n matrix
of training vectors X and a t × 1 vector of partially blocked training labels z, and
returns the parameters of a Naive Bayes model that maximizes the likelihood only of
the training vectors with observed labels (i.e. ignoring any training vectors that have
a label zi = −1). The parameters returned are one scalar p and two 1× n vectors p0
and p1. (Hint: You do not use EM for this part—only simple plug-in formulas.) Your
function must handle X and z with arbitrary dimensions t and n.

(c) (2%) Write a Matlab function [p,p0,p1] = em(X,z,tol) which takes a t× n matrix
of training vectors X, a t × 1 vector of partially blocked training labels z and scalar
tolerance tol, and returns the parameters of a Naive Bayes model that maximizes

6

the likelihood of all the training vectors; i.e. including those vectors with unobserved
labels (zi = −1). This function is to be implemented using the EM algorithm derived
in Question 2. EM should be run until the maximum change in any parameter is less
than tol. (You can start EM with a random parameter vector, although it might be
interesting to start it with the parameter vector returned by maxlike.) Your function
must handle X and z with arbitrary dimensions t and n.

(d) (1%) Compare the quality of these two maximum likelihood training algorithms by
testing the accuracy of the classifiers they produce as follows.

A: Generate a random training set X, z using the generative model outlined above,
and solve for optimal Naive Bayes parameters using the two procedures:

[q,q0,q1] = maxlike(X,z)

[r,r0,r1] = em(X,z,0.01)

B: Use the classify function to label the training data using each learned model
[q,q0,q1] and [r,r0,r1]. Report the mean misclassification error that each
of these models obtain on the training data with respect to the original (hidden)
y-labels.

C: Generate te = 1000 test examples from the same generative model and report
the mean misclassification error of both models on test data.

Repeat parts A, B and C 100 times and accumulate the mean misclassification errors
for both models in two matrices: one for training error and the other for test error.
Report the averages for each kind of mean error at each degree in two tables (one
training error and the other testing error).

7

