
Constraint-based Optimization and Utility

Elicitation using the Minimax Decision

Criterion

Craig Boutilier a,∗, Relu Patrascu a,1, Pascal Poupart a,2,

Dale Schuurmans c,1

aDepartment of Computer Science, University of Toronto, Toronto, ON, M5S
3H5, CANADA

bSchool of Computer Science, University of Waterloo, Waterloo, ON, CANADA
cDepartment of Computing Science, University of Alberta, Edmonton, AB, T6G

2E8, CANADA

Abstract

In many situations, a set of hard constraints encodes the feasible configurations of
some system or product over which multiple users have distinct preferences. How-
ever, making suitable decisions requires that the preferences of a specific user for
different configurations be articulated or elicited, something generally acknowledged
to be onerous. We address two problems associated with preference elicitation: com-
puting a best feasible solution when the user’s utilities are imprecisely specified; and
developing useful elicitation procedures that reduce utility uncertainty, with min-
imal user interaction, to a point where (approximately) optimal decisions can be
made. Our main contributions are threefold. First, we propose the use of minimax
regret as a suitable decision criterion for decision making in the presence of such
utility function uncertainty. Second, we devise several different procedures, all rely-
ing on mixed integer linear programs, that can be used to compute minimax regret
and regret-optimizing solutions effectively. In particular, our methods exploit gener-
alized additive structure in a user’s utility function to ensure tractable computation.
Third, we propose various elicitation methods that can be used to refine utility un-
certainty in such a way as to quickly (i.e., with as few questions as possible) reduce
minimax regret. Empirical study suggests that several of these methods are quite
successful in minimizing the number of user queries, while remaining computation-
ally practical so as to admit real-time user interaction.

Key words: decision theory, constraint satisfaction, optimization, preference
elicitation, imprecise utility, minimax regret

Preprint submitted to Artificial Intelligence 3 January 2006

1 Introduction

The development of automated decision support software is a key focus within
decision analysis [21,51,42] and artificial intelligence [16,17,10,9]. In the appli-
cation of such tools, there are many situations in which the set of decisions
and their effects (i.e., induced distribution over outcomes) are fixed, while the
utility functions of different users vary widely. Developing systems that make
or recommend decisions for a number of different users requires accounting for
such differences in preferences. Several classes of methods have been employed
by decision-support systems to “tune” their behavior appropriately, including
inference or induction of user preferences based on observed behavior [28,33]
or the similarity of a user’s behavior to that of others (e.g., as in collabo-
rative filtering [31]). Such behavior-based methods often require considerable
data before strong conclusions can be drawn about a user’s preferences (hence
before good decisions can be recommended).

In many circumstances, direct preference elicitation may be undertaken in or-
der to capture specific user preferences to a sufficient degree to allow an (ap-
proximately) optimal decision to be taken. In preference elicitication, the user
is queried about her preferences directly. Different approaches to this problem
have been proposed, including Bayesian methods that quantify uncertainty
about preferences probabilistically [17,10,27], and methods that simply pose
constraints on the set of possible utility functions and refine these incremen-
tally [51,49,14].

In this paper, we will focus on direct preference elicitation for constraint-based

? Parts of this article appeared in (a) C. Boutilier, R. Patrascu, P. Poupart, and
D. Schuurmans, Constraint-based optimization with the minimax decision crite-
rion, Proc. of the Ninth Conference on the Principles and Practice of Constraint
Programming (CP-2003), pp.168–182, Kinsale, Ireland, 2003; and (b) C. Boutilier,
R. Patrascu, P. Poupart, and D. Schuurmans, Regret-based utility elicitation in
constraint-based decision problems, Proc. of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI-05), pp.1293–1299, Edinburgh, Scot-
land, 2005.∗ Corresponding author.

Email addresses: cebly@cs.toronto.edu (Craig Boutilier),
relu@cs.toronto.edu (Relu Patrascu), ppoupart@cs.uwaterloo.ca (Pascal
Poupart), dale@cs.ualberta.ca (Dale Schuurmans).

URLs: www.cs.toronto.edu/∼cebly (Craig Boutilier),
www.cs.toronto.edu/∼relu (Relu Patrascu), www.cs.uwaterloo.ca/∼ppoupart
(Pascal Poupart), www.cs.ualberta.ca/∼dale (Dale Schuurmans).
1 Part of this work was completed while the author was at the School of Computer
Science, University of Waterloo.
2 Part of this work was completed while the author was at the Department of
Computer Science, University of Toronto.

2

optimization problems (COPs). COPs provide a natural framework for specify-
ing and solving many decision problems. For example, configuration tasks [41]
can naturally be viewed as reflecting a set of hard constraints (options avail-
able to a customer) and a utility function (reflecting customer preferences).
While much work in the constraint-satisfaction literature has considered indi-
rectly modeling preferences as hard constraints (with suitable relaxation tech-
niques), more direct modeling of utility functions has come to be recognized
as both natural and computationally effective. The direct or indirect model-
ing of multi-attribute utility functions has increasingly been incorporated into
constraint optimization software. 3 Soft-constraint frameworks [45,8] that as-
sociate values with the satisfaction or violation of various constraints can be
seen as implicitly reflecting a user utility function.

However, the requirement of complete utility information demanded by a COP
is often problematic. For instance, users may have neither the ability nor the
patience to provide full utility information to a system. Furthermore, in many
if not most instances, an optimal decision (or some approximation thereof) can
be determined with a very partial specification of the user’s utility function.
As such, it is imperative that preference elicitation procedures be designed
that focus on the relevant aspects of the problem. Preferences for unrealizable
or infeasible outcomes are not (directly) relevant to decision making in a par-
ticular context; nor are precise preferences needed among outcomes that are
provably dominated by others given the partial information at hand. Finally,
though one could refine knowledge of a user’s utility function with increased
interaction, the elicitation effort needed to reach an optimal decision may not
be worth the improvement in decision quality: often a near-optimal decision
can be made with only a fraction of the information needed to make the opti-
mal choice. Ultimately, it is the impact on decision quality that should guide
elicitation effort [17,10,49,13].

The preference elicitation problem lies at the heart of considerable work in
multiattribute utility theory [30,50,35] and the theory of consumer choice (such
as conjoint analysis [47,29]), though our approach will differ considerably from
classic models. Unfortunately, scant attention has been paid to preference elic-
itation in the constraint-satisfaction and optimization literature. Only recently
has the problem of elicitation of objective functions been given due considera-
tion [38]. 4 While interactive preference elicitation has received little attention,
optimizing with respect to a given set of preferences over configurations has
been studied extensively. Branch-and-bound methods are commonly used for
optimization in conjunction with constraint propagation techniques. A num-
ber of frameworks have also been proposed for modeling such systems using

3 For example, see www.ilog.com.
4 Related, but of a decidedly different character is work on constraint acquisition
[37]; more closely tied is work on learning soft constraints [40].

3

“soft constraints” of various types [45,8], each with an associated penalty or
value that indirectly represent a user’s preferences for different configurations.

In this paper, we adopt a somewhat different perspective from the usual soft
constraints formalisms: we assume a user’s preferences are represented directly
as a utility function over possible configurations. Given a utility function and
the hard constraints defining the decision space, we have a standard constraint-
based optimization problem. However, as argued earlier, it is unrealistic to
expect users to express their utility functions with complete precision, nor will
we generally require full utility information to make good decisions. Thus we
are motivated to consider two problems, namely, the problem of “optimizing”
in the presence of partial utility information, and the problem of effectively
eliciting the most relevant utility information.

With respect to optimization in the presence of imprecise utility information,
we suppose that a set of bounds (or more general linear constraints) on utility
function parameters are provided (these constraints will arise as the result
of the elicitation procedures we consider). We then consider the problem of
finding a feasible solution that minimizes maximum regret [44,24,34,4] within
the space of feasible utility functions. This is the solution we would regret the
least should an adversary choose the user’s utility function in a way that is
consistent with our knowledge of the user’s preferences. In a very strong sense,
this minimizes the worst-case loss the user could experience as a result of
our recommendation. We show that this minimax problem can be formulated
and solved using a series of linear integer programs (IPs) and mixed integer
programs (MIPs) in the case where utility functions have no structure.

In practice, some utility structure is necessary if we expect to solve problems of
realistic size. We therefore also consider problems where utility functions can
be expressed using a generalized additive form [22,23,3], which includes linear
utility functions [30] and factored (or graphical) models like UCP-nets [12] as
special cases. We derive two solution techniques for solving such structured
problems: the first gives rise to a MIP with fewer variables, combined with
an effective constraint generation procedure; the second encodes the entire
minimax problem as a single MIP using a cost-network to formulate a compact
set of constraints. The former method is shown to be especially effective.

If our knowledge of the utility parameters is loose enough, minimax regret
may be unacceptably high, in which case we would like to query the user
for additional information about her utility function. In this work we con-
sider bound queries—a local form of standard gamble queries [24] that provide
tighter upper or lower bounds on the utility parameters—and comparison
queries, that present outcomes to the user for ranking. However, we focus on
bound queries in our experiments. We develop several new strategies for elicit-
ing bound information, strategies whose aim is to reduce the worst-case error

4

(i.e., get guaranteed improvement in decision quality) with as few queries as
possible. Our first strategy, halve largest gap (HLG), provides the best theo-
retical guarantees—it works by providing uniform uncertainty reduction over
the entire utility space. The HLG strategy is similar to heuristically motivated
polyhedral methods in conjoint analysis, used in product design and market-
ing [47,29]. In fact, HLG can be viewed as a special case of the method of [47]
in which our polyhedra are hyper-rectangles. Our second strategy, current
solution (CS), is more heuristic in nature, and focuses attention on relevant
aspects of the utility function. Our empirical results show that this strategy
works much better in practice than HLG, and does indeed distinguish relevant
from irrelevant queries. Furthermore, its ability to discern good queries is also
largely unaffected by approximation: the anytime nature of minimax compu-
tation allows time bounds to be used to ensure real-time response with little
impact on the elicitation effort required. We also introduce several additional
strategies which capture some of the same intuitions as HLG and CS, and
with different computational procedures (and complexity). Among these, the
optimistic-pessimistic (OP) method works almost as well as CS, having much
lower computational demands, but without the same strong guarantees.

The remainder of the paper is organized as follows. In Sec. 2 we briefly re-
view constraint-based optimization with factored utility models. We define
and motivate minimax regret for decision making with imprecisely specified
utility functions in Sec. 3. In Sec. 4 we describe several methods for com-
puting minimax regret for COPs, and evaluate one such method empirically.
We also suggest several computational shortcuts well-suited to the interactive
elicitation context. We define a number of elicitation strategies in Sec. 5 and
provide empirical comparisons of these strategies, both computationally and
with respect to number of queries required to reach an optimal solution or an
acceptable level of regret. We conclude in Sec. 6 with a discussion of future
research directions.

2 Constraint-based Optimization and Factored Utility Models

We begin by describing the basic problem of constraint-based optimization
assuming a known utility function and also describe the use of factored utility
models in COPs. This will establish background and notation for the remain-
der of the paper.

5

A B C

D

A v B

B v C

~D v ~A v ~B

Fig. 1. An example constraint graph induced by the logical constraints shown to
the left.

2.1 Optimization with Known Utility Functions

We assume a finite set of attributes X = {X1, X2, . . . , XN} with finite domains
Dom(Xi). An assignment x ∈ Dom(X) = ×iDom(Xi) is often referred to as a
state. For simplicity of presentation, we assume these attributes are Boolean,
but nothing important depends on this (indeed, our experiments will involve
primarily non-Boolean attributes). We assume a set of hard constraints C
over these attributes. Each constraint C`, ` = 1, ..., L, is defined over a set
X[`] ⊆ X, and thus induces a set of legal configurations of attributes in X[`].
More formally, C` can be viewed as the subset of Dom(X[`]) from which all
feasible configurations must be constructed. We assume that the constraints
C` are represented in some logical form and can be expressed compactly: for
example, we might write

(X1 ∧ X2) ⊃ ¬X3

to denote that all legal configurations of Boolean variables X1, X2, X3 are
such that X3 must be false if X1 and X2 are both true. We let Feas(X) denote
the subset of feasible states (i.e., assignments satisfying C). The constraint
satisfaction problem is that of finding a feasible assignment to a specific set of
constraints. While the set of states Dom(X) is exponential in N (the number
of variables), logically expressed constraints allow us to specify the feasible
set Feas(X) compactly, and makes explicit problem structure that can be
exploited to (often) effectively solve CSPs. We refer to Dechter [20] for a
detailed overview of models and methods for constraint satisfaction.

The constraint graph for a given set of constraints is the undirected graph
whose nodes are attributes and whose edges connect any two attributes that
occur in the same constraint. This graph has useful properties that can be used
to determine the worst-case complexity of various algorithms for constraint-
satisfaction and constraint-based optimization [20]. Figure 1 illustrates a small
constraint graph over four variables induced by the logical constraints shown.

Our focus here will not be on constraint satisfaction, but rather on constraint-

6

based optimization problems (COPs). 5 Suppose we have a known non-negative
utility function u : Dom(X) → R+ which ranks all states (whether feasible or
not) according to their degree of desirability. 6 Our aim is to find an optimal
feasible state x∗; that is, any

x∗ ∈ arg max
x∈Feas(X)

u(x).

Since choices are restricted to feasible states, we sometimes call feasible states
decisions. Without making any assumptions regarding the nature of the util-
ity function (e.g., with regard to structure, independence, compactness, etc.)
we can formulate the COP in an “explicit” fashion as a (linear) 0-1 integer
program:

max
{Ix,Xi}

∑
x

uxIx subject to A and C, (1)

where we have:

• variables Ix: for each x ∈ Dom(X), Ix is a Boolean variable indicating
whether x is the decision made (i.e., the feasible state chosen). In other
words, Ix = 1 iff x is the solution to the COP.

• variables Xi: Xi is a Boolean variable corresponding to the ith attribute.
In other words, variables Xi = 1 iff feature Xi is true in the solution to the
COP. 7

• coefficients ux: for each x ∈ Dom(X), constant ux denotes the (known)
utility of state x.

• constraint set A: for each variable Ix, we impose a constraint that relates
it to its corresponding variable assignment. Specifically, for each Xi: if Xi

is true in x, we constrain Ix ≤ Xi; and if Xi is false in x, we constrain
Ix ≤ 1 − Xi. We use A to denote this set of state definition constraints.

• constraint set C: we impose each feasibility constraint C` on the attributes
Xi ∈ X[`]. Logical constraints on the variables Xi can be written in a natural
way as linear constraints [18], so we omit details. 8

Note that this formulation ensures that, if there is a feasible solution (given
the constraints A and C), then exactly one Ix will be non-zero.

5 We use the term constraint-based optimization (often called constraint optimiza-
tion) to refer to discrete combinatorial optimization problems with explicit logical
constraints over variable instantiations, as in CSPs, to distinguish these from more
general constrained optimization problems with arbitrary (e.g., continuous) vari-
ables and general functional constraints.
6 For ease of presentation, we assume the utility function has been normalized to
be non-negative. Nothing critical depends on this, as such normalization is always
possible [23].
7 If features are non-Boolean, then Xi simply needs to be a general integer variable
ranging over Dom(Xi).
8 Again, generalizing the form of these constraints to generalized logical constraints
involving non-Boolean attributes is straightforward.

7

As an example of the interplay between the constraints in A and C, consider
the example in Figure 1. The following constraints will be present in the set A
for the state abcd (with analogous constraints for the other 15 instantiations
of the four Boolean variables):

Iabcd ≤ A; Iabcd ≤ B; Iabcd ≤ D; Iabcd ≤ 1 − D;

while the constraint set C, capturing the three domain constraints in the figure
are:

A + B ≥ 1; B + C ≥ 1; A + B + C ≤ 2.

2.2 Factored Utility Models

Even with logically specified constraints, solving a COP in the manner above
is not usually feasible, since the utility function is not specified concisely. As a
result, the IP formulation above is not practical, since there is one Ix variable
per state and the number of states is exponential in the number of attributes.
With such flat utility functions, it is not generally possible to formulate the
optimization problem concisely: indeed, if there is no (structural) relationship
between the utility of different states, little can be done but to enumerate
feasible states to ensure that an optimal solution is found. By contrast, if some
structure is imposed on the utility function, say, in the form of a factored (or
graphical) model, we are then often able to reduce the number of variables to
be linear in the number of parameters of the factored model.

We consider here generalized additive independence (GAI) models [22,3], a
natural, but flexible and fully expressive generalization of additive (or linear)
utility models. 9 GAI is appealing because of its generality and expressiveness;
for instance, it encompasses both linear models [30] and UCP-nets [12] as spe-
cial cases, 10 but can capture any utility function. The advantage of structured
utility models, and GAI specifically, is that the constraint-based optimiza-
tion can be formulated and (typically) solved without explicit enumeration of
states. While we focus on the GAI model, other compact structured utility
models can be exploited in similar fashion (e.g., see the many such models
proposed by Keeney and Raiffa [30]).

The GAI model assumes that our utility function can be written as the sum

9 Fishburn [22] introduced the model, using the term interdependent value additiv-
ity ; Bacchus and Grove [3] dubbed the same concept GAI, which seems to be more
commonly used in the AI literature currently.
10 For example, UCP-nets encompass GAI with some additional restrictions. Hence
any algorithm for GAI models automatically applies to UCP-nets, though one might
be able to exploit the structure of UCP-nets for additional computational gain.

8

of K local utility functions, or factors, over small sets of attributes:

u(x) =
∑
k≤K

fk(x[k]). (2)

Here each function fk depends only on a local family of attributes X[k] ⊂
X. We denote by x[k] the restriction of state x to the attributes in X[k].
Again we assume that each function fk is non-negative. For example, if X =
{A, B, C, D} we might decompose a utility function as follows:

u(ABCD) = f1(A, B) + f2(B, C).

Figure 2 illustrates a possible instantiation of the two factors. Note that a user
with such a utility function exhibits no preference for the different values of
variable D.

The conditions under which a GAI model provides an accurate representation
of a utility function were defined by Fishburn [22,23]. We provide the intuitions
here. Let P be some probability distribution over Dom(X), interpreted as
a gamble or lottery presented to the decision maker. For instance, P may
correspond to the distribution over outcomes induced by some decision she
could take. Fishburn showed that the decision maker’s utility function u could
be written in GAI form over factors fk iff she is indifferent between any pair of
gambles P and Q over Dom(X) whose marginals over each subset of variables
X[k] (k ≤ K) are identical. Note that GAI models are completely general
(since any utility function can be represented trivially using a single factor
consisting of all variables). Furthermore, linear models are a special case in
which we have a singleton factor for each variable.

We refer to a pair 〈C, {fk : k ≤ K}〉 as a structured COP, where C is a set
of feasibility constraints and {fk : k ≤ K} is a set of utility factors. An IP
similar to Eq. 1 can be used to solve for the optimal decision in the case of a
GAI model:

max
{Ix[k],Xi}

∑
k≤K

∑
x[k]∈Dom(X[k])

ux[k]Ix[k] subject to A and C. (3)

Instead of one variable Ix per state, we now have a set of local state vari-
ables Ix[k] for each family k and each instantiation x[k] ∈ Dom(X[k]) of the
variables in that family. Similarly, we have one associated constant coefficient
ux[k] denoting fk(x[k]). Ix[k] is true iff the assignment to X[k] is x[k]. Each
Ix[k] is related logically to the attributes X ∈ X[k] by (local) state definition
constraints A as before, and usual feasibility constraints C are also imposed
as above.

Notice that the number of variables and constraints in this IP (excluding the
exogenous feasibility constraints C) is now linear in the number of parame-

9

A B C

D

AB 15

AB 6

AB 10

AB 2

BC 13

BC 15

BC 5

BC 3

AB BC

Fig. 2. An example utility graph induced by the two utility factors shown to the
left.

ters of the underlying utility model, which itself is linear in the number of
attributes |X| if we assume that the size of each utility factor fk is bounded.
This compares favorably with the exponential size of the IP for unfactored
utility models in Sec. 2.1.

This formulation of COPs is more or less the same as several other models of
COPs found in the constraint satisfaction literature. For example, the notion
of a cost network is often used to represent objective functions by assuming a
similar form of factored decomposition of the objective function [20]. Specif-
ically, let the utility graph be defined in the same fashion as the constraint
graph, but with edges connecting attributes that occur in the same utility
factor. This utility graph can be viewed as a cost network. Figure 2 illustrates
the utility graph over variables {A, B, C, D} induced by the utility function
decomposition described above (corresponding to the two utility factors AB
and BC shown at the left of the figure).

Similarly, certain soft constraint formalisms can be used [8]. Every constraint
is assigned a cost corresponding to a penalty incurred if that constraint is not
satisfied. Hard constraints in C are assigned an infinite cost, and constraints
corresponding to configurations of local utility factors are given a finite cost
corresponding to their (negative) utility. The goal is to find a minimum cost
state, with the infinite costs associated with hard constraints ensuring a pref-
erence for any feasible solution over any infeasible solution.

The IP formulation of structured COPs in Eq. 3 can be solved using off-the-
shelf solution software for general IPs. Various special purposes algorithms
that rely on the use of dynamic programming (e.g., the variable elimination
algorithm) or constraint satisfaction techniques can also be used to solve these
problems; we refer to Dechter [20] for a discussion of various algorithmic ap-
proaches to COPs developed in the constraint satisfaction literature. While
many of these could be adapted to address the problems discussed in the pa-
per, we will focus on IP formulations and their direct solution using standard
IP software.

We remark here on the use of utility functions rather than (qualitative) prefer-

10

ence rankings in this work. In a deterministic setting, such as in the constraint-
based framework adopted here, one does not need utility functions to make
decisions. Instead an ordinal preference ranking will suffice [30] since, with-
out uncertainty, strength of preference information is not needed to assess
tradeoffs: complete ordinal preference information will dictate which feasible
outcome is preferred. However, in large multiattribute domains, even with
factored preference models, full elicitation will often be time-consuming and
unnecessary. As discussed our aim is to make decisions with incomplete prefer-
ence information. If we make a decision that is potentially suboptimal, we can-
not be sure of its quality unless we have some information about the strength
of preference of this decision (at least relative to the optimal decision). Sim-
ply knowing that one decision “may be preferred” to another does not give us
enough information to know whether additional preference information should
be elicited if we are content with making good, rather than, optimal decisions.

3 Minimax Regret

In many circumstances, we are faced with a COP in which a user may not
have fully articulated her utility function over configurations of attributes.
This arises naturally when distinct configurations must be produced for users
with different preferences, with some form of utility elicitation used to ex-
tract only a partial expression of these preferences. It will frequently be the
case that we must make a decision before a complete utility function can be
specified. For instance, users may have neither the ability nor the patience to
provide full utility information to a system before requiring a decision to be
recommended. Furthermore, in many if not most instances, an optimal deci-
sion (or some approximation thereof) can be determined with a very partial
specification of the user’s utility function. This will become evident in our
preference elicitation framework and the models we consider in this paper.

If the utility function is unknown, then we have a slightly different problem
than the standard COP. We cannot maximize utility (or expected utility in
stochastic decision problems) because the utility function is incompletely spec-
ified. However, we will often have constraints on the utility function, either
initial information about plausible utility values, or more refined constraints
based on the results of utility elicitation with a specific user. For example,
these might be bounds on the parameters of the utility model, or possibly
more general constraints (as we discuss below). Given such a set of possible
utility functions (namely those consistent with these constraints), we must
adopt some suitable decision criterion for optimization, knowing only that the
user’s utility function lies within this set.

In the paper we propose the use of minimax regret [24,12,42,49] as a natural

11

decision criterion for imprecise COPs. We first define the notion of minimax
regret and then provide some motivation for its use as a suitable criterion in
this setting.

3.1 Minimax Regret in COPs

Minimax regret is a very natural criterion for decision making with impre-
cise or incompletely specified utility functions. It requires that one adopt the
(feasible) assignment x with minimum max regret, where max regret is the
largest amount by which one could regret making decision x (while allowing
the utility function to vary within the bounds). It has been suggested as an
alternative to classical expected utility theory. Specifically, it has been pro-
posed as a means for accounting for uncertainty over possible states of nature
(or the outcomes of decisions) [43,34,4], both when probabilistic information
is unavailable, and as a descriptive theory of human decision making that ex-
plains certain common violations of von Neumann-Morgenstern [48] axioms.
However, only recently has it been considered as a means for dealing with the
utility function uncertainty a decision system may possess regarding a user’s
preferences [12,42,49,14]. It is this formulation we present here.

Formally, let U denote the set of feasible utility functions, reflecting our par-
tial knowledge of the user’s preferences. The set U may be finite; but more
commonly it will be continuous, defined by bounds (or constraints) on (sets
of) utility values u(x) for various states. We refer to a pair 〈C,U〉 as an im-
precise COP, where C is a set of feasibility constraints and U is the set of
feasible utility functions. In the case where U is defined by a finite set of lin-
ear constraints U , we sometimes abuse terminology by speaking of 〈C,U〉 as
an imprecise COP.

We define minimax regret in stages:

Defn 1 The pairwise regret of state x with respect to state x′ over feasible
utility set U is defined as

R(x,x′,U) =max
u∈U

u(x′) − u(x). (4)

Intuitively, U represents the knowledge a decision support system has of the
user’s preferences. R(x,x′,U) is the most the system could regret choosing x
instead of x′, if an adversary could impose any utility function in U on the
user. In other words, if the system were forced to choose between x and x′,
then this corresponds to the worst-case loss associated with choosing x rather
than x′ with respect to possible realizations of u ∈ U.

12

A B C

D

AB [9,17]

AB [5,8]

AB [10,11]

AB [0,3]

BC [2,4]

BC [0,10]

BC [4,8]

BC [0,5]

AB BC

Fig. 3. Imprecisely specified utility factors (with upper and lower bounds provided
for each parameter.

Defn 2 The maximum regret of decision x is:

MR(x,U)= max
x′∈Feas(X)

R(x,x′,U) (5)

= max
u∈U

max
x′∈Feas(X)

u(x′) − u(x) (6)

Since the goal of our decision support system is to make the optimal choice
with respect to the user’s true utility function, MR(x,U) is the most the
system could regret choosing x; that is, it is the worst-case loss associated
with choosing x in the presence of an adversary who could choose the user’s
utility function to maximize the difference between x and acting optimally. 11

Defn 3 The minimax regret of feasible utility set U is:

MMR(U) = min
x∈Feas(X)

MR(x,U) (7)

= min
x∈Feas(X)

max
u∈U

max
x′∈Feas(X)

u(x′) − u(x) (8)

A minimax-optimal decision x∗ is any decision that minimizes max regret:

x∗ ∈ arg min
x∈Feas(X)

MR(x,U)

If the only information we have about a user’s utility function is that it lies in
the set U, then a decision x∗ that minimizes max regret is very intuitive as we
elaborate below. Specifically, without distributional information over the set
of possible utility functions, choosing (or recommending) a minimax-optimal
decision x∗ minimizes the worst-case loss with respect to possible realizations
of the utility function u ∈ U. Our goal of course is to formulate the minimax

11 Note that the x′ chosen by the adversary for a specific u will always be the optimal
decision under u: any other choice would give the adversary lesser utility and thus
reduce regret.

13

regret optimization (Eq. 8) in a computationally tractable way. We address
this in Section 4.

To illustrate minimax regret, consider the example illustrated in Figures 1
and 2; but suppose that the precise utility values associated with these factors
are unknown, and instead replaced with the upper and lower bounds shown
in Figure 3. The problem admits five feasible states, and the pairwise max
regret R(x,x′,U) for each pair of states (with x along columns and x′ along
the rows) is shown in the following table:

ABC ABC ABC ABC ABC Max Regret

ABC 0 8 5 2 10 10

ABC 4 0 7 6 2 7

ABC 12 18 0 6 12 18

ABC 7 15 6 4 0 15

ABC 15 7 6 4 0 15

The max regret of each feasible state is shown in the final column, from which
we see that state ABC is the minimax optimal decision.

3.2 Motivation for Minimax Regret

As mentioned, minimax regret has been widely studied (and critiqued) as a
means for decision making under uncertainty. It has been studied primarily
as a means for making decisions when a decision maker is unwilling or un-
able to quantify her uncertainty over possible states of nature, or as a means
of explaining violations of classical axioms of expected utility theory. Savage
[43] introduced the notion though could not provide a “categorical” defense
of its use. The use of regret, including the incorporation of feelings of regret
(and its opposite, “rejoicing”) into expected utility theory, has been proposed
as a means of accounting for the manner in which people violate the axioms
of expected utility theory in practice [34,4]. Difficulties with the use of this
decision criterion include the fact the minimax regret criterion does not sat-
isfy the principle of irrelevant alternatives [43,24], and regret theory fails to
satisfy a reasonable notion of stochastic dominance [39]. It can also be argued
that, from a Bayesian perspective, a decision maker might as well construct
their own subjective assessment of possible states of nature. For this reason,
minimax regret is often viewed as too cautious a criterion.

The perspective we adopt here is somewhat different. We do not adopt mini-

14

max regret as a means of accounting for a decision maker’s personal feelings
of regret. Rather we define regret with respect to our decision system’s uncer-
tainty with respect to the user’s true utility function. It seems incontrovertible
that there will generally be some such utility function uncertainty on the part
of any system designed to make decisions on behalf of users. The only issue is
how this uncertainty is represented and reasoned with.

Naturally, Bayesian methods may be entirely appropriate in some circum-
stances: if one can quantify uncertainty over possible utility functions proba-
bilistically, then one can take expectations over this density to determine the
expected expected utility of a decision [17,10,11]. However, there are many
circumstances in which the Bayesian approach is inappropriate. First, it can
often be very difficult to develop reasonable priors over the utility functions
of a wide class of users. Furthermore, representing priors over such complex
entities as utility functions is fraught with difficulty and inevitably requires
computational approximations in inference (this is made abundantly clear in
recent Bayesian approaches to preference elicitation [17,10]). As a consequence,
the value of such “normatively correct” models is undermined in practice. Of-
ten bounds on the parameters of utility functions are generally much easier
to come by, much easier to maintain, and lend themselves to much more com-
putationally manageable algorithms as we will see in this paper. In addition,
max regret provides an upper bound on the average loss when probabilistic
information is known. As we will see below, minimax regret is a very effective
driver of preference elicitation, so concerns about its pessimistic nature seem
unfounded here. We will see that with relatively few queries, max regret can be
reduced to very low levels (often with provably optimal solutions). Though we
don’t pursue this approach here, when probabilistic information is available,
it can be combined rather effectively with minimax computation [49].

Finally, it is worth noting that making a recommendation whose utility is
near optimal in expectation, as is the case in Bayesian models of preference
elicitation, is often of cold comfort to a user when the decision made is actually
very far from optimal. While minimax regret provides a worst-case bound on
the loss in decision quality arising from utility function uncertainty (even in
cases where distributional information is available), Bayesian methods cannot
typically provide such a bound. In some contexts, such as procurement, this
has been reported as a source of contention with clients using automated
preference elicitation [14]. The argument is often made that users do not want
to “leave money on the table” (even if the odds are low); if any money is left
on the table, they want guarantees (as opposed to probabilistic assurances)
that the amount they could have saved through further preference elicitation
is limited.

Recently, a considerable amount of work in robust optimization has adopted

15

the minimax regret decision criterion [32,1,2]. 12 This work addresses com-
binatorial optimization problems with data uncertainty (e.g., shortest path
problems or facility location with uncertain parameters) and find “robust devi-
ation decisions” that minimize max regret. While the perspective in this work
is somewhat different than that adopted in ours, the models and methods are
quite similar. Our formulation is specific to the constraint-based optimization
setting, but more importantly we focus on how minimax regret can be used
to drive the process of elicitation, a problem not addressed systematically in
the robust optimization literature. Our techniques, apart from preference elic-
itation, could be adapted for problems in robust optimization as a means to
drive the reduction in data uncertainty.

4 Computing Minimax Regret in COPs

We address the computational problem of computing minimax optimal deci-
sions in several stages. We initially assume upper and lower bounds on utility
parameters and discuss procedures for minimax computation for this form of
uncertainty. We begin in Sec. 4.1 by formulating minimax regret in flat (unfac-
tored) utility models to develop intuitions used in the factored case. In Sec. 4.2
we discuss the computation of maximum regret in factored utility models, and
propose two procedures for dealing with minimax regret. We evaluate one of
these methods empirically in Sec. 4.3. Finally, in Sec. 4.4 we propose a gener-
alization for the minimax problem in the case where the feasible utility set is
defined by arbitrary linear constraints on parameters of the utility model.

4.1 Minimax Regret with Flat Utility Models

If we make no assumptions about the structure of the utility function, nor any
assumptions about the nature of the feasible utility set U, the optimization
problem defined in Eq. 8 can be posed directly as a semi-infinite, quadratic,
mixed-integer program (MIP):

min
{Mx,Ix,Xi}

∑
x

MxIx subj. to




Mx ≥ ux′ − ux ∀x ∈ X, ∀ x′ ∈ Feas(X), ∀ u ∈ U

A and C

where we have:

• variables Mx: for each x, Mx is a real-valued variable denoting the max
regret when decision x is made (i.e., when that state is chosen).

12 The term “robust optimization” has a number of different interpretations (see for
example the work of Ben-Tal and Nemirovski [5]).

16

• variables Ix: for each x, Ix is a Boolean variable indicating whether x is the
decision made.

• coefficients ux: for each u ∈ U and each state x, ux denotes the utility of x
given utility function u.

• state definition constraints A and feasibility constraints C (defined as above).

Direct solution of this MIP is problematic, specifically because of the set of
constraints on the Mx variables. First, if U is continuous (the typical case
we consider here), then the set of constraints of the form Mx ≥ ux′ − ux is
also continuous, since it requires that we “enumerate” all utility values ux and
ux′ corresponding to any utility function u ∈ U. Furthermore, it is critical
that we restrict our attention to those constraints associated with x′ in the
feasible set (i.e., those states satisfying C). Fortunately, we can often tackle
this seemingly complex optimization in much simpler stages if we make some
very natural assumptions regarding the nature of the feasible utility space and
utility function structure.

We begin by considering the case where our imprecise knowledge regarding
all utility parameters ux is independent and represented by simple upper and
lower bounds. For example, asking standard gamble queries, as discussed fur-
ther in Sec. 5.1, provides precisely such bounds on utility values [24]. Specifi-
cally, we assume an upper bound ux↑ and a lower bound ux↓ on each ux, thus
defining the feasible utility set U to be a hyperrectangle. This assumption
allows us to compute the minimax regret in three simpler stages, which we
now describe. 13

First, we note that the pairwise regret for an ordered pair of states can be
easily computed since each ux is bounded by an upper and lower bound:

R(x,x′,U) =




u′
x↑ - ux↓ when x 6= x′

0 when x = x′
(9)

Let rx,x′ denote this pairwise regret value for each x, x′, which we now assume
has been pre-computed for all pairs.

Second, using Eq. 5, we can also compute the max regret MR(x,U) of any
state x based on the pre-computed pairwise regret values rx,x′. Specifically,
we can enumerate all feasible states x′, retaining the largest (pre-computed)
pairwise regret:

MR(x,U) = max
x′∈Feas(X)

rx,x′. (10)

13 This transformation essentially reduces the semi-infinite quadratic MIP to a finite
linear IP.

17

Alternatively, we can search through feasible states “implicitly” with the fol-
lowing IP:

MR(x,U) = max
{Ix′ ,X′

i}

∑
x′

rx,x′Ix′ subject to A and C. (11)

Third, let mx denote the value of MR(x,U). With the max regret terms mx =
MR(x,U) in hand, we can compute the minimax regret MMR(U) readily. We
simply enumerate all feasible states x and retain the one with the smallest
(precomputed) max regret value mx:

MMR(U) = min
x∈Feas(X)

mx. (12)

Again, this enumeration may be done implicitly using the following IP:

MMR(U) = min
{Ix,Xi}

∑
x

mxIx subject to A and C. (13)

In this flat model case, the two IPs above are not necessarily practical, since
they require one indicator variable per state. However, this reformulation does
show that the original quadratic MIP with a continuous set of constraints can
be solved in stages using finite, linear IPs. More importantly, these intuitions
will next be applied to develop an analogous procedure for factored utility
models.

Note that the strategy above hinges on the fact that we have independently
determined upper and lower bounds on the utility value of each state. If utility
values are correlated by more complicated constraints, this strategy will not
generally work. In particular, comparison queries in which a user is asked
which of two states is preferred induce linear constraints on the entire set of
utility parameters, thus preventing exploitations of independent upper and
lower bounds. We discuss formulations that allow us to deal with such feasible
utility sets in Sec. 4.4. However, we initially focus on the case of independent
bounds.

4.2 Minimax Regret with Factored Utility Models

The optimization for flat models is interesting in that it allows us to get a good
sense of how minimax regret works in a constraint-satisfaction setting. From a
practical perspective, however, the above model has little to commend it. By
solving IPs with one Ix variable per state, we have lost all of the advantage of
using a compact and natural constraint-based approach to problem modeling.
As we have seen when optimizing with known utility functions, if there is no
a priori structure in the utility function, there is very little one can do but

18

enumerate (feasible) states. On the other hand, when the problem structure
allows for modeling via factored utility functions the optimization becomes
more practical. We now show how much of this practicality remains when our
goal is to compute the minimax-optimal state given uncertainty in a factored
utility function represented as a graphical model.

Assume a set of factors fk, k ≤ K, defined over local families X[k], as de-
scribed in Sec. 2.2. The parameters of this utility function are denoted by
ux[k] = fk(x[k]), where x[k] ranges over Dom(X[k]). We use the term impre-
cise structured COP to describe an imprecise COP 〈C,U〉 where the feasible
utility set U is defined by a set of constraints U over the parameters ux[k] of
a factored utility model {fk : k ≤ K}.

As in the flat-model case, we assume upper and lower bounds on each of
these parameters, which we denote by ux[k]↑ and ux[k]↓, respectively. Hence the
range of each utility factor fk for a given assignment x[k] corresponds to an
interval. By defining u(x) as in Eq. 2, pairwise regret, max regret and minimax
regret are all defined in the same manner outlined in Sec. 3. We now show
how to compute each of these quantities in turn by generalizing the intuitions
developed for flat models.

4.2.1 Computing Pairwise Regret and Max Regret

As in the unfactored case (Sec. 4.1), it is straightforward to compute the
pairwise regret of any pair of states x and x′. For each factor fk and pair of
local assignments x[k],x′[k], we define the local pairwise regret :

rx[k],x′[k] =




ux′[k]↑ − ux[k]↓ when x[k] 6= x′[k]

0 when x[k] = x′[k]

With factored models it is not hard to see from Eq. 2 and Eq. 9 that R(x,x′,U)
is simply the sum of local pairwise regrets:

R(x,x′,U) =
∑
k

rx[k],x′[k]. (14)

We can compute max regret MR(x,U) by substituting Eq. 14 into Eq. 5:

MR(x,U) = max
x′∈Feas(X)

∑
k

rx[k],x′[k], (15)

which leads to the following IP formulation:

MR(x,U) = max
{Ix′[k],X

′
i}

∑
k

∑
x′[k]

rx[k],x′[k]Ix′[k] subject to A and C. (16)

19

The above IP differs from its flat counterpart (Eq. 11) in the use of one
indicator variable Ix′[k] per utility parameter rather than one per state, and
is thus much more compact and efficiently solvable. Indeed, the size of the IP
in terms of the number of variables and constraints (excluding exogenously
determined feasibility constraints C) is linear in the size of the underlying
factored utility model.

4.2.2 Computing Minimax Regret: Constraint Generation

We can compute minimax regret MMR(U) by substituting Eq. 15 into Eq. 7:

MMR(U) = min
x∈Feas(X)

max
x′∈Feas(X)

∑
k

rx[k],x′[k] (17)

which leads to the following MIP formulation:

MMR(U) = min
{Ix[k],Xi}

max
x′∈Feas(X)

∑
k

∑
x[k]

rx[k],x′[k]Ix[k] subject to A and C (18)

= min
{Ix[k],Xi,M}

M

subject to




M ≥ ∑
k

∑
x[k] rx[k],x′[k]Ix[k] ∀x′ ∈ Feas(X)

A and C
(19)

In Eq. 18, we introduce the variables for the minimization, while in Eq. 19
we transform the minimax program into a min program. The new real-valued
variable M corresponds to the max regret of the minimax-optimal solution.
In contrast with the flat IP (Eq. 13), this MIP has a number of Ix[k] variables
that is linear in the number of utility parameters. However, this MIP is not
generally compact because Eq. 19 has one constraint per feasible state x′.
Nevertheless, we can get around the potentially large number of constraints
in either of two ways.

The first technique we consider for dealing with the large number of constraints
in Eq. 19 is constraint generation, a common technique in operations research
for solving problems with large numbers of constraints. Our approach can be
viewed as a form of Benders’ decomposition [6,36]. This approach proceeds by
repeatedly solving the MIP in Eq. 19, but using only a subset of the constraints
on M associated with the feasible states x′. At the first iteration, all constraints
on M are ignored. At each iteration, we obtain a solution indicating some
decision x with purported minimax regret; however, since certain unexpressed
constraints may be violated, we cannot be content with this solution. Thus,
we look for the unexpressed constraint on M that is maximally violated by
the current solution. This involves finding a witness x′ that maximizes regret
w.r.t. the current solution x ; that is, a decision x′ (and, implicitly, a utility

20

function) that an adversary would choose to cause a user to regret x the most.

Recall that finding the feasible x′ that maximizes R(x,x′,U) involves solving
a single IP given by Eq. 16. We then impose the specific constraint associated
with witness x′ and re-solve the MIP in Eq. 19 at the next iteration with this
additional constraint. Formally, we have the following procedure:

(1) Let Gen = {x′} for some arbitrary feasible x′.
(2) Solve the MIP in Eq. 19 using the constraints corresponding to states in

Gen. Let x∗ be the MIP solution with objective value m∗.
(3) Compute the max regret of state x∗ using the IP in Eq. 16, producing

a solution with regret level r∗ and adversarial state x′′. If r∗ > m∗, then
add x′′ to Gen and repeat from Step 2; otherwise (if r∗ = m∗), terminate
with minimax-optimal solution x∗ (with regret level m∗).

Intuitively, when we solve the MIP in Step 2 using only the constraints in
Gen, we are computing minimax regret against a restricted adversary : the
adversary is only allowed to use choices x′ ∈ Gen in order to make use regret
our solution x∗ to the MIP. As such, this solution provides a lower bound on
true minimax regret (i.e., the solution that would have been obtained were a
completely unrestricted adversary considered).

When we compute the true max regret r∗ of x∗ in Step 3, we also obtain
an upper bound on minimax regret (since we can always attain max regret
of r∗ simply by stopping and recommending solution x∗). It is not hard to
see that if r∗ = m∗, then no constraint is violated at the current solution
x∗ (and our upper and lower bounds on minimax regret coincide); so x∗ is
the minimax-optimal configuration at this point. The procedure is finite and
guaranteed to arrive at the optimal solution. The constraint generation routine
is not guaranteed to finish before it has the full set of constraints, but it is
relatively simple and (as we will see) tends to generate a very small number
of constraints. Thus in practice we solve this very large MIP using a series
of small MIPs, each with a small number of variables and a set of active
constraints that is also, typically, very small.

Since minimax regret will be computed between elicitation queries, it is critical
that minimax regret be estimated in a relatively short period of time (e.g., five
seconds for certain applications, five minutes for others, possibly several hours
for very high stakes applications). With this in mind, several improvements
can be made to speed up minimax regret computation. For instance, it is often
sufficient to find a feasible (instead of optimal) configuration x for the MIP in
Eq. 19 for each newly generated constraint. Intuitively, as long as the feasible
x allows us to find a violated constraint, the constraint generation continues
to progress. Hence, instead of waiting a long time for an optimal x, we can
stop the MIP solver as soon as we find a feasible solution for which a violated

21

constraint exists. Of course, at the last iteration, when there are no violated
constraints, we have no choice but to wait for the optimal x.

Minimax regret can also be estimated more quickly—to allow for the real-
time response needed for interactive optimization—by exploiting the anytime
nature of the computation to simply stop early. Since minimax regret is com-
puted incrementally by generating constraints, early stopping has the effect
that some violated constraints may not have been generated. As a result the
solution provides us with a lower bound on minimax regret. We can terminate
depending early based on a fixed number of iterations (constraints), a fixed
amount of computation time, or by terminating when bounds on the solution
are tight enough. Apart from this lower bound, we can also obtain an upper
bound on minimax regret by computing the max regret of the x found for the
last minimax MIP solved. Note that we may need to explicitly compute this
since Step (3) of our procedure may not be invoked if we terminate based only
on the number of iterations rather than testing for constraint violation.

Approximation can be very appealing if real-time interactive response is re-
quired. The anytime flavor of the algorithm means that these lower and upper
bounds are often tight enough to provide elicitation guidance of similar quality
to that obtained from computing minimax regret exactly.

Although the full interaction of minimax regret computation with elicitation
is explored in Sec. 5, as a precursor to that discussion, we mention another
strategy for accelerating computation which directly influences the querying
process. We have observed, unsurprisingly, that the minimax regret problem
solved after receiving a response to one query is very similar to that solved
before posing the query. As such, one can “seed” the minimax procedure in-
voked after a query with the constraints generated at the previous step. In this
way, typically, only a few extra constraints are generated during each minimax
computation. Given that the running time of minimax regret is dominated by
constraint generation, this effectively amortizes the cost of minimax compu-
tation over a number of queries.

4.2.3 Computing Minimax Regret: A Cost Network Formulation

A second technique for dealing with the large number of constraints in Eq. 19
is to use a cost network to generate a compact set of constraints that effec-
tively summarizes this set. This type of approach has been used recently, for
example, to solve Markov decision processes [26]. The main benefit of the cost
network approach is that, in principle, it allows us to formulate a MIP with
a feasible number of constraints (as elaborated below). We have observed,
however, the constraint generation approach described above is usually much
faster in practice and much easier to implement, even though it lacks the same

22

worst-case run-time guarantees. Indeed, this same fact has been observed in
the context of MDPs [46]. It is for this reason that we emphasize (and only
experiment with) the constraint generation algorithm. However, we sketch the
cost network formulation for completeness.

To formulate a compact constraint system, we first transform the MIP of
Eq. 19 into the following equivalent MIP by introducing penalty terms ρx[`]

for each feasibility constraint C`:

MMR(U) = min
{Ix[k],Xi,M}

M

subject to




M ≥ ∑
k

∑
x[k] rx[k],x′[k]Ix[k] +

∑
` ρx′[`] ∀x′ ∈ Dom(X)

A and C

= min
{Ix[k],Xi,M}

M

subject to




M ≥ ∑
k Rx′[k] +

∑
` ρx′[`] ∀x′ ∈ Dom(X)

Rx′[k] =
∑

x[k] rx[k],x′[k]Ix[k] ∀k,x′[k] ∈ Dom(X[k])

A and C

(20)

The MIP of Eq. 19 has one constraint on M per feasible state x′, whereas the
MIP of Eq. 20 has one constraint per state x′ (whether feasible or not). There-
fore, to effectively maintain the feasibility constraints on x′, we add penalty
terms ρx′[`] that make a constraint on M meaningless when its correspond-
ing state x′ is infeasible. This is achieved by defining a local penalty function
ρ`(x′[`]) for each logical constraint C` that returns −∞ when x′[`] violates C`

and 0 otherwise.

This transformation has, unfortunately, increased the number of constraints.
However, it in fact allows us to rewrite the constraints in a much more compact
form, as follows. Instead of enumerating all constraints on M , we analytically
construct the constraint that provides the greatest lower bound, while simply
ignoring the others. This greatest lower bound GLB is computed by taking
the max of all constraints on M :

GLB =max
x′

∑
k

Rx′[k] +
∑

`

ρx′[`]

=max
x′
1

max
x′
2

. . .max
x′

N

∑
k

Rx′[k] +
∑

`

ρx′[`].

This maximization can be computed efficiently by using variable elimina-
tion [19], a well-known form of non-serial dynamic programming [7]. The idea

23

is to distribute the max operator inward over the summations, and then col-
lect the results as new terms which are successively pulled out. We illustrate
its workings by means of an example.

Suppose we have the attributes X1, X2, X3, X4, a utility function decomposed
into the factors f1(x1, x2), f2(x2, x3), f3(x1, x4) and two logical constraints
with associated penalty functions ρ1(x1) and ρ2(x3, x4). We then obtain

GLB =max
x′
1

max
x′
2

max
x′
3

max
x′
4

Rx′
1,x′

2
+ Rx′

2,x′
3
+ Rx′

1,x′
4
+ ρx′

1
+ ρx′

3,x′
4

=max
x′
1

[ρx′
1
+ max

x′
2

[Rx′
1,x′

2
+ max

x′
3

[Rx′
2,x′

3
+ max

x′
4

[Rx′
1,x′

4
+ ρx′

3,x′
4
]]]]

by distributing the individual max operators inward over the summations. To
compute the GLB, we successively formulate new terms that summarize the
result of completing each max in turn, as follows:

Let Ax′
1,x′

3
= max

x′
4

Rx′
1,x′

4
+ ρx′

3,x′
4
.

Let Ax′
1,x′

2
= max

x′
3

Rx′
2,x′

3
+ Ax′

1,x′
3
.

Let Ax′
1

= max
x′
2

Rx′
1,x′

2
+ Ax′

1,x′
2
.

Let GLB = max
x′
1

ρx′
1
+ Ax′

1
.

Notice that this incremental procedure can be substantially faster than enu-
merating all states x′. In fact the complexity of each step is only exponential
in the local subset of attributes that indexes each auxiliary A variable.

Based on this procedure, we can substitute all the constraints on M in the
MIP in Eq. 20 with the following compact set of constraints that analytically
encodes the greatest lower bound on M :

Ax′
1,x′

3
≥ Rx′

1,x′
4
+ ρx′

3,x′
4

∀x′
1, x

′
3, x

′
4 ∈ Dom(X1, X3, X4)

Ax′
1,x′

2
≥ Rx′

2,x′
3
+ Ax′

1,x′
3

∀x′
1, x

′
2, x

′
3 ∈ Dom(X1, X2, X3)

Ax′
1
≥ Rx′

1,x′
2
+ Ax′

1,x′
2

∀x′
1, x

′
2 ∈ Dom(X1, X2)

M ≥ ρx′
1
+ Ax′

1
∀x′

1 ∈ Dom(X1)

By encoding constraints in this way, the constraint system specified by the
MIP in Eq. 20 can be generally encoded with a small number of variables

24

and constraints. Overall we obtain a MIP where: the number of Ix variables is
linear in the number of parameters of the utility function; and the number of
auxiliary variables (the A variables in our example) and constraints that are
added is locally exponential with respect to the largest subset of attributes
indexing some auxiliary variable. In practice, since this largest subset is often
very small compared to the set of all attributes, the resulting MIP encoding
is compact and readily solvable. In particular, let the joint graph be the union
of the constraint graph and the utility graph (e.g., the union of the graphs in
Figures 1 and 2). The complexity of this algorithm and hence the size of the
resultant set of constraints is determined directly by the properties of variable
elimination, and as such depends on the order in which the variables in X
are eliminated. More precisely, it is exponential in the tree width of the joint
graph induced by the elimination ordering [19]. Often this tree width is very
small, thus rendering the algorithm only locally exponential [19].

4.3 Empirical Results

To test the plausibility of minimax regret computation, we implemented the
constraint generation strategy outlined above and ran a series of experiments
to determine whether factored structure was sufficient to permit practical so-
lution times. We implemented the constraint generation approach outlined in
Sec. 4.2 and used CPLEX 7.1 as the generic IP solver. 14 Our experiments con-
sidered two realistic domains—car rentals and real estate—as well as randomly
generated synthetic problems. In each case we imposed a factored structure to
reduce the required number of utility parameters (upper and lower bounds).

For the real-estate problem, we modeled the domain with 20 (multivalued)
variables that specify various attributes of single family dwellings that are nor-
mally relevant to making a purchase decision. The variables we used included:
square footage, age, size of yard, garage, number of bedrooms, etc. Variables
had domains of sizes from XXX to XXX. In total, there were 47,775,744 pos-
sible configurations of the variables. We then used a factored utility model
consisting of 29 local factors, each defined on only one, two or three variables.
In total, there were 160 utility parameters (i.e., utilities for local configura-
tions). Therefore a total of 320 upper and lower bounds had to be specified, a
significant reduction over the nearly 108 values that would have been required
using a unfactored model. The local utility functions represented complemen-
tarities and substitutabilities in the utility function, such as requiring a large
yard and a fence to allow a pool, sacrificing a large yard if the house happens
to be near a park, etc.

14 These experiments were performed using a slightly older code base than that used
in the next section, on 2.4GHz PCs.

25

The car-rental problem features 26 multi-valued variables encoding attributes
relevant to consumers considering a car rental, such as: automobile size and
class, manufacturer, rental agency, seating and luggage capacity, safety fea-
tures (air bags, ABS, etc.), and so on. of sizes from XXX to XXX. The total
number of possible variable configurations is 61,917,360,000. There are 36 local
utility factors, each defined on at most five variables, giving rise to 435 util-
ity parameters. Constraints encode infeasible configurations (e.g., no luxury
sedans have four-cylinder engines).

For both the car-rental and real-estate problems, we first computed the con-
figuration with minimax regret given manually chosen bounds on the utility
functions. The constraint generation technique of Sec. 4.2 took 40 seconds for
the car-rental problem and two seconds for the real-estate problem. It is in-
teresting to note that only seven constraints (out of 61,917,360,000 possible
constraints) for the car-rental problem and seven constraints (out of 47,775,744
possible constraints) for the real-estate problem were generated to find an op-
timal configuration. The structure exhibited by the utility functions of each
problem is largely responsible for this small number of required constraints.

In practice, minimax regret computation will be interleaved with some pref-
erence elicitation technique (as we discuss in Sec. 5). As the bounds on utility
parameters get tighter, we would like to know the impact on the running time
of our constraint generation algorithm. To that effect, we carried out an exper-
iment where we randomly set bounds, but with varying degrees of tightness.
Initial utility gaps (i.e., difference between upper and lower bounds) ranged
from XXXXXXX. Figures 4 and 5 show how tightening the bounds decreases
the running time in an exponential fashion, as well as the number of con-
straints generated. For this experiment, bounds on utility were generated at
random, but the difference between the upper and lower bounds of any utility
was capped at a fixed percentage of some predetermined range. Intuitively, as
preferences are elicited, the values will shrink relative to the initial range.

Figures 4 and 5 show scatterplots of computation time and number of con-
straints for ten random problem instances generated for each of a number of
increasingly tight relative utility ranges. As those figures suggest, a significant
speed up is obtained as elicitation converges to the true utilities. Intuitively,
the optimization required to compute minimax regret benefits from tighter
bounds since some configurations emerge as clearly dominant, which in turn
requires the generation of fewer constraints.

We carried out a second experiment with synthetic problems. A set of ran-
dom problems of varying sizes was constructed by randomly setting the utility
bounds as well as the variables on which each utility factor depends. Each util-
ity factor depends on at most three variables and each variable has at most
five values. Figure 6 shows the results as we vary the number of variables

26

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
0.1

1

10

100

1,000

Relative utility range

T
im

e
(s

ec
on

ds
)

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

Relative utility range

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 4. Computation time (left) and number of constraints generated (right) for
minimax regret on real-estate problem (48 million configurations) as a function of
the tightness of the utility bounds.

70% 60% 50% 40% 30% 20% 10%
10

100

1,000

10,000

Relative utility range

T
im

e
(s

ec
on

ds
)

70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

Relative utility range

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 5. Computation time (left) and number of constraints generated (right) for
minimax regret on car-rental problem (62 billion configurations) as a function of
the tightness of the utility bounds.

and factors (the number of factors is always the same as the number of vari-
ables). The running time and the number of constraints generated increases
exponentially with the size of the problem. Note however that the number of
constraints generated is still a tiny fraction of the total number of possible
constraints. For problems with 10 variables, only 8 constraints were neces-
sary (out of 278,864) on average; and for problems with 30 variables, only 47
constraints were necessary (out of 2.8 × 1016) on average.

We also tested the impact of the relative tightness of utility bounds on the ef-
ficiency of our constraint generation technique, with results shown in Figure 7.
Here, problems of 30 variables and 30 factors were generated randomly while
varying the relative range of the utilities with respect to some predetermined
range. Each factor has at most three variables chosen randomly and each

27

10 12 14 16 18 20 22 24 26 28 30
0.1

1

10

100

1,000

10,000

Number of variables

T
im

e
(s

ec
on

ds
)

10 12 14 16 18 20 22 24 26 28 30
1

10

100

1,000

Number of variables

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 6. Computation time (left) and number of constraints generated (right) for
artificial random problems as a function of problem size (number of variables and
factors).

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

10,000

Relative utility range

T
im

e
(s

ec
on

ds
)

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
1

10

100

1,000

Relative utility range

N
um

be
r

of
 c

on
st

ra
in

ts
 g

en
er

at
ed

Fig. 7. Computation time (left) and number of constraints generated (right) for
minimax regret on artificial random problems (30 variables, 30 factors) as a function
of the tightness of the utility bounds.

variable can take at most five values. Once again, as the bounds get tighter,
some configurations emerge as clearly dominant, which allows an exponential
reduction in the running time as well as the number of required constraints.

Finally, we illustrate the anytime properties of our algorithm. In Figure 8 we
show the lower bound on minimax regret as a function of computation time.
Each data point corresponds to one additional generated constraint. As we can
see, the constraint generation algorithm has very good anytime properties, ap-
proaching the true minimax regret level very quickly as a function of time and
number of constraints. This is due to two factors. First, as a function of the
number of constraints generated, minimax regret lower bounds increase much

28

 0
 100
 200
 300
 400
 500
 600

 0 5 10 15 20 25

M
M

R

Time (s)

MMR v.s. Time, Car Problem

car
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 5 10 15 20 25

M
M

R

Time (s)

MMR v.s. Time, Real Estate Problem

real estate

Fig. 8. Lower bound on minimax regret until convergence as a function of compu-
tation time. Results for Rental Car (left) and Real Estate (right), both at 70% of
utility range. Solution quality is plotted for the solutions generated by adding one
additional constraint.

more quickly early on, thus exhibiting the desired anytime behavior. Second,
solution time with smaller numbers of constraints tends to be considerably
less than with larger numbers of constraints. This enhances the anytime pro-
file with respect to time (providing a much steeper increase than one would see
if plotting the bound with respect to number of constraints generated). For ex-
ample, in the rental car problem shown, the first ten constraints are generated
in 1.7s, the first twenty in 4.6s, the first thirty in 8.9s, and so on until conver-
gence to the true minimax regret after 57 constraints (24.62s). This anytime
property has important implications for real-time preference elicitation as we
discuss below.

4.4 Minimax Regret with Linear Utility Constraints

The computational methods above exploit the existence of upper and lower
bounds on utility parameters. While some types of queries used in elicitation
allow one to maintain such independent bounds, other forms of queries (e.g.,
comparison queries) impose arbitrary linear constraints on these utility pa-
rameters, demanding new methods for computing minimax regret. We now
develop an IP-based procedure for solving COPs with linear constraints on
the utility parameters.

Suppose we have an imprecise structured COP 〈C,U〉 where U is a polytope
defined by a finite set of (arbitrary) linear utility constraints U over the pa-
rameters ux[k] of a factored utility model {fk : k ≤ K}. Thus we relax the
assumption that the constraints U take the form of bounds.

Computing the max regret of a state x can no longer rely on the existence of
local pairwise regrets as in Eq. 16. However, we can reformulate the problem

29

somewhat differently to allow this to be solved linearly even when the con-
straints U take this more general form. First, we can recast the computation
of max regret as a quadratic optimization:

MR(x,U) = max
{Ix′[k],X

′
i,Ux[k]}

∑
k

[
∑
x′[k]

Ux′[k]Ix′[k]] − Ux[k] subject to A, C, and U
(21)

We have introduced one real-valued variable Ux[k] (denoted Ux′[k] when re-
ferring to specific adversarial local states x′) for each utility parameter ux[k],
reflecting their unknown nature; these are constrained by U . The presence of
the Ux′[k] variables renders the optimization quadratic. However, this can be
reformulated by the introduction of new real-valued variables Yx′[k] for each
such utility variable. Intuitively, Yx′[k] denotes the product Ux′[k]Ix′[k]. This
product can be defined by assuming (loose) upper bounds ux[k]↑ on the utility
parameters. Specifically, we rewrite Eq. 21 as follows:

MR(x,U)= max
{Ix′[k],X

′
i,Ux[k],Yx′[k]}

∑
k


∑

x′[k]

Yx′[k]


 − Ux[k]

subject to




Yx′[k] ≤ Ix′[k]ux′[k]↑ ∀k,x′[k]

Yx′[k] ≤ Ux′[k] ∀k,x′[k]

A, C and U
(22)

The constraints on Yx′[k], together with the fact that the objective aims to
maximize its value, ensure that it takes the value zero if Ix′[k] = 0 and takes
the value Ux′[k] otherwise. 15

With the ability to compute max regret by solving a MIP, we can use a variant
of the constraint generation procedure described in Sec. 4.2. Notice that the
solution to the MIP in Eq. 22 produces an adversarial state x′ as well as a
specific utility function in which each variable Ux[k] is set to the value of utility
parameter ux[k] that maximizes the regret of the state in question. Notice also
that the state x′ must be the optimal feasible state for the chosen utility
function u ∈ U (otherwise regret could be made even higher).

We can then express minimax regret in a way similar to Eqs. 18 and 19.

15 Note that this relies on the fact that each Ux′[k] is non-negative. If we allow
negative local utility, these constraints can be generalized by exploiting a (loose)
lower bound on Ux′[k] as well.

30

MMR(U) = min
{Ix[k],Xi}

max
x′∈Feas(X′),u∈U

∑
k


ux′[k] −

∑
x[k]

ux[k]Ix[k]


 subject to A and C

= min
{Ix[k],Xi}

M

subject to




M ≥ ∑
k


ux′[k] −

∑
x[k]

ux[k]Ix[k]


 ∀x′ ∈ Feas(X′), u ∈ U

A and C
(23)

We can use the max regret computation described in Eq. 22 to generate con-
straints iteratively as required for Eq. 23.

5 Elicitation Strategies

While the use of minimax regret provides a useful way of handling impre-
cise utility information, the initial bounds on utility parameters provided by
users are unlikely to be tight enough to admit configurations with provably
low regret. Instead, we imagine an interactive process in which the decision
software queries the user for further information about her utility function—
refining bounds or constraints on the parameters—until minimax regret, given
the current constraints, reaches an acceptable level τ . 16 We can summarize
the general form of the interactive elicitation procedure as follows:

(1) Compute minimax regret mmr.
(2) Repeat until mmr < τ :

(a) Ask query q.
(b) Update the constraints U over utility parameters to reflect the re-

sponse to q.
(c) Recompute mmr with respect to new constraint set U .

We begin by discussing bound queries, the primary type of query that we
consider here, then describe a number of elicitation strategies using bound
queries. Throughout most of this section we assume some imprecise structured
COP problem 〈C,U〉 where U is specified by a factored utility model {fk : k ≤
K} with upper and lower bounds on its parameters. However, we will also
discuss comparison queries, and hence U in which arbitrary linear constraints
are present, in Sec. 5.6.

16 We could insist that regret reaches zero (i.e., that we have a provably optimal
solution), or stop when regret reaches a point where further improvement is out-
weighed by the cost of additional interaction.

31

There are a number of important issues regarding user interaction that will
need to be addressed in the development of any interactive decision support
software. The perspective we adopt here is rather rigid and assumes user
can (somewhat comfortably) answer the types of queries we pose. We do not
consider issues of framing, preference construction or exploration, or other
issues surrounding the mode of interaction. Nor we do consider users who
may express inconsistent preferences (indeed, none of our strategies will ever
ask a query that can be responded to inconsistently). However, we believe
the core of our elicitation techniques can certainly be incorporated into the
larger context in which these important issues are addressed. For a discussion
of some of these issues in the context of constraint-based optimization, see the
work or Pu, Faltings, and Torrens [38].

5.1 Bound Queries

The main type of query we consider are bound queries in which we ask the user
whether one of her utility parameters lies above a certain value. A positive
response raises the lower bound on that parameter, while a negative response
lowers the upper bound: in both cases, uncertainty is reduced.

While users often have difficulty assessing numerical parameters, they are
typically better at comparing outcomes [30,24]. Fortunately, a bound query
can be viewed as a local form of a standard gamble query (SGQ), commonly
used in decision analysis; these in fact ask for comparisons. An SGQ for a
specific state x asks the user if she prefers x to a gamble in which the best
outcome x> occurs with probability l and the worst x⊥ occurs with probability
1 − l [30]. A positive response puts a lower bound on the utility of x, and a
negative response puts an upper bound. Calibration is attained by the use of
common best and worst outcomes across all queries (and numerical assessment
is restricted to evaluating probabilities). Thus a bound query “Is u(x) > q?”
can be cast as a standard gamble query: “Do you prefer x to a gamble in
which x> is obtained with probability q and x⊥ is obtained with probability
1 − q?” 17

For instance, ignoring factorization, one might ask in the car rental domain:
“Would you prefer car27 or a gamble in which your received carB with
probability l and carW with probability 1 − l?” Here car27 is the specific
complete outcome of interest, while carB and carW are the best and worst
possible car configurations, respectively (these need not be feasible in general).

17 If the user is nearly indifferent to the two alternatives, they may be tempted to
respond “I don’t know.” This can be handled by imposing a quantitative interpreta-
tion on “near indifference” and imposing a constraint that makes these two utilities
“close.”

32

Of course, given the factorization of the model, we would prefer not to focus
a user’s attention on complete outcomes, but rather take advantage of the
utility independence inherent in the GAI model to elicit information about
local outcomes. As a consequence, we will ask analogous bound queries on
local factors.

Our general elicitation procedure when restricted to bound queries takes the
following form:

(1) Compute minimax regret mmr.
(2) Repeat until mmr < τ :

(a) Ask a bound query “Is ux[k] ≤ q?” of some utility parameter ux[k].
(b) If ux[k] ≤ q then reduce upper bound ux[k]↑ to q. Otherwise raise lower

bound ux[k]↓ to q.
(c) Recompute mmr using the new bounds.

While we focus on bound queries, other forms of queries are quite natural.
For example, comparison queries ask if one state x is preferred to another x′

and are discussed further in Sec. 5.6. Hierarchical structuring of attributes is
another avenue that could be considered in posing queries, though we leave
this for future research within our model.

The foundations of bound queries can be made precise using results of Fish-
burn [22]. Roughly speaking, we require calibration across factors in the GAI
model in order to be sure that the stated comparisons are meaningful. Gon-
zales and Perny [25] provide a specific procedure for (full) elicitation in GAI
networks that relies on asking queries over complete outcomes, while Braziu-
nas and Boutilier [15] provide a algorithm that allows for local queries (over
small subsets of attributes). Bound queries in our framework can be supple-
mented with a small number of additional calibration queries as suggested in
[15] if one requires calibration across factors for the user. Alternatively, if the
scales associated with each of the GAI factors is obviously calibrated (e.g.,
the “utilities” refer to the monetary amount the user is willing to pay for a
specific combination of attributes), then bound queries can be used directly
without need for additional calibration. We refer to [25,15] for further details.

Several of our bound query strategies rely on the following definitions.

Defn 4 Let 〈C,U〉 be an imprecise COP problem. An optimistic state xo, a
pessimistic state xp, and a most uncertain state xmu are any states satisfying

33

(respectively):

xo ∈ arg max
x∈Feas(X)

max
u∈U

u(x)

xp ∈ arg max
x∈Feas(X)

min
u∈U

u(x)

xmu ∈ arg max
x∈Feas(X)

max
u,u′∈U

u(x) − u′(x)

An optimistic state is a feasible state with the greatest upper bound on utility.
A pessimistic state has the greatest lower bound on utility. A most uncertain
state has the greatest difference between its upper and lower bounds. Each of
these states can be computed in a single optimization by setting the param-
eters of the utility model to their upper bounds, their lower bounds, or their
difference, and solving the corresponding (precise) COP problem.

5.2 The Halve Largest Gap Strategy

The first query strategy we consider is the halve largest gap (HLG) strategy.
It asks a query at the midpoint of the interval of the parameter x[k] with
the largest gap between its upper and lower bounds. This is motivated by
theoretical considerations, based on simple worst-case bounds on minimax
regret.

Defn 5 Define the gap of a utility parameter ux[k], the span of factor fk

and maxspan of our utility model as follows:

gap(x[k]) = ux[k]↑ − ux[k]↓ (24)

span(fk) = max
x[k]∈Dom(X[k])

gap(x[k]) (25)

maxspan(U) =
∑
k

span(fk) (26)

The quantity maxspan measures the largest difference between the upper and
lower utility bound, regardless of feasibility. We can show that this quantity
bounds minimax regret:

Proposition 1 For any 〈C,U〉, MMR(U) ≤ maxspan(U).

Proof: By definition of minimax regret, we have MMR(U) ≤ MR(xo,U).
For any optimistic state xo and any alternative state x we must have that
u↑(x) − u↓(xo) ≤ u↑(xo) − u↓(xo) ≤ maxspan(U) (i.e., the difference be-
tween the upper and lower bounds of x and xo, respectively, is bounded
by maxspan(U), since the upper bound of x cannot exceed that of xo, and
the lower bound of xo can be no less than u↑(xo) − maxspan(U)). Thus,

34

MR(xo,U) ≤ maxspan(U). The result follows immediately. J

We note that the definition of maxspan can be tightened in two ways. (a) One
could account for logical consistency across utility factors (e.g., if X occurs in
two factors, we cannot have a total utility span for a single state that instan-
tiates the span in one factor with X true, and the span in the other with X
false). Computing this tighter definition of span requires some minor optimiza-
tion to find the logically consistent state with maximum span, but is otherwise
straightforward. (b) One could make this tighter still by restricting attention
to feasible states (w.r.t. C); in other words, maxspan would be defined as
the “span” of any most uncertain state xmu. The result still holds with these
tighter definitions. However, the current definition requires no optimization to
assess.

The relationship between maxspan and minimax regret suggests an obvious
query strategy, the HLG method, in which a bound query is asked of the local
state x[k] with the largest utility gap, at the midway point of its interval,
(ux[k]↑ − ux[k]↓)/2. This method guarantees reasonably rapid reduction in max
regret:

Proposition 2 Let U be an uncertain utility model with n parameters and
let m = maxspan(U). After n log(m/ε) queries in the HLG strategy, mini-
max regret is no greater than ε.

Proof: Given a utility model with n parameters with a specific initial set of
gaps, the largest gap among all states must be reduced by at least half after
n queries according to the HLG strategy (with this bound being tight only
if the largest initial gap is no more than twice that of the smallest initial
gap). Thus after kn queries, leading to an updated feasible utility set U′,
we have maxspan(U′) ≤ 2−km. The result then follows by application of
Prop. 1. J

In the worst case, there are classes of utility functions for which the bound is
tight, so sets U and configuration constraints C exist that ensure regret will
never be reduced to zero in finitely many queries. For example, if we have a
linear utility function over X1, · · · , Xn with

u(X) = f1(X1) + · · · + fn(Xn),

with each local utility parameter having the same gap g and no feasibility
constraints, then minimax regret can be reduced no more quickly than this. 18

18 The bound is not, generally, tight if there is overlap in factors. But the bound is
tight if maxspan is defined to account for logical consistency.

35

This strategy is similar to heuristically motivated polyhedral methods in con-
joint analysis used in product design and marketing [47,29]. In fact, HLG can
be viewed as a special case of the polyhedral method of [47] in which our
polyhedra are hyper-rectangles.

5.3 The Current Solution Strategy

While HLG allows one to provide strong worst-case guarantees on regret im-
provement, it is “undirected” in that considerations of feasibility play no role
in determining which queries to ask. An alternative strategy is to focus atten-
tion on parameters that participate in defining minimax regret, namely, the
minimax optimal x∗ and the adversarial witness xw for the current feasible
utility set U (recall that the witness xw maximizes the regret of x∗). The
current solution (CS) query strategy asks about the utility parameter in the
set {x∗[k] : k ≤ K} ∪ {xw[k] : k ≤ K} with largest gap(x[k]) and queries the
midpoint of the corresponding utility interval. Intuitively, should the answer
to a query raise the lower bound on some ux∗[k] or lower the upper bound on
some uxw[k], then the pairwise regret R(x∗,xw,U) will be reduced, and usually
minimax regret will be reduced as well. Of course, if the answer lowers the
upper bound on some ux∗[k] or raises the lower bound on some uxw[k], then
pairwise regret R(x∗,xw,U) remains unchanged and minimax regret is not
guaranteed to be reduced (though it may).

We have also experimented with a variant of the CS strategy in which regret
is computed approximately to ensure fast interactive response in the querying
process. This can be done by imposing a time bound on the solution algorithm
for computing minimax regret, exploiting the anytime nature of the method
described in Sec. 4.2. While we can’t be sure we have the minimax optimal
solution with early termination, the solution may be good enough to guide
the querying process. Furthermore, since we can compute the max regret of
the anytime solution, we have an upper bound on minimax regret which can
be used as a natural termination criterion.

5.4 Alternative Strategies

Finally, we consider several other strategies, which we describe briefly. The
optimistic query strategy computes an optimistic state xo and queries (at the
midpoint of the interval) the utility parameter in xo with the largest gap.
Intuitively, an optimistic xo is a useful adversarial choice, so refining informa-
tion about it can help reduce regret. The pessimistic query strategy is analo-
gous, relying on the intuition that a pessimistic choice is useful in preventing

36

the adversary from making us regret our decision too much. The optimistic-
pessimistic (OP) strategy combines the two intuitions: it chooses the parame-
ter with largest gap among both states. These strategies are computationally
appealing since they require solving only a standard COP, not a full-fledged
minimax optimization. 19

The most uncertain state (MUS) strategy is a variant of HLG that accounts
for feasibility: we compute a most uncertain state xmu and query (at the mid-
point) the parameter in xmu with the largest gap. Finally, the second-best (SB)
strategy is based on the following intuition: suppose we have the optimistic
state xo and the second-best optimistic state x2o (i.e., that state with the
second-highest upper bound—this is computable with a single optimization).
If we could ask a query which reduced the upper bound utility of xo to lower
than that of x2o, we ensure that regret is reduced (since the adversary can
no longer attain this most optimistic value); if the lower bound of xo were
raised to the level of x2o’s upper bound, then we could terminate—knowing
that xo is optimal. Thus we would like to query xo at x2o’s upper bound: a
negative response will reduce regret, a positive response ensures xo is optimal.
Unfortunately, this cannot be implemented directly, since we can only query
local parameters, but the strategy can be approximated for factored models
by “distributing” this query across the different parameters and asking a set
of queries.

The myopically optimal (MY) strategy computes the average regret reduction
of the midpoint query for each utility parameter by solving the minimax opti-
mization problem for each response to each query; it then asks the query with
the largest regret reduction averaged over both possible answers, yes and no.
For large problems, this approach is computationally infeasible, but we test it
on small problems to see how the other methods compare. 20

5.5 Empirical Results

To test the effectiveness of the various query strategies, we ran a series of
elicitation experiments on a variety of problems. For each problem we tested
the following elicitation strategies: halve largest gap (HLG), current solution
(CS), current solution with a computation-time bound of five seconds per
query (CS-5), optimistic-pessimistic (OP), second-best (SB), and most un-
certain state (MUS). In addition, on problems small enough to permit it, we

19 Even termination can be determined heuristically, for example, by computing the
max regret of the optimistic state after each query, or doing minimax optimization
after every q queries.
20 By doing lookahead of k stages of this type, we could in fact compute the optimal
query plan of k-steps; however, doing so is infeasible.

37

also tested these strategies against the much more computationally demanding
myopically optimal method (MY).

We implemented the constraint generation approach outlined in Sec. 4.2 and
used CPLEX 9.0 as the generic IP solver. 21 Our experiments considered two
realistic domains—car rentals and real estate—as well as randomly generated
synthetic problems, as described in Sec. 4.3, with a factored structure sufficient
to admit practical solution.

First, we experimented with a set of small synthetic problems. We did this to
allow a comparison of all our proposed heuristics with the MY strategy which
is most demanding computationally. Figure 9 reports the average minimax
regret over 45 small synthetic problems constructed by randomly setting the
utility bounds and the variables on which each utility factor depends. Each
problem has ten attributes that can take at most four values and ten factors
that depend on at most three attributes. We simulate user responses by draw-
ing a random utility function u for each trial, consistent with the bounds,
representing a specific user’s preferences. Responses to queries are generated
using u, assuming that the user accurately answers all queries relative to the
specific utility function u.

Results are shown for two cases: first, for utility parameters drawn from a
uniform distribution over the corresponding interval; and second, for param-
eters drawn from a truncated Gaussian distribution centered at the midpoint
of the corresponding interval and truncated at the endpoints of that interval.
This second regime reflects the fact that, given some initial unquantified un-
certainty about a utility parameter, a user is somewhat more likely to have
a true parameter value nearer the middle of the range. However, this prob-
abilistic information is used only to generate “simulated users,” and is not
exploited by the elicitation algorithms. 22

In the case of both the uniform and truncated Gaussian distributions, we
observe that the OP, CS and CS-5 elicitation strategies decrease minimax
regret at a rate very close to MY. This suggests that OP, CS and CS-5 are
computationally feasible, yet promising alternatives to the computationally
prohibitive MY strategy.

We report on further experiments using all strategies except MY (excluded for
computational reasons) with larger synthetic problems, the real-estate problem
and the car-rental problem. All results are averaged over 45 trials and use the
same regime described above, involving both uniform and truncated Gaussian
priors to generate users. Performance of the various query strategies on the

21 These simulations were performed on 3.0 GHz PCs.
22 All experiments show a reasonably small variance so we exclude error bars for
legibility.

38

0 50 100 150 200
0

20

40

60

80

100

120

140

Number of queries

M
in

im
ax

 r
eg

re
t

Small Random Problem −− Uniform Prior

 0%

 3%

 6%

 9%

12%

15%

17%

20%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS
MY

SB

OP

0 50 100 150 200
0

20

40

60

80

100

120

140

Number of queries

M
in

im
ax

 r
eg

re
t

Small Random Problem −− Gaussian Prior

 0%

 3%

 6%

 9%

12%

15%

17%

20%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

MY

SB

OP

Fig. 9. Average max regret on small random problems (45 instances) as a function
of number of queries given (a) uniform and (b) Gaussian distributed utilities.

0 50 100 150 200
0

50

100

150

200

250

300

350

399

Number of queries

M
in

im
ax

 r
eg

re
t

Car Rental Problem −− Uniform Prior

 0%

 2%

 4%

 7%

 9%

11%

13%

16%

18%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS
HLG

MUS

SB

OP

0 50 100 150 200
0

100

200

300

399

Number of queries

M
in

im
ax

 r
eg

re
t

Car Rental Problem −− Gaussian Prior

 0%

 4%

 9%

13%

18%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5
CS

HLG

MUS

SB

OP

Fig. 10. Average max regret on car-rental problem (45 instances) as a function of
number of queries given (a) uniform and (b) Gaussian distributed utilities.

car rental problem is depicted in Figure 10, showing average minimax regret
as a function of the number of queries. Initial utility bounds are set to give
minimax regret of roughly 18% of the optimal solution.

Both CS and CS-5 perform extremely well: regret is reduced to almost zero
within 160 queries on average. Though this may seem like a lot of queries,
recall that the problem is itself large and the utility model has 150 parame-
ters. We intentionally choose problems this large to push the computational
boundaries of regret-based elicitation. Furthermore, while 160 queries may be
large for typical consumer choice problems, it is more than reasonable for high
stakes configuration applications. More importantly, these methods show ex-
cellent anytime performance: after only 80 queries, average minimax regret
has dropped from 18% to under 2%.

Interestingly, the time bound of five seconds imposed by CS-5, while leading
to approximately minimax optimal solutions, does not affect query quality:
the approximate solutions give rise to queries that are virtually as effective as

39

0 50 100 150 200
0

100

200

300

400

500

600

764

Number of queries

M
in

im
ax

 r
eg

re
t

House Buying Problem −− Uniform Prior

 0%

 5%

11%

16%

21%

26%

32%

40%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

SB

OP

0 50 100 150 200
0

100

200

300

400

500

600

764

Number of queries

M
in

im
ax

 r
eg

re
t

House Buying Problem −− Gaussian Prior

 0%

 5%

11%

16%

21%

26%

32%

40%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLGMUS

SB

OP

Fig. 11. Average max regret on real-estate problem (45 instances) as a function of
number of queries given (a) uniform and (b) Gaussian distributed utilities.

those generated by the optimal solutions. This demonstrates the importance of
the anytime properties of our constraint generation procedure discussed in the
previous section. The CS strategy requires on average 83 seconds per query,
compared to the five seconds needed by CS-5. The OP strategy works very
well too, and requires less computation time (0.1s per query) since it does not
need to solve minimax problems (except to verify termination “periodically”,
which is not reflected in query computation time). However, both OP and CS-
5 are fast enough to be used interactively on problems of this size. MUS, HLG,
and SB do not work nearly as well, with SB essentially stalling because of the
slow progress made in reducing the upper bounds of the optimistic state.

Note the HLG performs poorly since it fails to account for the feasibility of
options, thus directing its attention to parts of utility space for which no prod-
uct exists (hence polyhedral methods alone [47,29] will not offer reasonable
elicitation in our setting). MUS significantly outperforms HLG for just this
reason.

The real-estate problem was also tested, with query performance shown in
Figure 11, using the same regime as above. Again, both CS and CS-5 perform
best, and the time bound of CS-5 has no effect on the quality of the CS strat-
egy. Interestingly, OP performs almost identically to these, with somewhat
lower computational cost. 23 Each of these methods reduces minimax regret
from 40% of optimal to under 5% in about 120 queries. As above, SB fails to
make progress, while HLG and MUS provide reasonable performance. Note
that HLG requires no optimization nor any significant computation (except
to test for termination).

Finally, we tested the query strategies on larger randomly generated problems

23 CS takes 14 seconds per query, CS-5 takes five seconds, and OP 0.1 seconds.
Though we haven’t experimented with this, we expect CS would work equally well
on this problem with a much tighter time bound than five seconds.

40

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

512

Number of queries

M
in

im
ax

 r
eg

re
t

Large Random Problem −− Uniform Prior

 0%

 4%

 7%

11%

14%

18%

21%

25%

28%

32%

36%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

SB

OP

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

512

Number of queries

M
in

im
ax

 r
eg

re
t

Large Random Problem −− Gaussian Prior

 0%

 3%

 7%

10%

14%

17%

21%

24%

28%

31%

35%

M
in

im
ax

 r
eg

re
t /

 m
ax

 u
til

ity

CS−5

CS

HLG

MUS

SB

OP

Fig. 12. Average max regret on large random problems (45 instances) as a function
of number of queries given (a) uniform and (b) Gaussian distributed utilities.

(with 25 variables of domain size no more than four, and 20 utility factors
with no more than three variables each). Results are shown in Figure 12. The
same performance patterns as in the real-estate problem emerge, with CS, CS-
5 and OP all performing much better than the others. Although OP performs
slightly better than CS/CS-5, the difference is not statistically significant.

5.6 Comparison Queries

Comparison queries provide a natural alternative to bound queries in many
situations. A comparison query takes the form “Do you prefer x to x′?” A
positive response implies that ux > ux′. If the utility model is factored, this
corresponds to the following linear constraint:

∑
k

ux[k] >
∑
k

ux′[k].

A negative response imposes the complementary constraint.

Given a collection of linear constraints U imposed by responses to a sequence
of comparison queries, the minimax optimal decision can be computed using
the constraint generation procedure described in Sec. 4.4. Our generic elic-
itation algorithm can then be used to ask specific comparison queries until
minimax regret reaches an acceptable level. Though we do not experiment
with specific comparison query strategies here, we expect that a modification
of the current solution (CS) strategy proposed for bound queries would work
especially well with comparison queries. More precisely, suppose that given the
current constraints U , the minimax optimal solution is computed to be x∗ with
adversarial witness xw. The CS query strategy for comparison queries requires
that we ask the user to compare x∗ and xw. Should the user prefer x∗, this
rules out the adversary’s chosen utility function from the feasible set U, thus

41

ensuring a reduction in the pairwise regret R(x∗,xw,U) to zero, and usually
reducing minimax regret as well. If xw is preferred, this does not rule out the
adversary’s chosen utility function, nor is it guaranteed to reduce regret, but
generally imposes a fairly strong constraint on U. Given the success of this
strategy with respect to bound queries, and the success of related strategies
in other domains [13,14], we expect the CS strategy to perform quite well.

Unlike the case of bound queries, where it is quite clear (due to the focus
on gaps in specific parameters) that a user cannot provide a response that is
inconsistent with prior responses, it is not obvious that a user cannot be in-
consistent in responding to comparison queries. However, the CS strategy for
bound queries does indeed ensure consistency. Unless minimax regret is zero
(in which case the process would terminate), there must be some utility func-
tion in the current feasible set U for which xw is preferred to x∗. Furthermore,
there must be some utility function for which x∗ is preferred to xw; otherwise,
xw would have regret no greater that that of x∗ under all u ∈ U , and would
thus be minimax optimal as well (also implying that, since it is the witness,
that minimax regret is zero).

6 Concluding Remarks

Preference elicitation techniques for constraint-based optimization problems
are critical to the development of interactive decision software. We have begun
to address several important issues in this regard, specifically, how one should
make decisions in the presence of (non-probabilistic) utility function uncer-
tainty, and elicitation strategies that improve decision quality with minimal
interaction. We have developed techniques for computing minimax optimal
decisions in constraint-based decision problems when a user’s utility function
is only partially specified in the form of upper and lower bounds on utility pa-
rameters, or arbitrary linear constraints on such parameters. While the corre-
sponding optimizations are potentially complex, we derived methods whereby
they could be solved effectively using a sequence of MIPs. Furthermore, we
showed how structure in the utility model could be exploited to ensure that
the resulting IPs are compact or could be solved using an effective constraint
generation procedure. Experiments with utility uncertainty specified by pa-
rameter bounds demonstrated the practicality of these techniques.

We also developed a number of query strategies for eliciting bounds on the
parameters of utility models for the purpose of solving imprecise COPs. The
most promising of these strategies, CS and OP, perform extremely well, requir-
ing very few queries (relative to the model size) to provide dramatic reductions
in regret. We have shown that using approximation of minimax regret reduces
interactive computation time to levels required for real-time response with-

42

out a noticeable effect on the performance of CS. OP also can be executed in
real-time, since it does not require the same intensive minimax computation.

There are a number of directions in which this work can be extended. For
example, the use of search and constraint-propagation methods for solving
the COPs associated with computing minimax regret is of great interest. Our
goal in this paper was to provide a precise formulation of these computational
problems as integer programs, and use off-the-shelf software to solve them. We
expect that constraint-based optimization techniques that are specifically di-
rected toward these problems should prove fruitful. Along these lines, we hope
to develop deeper connections to existing work on soft constraints, valued-
CSPs, and related frameworks.

Experimental validation of our suggested approach for comparison queries is
an important next step, as is the development of new query strategies. In
practice, we can often assume or develop prior distributional information over
utilities. Rather than asking queries at midpoints of intervals, we could opti-
mize the query point using probabilistic (value of information) computation,
while using (distribution-free) regret to make decisions [49]. We are quite in-
terested in the possibility of integrating Bayesian methods for reasoning about
uncertain utility functions [17,10,27] with the constraint-based representation
of the decision space. Finally, while optimal (non-myopic) strategies could be
found (in principle) by solving prohibitively large continuous MDPs, it would
nevertheless be interesting to explore non-myopic heuristics, and investigate
the extent to which lookahead information can improve the reduction in min-
imax regret.

Naturally, we would like to consider additional query types, as well as alter-
native means for structuring outcomes and interactions to ease the cognitive
burden on users. Developing means to improve robustness of our methods to
the types of errors users typically make is also critical if tools such as those pro-
posed here are to find widespread use. As such, user studies with our models
will be required in order to assess the naturalness of such interaction models
and to further refine our techniques to make them more understandable and
intuitive for users.

An important question left unaddressed is that of eliciting the structure of
a GAI model. Our work here assumes that the GAI factorization has been
given and elicits only parameters of this model. We are currently exploring
the application of techniques from decision analysis and elicitation of graphical
models to the automated elicitation of GAI model structure.

43

Acknowledgements

This research was supported by the the Institute for Robotics and Intelligent
Systems (IRIS) and the Natural Sciences and Engineering Research Council
(NSERC). Poupart was supported by a scholarship provided by Precarn In-
corporated through IRIS. Thanks to the anonymous referees for their helpful
suggestions.

References

[1] Igor Averbakh. Minmax regret solutions for minimax optimization problems
with uncertainty. Operations Research Letters, 27:57–65, 2000.

[2] Igor Averbakh and Vasilij Lebedev. On the complexity of minmax regret linear
programming. European Journal of Operational Research, 160(1):227–231, 2005.

[3] Fahiem Bacchus and Adam Grove. Graphical models for preference and
utility. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 3–10, Montreal, 1995.

[4] David E. Bell. Regret in decision making under uncertainty. Operations
Research, 30:961–981, 1982.

[5] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of uncertain linear
programs. Operations Research Letters, 25:1–13, 1999.

[6] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

[7] Umberto Bertele and Francesco Brioschi. Nonserial Dynamic Programming.
Academic Press, Orlando, 1972.

[8] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based
constraint satisfaction and optimization. Journal of the ACM, 44(2):201–236,
1997.

[9] Jim Blythe. Visual exploration and incremental utility elicitation. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence,
pages 526–532, Edmonton, 2002.

[10] Craig Boutilier. A POMDP formulation of preference elicitation problems. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence,
pages 239–246, Edmonton, 2002.

[11] Craig Boutilier. On the foundations of expected expected utility. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages
285–290, Acapulco, 2003.

44

[12] Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-Networks: A
directed graphical representation of conditional utilities. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 56–64,
Seattle, 2001.

[13] Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and
William E. Walsh. Cooperative negotiation in autonomic systems using
incremental utility elicitation. In Proceedings of the Nineteenth Conference on
Uncertainty in Artificial Intelligence, pages 89–97, Acapulco, 2003.

[14] Craig Boutilier, Tuomas Sandholm, and Rob Shields. Eliciting bid taker non-
price preferences in (combinatorial) auctions. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence, pages 204–211, San Jose, CA,
2004.

[15] Darius Braziunas and Craig Boutilier. Local utility elicitation in GAI models.
In Proceedings of the Twenty-first Conference on Uncertainty in Artificial
Intelligence, pages 42–49, Edinburgh, 2005.

[16] Urszula Chajewska, Lise Getoor, Joseph Norman, and Yuval Shahar. Utility
elicitation as a classification problem. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, pages 79–88, Madison, WI,
1998.

[17] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions
using adaptive utility elicitation. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, pages 363–369, Austin, TX, 2000.

[18] Vijay Chandru and John N. Hooker. Optimization Methods for Logical
Inference. Wiley, New York, 1999.

[19] Rina Dechter. Bucket elimination: A unifying framework for probabilistic
inference. In Proceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence, pages 211–219, Portland, OR, 1996.

[20] Rina Dechter. Constraint Processing. Morgan Kaufmann, San Francisco, 2003.

[21] James S. Dyer. Interactive goal programming. Management Science, 19:62–70,
1972.

[22] Peter C. Fishburn. Interdependence and additivity in multivariate,
unidimensional expected utility theory. International Economic Review, 8:335–
342, 1967.

[23] Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.

[24] Simon French. Decision Theory. Halsted Press, New York, 1986.

[25] Christophe Gonzales and Patrice Perny. GAI networks for utility elicitation. In
Proceedings of the Ninth International Conference on Principles of Knowledge
Representation and Reasoning (KR2004), pages 224–234, Whistler, BC, 2004.

45

[26] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections
for factored MDPs. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, pages 673–680, Seattle, 2001.

[27] Hillary A. Holloway and Chelsea C. White, III. Question selection for
multiattribute decision-aiding. European Journal of Operational Research,
148:525–543, 2003.

[28] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, and Koos Rommelse.
The lumiere project: Bayesian user modeling for inferring goals and needs of
software users. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, pages 256–265, Madison, WI, 1998.

[29] Vijay S. Iyengar, Jon Lee, and Murray Campbell. Q-Eval: Evaluating multiple
attribute items using queries. In Proceedings of the Third ACM Conference on
Electronic Commerce, pages 144–153, Tampa, FL, 2001.

[30] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives:
Preferences and Value Trade-offs. Wiley, New York, 1976.

[31] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker,
Lee R. Gordon, and John Riedl. Grouplens: Applying collaborative filtering to
usenet news. Communications of the ACM, 40(3):77–87, 1997.

[32] Panos Kouvelis and Gang Yu. Robust Discrete Optimization and Its
Applications. Kluwer, Dordrecht, 1997.

[33] G. Lee, S. Bauer, P. Faratin, and J. Wroclawski. Learning user preferences
for wireless services provisioning. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-
04), pages 480–487, New York, 2004.

[34] Graham Loomes and Robert Sugden. Regret theory: An alternative theory of
rational choice under uncertainty. Economic Journal, 92:805–824, 1982.

[35] Amparo M. Mármol, Justo Puerto, and Francisco R. Fernández. The use of
partial information on weights in multicriteria decision problems. Journal of
Multicriteria Decision Analysis, 7:322–329, 1998.

[36] George L. Nemhauser and Laurence A. Wolsey. Integer Programming and
Combinatorial Optimization. Wiley, New York, 1988.

[37] Barry O’Sullivan, Eugene Freuder, and Sarah O’Connell. Interactive constraint
acquisition. In CP-2001 Workshop on User Interaction in Constraint
Processing, Paphos, Cyprus, 2001.

[38] Pearl Pu, Boi Faltings, and Marc Torrens. User-involved preference elicitation.
In IJCAI-03 Workshop on Configuration, Acapulco, 2003.

[39] John C. Quiggan. Stochastic dominance in regret theory. The Review of
Economic Studies, 57(3):503–511, 1990.

46

[40] Francesca Rossi, Alessandro Sperduti, Kristen Brent Venable, Lina Khatib,
Paul H. Morris, and Robert A. Morris. Learning and solving soft temporal
constraints: An experimental study. In Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Programming, pages 249–
263, Ithaca, NY, 2002.

[41] Daniel Sabin and Rainer Weigel. Product configuration frameworks—a survey.
IEEE Intelligent Systems and their Applications, 13(4):42–49, 1998.

[42] Ahti Salo and Raimo P. Hämäläinen. Preference ratios in multiattribute
evaluation (PRIME)–elicitation and decision procedures under incomplete
information. IEEE Trans. on Systems, Man and Cybernetics, 31(6):533–545,
2001.

[43] Leonard J. Savage. The Foundations of Statistics. Wiley, New York, 1954.

[44] Leonard J. Savage. The theory of statistical decision. Journal of the American
Statistical Association, 46:55–67, 1986.

[45] Thomas Schiex, Helene Fargier, and Gérard Verfaillie. Valued constraint
satisfaction problems: Hard and easy problems. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, pages 631–
637, Montreal, 1995.

[46] Dale Schuurmans and Relu Patrascu. Direct value approximation for factored
MDPs. In Advances in Neural Information Processing Systems 14 (NIPS-2001),
pages 1579–1586, Vancouver, 2001.

[47] Olivier Toubia, John Hauser, and Duncan Simester. Polyhedral methods for
adaptive choice-based conjoint analysis. Technical Report 4285-03, Sloan School
of Management, MIT, Cambridge, 2003.

[48] John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, Princeton, 1944.

[49] Tianhan Wang and Craig Boutilier. Incremental utility elicitation with the
minimax regret decision criterion. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, pages 309–316, Acapulco, 2003.

[50] Martin Weber. Decision making with incomplete information. European Journal
of Operational Research, 28:44–57, 1987.

[51] Chelsea C. White, III, Andrew P. Sage, and Shigeru Dozono. A model
of multiattribute decisionmaking and trade-off weight determination under
uncertainty. IEEE Transactions on Systems, Man and Cybernetics, 14(2):223–
229, 1984.

47

