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Abstract
We present a general framework for association learn-
ing, where entities are embedded in a common la-
tent space to express relatedness via geometry—an ap-
proach that underlies the state of the art for link pre-
diction, relation learning, multi-label tagging, relevance
retrieval and ranking. Although current approaches rely
on local training methods applied to non-convex formu-
lations, we demonstrate how general convex formula-
tions can be achieved for entity embedding, both for
standard multi-linear and prototype-distance models.
We investigate an efficient optimization strategy that al-
lows scaling. An experimental evaluation reveals the ad-
vantages of global training in different case studies.

1 Introduction
Associating items between sets is a fundamental problem in
applications as diverse as ranking, retrieval, recommenda-
tion, link prediction, association mining, relation learning,
tagging, and multi-label classification. Despite the diversity
of these tasks, a unified approach can be achieved through
the concept of an association score function that evaluates
associative strength between items. For example, retrieval
and recommendation can be expressed as identifying items
from a collection that exhibit the strongest association to
a given query object; ranking can be expressed as sorting
items based on their associative strength to a given object;
multi-label tagging can be expressed as predicting which of
a set of label items are associated with a given query object;
link prediction involves determining which items from a set
are related to items from another (possibly identical) set; and
so on. These problems can be extended to a multi-relational
setting by introducing context or side-information to the as-
sociation scores. Despite their varied histories, different sub-
communities have converged on a common approach of us-
ing score functions to determine item associations.

Another recent convergence has been the approach of co-
embedding: one natural way to evaluate associations be-
tween objects is to first embed them in a common space and
use Euclidean geometry to determine relatedness. For exam-
ple, alignment (i.e., inner product) between embedding vec-
tors can be used to determine the association strength. An-
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other approach is to use the Euclidean distance (or related
proximity) between embedding vectors to determine relat-
edness. Such methods provide the current state of the art in
association learning, leading to improved prediction perfor-
mance in applications ranging from image tagging (Akata
et al. 2013; Weston, Bengio, and Usunier 2010) to recom-
mendation (Rendle et al. 2009). Beyond improved associ-
ation quality, these approaches can also provide additional
insight by revealing relationships between items in a com-
mon space. Such approaches can also be extended to a multi-
relational setting by using context to influence the embed-
dings. Co-embedding also offers a natural approach to “zero
shot” learning: whenever a new item is encountered, its em-
bedding can be used to determine its associations.

However, despite their success, current co-embedding
methods have drawbacks. Beyond special cases, current for-
mulations of co-embedding are not convex, and existing ap-
proaches rely on local training methods (often alternating
descent) to acquire the embeddings. A consequence is that
the results are not easily repeatable, since every detail of the
training algorithm can, in principle, affect the result. A re-
lated drawback is that the problem specification is no longer
decoupled from the details of the implementation, which can
prevent end users, who otherwise understand the specifica-
tions, from successfully deploying the technology.

In this paper we offer a unified perspective on co-
embedding by presenting a simple framework that expresses
association problems in a common format. Second, we show
how convex formulations can be generally achieved by sim-
ple rank relaxations. Importantly, the proposed reformula-
tion can be applied to both alignment based and distance
based score models. This reduction expands the range of
efficient training formulations for so-called “metric learn-
ing”, which to date has only received efficient formulations
for restricted cases. Next, we investigate an efficient training
strategy that allows the convex formulation to scale to prob-
lems of interest. Finally, we present a few case studies that
demonstrate the advantages of global versus local training.

2 Background
We first consider binary association problems between two
setsX andY , which could be identical or nonidentical, finite
or infinite, depending on the circumstance. The three most
common association problems are:



Ranking: given x ∈ X , sort the elements y ∈ Y in de-
scending order of their association with x. This is a common
approach to retrieval and recommendation problems.

Prediction: given x ∈ X , enumerate those y ∈ Y that
are associated with x. This is a common formulation of link
prediction, tagging and multi-label classification problems.

Query answering: given a query pair (x, y), indicate
whether or not x and y are associated. This is a common
formulation of relation learning problems.

Although other prominent forms of association prob-
lems exist, particularly those requiring a numerical response
(Bennett and Lanning 2007), we focus on discrete prob-
lems in this paper. To tackle such problems we consider
the standard approach of using an association score func-
tion s : X × Y → R, and, when appropriate, a decision
threshold function t : X → R.

Ranking: given x ∈ X , sort the elements of Y according
to the scores s(x, yi1) ≥ s(x, yi2) ≥ · · · .

Prediction: given x ∈ X , enumerate the elements y ∈ Y
that satisfy s(x, y) > t(x).

Query answering: given (x, y) return sign(s(x, y) −
t(x)).

Although Y is normally considered to be finite, which
supports a simple view of ranking and prediction, it need
not be: zero-shot problems consider unobserved y elements.

2.1 Co-embedding
A prominent approach to representing association score and
decision threshold functions is based on co-embedding. The
idea is to start with some initial representation of the data
as feature vectors; that is, let φ(x) ∈ Rm denote the initial
representation of x ∈ X and let ψ(y) ∈ Rn denote the ini-
tial representation of y ∈ Y .1 Then objects from X and Y
are mapped to finite dimensional vectors in a common em-
bedding space. The simplest (and still most common) form
of such map is a parametric linear map that computes the
embedding φ(x) 7→ u(x) ∈ Rd via

u(x) = Uφ(x) for some U ∈ Rd×m. (1)

and the embedding ψ(y) 7→ v(y) ∈ Rd via

v(y) = Vψ(y) for some V ∈ Rd×n. (2)

Given such an embedding, there are two standard models for
expressing the association between x and y.

The alignment model uses score and threshold functions:

s(x, y) = 〈u(x),v(y)〉 = φ(x)′U ′Vψ(y) (3)
t(x) = 〈u(x),u0〉 = φ(x)′U ′u0, (4)

where the threshold is based on a direct embedding u0 of
a null object. This approach is common in many areas, in-
cluding image tagging (Weston, Bengio, and Usunier 2011),
multi-label classification (Guo and Schuurmans 2011), and
link prediction (Bleakley, Biau, and Vert 2007).

The distance model uses score and threshold functions:

s(x, y) = −‖u(x)− v(y)‖2 = −‖Uφ(x)− Vψ(y)‖2 (5)

t(x) = −‖u(x)− u0‖2 = −‖Uφ(x)− u0‖2, (6)
1See Appendix A for a discussion of feature representations.

where again the decision threshold function is usually based
on a direct embedding u0 of a null object. This model un-
derlies work on “metric learning” (Globerson et al. 2007;
Weinberger and Saul 2009), however it has also been used
in the area of multi-relation learning (Sutskever and Hinton
2008), with renewed interest (Bordes et al. 2013; 2011).

Interestingly, most work has adopted one of these two
models without comparing their behavior. Some recent work
in multi-relational learning has started to consider the rela-
tive capabilities of these representations (Socher et al. 2013).

2.2 Evaluating Score Functions on Data
Association models are most often learned from large data
collections, where training examples come in the form of
positive or negative associations between pairs of objects
(x, y), sometimes called “must link” and “must not link”
constraints respectively (Chopra, Hadsell, and LeCun 2005).
LetE denote the set of “must link” pairs, let Ē denote the set
of “must not link” pairs, let S = E∪Ē, and letE0 denote the
set of remaining pairs. That is,E∪Ē∪E0 form a partition of
X ×Y . The setsE and Ē are presumed to be finite, although
obviously E0 need not be. For a given object x ∈ X , we let
Y (x) = {y : (x, y) ∈ E} and Ȳ (x) = {ȳ : (x, ȳ) ∈ Ē}.
For sets Y , we use |Y | to denote cardinality. The nature of
the training set can vary between settings. For example, in
link prediction and tagging, observations are often only pos-
itive “must link” pairs; whereas, in multi-label classification
one often assumes that a complete set of link/no-link infor-
mation over Y is provided for each x given in the training set
(hence assuming Y is finite). Ranking and retrieval problems
usually fall between these two extremes, with unobserved
positive links primarily assumed to be negative pairs.

How such data is to be used to train the score function is
determined by how one wishes to evaluate the result.

Ranking: In ranking, performance has most often been
assessed by the AUC (Joachims 2002; Menon and Elkan
2011; Cortes and Mohri 2003). For a given x, the AUC of
s is given by

1

|Y (x)|
1

|Ȳ (x)|
∑

y∈Y (x)

∑
ȳ∈Ȳ (x)

1(s(x, y) > s(x, ȳ)), (7)

where 1(ξ) denotes the indicator function that returns 1
when ξ is true, 0 otherwise. More recently the ordered
weighted average (OWA) family of ranking error func-
tions has become preferred (Usunier, Buffoni, and Gallinari
2009). OWA generalizes AUC by allowing emphasis to be
shifted to ranking errors near the top of the list, through the
introduction of penalties α ≥ 0 such that α′1 = 1 and
α1 ≥ α2 ≥ · · · . For a given x, the OWA is defined by∑

y∈Y (x)

∑
ȳ∈Ȳ (x)

απ(x,ȳ)1(s(x, y) ≤ s(x, ȳ)), (8)

where π(x, ȳ) denotes the position of ȳ in the list sorted by
s(x, ȳ1) ≥ s(x, ȳ2) ≥ · · · .

Query answering: For query answering, performance is
most often assessed by pointwise prediction error, given by∑
y∈Y (x)

1(s(x, y) ≤ t(x)) +
∑

ȳ∈Ȳ (x)

1(s(x, ȳ) > t(x)). (9)



Prediction: There are many performance measures
used to evaluate prediction performance (Sebastiani 2002;
Tsoumakas, Katakis, and Vlahavas 2009). Pointwise predic-
tion error is common, but it is known to be inappropriate
in scenarios like extreme class imbalance (Joachims 2005;
Menon and Elkan 2011), where it favors the trivial clas-
sifier that always predicts the most common label. Other
standard performance measures are the precision, recall and
F1 measure (macro or micro averaged) (Sebastiani 2002;
Tsoumakas, Katakis, and Vlahavas 2009). Here we propose
a useful generalization of pointwise prediction error that also
provides a useful foundation for formulating later training
algorithms: The idea is to introduce an OWA error measure
for prediction instead of ranking. For a given x, this new
OWA-prediction error is defined by∑

y∈Y (x)

ασ(x,y)1(s(x, y) ≤ t(x))

+
∑

ȳ∈Ȳ (x)

απ(x,ȳ)1(s(x, ȳ) > t(x)), (10)

where σ(x, y) denotes the position of y in the list sorted by
s(x, y1) ≤ s(x, y2) ≤ · · · , and π(x, ȳ) denotes the position
of ȳ in the list sorted by s(x, ȳ1) ≥ s(x, ȳ2) ≥ · · · . The
exact match error is achieved by setting α = 11 (i.e., all
0s except a 1 in the first position), whereas the pointwise
prediction error (9) is achieved by setting α = 1.

2.3 Training Score Functions
Given a target task, a standard approach to training, aris-
ing from work on classification, is to minimize a convex up-
per bound on the performance measure of interest (Tsochan-
taridis et al. 2005; Joachims 2005).

For example, for ranking, using a convex upper bound
on OWA loss has proved to provide state of the art results
(Usunier, Buffoni, and Gallinari 2009; Weston, Bengio, and
Usunier 2011). Using co-embedding, the training problem is

min
U,V

∑
x∈S

∑
y∈Y (x)

∑
ȳ∈Ȳ (x)

απ(x,ȳ)L(s(x, y)− s(x, ȳ)), (11)

where L(s(x, y) − s(x, ȳ)) ≥ 1(s(x, y) ≤ s(x, ȳ)) for a
convex and non-increasing loss function L. Here the param-
eters U and V appear in the score model, either (3) or (5).

For prediction, recent improvements in multi-label classi-
fication and tagging have resulted from the use of so called
calibrated losses (Fuernkranz et al. 2008; Guo and Schuur-
mans 2011). Interestingly, these losses are both convex up-
per bounds on (10) for different choices ofα (not previously
realized). For example, the first approach uses α = a1 to
upper bound on pointwise error (9), while the second uses
α=11 to achieve an upper bound on exact match error. The
resulting training problem can be formulated

min
U,V,u0

∑
x∈S

∑
y∈Y (x)

ασ(x,y)L(s(x, y)− t(x))

+
∑

ȳ∈Ȳ (x)

απ(x,ȳ)L(t(x)− s(x, ȳ)), (12)

where L(s(x, y)− t(x)) ≥ 1(s(x, y) ≤ t(x)) and L(t(x)−
s(x, ȳ)) ≥ 1(s(x, ȳ) > t(x)) for a convex and non-
increasing loss function L. Here the additional parameter u0

appears in the threshold model, either (4) or (6).

Unfortunately, even though convex loss functions are
common in co-embedding approaches, they do not make the
training problems (11) and (12) convex. For the alignment
model (3) non-convexity arises from the bilinear interac-
tion between U and V , whereas the nonlinearity of the dis-
tance model (5) creates non-convexity when composed with
the loss. Therefore, it is currently standard practice in co-
embedding to resort to local optimization algorithms with no
guarantee of solution quality. The most popular choice is al-
ternating descent in the alignment model, since the problems
are convex in U given V , and vice versa. Even then, the dis-
tance model does not become convex even in single param-
eters, and local descent is used (Sutskever and Hinton 2008;
Hinton and Paccanaro 2002).

3 Convex Relaxations
We now introduce the main formulations we use. Our goal
is to first demonstrate that the previous training formulations
(11) and (12) can be re-expressed in a convex form, subject
to a relaxation of the implicit rank constraint. Interestingly,
the convex reformulation extends to the distance based score
model (5) as well as the alignment based score model (3),
after an initial change of variables.

3.1 Alignment Score Model
First, for the alignment model (3) it is straightforward to ob-
serve that the score function can be re-parameterized as

s(x, y) = φ(x)′Mψ(y) (13)
for a matrix variable M = U ′V ∈ Rm×n. This simple
change of variable allows the problems (11) and (12) to be
expressed equivalently as minimization over M subject to
the constraint that rank(M) ≤ d. Since rank is not convex,
we introduce a relaxation and replace rank with the trace
norm of M .2 Since we assumed the loss function in (11)
and (12) was convex, a linear parameterization of the score
function (13) coupled with replacing the rank constraint by
trace norm regularization leads to a convex formulation of
the training problems (11) and (12) respectively. In particu-
lar, (11) becomes minimizing the following over M∑
x∈S

∑
y∈Y (x)

∑
ȳ∈Ȳ (x)

απ(x,ȳ)L(s(x, y)−s(x, ȳ))+λ‖M‖tr, (14)

where we have introduced a regularization parameter λ,
which allows the desired rank to be enforced by a suitable
choice (Cai, Candes, and Shen 2008). Similarly, for predic-
tion training, (12) becomes

min
M,m

∑
x∈S

∑
y∈Y (x)

ασ(x,y)L(s(x, y)− t(x))

+
∑

ȳ∈Ȳ (x)

απ(x,ȳ)L(t(x)− s(x, ȳ)) + λ‖M‖tr, (15)

which is jointly convex in the optimization variables M and
m = U ′u0 using the model (3) and (4). Although these
reformulations are not surprising, below we discuss how the
resulting optimization problems can be solved efficiently.

2The trace norm is known to be the tightest convex approxima-
tion to rank, in that it is the bi-conjugate of the rank function over
the spectral-norm unit sphere (Recht, Fazel, and Parrilo 2010).



3.2 Distance Score Model
It is more interesting to observe that a similar reformula-
tion allows the distance based score model to also be trained
with a convex minimization. The key is to achieve a linear
parameterization of the distance model (5) and (6) through a
reformulation and change of variables. In particular, note

−s(x, y) = ‖Uφ(x)− Vψ(y)‖2 (16)

=

[
φ(x)
−ψ(y)

]′ [
U ′U U ′V
V ′U V ′V

] [
φ(x)
−ψ(y)

]
(17)

=

[
φ(x)
−ψ(y)

]′
M

[
φ(x)
−ψ(y)

]
, (18)

for a square matrix variable M ∈ R(m+n)×(m+n). Impor-
tantly, this parameterization of the distance based model is
exact and linear in the parameters. The new parameter M
however must satisfy a few constraints to be a valid expres-
sion of (18): namely, that M � 0 and that rank(M) ≤ d.
The first constraint is convex, but the latter is not, hence we
again relax the rank constraint with trace norm regulariza-
tion, as above. Interestingly, the final training formulations
can be written as above, whether training for a ranking prob-
lem (14) or training for a prediction problem (15).

An important advantage that the distance based reformu-
lation (18) holds over the alignment based reformulation
(13) is that (18) allows an effective way to encode side in-
formation. For example, if prior information is available that
allows one to specify linear distance constraints between ele-
ments y ∈ Y , then these same constraints can be imposed on
the learned embedding while maintaining convexity. In par-
ticular, let M̃ denote the lower right n×n block ofM . If one
would like to impose the constraint that object y1 is closer
to y2 than y3, i.e., dist(y1, y2) < dist(y1, y3) (say, based on
prior knowledge), then this can be directly enforced in the
joint embedding submatrix M̃ via the linear constraint

(ψ(y1)−ψ(y2))
′
M̃ (ψ(y1)−ψ(y2)) (19)

< (ψ(y1)−ψ(y3))
′
M̃ (ψ(y1)−ψ(y3)) . (20)

Encoding similar information is not straightforward in the
alignment representation (13) without losing convexity.

3.3 Efficient Training Algorithm
Let us write the training problem as

min
M

F (M) + λ‖M‖tr, (21)

where F denotes the convex training objective of interest.
Significant recent progress has been made in developing ef-
ficient algorithms for solving such problems (Dudik, Har-
chaoui, and Malick 2012). Early approaches were based on
alternating direction methods that exploited variational rep-
resentations of the trace norm via, for example

‖M‖tr =
1

2
min
Ω�0

tr(M ′Ω−1M) + tr(Ω). (22)

Given such a characterization, and alternating direction
strategy can successively optimize M and Ω, exploiting the

fact that Ω will have a closed form update (Argyriou, Evge-
niou, and Pontil 2008; Grave, Obozinski, and Bach 2011).
Unfortunately, such methods do not scale well to large prob-
lems because a full factorization must be computed after
each iteration. Another prominent strategy has been to ex-
ploit a simple projection operator, singular value threshold-
ing (Cai, Candes, and Shen 2008), in a proximal gradient de-
scent algorithm (Ji and Ye 2009). Unfortunately, once again
scaling is hampered by the requirement of computing a full
singular value decomposition (SVD) in each iterate.

A far more scalable approach has recently been developed
based on a coordinate descent. Here the idea is to keep a fac-
tored representation A and B such that M = AB′, where
the search begins with thin A and B matrices and incremen-
tally grows them (Dudik, Harchaoui, and Malick 2012). The
benefit of this approach is that only the top singular vector
pair is required on each iteration, which is a significant sav-
ings over requiring the full SVD. A useful improvement is
the recent strategy of (Zhang, Yu, and Schuurmans 2012),
which combines the approach of (Dudik, Harchaoui, and
Malick 2012) with an earlier method of (Srebro, Rennie, and
Jaakkola 2004). Here the idea is to start with thin matrices
A and B as before, but locally optimize these matrices by
replacing the trace norm of M with a well known identity

‖M‖tr = min
A,B:AB′=M

1

2
(‖A‖2F + ‖B‖2F ) (23)

(Srebro, Rennie, and Jaakkola 2004). The key is to escape a
local minimum when the local optimization terminates: here
the strategy of (Dudik, Harchaoui, and Malick 2012) is used
to escape by generating a column to add to A and B. In
particular, to escape local minima one need only solve

max
a,b:‖a‖≤1,‖b‖≤1

−a′∇F (M)b (24)

to recover a new column a and b to add to A and B respec-
tively, subject to a small line search

min
µ≥0,ν≥0

F (µM + νab′) + λ(µc+ ν) (25)

for scalar µ and ν, where c = 1
2 (‖A‖2F + ‖B‖2F ) at the

current iterate. The solution to (24), can be efficiently com-
puted via the leading left and right singular vector pair of
−∇F (M). This method is quite effective (Zhang, Yu, and
Schuurmans 2012), often requiring only a handful of outer
escapes to produce an optimal M in our experiments.

4 Multi-relational Extension
Often an association problem involves additional context
that determines the relationships between objects x and y.
Such context can be side information, or specify which of
an alternative set of relations is of interest. To accommodate
this extension, it is common to introduce a third set of ob-
jects Z . (Obviously, more sets can be introduced.)

A typical form of training data still consists of “must link”
and “must not link” tuples (x, y, z) ∈ X×Y×Z . (The prob-
lem is now implicitly a hyper-graph.) LetE denote the set of
positive “must link” tuples, let Ē denote the set of negative
“must not link” tuples, let S = E ∪ Ē, and let E0 denote



the set of remaining tuples. The sets E and Ē are presumed
to be finite. For a given pair (x, z), we let Y (x, z) = {y :
(x, y, z) ∈ E} and Ȳ (x, z) = {ȳ : (x, ȳ, z) ∈ Ē}.

Such an extension can easily be handled in the framework
of score functions. In particular, one can extend the concept
of an association score to now hold between three objects
via s(x, y, z). Standard problems can still be posed.

Ranking: given (x, z) sort the elements of Y according
to the scores s(x, yi1 , z) ≥ s(x, yi2 , z) ≥ · · · .

Prediction: given (x, z) enumerate y ∈ Y that satisfy
s(x, y, z) > t(x, z) for a threshold function t(x, z).

Query answering: given (x, y, z) return sign(s(x, y, z)−
t(x, z)).

The embedding framework can be extended to handle
such additional objects by also mapping z to a latent rep-
resentation from an initial feature representation ξ(z) ∈ Rp.

Alignment Score Model The linear alignment based
model (13) can be easily extended by expanding the matrix
M to a three-way tensor T , allowing a general alignment
score function to be expressed

s(x, y, z) =
∑
ijk

Tijkφ(x)iψ(y)jξ(z)k (26)

which is still linear in the parameter tensor T . Such a param-
eterization will maintain convexity of the previous formula-
tions. However, tensor variables introduce two problems in
the context of co-embedding. First, there is no longer a sim-
ple notion of rank, nor a simple convex regularization strat-
egy that can effectively approximate rank. Second, the tensor
variable can become quite large if the initial feature dimen-
sions m, n and p are large. Some current work ignores this
issue and uses a full tensor (Socher et al. 2013; Jenatton et al.
2012), but others have found success by working with com-
pressed representations (Nickel, Tresp, and Kriegel 2011;
Gantner et al. 2010; Rendle and Schmidt-Thieme 2009). Be-
low we will consider a compact linear representation used
by (Rendle and Schmidt-Thieme 2009), which decomposes
T into the repeated sum of two base matricesN and P , such
that Tijk = Nij +Pkj . Convex co-embedding can be recov-
ered with such a representation, but controlling the rank of
N and P through trace norm regularization.

Distance Score Model Beginning with the work of (Hin-
ton and Paccanaro 2002; Sutskever and Hinton 2008), ex-
tensions of the distance based score model (5) have been a
popular approach to multi-relational learning. Several recent
works have adopted similar forms of score models, includ-
ing (Bordes et al. 2013; 2011). Unfortunately, none of these
representations admit an equivalent linear tensor form, and
we leave the exploration of alternative representations for
multi-relational distance models for future work.

5 Case Study: Multi-label Prediction
To investigate the efficacy of convex embedding, we con-
ducted an initial experiment on multi-label classification
with the multi-label data sets shown in Table 1. In each case,
we used 1000 examples for training and the rest for test-
ing (except Emotion where we used a 2

3 ,
1
3 train-test split),

Data set # examples # features # labels
Corel5K 4609 499 30
Emotion 593 72 6
Mediamill 3000 120 30
Scene 2407 294 6
Yeast 2417 103 14

Table 1: Data sets properties for multi-label experiments.

Corel Emot. Media. Scene Yeast
CVX time 6.0s 0.3s 10.6s 3.4s 3.6s
ALT time 9.2s 3.0s 497.6s 19.5s 8.0s
CVX obj 4014 1060 3996 2593 3635
ALT obj 4014 1060 3996 2593 3635
ALT0 obj 4022 1077 4126 2603 3637
CVX err 7% 29% 11% 18% 46%
ALT err 7% 29% 11% 18% 46%
ALT0 err 7% 31% 14% 18% 51%

λ 0.3 0.45 0.2 3.0 1.0
CVX rank 19 4 3 4 3

Table 2: Multi-label results averaged over 10 splits: time in
seconds; average objective value over 100 random initial-
izations (ALT0 indicates initializing from 0); pointwise test
error; regularization parameter and rank of CVX solution.

repeating 10 times for different random splits. In particular,
we used the alignment score model (13) and a smoothed ver-
sion (28) of the large margin multi-label loss (27), which has
given state of the art results (Guo and Schuurmans 2011):∑

x∈S
max
y∈Y (x)

L(m(x, y)) + max
ȳ∈Ȳ (x)

L(m̄(x, ȳ)) (27)

≤
∑
x∈S

softmax
y∈Y (x)

L̃(m(x, y)) + softmax
ȳ∈Ȳ (x)

L̃(m̄(x, ȳ)),(28)

where m(x,y) = s(x,y)− t(x); m̄(x,ȳ) = t(x)− s(x,ȳ);
L(m)=(1−m)+; L̃(m)= 1

4 (2−m)2
+ if 0≤m≤2, (1−m)+

otherwise; and softmaxy∈Y f(y) = ln
∑
y∈Y exp(f(y)).

(Note that (27) follows from the loss in (15) using α=11.)
We also added a squared Frobenius norm regularizer on M
with the same weight λ.

The aim of this study is to compare the global training
method developed above (CVX), which uses a convex pa-
rameterization (M and m), against a conventional alternat-
ing descent strategy (ALT) that uses the standard factored
parameterization (U ′V = M and U ′u0 = m). To ensure a
fair comparison, we first run the global method to extract the
rank of M , then fixed the dimensions of U and V to match.

The results of this experiment, given in Table 2, are sur-
prising in two respects. First, under random initialization,
we found that the local optimizer, ALT, achieves the global
objective in all the data splits on all data sets in this setting.
Consequently, the same training objectives and test errors
were observed for both global and local training. Evidently
there are no local minima in the problem formulation (15)
using loss (28) with squared Frobenius norm regularization,
even when using the factored parameterization U ′V = M
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Figure 1: Multi-label run time comparison (seconds).

and U ′u0 = m (although we have no proof to support such
a claim). An additional investigation reveals that there are
non-optimal critical points in the local objective, as shown
by initializing ALT with all zeros; see Table 2.

The second outcome is that the global method can be
significantly faster than alternating minimization. To fur-
ther investigate the scaling properties of these methods we
conducted further experiments on Mediamill and Scene us-
ing increasing training sizes. The results, given in Figure 1,
show that CVX is increasingly more efficient than ALT. De-
spite its convenience, ALT can be an expensive algorithm
in practice. Overall, these results suggest that convex min-
imization can be a more efficient alternative in many prob-
lems where alternating descent remains prominent.

6 Case Study: Tag Recommendation
Next, we undertook a study on a multi-relational problem:
solving Task 2 of the 2009 ECML/PKDD Discovery Chal-
lenge. This problem considers three sets of entities—users,
items, and tags—where each user has labeled a subset of the
items with relevant tags. The goal is to predict the tags the
users will assign to other items. Here we let X denote the
set of users, Z the set of items, and Y the set of tags re-
spectively; and used the feature representations φ(x) = 1x,
ψ(y) = 1y and ξ(z) = 1z in the tensor model (26).3 The
training examples are provided in a data tensor E, such that
E(x, y, z) = 1 indicates that tag y is among the tags user
x has assigned to item z; E(x, y, z) = −1 indicates that
tag y is not among those user x assigned to item z; and
E(x, y, z) = 0 denotes an unknown element. The goal is to

3Such indicator representations are discussed in Appendix A.

predict unknown values subject to a constraint that at most
five tags can be active for any (user, item) pair.

The winner of this challenge (Rendle and Schmidt-
Thieme 2009) used a co-embedding model in the non-
convex form outlined above, hence they only considered lo-
cal training. Here, we investigate whether a convex formu-
lation can improve on such an approach, using the Chal-
lenge data provided by BibSonomy. Following (Jäschke et
al. 2008) we exploit the core at level 10 subsample, which
reduces the data set to 109 unique users, 192 unique items
and 229 unique tags.

Prediction Following (Rendle and Schmidt-Thieme
2009), we rank the tags that each user assigns to an item.
Given a learned score function s, the top five tags y are
predicted from a given user-item pair (x, z) via

Ê(x, y, z) =

{
1 if s(x, y, z) in top 5 values of s(x, :, z)
−1 otherwise.

Experimental Settings We parameterize the tensor with
the pairwise interaction model (Rendle and Schmidt-Thieme
2010; Chen et al. 2013), which uses the decomposition

s(x, y, z) = Txyz = Nx,y + Pz,y ∀x, y, z. (29)

Following (Rendle and Schmidt-Thieme 2009), we use the
ranking logistic loss function for learning N and P in the
formulation (14), but replace their low rank assumptions on
N and P with a trace norm relaxation

Reg(N,P ) = λ1‖N‖tr + λ2‖P‖tr. (30)

We also include a Frobenius norm regularizer on N and P ,
following (Rendle and Schmidt-Thieme 2009).

The aim of this study is, again, to compare the global
training method developed above (CVX), which uses the
convex parameterization (N and P ), against a conventional
alternating descent strategy (ALT) that uses a factored pa-
rameterization (U ′V =N and Q′R= P ). Below, we apply
a common regularization parameter λ = λ1 = λ2 to the
trace and squared Frobenius norm regularizers, and consider
the rank returned by CVX as well as the hard rank choices
d ∈ {32, 64, 128, 256}.

Experimental Results The results of this study are shown
in Table 3 below. The first four columns report the settings
used: the training method, the shared regularization param-
eter λ, the rank of N (d1), and the rank of P (d2). The final
three columns report the outcomes: the final objective value
obtained, the value of the per-instance averaged F1 measure
on the test data (which is the evaluation criterion of the Dis-
covery Challenge), and the training time (in minutes).

The table is also organized into four vertical blocks.
The top block provides a controlled comparison between
the global training method developed in this paper, CVX,
and alternating minimization, ALT. In this block, the global
method is first trained using the fixed regularization param-
eter λ, after which the rank of its solutions are recovered,
d1 = rank(N) and d2 = rank(P ). These are then used to
determine the dimensions of the matrices U ′V = N and



Method λ d1 d2 objective F1 time
CVX 10 59 73 42 0.42 41
ALT 10 59 73 42 0.42 980
ALT0 10 59 73 1402 0.08 6
ALT1 10 59 73 150 0.32 880
ALT 1e-4 32 32 3.5 0.32 582
ALT 1e-4 64 64 3.5 0.34 597
ALT 1e-4 128 128 3.5 0.36 627
ALT 1e-4 256 256 3.5 0.36 669
ALT 5e-5 32 32 3.5 0.33 589
ALT 5e-5 64 64 3.5 0.32 594
ALT 5e-5 128 128 3.5 0.34 619
ALT 5e-5 256 256 3.5 0.34 690
ALT 0 32 32 3.5 0.32 583
ALT 0 64 64 3.5 0.33 593
ALT 0 128 128 3.5 0.33 634
ALT 0 256 256 3.5 0.31 688

Table 3: Tag recommendation results. All methods were ini-
tialized randomly, except ALT0 indicates initializing from
all 0s, and ALT1 indicates initializing from all 1s.

Q′R=P used by ALT. The second and third block show the
results for ALT using the fixed parameter values (d1, d2 and
λ) that were used in the award winning approach of (Rendle
and Schmidt-Thieme 2009). Finally, the fourth block, shows
the results for ALT without any regularization, but imposing
only rank constraints.

There are a number of interesting conclusions one can
draw from these results. First, it can be seen that both CVX
and ALT with the parameter values shown in the top block
achieve the best F1 value among all methods, even surpass-
ing the result quality of the award winning parameterization
on this data set.

More interestingly, we see that, once again, ALT with ran-
dom initialization achieves the same result as CVX when
controlling for rank and regularization, albeit with signifi-
cantly greater computational cost. This result suggests that
the introduction of trace norm regularization has somehow
eliminated local minima from the problem once again, al-
though we have no proof to support such a conclusion. In-
deed, by initializing ALT with all 0s or all 1s one can see
again that convergence to non-optimal critical points is ob-
tained; such points are avoided by CVX.

7 Conclusion
We have investigated a general approach to co-embedding
that unifies alignment based and distance based score mod-
els. Based on this unification, we provided a general con-
vex formulation of both models by replacing the intractable
rank constraint with a trace norm regularization. To achieve
scalable training for these models, we adopted a recent hy-
brid training strategy that combines an outer “boosting” loop
with inner smooth optimization. The resulting training pro-
cedure is more efficient than alternating descent while yield-
ing global instead of local solutions. In one case study (tag
recommendation), the result was improved generalization

performance over current state of the art local training meth-
ods, whereas in the other case study (multi-label prediction)
we observed that global optimization achieves the local re-
sult, but with significant time savings over naive alternation.

There are many directions for future work. One direction
is to investigate other linear compressions of tensor repre-
sentations that allow greater freedom to trade off space ver-
sus expressiveness. Another direction is to investigate alter-
native, tighter approximations of rank when the target di-
mensionality is pre-specified. Finally, the possibility for ex-
ploiting the distance model to express prior side information
on y targets via tractable distance constraints in the embed-
ding space has yet to be properly explored.

A Additional Discussion on Features
Note that co-embedding presumes that the objects x ∈ X
and y ∈ Y were all assigned initial feature representations,
φ(x) ∈ Rm and ψ(y) ∈ Rn. The nature of these initial
representations play an important role in determining what
generalizations can or cannot be easily captured.

One extreme but common form is a simple indicator
φ(x) = 1x where 1x is (conceptually) a vector of all ze-
ros with a single 1 in the position corresponding to x ∈ X .
Such a representation explicitly enumerates X , presuming
it is finite. Although indicators have many obvious short-
comings, they remain common. For example, work on com-
munity identification from link structure (Newman 2010) is
based on indicators. Similarly, most work on multi-label pre-
diction uses label indicators 1y when no prior information is
encoded between labels y. Indicators do not provide infor-
mation that supports direct generalization between objects,
nor do they support out of sample prediction. Note that the
embeddings v(y) = V 1y = V:y assign a separate embed-
ding vector V:y to y independently of the other elements of
Y , which can be onerous to store if the sets are large.

Recently, there has been renewed interest in endowing
objects with meaningful property based features, or “at-
tributes” in recent computer vision research (Akata et al.
2013; Farhadi et al. 2009), link prediction (Bleakley, Biau,
and Vert 2007; Menon and Elkan 2011) and recommenda-
tion (Gantner et al. 2010). Attributes allow generalization
between objects that is based on prior knowledge, even if an
object has not been seen in the training data. In the frame-
work of co-embedding, this is particularly intuitive: a new
object, say y, that has not been seen during training can still
be embedded in the latent space. If y’s feature representation
ψ(y) is similar to other objects from Y seen in the training
data, then y’s embedding v(y) = Vψ(y) should also be
similar, hence y will exhibit similar scores s(x, y) from x.
This allows the prospect of zero-shot learning where one can
predict x’s association with a target label y not seen during
training. Similarly, an attribute based feature representation
φ(x) allows out of sample prediction for objects x not seen
during training; a standard goal in supervised learning.

These same points continue to apply in the multi-
relational setting. For example, if one wishes for meaningful
generalizations between contexts z, or for zero-shot transfer
to novel z contexts, then here too it is imperative that the
initial feature representation ξ(z) be property based.
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