
CMPUT 466/551—Machine Learning

Assignment 1

Winter 2006
Department of Computing Science
University of Alberta

Due: 23:59:59 Tuesday, January 31

Worth: 15% of final grade
Instructor: Dale Schuurmans, Ath409, x2-4806, dale@cs.ualberta.ca

Note These questions require you to write small Matlab programs which are to be submitted
by email. When finished, please send a single tar file containing all of your .m files to the TA,
Xiang Wan, at xiangwan@cs.ualberta.ca with a subject heading “CMPUT 466/551 A1
solutions”.
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Question 1 (Learning real predictors—linear hypotheses)

In this exercise you will write simple Matlab functions to learn minimum error linear functions
and test them on simulated data. You will need to be familiar with ops, slash, rand, randn,
function, linprog, plot, and print. (Type help 〈topic〉 in Matlab if you need to learn
about any of these.)

We will consider three ways of generating data X, y. All will involve the same target
function defined by the weight vector u= [01...1]′. The training data will have the form

X =









1 x1,1 · · · x1,n−1

...
...

1 xt,1 · · · xt,n−1









y =









y1

...
yt









Data generation: n = 2 % dimension

t = 10 % training size

u = [0; ones(n-1,1)] % target weights

sigma = 0.1 % noise level

X = [ones(t,1) rand(t, n-1)] % training patterns

Generative model 1: y = X*u + randn(t,1)*sigma

Generative model 2: y = X*u + randn(t,1)./randn(t,1)*sigma

Generative model 3: y = X*u + randn(t,1).*randn(t,1)*sigma

(a) (1%) Write a Matlab function minL2(X,y) which takes a t × n matrix X and t × 1
vector of target values y and returns an n × 1 vector of weights w2 corresponding to
the minimum sum of squared errors linear function.

Note: You must implement the algorithm as shown in class. This involves solving a
system of linear equations. You can do this using Matlab’s slash operator, but you
cannot use the built in regress function.

Your function must be able to handle arbitrary n and t.

(b) (1%) Write a Matlab function minL1(X,y) which returns n × 1 vector of weights w1

corresponding to the minimum sum of absolute errors linear function. (Note: You
can use Matlab’s built in linprog function to solve linear programs.)

(c) (1%) Write a Matlab function minLoo(X,y) which returns n× 1 vector of weights woo
corresponding to the minimum maximum absolute error linear function. (Note: You
can use Matlab’s built in linprog function to solve linear programs.)
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(d) (1%) For each of the generative models 1, 2 and 3:

A: Generate a random training set X, y using the model, and solve for each kind of
linear function: w2 = minL2(X,y), w1 = minL1(X,y), and woo = minLoo(X,y).

B: Produce a 2D plot of the training data and the three hypotheses corresponding
to w2, w1, and woo.

clf

plot(X(:,2)’,y’,’k*’)

hold

plot([0 1],[w2(1) sum(w2)],’k-’)

plot([0 1],[w1(1) sum(w1)],’k-.’)

plot([0 1],[woo(1) sum(woo)],’k:’)

print -deps experiment.1.1.<k>.ps

where <k> ∈ {1, 2, 3} ranges over the 3 generative models.

C: Report the three different kinds of error each of the three hypotheses obtained on
the training data:

type
of

function

type of error
L1 error L2 error L∞ error

w1

w2

woo

D: Keeping w2, w1 and woo fixed, generate another set of te = 1000 test examples
from the same generative model, and report the matrix of error values made by
the predictors on the test data.

Hand in a plot and two tables for each generative model.

(e) (1%) For each generative model: Repeat (d) parts A, C and D 100 times and accumu-
late the sum of each kind of error for each kind of function in two matrices: one for
the training errors and one for the testing errors. Report the averages for each kind of
error and each kind of function in two tables (one training error and the other testing
error).
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Question 2 (Learning real predictors—polynomial bases)

In this exercise you will write a Matlab function to compute minimum error polynomials and
test it on simulated data. This will demonstrate overfitting dramatically! For this exercise
it will be useful to know about Matlab’s polyval and axis functions.

We will consider two ways of generating the data, but will only consider one dimensional
input so the data will (initially) have the form

x =









x1

...
xt









y =









y1

...
yt









Data generation: t = 10 % training size

sigma = 0.1 % noise level

x = rand(t, 1) % training patterns

Generative model 1: y = x > 0.5 (step function)
Generative model 2: y = 0.5 - 10.4*x.*(x-0.5).*(x-1) + sigma*randn(t,1)

(noisy cubic)

(a) (2%) Write a Matlab function minL2poly(x,y,d) which takes a t×1 vector of training
inputs x and a t×1 vector of target values y and returns a (d+1)×1 vector of weights c
corresponding to the minimum sum of squared errors polynomial of degree d. That is,
c should be a vector of weights c = [c1, ..., cd+1]

′, which will be interpreted as specifying
a polynomial p(x) = c1x

d + c2x
d−1 + · · · + cdx + cd+1.

Note: You must implement the algorithm as shown in class. This involves expanding
each training input xi into a vector (xd

i , x
d−1

i , ..., xi, 1) to obtain

X =









xd
1 xd−1

1 · · · x1 1
...

...
xd

t xd−1
t · · · xt 1









y =









y1

...
yt









and then solving a system of linear equations to obtain c. You can do this using
Matlab’s slash operator, but you cannot use the built in polyfit function.

Your function must be able to handle arbitrary t and d.
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(b) (2%) For each of the generative models 1 and 2:

A: Generate a random training set x, y using the model, and solve for the best fit
polynomials of degree 1, 3, 5, and 9: c1 = minL2poly(x,y,1),
c3 = minL2poly(x,y,3), c5 = minL2poly(x,y,5), c9 = minL2poly(x,y,9).

B: Produce a 2D plot of the training data and the four hypotheses corresponding to
c1, c3, c5, and c9.

clf

axis([0 1 -0.5 1.5]);

hold

plot(X(:,d)’,y’,’k*’)

xx = (0:1000)/1000;

yy = <mean value of generative model at xx>

plot(xx,yy,’k:’)

plot(xx,polyval(c1,xx),’k-’)

plot(xx,polyval(c3,xx),’k-.’)

plot(xx,polyval(c5,xx),’k-’)

plot(xx,polyval(c9,xx),’k-.’)

print -deps experiment.1.2.<k>.ps

where <k> ∈ {1, 2} ranges over the 2 generative models. Here “<mean value of

generative model at xx>” means plot the step function or the cubic function,
without the noise, depending on which generative model is being used.

C: Report the mean sum of squares error (i.e., the sum of squares error divided by
t) that each of the four hypotheses obtained on the training data:

polynomial

L2 error
c1

c3

c5

c9

D: Generate another set of te = 1000 test examples from the same generative model
and report the mean sum of squares error on the test data (i.e., the sum of squares
error divided by te) in the same form as above.

Hand in a plot and two tables for each generative model.

(c) (1%) For each generative model: Repeat (b) parts A, C and D 100 times and accu-
mulate the sum of mean squared errors for each degree in two matrices: one for the
training errors and one for the testing errors. Report the averages for each kind of
mean error at each degree in two tables (one training error and the other testing error).
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Question 3 (Learning real predictors—regularization and kernels)

In this exercise you will tackle a real world prediction problem (which is discussed on pages
3 and 4 of the course textbook). The problem is to learn how to predict the log volume of a
prostate cancer tumor (lcavol) from 7 clinical measurements: total log weight of the prostate
(lweight), age of the patient (age), log of benign prostatic hyperplasia amount (lbph), seminal
vesicle invasion (svi), log of capsular penetration (lcp), Gleason score (gleason), percent
Gleason scores 4 or 5 (pgg45 ).

On the course webpage, download the data file data1.mat. Then type “load data1.mat”
in Matlab. This will load the training data into a matrix X and a vector y and the test
data into a matrix Xtest and a vector ytest. Each row of the matrices corresponds to a 7
dimensional vector containing the clinical measurements for a patient, and the corresponding
entry in the associated y-vector gives the discovered log volume of the patient’s prostate
cancer tumor. The goal is to learn a function that can predict the log volume of the prostate
cancer tumor from the vector of 7 clinical measurements. Here, functions will be learned on
the training data and then tested on the separate test data.

(a) (1%) Write a Matlab function minRegL2(X,y,lambda) which takes a t × n matrix of
training inputs X, a t × 1 vector of target values y, and a regularization parameter
lambda, and returns a n × 1 dimensional vector of weights w corresponding to the
minimum penalized sum of squared errors linear function. Specifically, w is the solution
to (X>X + λI)w = X>y.

(b) (2%) Write a Matlab function minRegL2RadialKernel(X,y,sigma,lambda) which re-
turns a t × 1 vector of training example weights u corresponding to the minimum
penalized sum of squared errors radial kernel generalized linear function. Specifically,

use the Gaussian kernel function g(xi,xj) = e−
1

2
‖xi−xj

σ
‖

2

on input vectors xi and xj.

Thus, given the t×n matrix of training inputs X, calculate the t× t matrix G such that
gij = g(xi,xj), and then solve for the example weights u such that (G>G+λI)u = G>y.

(c) (1%) Write a Matlab function RadialKernelPredict(X,u,sigma,Xtest) which re-
turns a vector yhat of predictions made by the radial kernel generalized linear function
on the matrix of test inputs Xtest. That is, given a t× 1 vector of example weights u
and t×n matrix of training inputs X, calculate the prediction ŷ on a test row vector x

according to ŷ =
t

∑

i=1

ui g(xi,x), where the training row vectors xi are chosen from X.

(d) (1%) Use the following parameters to learn different prediction functions:

w0 = minRegL2(X,y,0) % no regularization

w1 = minRegL2(X,y,24) % regularization

u0 = minRegL2RadialKernel(X,y,14,0) % no regularization

u1 = minRegL2RadialKernel(X,y,14,0.002) % regularization

Report the mean sum of squares error that each of these four functions make on both
the training and the test data (in a 4 × 2 table).
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