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Abstract

We present new unsupervised and semi-supervised training
algorithms for multi-class support vector machines based on
semidefinite programming. Although support vector ma-
chines (SVMs) have been a dominant machine learning tech-
nique for the past decade, they have generally been applied
to supervisedlearning problems. Developing unsupervised
extensions to SVMs has in fact proved to be difficult. In
this paper, we present a principled approach to unsupervised
SVM training by formulating convex relaxations of the natu-
ral training criterion: find a labeling that would yield an opti-
mal SVM classifier on the resulting training data. The prob-
lem is hard, but semidefinite relaxations can approximate this
objective surprisingly well. While previous work has concen-
trated on the two-class case, we present a general,multi-class
formulation that can be applied to a wider range of natural
data sets. The resulting training procedures are computation-
ally intensive, but produce high quality generalization results.

Introduction
Efficient convex optimization techniques have had a pro-
found impact on the field of machine learning. Most of their
use to date, however, has been in applyingquadraticpro-
gramming techniques to support vector machine (SVM) and
kernel machine training (Schoelkopf & Smola 2002). Nev-
ertheless, one lesson from the success of SVMs is that ef-
fective algorithmic approaches can lead to new progress in
generalization, estimation and modeling issues, even when
these are not directly algorithmic questions. The conve-
nience of effective algorithms allows researchers to freely
explore generalization ideas in the context of complex mod-
els and large data collections.

Currently, new opportunities for developing novel ma-
chine learning techniques are offered by the field of semidef-
inite programming (SDP). Semidefinite programming, and
convex programming more generally, significantly extend
the toolbox of optimization methods used in machine learn-
ing, beyond the current unconstrained, linear and quadratic
programming techniques. Recent progress in semidefinite
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programming has yielded a viable technology that has ef-
ficiency characteristics similar to quadratic programming
(Boyd & Vandenberghe 2004), including polynomial run-
time guarantees (Nesterov & Nimirovskii 1994). These
techniques offer a new avenue for solving problems of rele-
vance to machine learning.

In fact, semidefinite programming has already started to
prove its utility in machine learning research. Lanckreitet
al. (2004) show how semidefinite programming can be used
to optimize the kernel matrix for a supervised SVM. Xuet
al. (2004) and De Bie & Cristanini (2003) develop new
unsupervised and semi-supervised training techniques for
SVMs based on semidefinite programming. Similar tech-
niques are used in the correlation clustering approach of
(Bansal, Blum, & Chawla 2002). Graepel and Herbrich
(2003) have shown how transformational invariants can be
encoded in SVMs. Even though the number of such results
remains modest, the initial achievements are impressive.

In this paper we provide a brief introduction to the appli-
cation of semidefinite programming in machine learning and
contribute further progress by extending the work of (Xuet
al. 2004; De Bie & Cristianini 2003) tomulti-classSVMs.
Multi-class SVMs are similar to their two-class predecessors
in that they can be trained by quadratic programming in the
supervisedcase (Crammer & Singer 2001). However, devel-
opingunsupervisedandsemi-supervisedmulti-class SVMs
requires a semidefinite programming formulation that sig-
nificantly extends the earlier two-class approaches.

After reviewing some of the relevant background, we
present new semidefinite programming algorithms for un-
supervised training and semi-supervised training of SVMs
in the multi-class case. We then present experiments that
show semidefinite training can obtain state of the art gener-
alization performance, albeit at a greater computational cost
than previous techniques. Further algorithmic developments
in convex programming methods will hopefully continue to
alleviate some of these costs in the future.

Semidefinite programming
Semidefinite programming is a recent extension of linear
and quadratic programming which was significantly ad-
vanced by (Nesterov & Nimirovskii 1994), who provided
effective algorithmic foundations as well as polynomial run-
time guarantees for solution techniques based on interior



point methods. Semidefinite programming has since had
a profound impact on the field of combinatorial optimiza-
tion (Goemans & Williamson 1995), and, as mentioned,
has opened up exciting new avenues of research in machine
learning (Lanckrietet al. 2004). Before explaining the direct
relevance of these formulations to generalized SVM train-
ing, we first briefly review the basic concepts.

The statement of a semidefinite programming problem,
as well as the description of the interior point solution ap-
proach, are both very simple. A semidefinite programming
problem is aconvexconstrained optimization problem where
one optimizes a symmetricn× n matrix of variablesX

min
X

〈C, X〉 subject to 〈Ai, X〉 = bi, i = 1...m

X º 0 (1)

where 〈·, ·〉 denotes the simple matrix inner product,
〈C,X〉 =

∑
ij cijxij , andX º 0 denotes the constraint

thatX must remain positive semidefinite (Helmberg 2000;
Boyd & Vandenberghe 2004). Here, the objective is linear
in X, and the semidefinite constraint simply means thatX
must satisfyz>Xz ≥ 0 for any vectorz 6= 0. For a sym-
metricX, this is true if and only ifX has only nonnegative
eigenvalues (Strang 1998). Sincez>Xz = 〈X, zz>〉, one
can see that a semidefinite program is a generalized form of
linear program onX with infinitely many linear constraints

min
X

〈C, X〉 subject to 〈Ai, X〉 = bi, i = 1...m

〈X, zz>〉 ≥ 0, ∀z 6= 0

Of course the infinitely many linear constraints in fact define
a non-linear constraint onX (a semi-infinite program). Nev-
ertheless, the semidefinite constraint is still aconvexcon-
straint onX. That is, for any two positive semidefinite ma-
trices X and Y , any convex combination will be positive
semidefinite, sincez>(ρX + (1− ρ)Y )z = ρz>Xz + (1−
ρ)z>Y z ≥ 0 for 0 ≤ ρ ≤ 1. The dual form of (1) is

max
y,Z

b>y subject to Z +
∑

i yiAi = C, Z º 0

(Helmberg 2000; Boyd & Vandenberghe 2004). Below we
will see how this type of problem can naturally arise when
one attempts to generalize SVM training.

Convex optimization problems generally admit effective
algorithmic approaches (Nesterov & Nimirovskii 1994). It
has become apparent that interior point (or “barrier”) meth-
ods are one of the most effective approaches for solving
these problems (Boyd & Vandenberghe 2004; Helmberg
2000; Vanderbei 1996). An appealing aspect of popular bar-
rier methods, beyond their effectiveness, is that they are also
very intuitive: To handle inequality constraints, one simply
replaces them with a convexbarrier function that ensures
the constraint is satisfied. Doing so removes the inequality
constraints from the problem and replaces them with con-
vex terms in the optimization objective, yielding a problem
that can be easily solved—for example by using Newton’s
method. In the case of a semidefinite constraintX º 0 there
is a particularly elegant barrier function:− log(det(X)).
To see how this works, note that for a symmetric matrix

X, det(X) =
∏n

i=1 λi, the product of eigenvalues (Strang
1998). Thus,− log(det(X)) =

∑n
i=1 log(1/λi). So asany

eigenvalue approaches 0 the barrier function goes to infin-
ity and prevents the constraintX º 0 from being violated.
Crucially, the barrier function− log(det(X)) is also a con-
vex function ofX.

Therefore, an overall interior point (path following)
method for solving semidefinite programs is constructed
roughly as follows. First, a tightness parameterµ is set to
ensure numerical stability. One then solves the barrier for-
mulation of (1), which is a fully convex optimization prob-
lem

min
X

〈C,X〉 − µ log(det(X)) subject to

〈Ai, X〉 = bi, i = 1...m (2)

For a givenµ, this can be efficiently solved using Newton’s
method, in space linear in the size of the original problem
(Helmberg 2000). Thenµ is reduced by a fixed multiplier,
typically µ(k+1) = µ(k)/10, and the process is repeated. It
can be shown that asµ → 0 the solution to (2) approaches
(1) (Boyd & Vandenberghe 2004). In practice, the iteration
is stopped at a small value ofµ.

In fact, there already exist many software packages on the
Web for solving semidefinite programming problems using
barrier methods, including SeDuMi, SDPT3 and CSDP (see
www.optimization-online.org). Although these techniques
are not as well developed as methods for solving quadratic
programs, progress is continuing and the current tools are
starting to become adequate for solving practical problems.

Two-class SVM training algorithms
We first briefly review the results that have been obtained
for generalized two-class SVM training. First, to establish
the background ideas from SVMs as well as establish the
notation we will use, we consider thesupervisedcase.

Assume we are given labeled training examples
(x1, y1), ..., (xn, yn) where each example is assigned a bi-
nary labelyi ∈ {−1,+1}. The goal of an SVM of course is
to find the linear discriminantfw,b(x) = w>φ(x) + b that
maximizes the minimum misclassification margin

γ∗ = max
w,b,γ

γ subject to yi(w>φ(xi) + b) ≥ γ ∀i
‖w‖2 = 1 (3)

Here the Euclidean normalization constraint onw ensures
that the Euclidean distance between the data and the sepa-
rating hyperplane (inφ(x) space) determined byw∗, b∗ is
maximized. It is easy to show that this samew∗, b∗ is a
solution to the quadratic program

γ∗−2 = min
w,b

1
2‖w‖2 subject to yi(w>φ(xi) + b) ≥ 1 ∀i

Importantly, the minimum value of this quadratic program,
γ∗−2, is just the inverse square of the optimal solution value
γ∗ to (3) (Lanckrietet al. 2004).

To cope with potentially inseparable data, one normally
introduces slack variables to reduce the dependence on noisy



examples. This leads to the so called soft margin SVM (and
its dual) which is controlled by a tradeoff parameterβ

γ∗−2 = min
w,b,ξ

β
2 ‖w‖2 + ξ>e subject to ξ ≥ 0,

yi(w>φ(xi) + b) ≥ 1− ξi ∀i
= max

λ
λ>e− 1

2β 〈K ◦ λλ>,yy>〉 subject to

0 ≤ λ ≤ 1, λ>y = 0 (4)

The notation we use in this second (dual) formulation re-
quires some explanation, since we will use it below: Here
K denotes then × n kernel matrix formed from the inner
products of feature vectorsΦ = [φ(x1), ...,φ(xn)] such
that K = Φ>Φ. ThusKij = φ(xi)>φ(xj). The vec-
tor e denotes the vector of all 1 entries. We letA ◦ B de-
note componentwise matrix multiplication. Note that (4) is
derived from the standard dual SVM by using the fact that
λ>(K ◦ yy>)λ = 〈K ◦ yy>,λλ>〉 = 〈K ◦ λλ>,yy>〉.

Thus for supervised SVM training, one takes a given set
of labeled training data(x1, y1), ..., (xn, yn), forms the ker-
nel matrixK on data inputs, forms the kernel matrixyy>
on target outputs, sets the slack parameterβ, and solves the
quadratic program (4) to obtain the dual solutionλ∗ and the
inverse square maximum margin valueγ∗−2. Once these are
obtained, one can then recover a classifier directly fromλ∗

(Schoelkopf & Smola 2002).

Unsupervised two-class SVMs
Recently it has been observed that semidefinite program-
ming can be used forunsupervisedtraining of two-class
SVMs (Xu et al. 2004; De Bie & Cristianini 2003). The
goal in this case is not to find a large margin classifier given
labels on the data, but instead to find alabeling that results
in a large margin classifier. This amounts to an intuitive two-
class clustering principle: find a labeling so that if one were
to subsequently run an SVM, the margin obtained would
be maximal over all possible labellings (Joachims 1999;
Bennett & Demiriz 1998). Unsurprisingly, this is a hard
computational problem. However, with some reformula-
tion it can be approximated by a semidefinite program that
can efficiently compute a good solution (Xuet al. 2004;
De Bie & Cristianini 2003).

Suppose one was givenunlabeleddata x1, ..,xn, and
wished to solve for a labelingy ∈ {−1,+1}n that leads
to a maximum (soft) margin. Straightforwardly, one could
attempt to tackle this optimization problem directly

min
y∈{−1,+1}n

γ∗−2(y) subject to − ε ≤ e>y ≤ ε (5)

where γ∗−2(y) = max
λ

λ>e− 1
2β
〈K ◦ λλ>,yy>〉

subject to0 ≤ λ ≤ 1

Unfortunately,γ∗−2(y) is not a convex function ofy, and
this formulation does not lead to an effective algorithmic
approach. To obtain an efficient technique for solving this
problem one first re-expresses the optimization, not directly
in terms of the cluster labelsy, but instead in terms of the

label kernel matrixM = yy>. The main advantage of do-
ing so is that the inverse soft marginγ∗−2 is in fact a convex
function ofM (Lanckrietet al. 2004)

γ∗−2(M) = max
λ

λ>e− 1
2β 〈K ◦ λλ>,M〉

subject to 0 ≤ λ ≤ 1

The convexity ofγ∗−2 with respect toM is easy to establish
since this quantity is just a maximum over linear functions
of M (Boyd & Vandenberghe 2004).

Working with the matrixM turns out to be particularly
convenient here because of the following useful fact: if
Mij = yiyj , thenMij = 1 if and only if yi = yj , and
Mij = −1 otherwise. That is, forM ∈ {−1,+1}n×n,
M = yy> for somey if and only if M is anequivalence
relation matrix. Therefore the optimization problem (5) can
be cast as working directly with equivalence relationsM in-
stead of example labellingsy. (We will need to exploit this
observation below for the multi-class case.)

Conveniently, the property of being an equivalence rela-
tion matrix can be enforced with a simple semidefinite con-
straint, sinceM ∈ {−1,+1}n×n encodes an equivalence
relation if and only if diag(M) = e andM º 0 (Helm-
berg 2000; Laurent & Poljak 1995). However, in addition,
one clearly needs to impose some sort of constraint on the
class balance, since otherwise one could simply assign all
the data points to the same class and obtain an unbounded
margin. This can be enforced with an additional linear con-
straint−εe ≤ Me ≤ εe.

Therefore, putting the pieces together, one is left with an
optimization problem onM that has a convex objective and
convex constraints, except for the integer constraintM ∈
{−1,+1}n×n. Dropping the integer constraint yields the
convex relaxation of the maximum margin labeling problem:

min
M

max
λ

λ>e− 1
2β 〈K ◦ λλ>,M〉 subject to

0≤λ≤1, diag(M)=e, Mº0, −εe ≤ Me ≤ εe (6)

This can be turned into an equivalent semidefinite program
(Xu et al. 2004)

min
M,g,µ,ν

g subject to
[

M ◦K e + µ− ν
(e + µ− ν)> g − 2

β ν>e

]
º 0 (7)

diag(M)=e, Mº0, −εe ≤ Me ≤ εe

Given a solutionM∗ to (7) one can recover a soft clustering
y by settingy =

√
λ1v1, whereλ1,v1 are the maximum

eigenvalue and corresponding eigenvector ofM∗.
The results in (Xuet al. 2004) show that this method

obtains clustering performance that often exceeds spectral
clustering (Ng, Jordan, & Weiss 2001). However, a signifi-
cant drawback of the method is the restriction to two-classes.

Semi-supervised two-class SVMs
Before considering multi-class extensions to this SVM train-
ing technique, we first note that these clustering algorithms
can easily be extended to semi-supervised SVM training.



For semi-supervised training, one assumes that a small la-
beled training set(x1, y1), ..., (xn, yn) given as well as an
unlabeled training setxn+1, ...,xN . The goal in this case is
to combine the information in these two data sets to produce
a more accurate classifier.

It turns out to be very straightforward to extend the pre-
vious equivalence relation based clustering procedures to
semi-supervised training. One simply adds constraints on
the matrixM to force it to respect the observed equivalence
relations among thelabeledtraining data:Mij = yiyj for
labeledexamplesi, j ∈ {1, ..., n}. Note that the observed
training labelsyi for i ∈ {1, ..., n} areconstants, and there-
fore the new constraints are still linear in the parameters of
M that are being optimized. The resulting method, although
a simple extension, appears to obtain superior performance
to previous semi-supervised training procedures for SVMs
(Joachims 1999; Bennett & Demiriz 1998).

Multi-class formulation
Our main technical contribution in this paper is to extend
the previous two-class methods to general multi-class SVM
training algorithms. Although our strategy is similar to that
employed above, there are some significant complications to
deriving an effective training procedure.

As before, we start with the supervised case. Assume
we are given labeled training examples(x1, y1), ..., (xn, yn)
where each example is assigned a label from a fixed fi-
nite set yi ∈ {1, ..., `}. Here, we need to extend our
feature functionsφ(x, y) to include they-labels explicitly,
which provides a separate weight vectorwk for each class
k. Once a complete weight vector has been learned, sub-
sequent test examplesx are classified according toy∗ =
arg maxy w>φ(x, y). The dominant multi-class training
procedure for SVMs is due to (Crammer & Singer 2001),
which, including slack variables, is formulated as

ω = min
w,ξ

β
2 ‖w‖2 + ξ>e subject to

w>(φ(xi, yi)− φ(xi, k)) ≥ δ(yi, k)− ξi ∀i,k (8)

whereδ(yi, k) = 1(yi 6=k), andω is the multi-class analog of
the inverse squared marginγ∗−2. Our main result depends
crucially on being able to reformulate the quadratic program
(8) so that it can be expressed entirely in terms of equiv-
alence relation matrices instead of individualy-labels. To
achieve this, we need to derive a different formulation of the
dual from that given in (Crammer & Singer 2001).

Unsupervised multi-class SVMs
With some work, one can show that the following quadratic
program is equivalent to the dual of (8).

Proposition 1 The dual quadratic program of (8) can be re-
formulated as

ω(M, D) = max
Λ

Q(Λ,M,D) subject toΛ ≥ 0, Λe = e

where Q(Λ,M,D) = t− 〈D, Λ〉 − 1
2β 〈K, M〉 +

1
β 〈KD, Λ〉 − 1

2β 〈ΛΛ>,K〉
(9)

HereD andΛ aren×` matrices,M andK aren×n matri-
ces, and we define the equivalence relation indicator matri-
cesM andD such thatMij = 1(yi=yj) andDik = 1(yi=k)

respectively. An important consequence of these definitions,
which we exploit below, is thatM = DD>.

This is not the same formulation of the dual to (8) given
in (Crammer & Singer 2001). Importantly, this reformula-
tion of the dual expresses the problem explicitly in terms of
the equivalence relationsM andD—which gives us a nec-
essary advantage over the formulation of the dual given in
(Crammer & Singer 2001).

We can now establish our main result. We would like to
compute a solution to the problem

min
M,D

ω(M, D) subject to M = DD>

M ∈ {0, 1}n×n, D ∈ {0, 1}n×`

A solution to this problem will minimize the inverse square
margin criterionω and thus maximize the original margin
criterion. However, just as in the two-class case, we need
to worry about class balance, because a large margin value
can always be achieved by eliminating classes. To impose
class balance in the multi-class case we add the constraint
( 1

` − ε)ne ≤ Me ≤ ( 1
` + ε)ne for someε.

The overall formulation, to this point, enjoys the advan-
tage that the objectiveω(M, D) is jointly convex inM and
D. Unfortunately, neither the integer constraints nor the
nonlinear constraintM = DD> are convex. Therefore, as
before, we need to derive a convex relaxation to this problem
that preserves as much of the structure of the problem as pos-
sible. To do so, we first relax the constraint thatM andD be
{0, 1}-valued, and instead allow them to take values in[0, 1].
However, we also have to cope with the nonlinear equality
constraintM = DD>. To remove the non-convexity im-
plicit in the nonlinear equality, we replace it with the convex
inequalitiesM º DD> and diag(M) = e. The resulting
problem is a convex optimization overM andD.

min
M,D

ω(M, D) subject to 0 ≤ M ≤ 1, 0 ≤ D ≤ 1

diag(M) = e, M º DD>

(
1
`
− ε)ne ≤ Me ≤ (

1
`

+ ε)ne (10)

This in fact yields the convex optimization problem we wish
to solve.

To tackle this problem in practice, it is convenient to first
reformulate it as a semidefinite program.

Proposition 2 The convex optimization problem (10) is
equivalent to

min
M,D,V,α,g

g subject to
[

I ⊗K c
c> g + 1

β2 〈K, M〉+ 2
β α>e

]
º 0

[
I D>
D M

]
º 0

diag(M) = e, 0 ≤ M ≤ 1, 0 ≤ D ≤ 1, V ≥ 0

( 1
` − ε)ne ≤ Me ≤ ( 1

` + ε)ne

(11)



wherec = vec( 1
β KD −D + V + αe>).1

This formulation re-expresses the problem in a form that
can be solved by conventional semidefinite programming
techniques (Helmberg 2000; Boyd & Vandenberghe 2004).

Semi-supervised multi-class SVMs
Again, before presenting experimental results, we briefly
note that the above formulation ofunsupervisedmulti-class
SVM training can easily be extended tosemi-supervised
learning. The extension of the unsupervised training pro-
cedure to the semi-supervised case proceeds similarly to the
two-class case. Here we simply add the constraints in the ob-
served labels to the semidefinite program:Mij = 1(yi=yj)

for all labeled training pairsi, j, andDik = 1(yi=k) for each
labeled training pair and class labeli, k. The remainder of
the program is equivalent to (11), and thus still defines a
semidefinite programming problem that can be solved by
standard methods.

Experimental results
We implemented the generalized multi-class SVM train-
ing procedures based on (11) using the semidefinite pro-
gramming package SDPT3 available at www.optimization-
online.org. Results for the unsupervised and semi-
supervised formulations respectively are reported below.

Unsupervised results
First, for unsupervised training, we compared the perfor-
mance of our semidefinite multi-class clustering technique
to the spectral clustering method of (Ng, Jordan, & Weiss
2001) and also straightforward k-means clustering. Both
semidefinite clustering and spectral clustering were run with
the same radial basis function kernel and matching width
parameters. In fact, in each case, we chose the best width
parameterfor spectral clusteringby searching over a small
set of five widths related to the scale of the problem. In
addition, the slack parameter for maximum margin cluster-
ing was simply set to an arbitrary value.2 To assess cluster-
ing performance we first took a set of labeled data, removed
the labels, ran the clustering algorithms, labeled each of the
resulting clusters with the majority class according to the
original training labels, and finally measured the number of
misclassifications made by each clustering.

Our first experiments were conducted on the synthetic
data sets depicted in Figure 1. Table 1 shows that for
the first four sets of data (AAAI, Circle&Balls, 3Joined-
Circles, Squiggles) semidefinite and spectral clustering ob-
tained identical small error rates, which were in turn signif-
icantly smaller than those obtained by k-means (except for
the AAAI case).

We also conducted clustering experiments on two real
data sets consisting of images of hand-written digits; see

1The notation vec(X) means turningX into a vector by con-
catenating its columns.A⊗B denotes the Kronecker product.

2It turns out that the slack parameterβ did not have a significant
effect on any of our preliminary investigations, so we just set it to
β = 0.01 for all of the experiments reported here.

Figures 2 and 3. The first data set, DigitsA, consists of black
and white images of20 × 16 pixels, as shown in Figure 2.
The second data set, DigitsB, consists of grey scale images
of 16× 16 pixels, as shown in Figure 3. Table 1 shows that
semidefinite clustering demonstrates a significant advantage
over k-means clustering on these data sets, but also a sys-
tematic advantage over spectral clustering. (See the Table 1
caption for details of the experimental set up.)

Semi-supervised results
We tested our approach to semi-supervised learning on var-
ious data sets from the UCI repository. To the best of
our knowledge, there are no other semi-supervised train-
ing procedures available for multi-class SVMs that apply the
large margin approach of (Joachims 1999; Bennett & Dem-
iriz 1998) or the semidefinite approach we develop above.
Therefore, we compare to standardsupervisedmulti-class
SVMs (Crammer & Singer 2001) but also to a general semi-
supervised approach based on clustering the data using spec-
tral clustering, and then using the labeled data to assign min-
imum error labels to the classes. In each case, we evaluated
the techniques transductively. That is, we split the data into
a labeled and unlabeled part, held out the labels of the un-
labeled portion, trained the semi-supervised techniques, re-
classified the unlabeled examples using the learned results,
and measured the misclassification error on the held out la-
bels.

In these experiments, we used two UCI data sets
(Balance-scale and Cars), one of the hand-written digits
data sets (DigitsA), and a data set of face images. Here
we see that the semi-supervised semidefinite approach tends
to outperform the other methods, particularly on the dig-
its data. Generally, semi-supervised training shows an ad-
vantage over strictly supervised training which ignores the
extra unlabeled data. Table 2 shows that the semidefinite
SVM method is effective at exploiting unlabeled data to im-
prove the prediction of held out labels. In every case (except
5faces), it significantly reduces the error of standard multi-
class SVM, and obtains the best overall performance of the
semi-supervised learning techniques we have investigated.
(See the Table 2 caption for details of the experimental set
up.)

Conclusion
We have proposed a general, unified principle for clustering
and semi-supervised learning based on the maximum margin
principle popularized by supervised SVMs. Our work gen-
eralizes previous approaches to the multi-class case. Our
results on both unsupervised and semi-supervised learning
are competitive with, and sometimes exceed the state of the
art. Overall, semidefinite programming appears to be an ef-
fective approach for unifying and generalizing SVM training
techniques, and applying SVMs to a wider range of circum-
stances, like unsupervised and semi-supervised learning.

We plan to extend these results to the multivariate case
where there are multiple, correlatedy labels associated with
the input data observations. Recently, substantial progress
has been made on learning classifiers that make dependent
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Figure 1: Four artificial data sets used in the clustering ex-
periments.

Figure 2: A sampling of handwritten digit images from the
first data set, DigitsA (zeros, sixes, eights and nines).

Figure 3: A sampling of handwritten digit images from the
second data set, DigitsB (zeros, sixes, eights and nines).

Clustering: Semidefinite Spectral Kmeans
AAAI 0 0 0
Circle&Balls 0 0 18.7
3Circles 4.0 4.0 47.3
Squiggles 0 0 28.3
DigitsA689∗ 3.4 12.0 12.0
DigitsA689 7.2±1.3 12.3±2.3 14.0±4.4
DigitsB689 13.3±2.8 15.1±3.9 18.5±4.6
DigitsA0689∗ 7.5 9.2 38.3
DigitsA0689 11.6±1.8 20.4±2.4 24.1±4.1
DigitsB0689 21.1±2.3 25.8±2.6 27.7±4.4

Table 1: Clustering results: Percentage misclassification er-
rors of the various clustering algorithms on the various data
sets (± one standard deviation). DigitsA are the results on
the black and white digit data set, and DigitsB are the re-
sults on the grey scale digit data set. The digits included
in the data sample are explicitly indicated. DigitsA∗ reports
one run using all 39 examples of each digit. DigitsA reports
10 repeats of subsampling 20 out of 39 examples of each
digit. DigitsB reports 10 repeats of subsampling 30 out of
1100 examples of each digit.

Figure 4: A sampling of the face data (three people).

predictions of test labels that are explicitly related (Taskar,
Guestrin, & Koller 2003; Altun, Tsochantaridis, & Hofmann
2003; Tsochantaridiset al. 2004). The work of (Taskar,
Guestrin, & Koller 2003), in particular, considers maximum
margin Markov networks, which are directly a multivari-
ate version of SVMs. Developing convex unsupervised and
semi-supervised training algorithms for maximum margin
Markov networks remains an important challenge.
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