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Abstract

The presence of uncertainty in policy eval-
uation significantly complicates the process
of policy ranking and selection in real-world
settings. We formally consider offiine policy
selection as learning preferences over a set
of policy prospects given a fixed experience
dataset. While one can select or rank policies
based on point estimates of their expected
values or high-confidence intervals, access to
the full distribution over one’s belief of the
policy value enables more flexible selection al-
gorithms under a wider range of downstream
evaluation metrics. We propose a Bayesian ap-
proach for estimating this belief distribution
in terms of posteriors of distribution correc-
tion ratios derived from stochastic constraints.
Empirically, despite being Bayesian, the cred-
ible intervals obtained are competitive with
state-of-the-art frequentist approaches in con-
fidence interval estimation. More importantly,
we show how the belief distribution may be
used to rank policies with respect to arbitrary
downstream policy selection metrics, and em-
pirically demonstrate that this selection pro-
cedure significantly outperforms existing ap-
proaches, such as ranking policies according
to mean or high-confidence lower bound value
estimates.

1 INTRODUCTION

Off-policy evaluation (OPE) [Precup et al., 2000] in the
context of reinforcement learning (RL) is often moti-
vated as a way to mitigate risk in practical applications
where deploying a policy might incur significant cost
or safety concerns [Thomas et al., 2015a]. Indeed, by
providing a point estimate of the value of a target policy
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solely from a static offline dataset of logged experience
in the environment, OPE can help practitioners de-
termine whether a target policy is or is not safe and
worthwhile to deploy. Still, in many practical applica-
tions the ability to accurately estimate the online value
of a specific policy is less of a concern than the ability
to select or rank a given set of policies (one of which
may be the currently deployed policy). For example,
in recommendation systems, a practitioner may have
a large number of policies trained offline using vari-
ous hyperparameters, while cost and safety constraints
only allow a few of those policies to be deployed as live
experiments. Which policies should be chosen to form
the small subset that will be evaluated online?

This problem, related to but subtly different from OPE,
is offtine policy selection [Doroudi et al., 2017, Paine

et al., 2020, Kuzborskij et al., 2020]. The original mo-
tivations for OPE were arguably with offline policy
selection in mind [Precup et al., 2000, Jiang, 2017], the

idea being that one can use estimates of the value of
a set of policies to rank and then select from this set.
Accordingly, there is a rich literature of approaches
for computing point estimates of the value of the pol-
1cy [Dudik et al., 2011, Bottou et al., 2013, Jiang an(l Li,
2015, Thomas ,md )1111151\11], 2016, N (1111111 et al., 2019,
Zhang et al., 2020, Uehara and Jiang, 2020,
Uehara, 2020, Yang et al., 2020b], as well as estimating
high-confidence lower and upper bounds on a target

I\allux ,md

policy’s value [Thomas et al., 5a, Kuzborskij et al.,
020, Bottou et al., 2()1 ), llamm et al., 2016, Feng
t al., 2020, Dai et al., , Kostrikov (111(1 Nachum,

202()].

These existing OPE approaches may be readily applied
to the recommendation systems example above by us-
ing either mean or high-confidence bounds estimates
on each candidate policy to rank the set and picking
the top few to deploy online. However, such a naive
approach ignores crucial differences between the OPE
problem setting and the downstream evaluation criteria
a practitioner prioritizes. For example, when choosing
a few policies out of a large number of policies, a rec-
ommendation systems practitioner may have a number
of objectives in mind: They may strive to ensure that
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the policy with the overall highest groundtruth value
is within the small subset of selected policies (akin to
top-k precision). Or, in scenarios where the practi-
tioner is sensitive to large differences in achieved value,
a more relevant downstream metric may be the differ-
ence between the largest groundtruth value within the
k selected policies compared to the groundtruth of the
best possible policy overall (akin to top-k regret). With
these potential offline policy selection metrics, it is far
from obvious that ranking according to OPE mean
or high-confidence bound estimates is ideal [Doroudi
et al., 2017].

The diversity of downstream metrics for offline policy
selection presents a challenge to any algorithm that pro-
duces a point estimate for each policy. In fact, any one
approach to computing point estimates will necessarily
be sub-optimal for some adversarially chosen policy
selection criteria. To circumvent this challenge, we pro-
pose to compute a belief distribution over groundtruth
values for each policy. Specifically, with the posteriors
of the policy values, one can calculate the distribution
of a variety of criteria over the value for each policy.
These posteriors can be used in a straightforward pro-
cedure that takes estimation uncertainty into account
to rank the policy candidates. While this belief distri-
bution approach to offline policy selection is attractive,
it also presents its own challenge: how should one esti-
mate such a distribution in the purely offline setting?

We propose Bayesian Distribution Correction Estima-
tion (BayesDICE) to address this challenge. Bayes-
DICE works by estimating posteriors over correction
ratios for each state-action pair, corresponding to a
belief distribution over density ratios between the off-
policy data and the stationary distribution of the target
policy. In contrast to the point estimates of state-of-
the-art DICE estimators [Nachum et al., 2019, Zhang
et al., 2020, Yang et al., 2020b], BayesDICE maintains
a distribution from which the sampled ratio satisfies the
stationary distribution condition with high probability.
Given belief distributions over these correction ratios,
the belief distribution over a policy value may be esti-
mated by averaging these correction distributions over
offline data, weighted by rewards or other nonlinear
utilities in the case of more exotic downstream policy
selection criteria.

As a preliminary experiment, we show that the pro-
posed BayesDICE is highly competitive to existing fre-
quentist approaches when applied to confidence interval
estimation. Then, we demonstrate the superiority of
BayesDICE applied to offline policy selection under dif-
ferent utility measures, across a variety of discrete and
continuous RL tasks. Our policy selection experiments
suggest that, while conventional wisdom in the OPE
literature focuses on using lower bound estimates to se-

lect policies (due to safety concerns) [Kuzborskij et al.,
2020], policy ranking based on the lower bound esti-
mates may not always lead to lower downstream regret.
Furthermore, when other metrics of policy selection
are considered, such as top-k precision, being able to
sample from the posterior enables significantly better
policy selection than only having access to the mean
or confidence bounds of the estimated policy values.

We note that the offline policy selection problem is
distinct from offline policy optimization (OPO) [Lange
et al., 2012, Fujimoto et al., 2019, Kumar et al., 2020,
Buckman et al., 2021], where one seeks a policy from a
parameterized class that optimizes a pointwise objec-
tive without consideration of its performance relative
to an ensemble of reference policies. (This distinction
will become clear in Section 2 below.) In summary, the
contributions of this paper are three-fold:

e We formally define offline policy selection and com-
pare and contrast it to traditional OPE (and OPO).

e We propose BayesDICE for characterizing the poste-
rior of the stationary state-action ratio, derived from
the perspective of stochastic constraints.

e We design a simulation-based policy ranking algo-
rithm, OfflineSelect, that converts the estimated pos-
teriors from BayesDICE to a ranking of policies with
respect to a selection criterion.

2 OFFLINE POLICY SELECTION

We consider an infinite-horizon Markov decision pro-
cess (MDP) [Puterman, 1994] denoted as M =
(S, A, R, T, po,y), which consists of a state space, an
action space, a deterministic reward function, a transi-
tion probability function, an initial state distribution,
and a discount factor v € (0,1]. For simplicity, we
restrict our analysis to deterministic rewards, and ex-
tending our methods to stochastic reward scenarios
is straightforward. In this setting, a policy m(a|s:)
interacts with the environment starting at sg ~ po and
receives a scalar reward r; = R(s¢,a;) as the environ-
ment transitions into a new state s;y1 ~ T(s¢, at) at
each timestep t. The value of a policy is defined as

p(m) = (1=7)Espas DiZ07're]- (1)

We formalize the offfine policy selection problem as pro-
viding a ranking O € Perm({[1, ..., N]) over a set of can-
didate policies {m;} | given only a fized dataset D =
{z0) = (sgﬂ,s(j),a(j),rm,s/(j))}?:l where s ~ o,
(s9),a9)) ~ dP are samples of an unknown distribu-
tion d?, @) = R(s®),q)), §0) ~ T(s), a®), and
Perm is all ordering permutations. !

!This tuple-based representation of the dataset is for
notational and theoretical convenience, following [Dai et al.,
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Figure 1: An overview of our proposed approach to offline policy selection. While traditional approaches compute
a point estimate for the value of each policy and then rank according to these estimates, BayesDICE approximates
an entire belief distribution over the value of each policy conditioned on the provided finite experience dataset.
The BayesDICE approximate posteriors are passed to 0fflineSelect (Algorithm 1), which simulates samples
from the posteriors and chooses the policy ranking which achieves the best expected utility (top-2 regret in this
example). In many scenarios, leveraging the belief distribution leads to better policy selection than traditional

approaches.

The vanilla approach to the offline policy selection
problem is to characterize the wvalue of each policy
under some utility function u(w) and then sort the
policies accordingly; i.e.,

O « ArgSortDescending({u(m;)} Y ;).

The utility u(m;) is typically the result of an OPE
algorithm applied to D and m;; i.e., u(m;) is either a
mean or lower-confidence bound estimate of the policy’s
normalized per-step reward in (1).

2.1 Selection evaluation

A proposed ranking O will eventually be evaluated
according to how well its policy ordering aligns with
the groundtruth policy values. In this section, we
elaborate on several potential forms of this evaluation
score.

The groundtruth policy value for 7; is given by p(m;),
and we use p; as shorthand for this expression. As part
of the offline policy selection problem, we are given
a ranking score S, which serves as the downstream
selection criterion we want to optimize. The ranking
score is a function that produces a scalar evaluation
metric given a proposed ranking O and groundtruth
policy values of {p,} ;. The S can take on many forms
and is application specific; e.g.,

e top-k precision: This is an ordinal ranking score.
The score considers the top k policies in terms of
groundtruth means p; and returns the proportion of
these which appear in the top k spots of O.

2020, Kostrikov and Nachum, 2020]. In practice, the
dataset is usually presented as finite-length trajectories
{(sé”%aé”,ré”,s?%...)};-":1, and this can be processed
into a dataset of finite samples from pp and from dPxRxT.
We further assume, for mathematical simplicity, that the
dataset is sampled i.i.d., as is common in the OPE liter-
ature [Uchara and Jiang, 2020]. In some cases this may
be relaxed by assuming a fast mixing time [Nachum et al.,
2019].

e top-k accuracy: Another ordinal ranking score,
this score considers the top-k policies in sorted order
in terms of groundtruth means p; and returns the
proportion of these which appear in the same ordinal
location in O.

e top-k correlation: Another ordinal ranking score,
this represents the Pearson correlation coefficient
between the ranking of top-k policies in sorted order
in terms of groundtruth means p(m;) and the truly
best top-k policies.

e top-k regret: This is a cardinal ranking score. This
score represents the difference in groundtruth means
p; between the overall best policy — i.e., max; p; —
and the best policy among the top-k ranked policies
— i.e., maxie[l’k] ﬁo[k].

e Beyond expected return: One may define the
above ranking scores in terms of statistics of the pol-
icy value other than the groundtruth means {p,} ;.
For example, in safety-critical applications, one may
be concerned with the variance of the policy return.
Accordingly, one may define CVaR analogues to top-
k precision and regret. For simplicity, we will restrict
the discussion in this paper to ranking scores which
only depend on the groundtruth expected returns

(Pt

2.2 Bayes ranking simulation from the
posterior

It is not clear whether ranking according to vanilla
OPE (either mean or confidence based) is ideal for any
of the ranking scores above, including, for example, top-
1 regret in the presence of uncertainty. However, if one
has access to an approximate belief distribution over
the policy values, one can simply simulate the Bayes
risk over all candidate ranks to find a near-optimal
ranking [Duda et al., 2000] with respect to an arbitrary
specified downstream ranking score, and we elaborate
on this Bayes decision procedure here.
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Algorithm 1 0fflineSelect

Inputs Posteriors ¢({p;}¥,), ranking score S
Initialize O*; L*
for O in Pern([1, ..., N]) do
L=0
for j =1tondo
sample {5\’ 1, ~ ¢({p,}L,)
> Sum up sample scores
L=L+S{pP}X,.0)
end for
if L < L* then
D> Update best ranking/score
L*=L;0"=0
end if
end for;return O*, L*

> Track best score

In the ideal case if we have access to the true
groundtruth policy values {p;}Y¥;, and the ranking
score function S, we can calculate the score value of
any ranking O and find the ranking O* that optimizes
this score. However, we are limited to a finite offline
dataset and the full return distributions are unknown.
In this offline setting, we propose to instead compute a
belief distribution ¢({p;};), and then we can optimize
over the expected ranking score, i.e.,

O = argéninEq [S(O» {ﬁz}zj\il)} (2)

as shown in Algorithm 1. This algorithm computes the
Bayes risk by simulating realizations of the groundtruth
values {p; }I¥., with samples from the belief distribution
q({p;}X1), and in this way estimates the expected re-
alized ranking score S over all possible rankings O. As
we will show empirically, matching the Bayes selection
process (the S used in Algorithm 1) to the downstream
ranking score naturally leads to improved performance.
The question left now becomes how to effectively learn
a belief distribution over {p,} , and this is answered
by the BayesDICE algorithm.

3 BAYESDICE

We propose BayesDICE for estimating the belief dis-
tribution over {p;}¥;. We first investigate alternative
characterizations of policy value to justify a represen-
tation in terms of stationary density correction ratios
(generally known as DICE or marginalized importance
weights). These correction ratios are characterized by a
set of constraints, one for each state-action pair, which
presents a challenge for posterior inference. However,
by re-expressing Bayesian inference as an optimization,
we bypass this difficulty via stochastic constraints, a
derivation that is of independent interest. We then

apply the resulting constrained posterior inference to
DICE, yielding a novel estimator that is computation-
ally attractive while supporting a broad range of rank-
ing scores for downstream tasks.

3.1 Alternative Representations of Policy
Value

To accomplish offline policy selection one must choose
a specific expression to represent the value of a policy.
There are several principal requirements for such a
representation:

e Offline: Since we focus on ranking policies given
only offline data, the policy value should not depend
on on-policy samples or access to a known behavior
policy.

e Versatility: Since the downstream task may utilize
different ranking scores, the policy value representa-
tion should be compatible with efficient evaluation
of these scores.

With these considerations in mind, we review choices
for representing the value of a policy 7. Define

Q" (s,a) = E Y72 7" R(st,a1)|s0 = s,a0 = a] and
d" (s,a) =(1—7) 32, 7' dF (s,a),with
dy (870) = P(s; = s,a: = also ~ po,
Vi < t,a; ~m (|51) , Sit1 T(~\si,ai)),
which are the state-action wvalue function and dis-

counted stationary visitations of w. These quantities
satisfy the recursions

QW(57G) = R(S7 a) + ,PﬂQﬂ-(Sv a),where

PWQ(Sa CL) = ES’NT(S,a),a’NW(S’) [Q(Sl7 CL/)]; (3)
0" (5,a) = (1 — 7)po(s)(als) + 1 - PTd" (s, a), where
Prd"(s,a) = w(als) >sa T(s]s,a)d™ (3, a). (4)

From these identities, the policy value can be expressed
in two equivalent ways:

p(m) = (1—7) 'Ea%;%soo)[Qw(So, ao)] (5)
= E(s,a)~ar [r(s, a)]. (6)

Current OPE methods are generally based on one of
the representations (1), (5) or (6). For example, im-
portance sampling (IS) estimators [Precup et al., 2000,
Murphy et al.; 2001, Dudik et al., 2011] are based
on (1); LSTDQ [Lagoudakis and Parr, 2003] is a rep-
resentative algorithm for fitting Q™ and thus based
on (5); the DICE algorithms [Yang et al., 2020Db] esti-
mate the stationary density ratio (™ (s,a) := j;((‘zz))
so that p (7) =Ego [(™ - r], and are thus based on (6).
To reduce notational clutter, we omit the superscripted
7w on ¢ when it is clear from context.

Among the three representations, the stationary den-
sity ratio representation fully supports the stated re-
quirements, and hence is the most promising for the
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ultimate selection task. First, IS estimators suffer
from an exponential growth in variance [Liu et al.,
2018] and require knowledge of the behavior policy.
By contrast, the functions Q™ and d™ share common
minimax properties [Uchara and Jiang, 2020] and can
be estimated without knowledge of the behavior pol-
icy enabling behavior-agnostic learning. However, Q™
exhibits a linear dependence on R (s, a), hence, even if
Q7 is estimated accurately, it is still infeasible to evalu-
ate ranking scores that involve (1 — ) E[>";2, v'o(ry)]
with a nonlinear o (unless one learns a different @) func-
tion for each possible ranking score, which may be com-
putationally expensive). By contrast, the stationary
density ratios ((s,a) are independent of reward, which
enables efficient ranking on a variety of downstream
ranking scores. For example, in the case of a nonlinear
utility o, the policy value may be easily computed from
the stationary density ratio as Ego [ - o (r)]. Based
on these considerations, representing policy value via
stationary density ratios best satisfies the requirements:
it enjoys statistical advantages for offline setting [Yin
and Wang, 2020, Jiang and Huang, 2020] and is flexible
for downstream ranking score calculation. Therefore,
we focus on developing a Bayesian estimator for (™.

3.2 Stationary Ratio Posterior Estimation

Typically, a posterior ¢ ((™|D) is defined in terms of a
prior p (¢™) and likelihood function p (D|(™) via Bayes’
rule i.e., ¢(¢"|D) x p (D|¢™) p ((™). However, the pos-
terior can also be equivalently expressed as the result
of an optimization problem Williams [1980], Zellner
[1988]

gél}jl 7Eq(<w) [logp (D‘Cﬂ-)] + KL (QHP) ) (7)
= min &+ KL(glp), (8)
st. qgePN{E=—Eycr flogp(DICT]}. (9)

where P is the space of valid densities. This opti-
mization interpretation of Bayesian inference has been
generalized in well known work on posterior regulariza-
tion and regularized Bayes Mann and McCallum [2010],
Liang et al. [2009], Zhu et al. [2014], which considers
more complex loss functions on £ and richer constraints
on the “posterior”

in AU (&) + KL , 10
o (€) (qllp) (10)

where P (D, §) := PNQ (D, &) with Q (D, §) as a set de-
fined by data-dependent constraints with slack variable
& and U () a loss function. Although (10) can easily
express (8), the key advantage is that the more general
formulation allows Bayesian inference to be practically
applied in scenarios when the likelihood does not have
an explicit, tractable form, or when there are additional

constraints that cannot be conveniently encoded in the
prior or likelihood Mann and McCallum [2010], Liang
et al. [2009], Zhu et al. [2014].

This framing allows us to naturally incorporate con-
straints arising from the stationary density ratio rep-
resentation (4). However, previous work only consid-
ers finitely many constraints on posterior expectations,
while the constraints for ¢ induced by (4) consider each
ratio function individually on arbitrary (s,a) € S x A,
which can potentially be infinitely many. Therefore,
to apply the generalized Bayesian framework (10) to
our scenario, we first need to extend the formulation
by considering a function space embedding to reduce
the number of constraints to finitely many [De Farias
and Van Roy, 2003, Lakshminarayanan et al., 2017,
Dai et al., 2020], then reformulate these as chance con-
straints to ensure ( satisfies the constraints with high
probability [Nemirovski and Shapiro, 2007].

Constraints Embedding First, we use a function
space embedding to reduce the number of constraints
to finitely many [De Farias and Van Roy, 2003, Lak-
shminarayanan et al., 2017, Dai et al., 2020]. Let
Aq (s, a) = (1=7)po(s)m(als) +~-Pld(s,a) —d(s,a).
Counsider a feature mapping ¢ (-,-) : S x A — R™
and the induced RKHS H,, and define (¢, Ag) =

E(1 ) o (s)n(als)+ry-Prd(s,a) [9(8,a)] = Ea(s,a) [9(s,a)].

Then the constraints (4) can be expressed as
Ag4(s,a) = 0. We can match distributions in terms
of their embeddings [Smola et al.; 2007] by measuring
(9, Ad>T (¢, Ag), a generalization of the approximation
methods in De Farias and Van Roy [2003], Lakshmi-
narayanan et al. [2017]. In particular, when |S||A] is
finite and we set ¢(s, a) = ds 4, where d5 € {0, 1}|SHA‘
is an indicator vector with a single 1 at position (s, a)
and 0 otherwise, we are matching the distributions
pointwise. The feature map ¢ (s, a) can also be set to
general reproducing kernel k ((s,a), ) € R*. As long
as the kernel k (-, -) is characteristic, the embeddings
will match if and only if the distributions are identical

almost surely [Sriperumbudur et al., 2011]. We further
re-frame the constraint with Fenchel duality [Nachum
and Dai, 2020]

(6, 8a)" (¢, Aa) = max 87 (¢, Aa) — 578
BEH,
=/ (Cv D) ::élel?{)i (1 _'7) Emﬁr [5T¢] _ﬁTB
+ ]EdD [C (s,a) ﬁ—r(’ygb(slva/)_(ﬁ(sva))] ) (11)
resulting in the final constraint ¢ (¢, D) = 0.

Chance Constraints Given that the experience is a
finite sample from d’i, we have to approximate ¢ with
a sample estimator ¢ and the constraint for ¢ in (11)
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might not hold exactly using /. However, under mild
L e 2= {¢ (D) <}
with high probability (see Appendix A for the precise
statement and proof). Thus, we expect a randomly
sampled ratio ¢ ~ ¢ (¢) to be in the relaxed feasible set
= with high probability. Incorporating this into (10)
yields

conditions, we have

min KL (qllp) = A&, st Py (€(C,D) <€) =&, (12)
q

where the chance constraint enforces the probability
that ( is feasible under the posterior. This formulation
can be equivalently rewritten as

min - KL(qllp) = APq (£(C,D) < ¢)  (13)

Then, by applying Markov’s inequality, i.e.,
Py (£(¢.D) <) = 1P, (£((,D) > ¢) > 1~ alsPl,
we can obtain an upper bound on (13) as

min KL (qlp) + 2E, [¢(¢, D) (1)
A
= min max KT (qllp) + Eq«)q(mo[ (15)
B [¢(s,0) - BT (v(sa") = 6 (5,0)) = 1 (8)]
+ (L= Eur [87¢] |, (16)

where the last equation follows by interchangeabil—
ity [Shapiro et al., 2014, Dai et al., 2017]. Note that
£(¢,D) > 0 since Hy is symmetrlc, so the outer op-
timization is lower bounded. We amortize the opti-
mization for 8 w.r.t. each ¢ to a distribution ¢ (5|¢) to
reduce the computational effort. The pseudo-code of
the BayesDICE algorithm is shown in Algorithm 2.

Finally, with the posterior approximation for (;, denot-
ing the estimate for candidate policy i, we can draw
posterior samples of p; by drawing a sample ¢; ~ ¢(¢;)
and computing p; = %Z(s,a,r}E’D ¢i(s,a)r. This de-
fines a posterior distribution over p;. For the joint
posterior over {p;}¥., we use a mean field approxima-
tion to express it as a product of independent marginals,
i.e., ¢({pi}}L1) = [1; ¢(p;). This defines the necessary
inputs for OfflineSelect to determine a ranking of
the candidate policies.

Given the space limits, please see Appendix B and C
for a discussion of other important aspects of Bayes-
DICE, including an alternative safe surrogate of the
chance constraints, parametrization of the posteriors,
variants of BayesDICE for undiscounted MDPs, con-
nections to vanilla Bayesian stochastic processes, and
the application of BayesDICE to exploration.

Algorithm 2 BayesDICE

Inputs sampled initial states fig = {s(j offline

Jj=0
data D = {(s; ) 5(), g () s’m) n_,, target pol-
icy T, parametrlzed dlstrlbutlonb qel( ,+) and gg, (+, ),
a prior p, convex function f (conjugate f*), constants
€, A, learning rates n¢, ng, training iterations 7', and
batch size B.
fort=1,...,7T do

Sample batch {(s9),a9) 10 s’(J))} from D,

{s(j) ]B from MO a/(J) ~ ﬂ-( /(])) and ag (4) ~
W(Sg)) forj=1,...,B.
Sample By ~ qgl(sgj),a((f)) 8 N‘qel(ls(j),a(j))v
ﬁ/ ~ qo, (Sl(J)7a,(z))a and C ~ 4o, (S(]),a(])).
Compélte loss J = KL(pllge,) + KL(pllqe,) +
5 i1 (Cr(B = 8") = f4(8)) + (1 = )bo.
Update 6, < 61 + 13V, J and 0y < 0y —1¢ Ve, J.
end for; return g, (-, )

4 RELATED WORK

We categorize the relevant related work into five cat-
egories: offline policy selection, offline policy opti-
mization, off-policy evaluation, Bayesian reinforcement
learning, and posterior regularization.

Offline policy selection The decision making prob-
lem we formalize as offline policy selection is a member
of a set of problems in RL referred to as model selection.
Previously, this term has been used to refer to state
abstraction selection [Jiang, 2017, Jiang et al., 2015] as
well as learning algorithm and feature selection [Foster
et al., 2019, Pacchiano et al., 2020]. More relevant to
our proposed notion of policy selection are a number of
previous works which use model selection to refer to the
problem of choosing a near-optimal @-function from
a set of candidate approximation functions [Fard and
l’in(\em ‘)()l(), Farahmand and Szepesvari, 2011, Irpan
et al., 2019, Xie and Jiang, 2020]. In this case, the
evaluatlon metric is typically defined as the L., norm
of difference of () versus the state-action value function
of the optimal policy @*. While one can relate this
evaluation metric to the sub-optimality (i.e., regret) of
the policy induced by the @Q-function, we argue that
our proposed policy selection problem is both more
general — since we allow for the use of policy evaluation
metrics other than sub-optimality — and more practi-
cally relevant — since in many practical applications,
the policy may not be expressible as the argmax of a
Q-function. Lastly, the offline policy selection problem
we describe is arguably a formalization of the problem
approached in Paine et al. [2020] and referred to as hy-
perparameter selection. In contrast to this previous
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work, we not only formalize the decision problem, but
also propose a method to directly optimize the policy
selection evaluation metric. Offline policy selection has
also been studied by Doroudi et al. [2017], who consider
desirable properties of a point estimator to yield good
rankings in terms of a notion of ranking score referred
to as fairness.

Offline policy optimization While it is possible
to integrate desired criteria such as pessimism into
offline policy optimization [Kumar et al., 2020, Buck-
man et al., 2021], this requires the desured cr1ter1a (e.g.,
maximum high-confidence lower bound) to be specified
prior to policy learning, which might differ from what a
practitioner deploying the policy prefers (e.g., policies
that achieve top-k precision or regret). Furthermore,
policies in practical applications may not be amenable
to (policy)-gradient-based learning (e.g., policies with
business logic and hard-coded rules). In these cases, it
is much easier to rank a set of candidate policies given
a set of criteria rather than learning one policy for each
criterion.

Off-policy evaluation Off-policy evaluation (OPE)
is a highly active area of research. While the origi-
nal motivation for OPE was in the pursuit of policy
selection [Precup et al.; 2000 7], the field
has historically almost exclusively focused on the re-
lated but distinct problem of estimating the online
value (accumulated rewards) of a single target policy.
In addition to a plethora of techniques for providing
point estimates of this groundtruth value [1)11(11’1( et al.,

11, Bottou et al., 2013, Jiang and Li, 2015
(111(1 Tnlmsl\lll 20 l() l\dHll\ and Uehara, 202 ) Nachum
et al., 2019, Zhang et al., 2020, Yang et (11 2020b], there
is also a growing body of htcraturc that uses frcquentist
principles to derive high-confidence lower bounds for

, Jiang, 201

Thomas

the value of a policy [l%()‘[t()u et al., 20 'i, Tll()lll;l\’ et al.,
2015b, Hanna et al., () [(11/1)01\1\1 t al., l*(n“
et al., 2020, Dai et <11., 2020, Kostrikov (111(1 }<1(1111111,

202 ] As our results demonstrate, ranking or select-
ing policies based on either their estimated mean or
lower confidence bounds can at times be sub-optimal,
depending on the evaluation criteria.

Bayesian reinforcement learning Our proposed
method for offline policy selection relies on Bayesian
principles to estimate a posterior distribution over
the groundtruth policy value. While many Bayesian
RL methods have been proposed for policy opti-
mization [Deisenroth and Rasmussen, 2

et al., 2018], especially in the context of explo-
ration [Houthooft et al., 2016, Dearden et al., 2013,
Kolter and Ng, 2009], relatively few have been pro-
posed for policy evaluation [Hans et al., 2011]. In one

2011, Parmas

instance, Fard and Pineau [2010] derive PAC-Bayesian
bounds on estimates of the Bellman error of a candi-
date @-value function. In contrast to this work, the
BayesDICE estimates a distribution over stationary
density ratio, and this distribution allows us to directly
optimize arbitrary downstream policy selection metrics.

Distinguish distributional RL Although both dis-
tributional RL [Bellemare et al., 2017, Dabney et al.,
2018b,a] and BayesDICE learn distributions over quan-
tities of interest, these distributions are significantly
different and with different update rules. Distributional
RL fits a distribution of returns over future trajecto-
ries, where the randomness comes from stochasticity
of MDP transitions and policy action selections. In
contrast, BayesDICE learns distributions of stationary
density ratios in a Bayestan posterior sense, which
captures uncertainty from both model stochasticity
and finite observations, while marginalizing over any
stochasticity in MDP transitions and policy action se-
lections. More importantly, BayesDICE is designed to
serve as a component for policy selection derived via
Bayes decision theory, with which distributional RL is
not compatible.

Bayesian inference with posterior regularization
Unlike vanilla Bayesian inference for posterior com-
putation, the proposed BayesDICE does not rely on
an explicitly computed log-likelihood, but instead es-
timates the posterior of the stationary density ratio
by enforcing a stochastic constraint. This formulation
of BayesDICE is inspired by the functional optimiza-
tion view of Bayesian inference [Williams, 1980, Zell-
ner, 1988, Dai et al., 2016]. There are several Works
introducing the data-dependent constraints or regu-
larization to encode the side information of the pos-
terior into the optimization framework, e.g., general-
ized expectation criteria [Mann and McCallum, 2010],
learning from measurements [Liang et al., 2009], and
regularized Bayes [Zhu et al., 2014]. The most im-
portant difference lies in the formulation of the con-
straints: the existing works only considers expectation
constraints/reqularization, while we largely extend the
framework to more general chance constraints.

5 EXPERIMENTS

We empirically evaluate BayesDICE in estimating confi-
dence intervals (which can be used for policy selection)
and offline policy selection under linear and neural
network posterior parametrizations on tabular Bandit,
Taxi [Dietterich, 1998], FrozenLake [Brockman et al.,
2016], and continuous-control Reacher [Brockman et al.,
2016] tasks. As shown in Figure 2, BayesDICE out-
performs existing methods for confidence interval (CI)
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Figure 2: CI estimation results. The y-axis shows the empirical coverage and median log-interval width across
200 trials. BayesDICE exhibits near true coverage with narrow interval width.

estimation based on concentration inequalities, produc-
ing accurate coverage while maintaining tight interval
width, suggesting that BayesDICE achieves accurate
posterior estimation in practice while being robust
to approximation errors and potentially misaligned
Bayesian priors. Moreover, in offline policy selection
settings, matching the selection criteria (Algorithm 1)
to a variety of ranking scores (enabled by the esti-
mated posterior) shows clear advantage over policy
ranking based on point estimates or confidence in-
tervals. See Appendix E for additional results and
implementation details.

5.1 Confidence interval estimation

We first evaluate the BayesDICE approximate posterior
by computing the accuracy of the credible intervals [Lee,
1997] it produces. To make comparisons with previ-
ous work, we evaluate frequentist confidence interval
properties of BayesDICE against a known set of CI esti-
mators based on concentration inequalities, and against
CoinDICE [Dai et al., 2020], which is based-on empiri-
cal likelihood. While the frequentist confidence interval
is analagous to the Bayesian credible interval, they have
different statistical properties, so we expect that evalu-
ating the credible intervals BayesDICE produces under
frequentist measures will give a pessimistic estimate of
its true performance. To compute the concentration-
inequality-based baselines, we follow [Dai et al., 2020]
by first using weighted (i.e., self-normalized) per-step
importance sampling [Thomas and Brunskill, 2016]
to obtain a policy value estimate for each logged tra-
jectory. These trajectories provide a finite sample of
value estimates. We use self-normalized importance
sampling in MDP environments (which has been found
to yield better empirical results on these tasks [Liu
et al., 2018, Nachum et al., 2019] despite being biased).
We then use empirical Bernstein’s inequality [Thomas
et al., 2015b], bias-corrected bootstrap [Thomas et al.,
2015a], and Student’s t-test to derive lower and upper

high-confidence bounds on these estimates. We further
consider Bayesian Deep Q-Networks (BDQN, only ap-
plicable to function approximation) [Azizzadenesheli
et al., 2018] with an average empirical reward prior
in the function approximation setting. BDQN applies
Bayesian linear regression to the last layer of a deep
Q-network to learn a distribution of Q-values. Both
BayesDICE and BDQN output a distribution of param-
eters, from which we conduct Monte Carlo sampling
and use the resulting samples to compute a credible
interval at a given confidence level.

We plot the empirical coverage and interval width at
different confidence levels in Figure 2. To compute the
empirical interval coverage, we conduct 200 trials with
randomly sampled datasets. The interval coverage is
the proportion of the 200 intervals that contains the
true value of the target policy. The interval log-width
is the median of the log width of the 200 intervals.
As shown in Figure 2, BayesDICE’s coverage closely
follows the intended coverage (black dotted line), while
maintaining narrow interval width across all tasks.

5.2 Policy selection

Next, we demonstrate the benefit of matching the pol-
icy selection criteria to the ranking score in offline
policy selection. Our evaluation is based on a variety
of cardinal and ordinal ranking scores defined in Sec-
tion 2.1. We begin by considering the use of Algorithm 1
with BayesDICE-approximated posteriors. By keeping
the BayesDICE posterior fixed, we focus our evalua-
tion on the performance of Algorithm 1. We plot the
groundtruth performance of this procedure applied to
Bandit and Reacher in Figure 3 (left). These figures
compare using different S to rank the policies according
to Algorithm 1 across different downstream ranking
scores S. We find that aligning the criteria S used in
Algorithm 1 with the downstream ranking score S is
empirically the best approach (S = S). In contrast, us-
ing point estimates such as Mean or Mean+Std can yield
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Figure 3: Left: Policy selection using top-k ranking scores compared to mean/confidence ranking approaches
on two-armed Bandit and Reacher. We fix the posterior to the one approximated by BayesDICE and evaluate

different S used in Algorithm 1 to compute a policy ranking. Using & = S results in the best performace.
Right: Policy selection under regret and correlation at top-k compared to other methods using point estimate
(DualDICE) or high-confidence lower bounds. Mean and standard error across 10 seeds are shown.

much worse downstream performance. We also see that
in the Bandit setting, where we can analytically com-
pute the Bayes-optimal ranking, using aligned ranking
scores in conjunction with BayesDICE-approximated
posteriors achieves near-optimal performance.

Having established BayesDICE’s ability to compute
accurate posterior distributions as well as the benefit
of appropriately aligning the ranking score used in Al-
gorithm 1, we compare BayesDICE to state-of-the-art
OPE methods in policy selection. In these experiments,
we use Algorithm 1 with posteriors approximated by
BayesDICE and S = S. We compare the use of Bayes-
DICE in this way to ranking via point estimates of
DualDICE [Nachum et al., 2019] and other confidence-
interval estimation methods introduced in Section 5.1.
We present results in Figure 3, in terms of top-k regret
and correlation on Bandit and Reacher tasks across
different sample sizes and behavior data. BayesDICE
outperforms other methods on both tasks. See addi-
tional ranking results in Appendix E.

6 CONCLUSION

In this paper, we formally defined the offline policy
selection problem, and proposed BayesDICE to first
estimate posterior distributions of policy values before
using a simulation-based procedure to compute an op-
timal policy ranking. Empirically, BayesDICE not only
provides accurate belief distribution estimation, but
also shows excellent performance in policy selection
tasks. Extending BayesDICE to estimating a posterior
distribution over return distributions (instead of the
expected return) is an important direction of future
research.
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Supplementary Material:
Offline Policy Selection under Uncertainty

A Proofs for Finite Sample Relaxation

The following lemma will be needed.

Lemma 1. [[Rahimi and Recht, 2008], Lemma 4] Let X = {z;};_, be iid.random variables in a ball H of radius
C centered around the origin in a Hilbert space. Denote their average by T = %2?21 x;. Then for any 6 > 0,

with probability at least 1 — 9,
M / 1

Theorem 2. Denote (* (s,a) = % which is bounded by C¢, under the assumption that ||¢||, < Cy, |8, < Cg,
VB € Hp and f is Ly-Lipschitz continuous, then (* € Z:={( : £(¢, D) < €} with probability 1 — exp (—%) with
C:=(1+~) 1+ Cc) CpCy + LsCp.

Proof. Let
L (Capvﬁ) = (1 - ’Y) Eﬂoﬂ [ﬂ—rd)] + ED [C(Sa a) : 6T(’y¢(s/a a/) - d)(s,a)) - f* (ﬂ)}v
and
L (ng,ﬂ) = (1 - 'Y) E/toﬂ' [5T¢] + ]EdD [C(57a) ! BT(7¢(5,7 a’,) - QS(S’ a)) - f* (ﬂ)]
We also denote 3 = argmaxgey, , L (¢, D, B).

Following the discussion in footnote 2 in main text, the D ~ d? i.i.d., it is obvious that E[¢ (¢, D, 8)] = ¢ (C, dP, ﬁ)
Under the bounded assumption of (5, ¢), we can bound |[¢||, < C. Therefore, by Lemma 1, we have

P (L (C*,D,B) -1 (C*,D,B) > e) < exp (—Zi) .

Since ¢* (s,a) = %, we have ¢ (C*, dD,B) =0, VB € Hy. Finally, recall maxgeyy, ¢ (¢, D, ) = 0 since Hy is
symmetric. We achieve the conclusion. O

B More Discussions on BayesDICE
In this section, we provide more details about BayesDICE.

Remark (Alternative safe surrogates of chance constraints): We apply the Markov’s inequality to (13)
for the upper bound (14). In fact, the optimization with chance constraints has rich literature [Ben-Tal et al., 2009],
where plenty of surrogates can be derived with different safe approximations. For example, if the parametrization
of ¢ is simple, one can directly calculate the CDF for the probability P, (¢ (¢, D) < €); or one can also exploit
different probability inequalities to derive other surrogates, e.g., condition value-at-risk, i.e.,

1
min KL (qllp) + Xinf |¢ + ~E, [£(¢,D) —4]| (17)
q € +

and Bernstein approximation [Nemirovski and Shapiro, 2007]. These surrogates lead to tighter approximation to
the chance probability P, (£(¢) < €) with the extra cost in optimization.
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Remark (parametrization of ¢ (¢) and ¢ (3|¢)): We parametrize both ¢ (¢) (and the resulting ¢ (5|¢)) as
Gaussians with the mean and variance approximated by a multi-layer perceptron (MLP), i.e.: { = MLP,(s,a) +
ow &, € ~N(0,1). w and w’ denote the parameters of the MLP.

Remark (connection to Bayesian inference for stochastic processes): Recall the posterior can be viewed
as the solution to an optimization [Williams, 1980, Zellner, 1988, Zhu et al., 2014, Dai et al., 2016],

q(¢|D) = arfelgin —(q(¢),logp (¢, D)) + KL (q(¢)lp(C)),

Then (14) mathematically equivalent to define a log-likelihood logp (D|() x ¢ (¢, D), where p (D|() is a Gibbs
point process [Dereudre, 2019, Yang et al., 2020a]. For example, plug f (8) = %ﬁTﬂ back into (14), we have

B* =Ep[C(s,a) - (vp(s',a') — ¢ (s,a))] + (1 =) Euyr [¢], resulting the optimization

. A -
mqanL (QHP) + ZEQEMOWED[C (81, al)—r k ((317 ai, 3/17 a'll) , (52, a2, 3/2’ a/2)) ¢ (327@2)

+2h (so,ao,s,a,s’,a') ¢ (s,a)], (18)
with the kernel k((’sl?alvsll?a/l)7(827a27sl27a‘l2)) = (’Yq&(slha‘ll) 7(1)(817@1))77 (’Yﬁs(sl??aé) 7(1)(‘9270’2)) and
h(s%,a%s,a,s,a") = (1—7)¢(s, a(l))T (yp(s5,a5) — ¢ (s2,a2)). If the prior p(¢) is a GP, the posterior

q (¢|D) will also a GP. Obviously, with different choices of f* (-), the BayesDICE framework is far beyond GP.

However, we emphasize although the model define via stochastic processes likelihood in (18) acheives the equivalent
optimization, such a likelihood p (D|¢) is improper in the causality sense as we discussed in Section 3.

Remark (auxilary constraints and undiscounted MDP): As Yang et al. [2020b] suggested, the non-
negative and normalization constraints are important for optimization. We use positive activation func-
tions (ReLU) to ensure the non-negativity of the mean of the ¢ (¢). For the normalization, we consider the

. 2
chance constraints P ((ED ¢) - 1) < 61) > &. By applying the same technique, it leads to an extra term
%Eq maxaep - Bp [¢ — 1]} in (14).

With the normalization condition introduced, the proposed BayesDICE is ready for undiscounted MDP by simply
setting v = 1 in (14) together with the above extra term for normalization.

C BayesDICE for Exploration vs. Exploitation Tradeoff

In main text, we mainly consider exploiting BayesDICE for estimating various ranking scores for both discounted
MDP and undiscounted MDP. In fact, with the posterior of the stationary ratio computed, we can also apply it
for better balance between exploration vs. exploitation for policy optimization.

Instead of selecting from a set of policy candidates, the policy optimization is considering all feasible policies and
selecting optimistically. Specifically, the feasibility of the stationary state-action distribution can be characterized
as

Zd(saa) = (1 - 7) Mo + P*d(s)a Vs € Sa (19)

where P.d(s) := > ., T'(s|5,a) d(3,a). Apply the feature mapping for distribution matching, we obtain the

constraint for ¢ - m with ( (s, a) := déigj)a) as

max B'Egp | D (C(s,a)m(als)) ¢ (s) =7 (C(s,a) 7 (als)) & ()

BEH

+(1=Eu [BT0] =/ (®)=0.  (20)

a

Then, we have the posteriors for all valid policies should satisfies

X, (0(C-mD) <€) 2 €, (21)
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with ¢(¢-m, D) := maxgen, B Ep[3, (((s,a)m(als) ¢ (s) =7 (C(s,a)m(als)) ¢ ()] + (1 =) Ey, [876] —

f*(B). Meanwhile, we will select one posterior from among these posteriors of all valid policies optimistically, i.e.,

Jnax Eq [U (7,7, D)] + M€ — A K L (g (¢) g (m) |[p (¢, 7)) (22)
st P (l(C-mD)<e)>E (23)

where E, [U (7,7, D)] denotes the optimistic policy score to capture the upper bound of the policy value estimation.
For example, the most widely used one is

E, [U (1,7, D)] = Ep [r - 1] + Ay {(ED [r 7] — Eip [r- r}ﬂ ,

where the second term is the empirical variance and usually known as one kind of “exploration bonus”.

Then the whole algorithm is iterating between solving (22) and use the obtain policy collecting data into D
in (22).

This Exploration-BayesDICE follows the same philosophy of Osband et al. [2019], ODonoghue et al. [2018] where
the variance of posterior of the policy value is taken into account for exploration. However, there are several
significant differences: i), the first and most different is the modeling object, Osband et al. [2019], ODonoghue
et al. [2018] is updating with Q-function, while we are handling the dual representation; ii), BayesDICE is
compatible with arbitary nonlinear function approximator, while Osband et al. [2019], ODonoghue et al. [2018)]
considers tabular or linear functions; iii), BayesDICE is considering infinite-horizon MDP, while Osband et al.
[2019], ODonoghue et al. [2018] considers fixed finite-horizon case. Therefore, the exploration with BayesDICE
pave the path for principle and practical exploration-vs-exploitation algorithm. The regret bound is out of the
scope of this paper, and we leave for future work.

D Real-world use cases of BayesDICE
We include real-world practical examples for each selection criteria in Section 2:

e top-k precision: YouTube shows a user’s favorite next videos in the “up-next” grid that pops up after the
current video has finished playing.

e top-k accuracy: A patient is taking a series of medications with potential side effects, and wants to stop
as soon as cold symptoms disappear. In this scenario, we want to make sure the medications or treatment
policies are ranked in perfect order of their effectiveness.

e top-k correlation: A customized search engine wants to display a user’s favorable links near the top of the
page and unfavorable links near the bottom, but local misrank is tolerable to trade for faster searching speed.

e Beyond expected return: This expands the selection criteria to depend on the return distribution enabling
safety and robustness criteria (e.g., CVaR).

E Experiment details and additional discussion and results

E.1 Environments and policies.

Bandit. We create a Bernoulli two-armed bandit with binary rewards where « controls the proportion of
optimal arm (o = 0 and o = 1 means never and always choosing the optimal arm respectively). Our policy
selection experiments are based on 5 target policies with oo = [0.75, 0.8, 0.85,0.9,0.95].

Reacher. We modify the Reacher task to be infinite horizon, and sample trajectories of length 100 in the
behavior data. To obtain different behavior and target policies, We first train a deterministic policy from OpenAl
Gym [Brockman et al., 2016] until convergence, and define various policies by converting the optimal policy into
a Gaussian policy with optimal mean with standard deviation 0.4 — 0.3a. Our selection experiments are based on
5 target policies with o = [0.75,0.8,0.85,0.9,0.95].
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E.2 Parametrization Details

For the convex function f in (16), we used f(z) = 22. We parametrize the distribution correction ratio as a
Gaussian using a deep neural network for the continuous control task. Specifically, we use feed-forward networks
with two hidden-layers of 64 neurons each and ReLU as the activation function. The networks are trained using
the Adam optimizer (81 = 0.99, 52 = 0.999) with batch size 2048 and learning rate 0.0001 on CPUs.

E.3 Additional empirical discussions

BayesDICE v.s. CoinDICE. Because BayesDICE is a Bayesian method, it produces credible intervals. While
the credible interval is analogous to the frequentist confidence interval, it has different statistical properties, so
it is unsurprising that evaluating the credible intervals BayesDICE produces under frequentist measures favors
frequentist methods like CoinDICE. The benefit of BayesDICE is its applicability and superior performance for
policy selection with arbitrary criteria.

Function approximation in BayesDICE. Constraint embedding can be generalized to use neural network
function approximators with potential approximation error. Specifically, as long as the inner product is well-
defined, we can characterize the constraints with maxz e #(f, A) = 0 where F, i.e., testing function space, can
be composed of neural networks. The solution is then known as a “weak solution” in differential equations and
finite-element methods. The approximation error induced by such embedding depends on the flexibility of the
testing function space. The theoretical analysis considers an idealized scenario which provides guidance. In
practice, however, the limited expressibility of the function approximators used, relaxed constraints, and inexact
optimization introduce approximation errors, which are challenging to quantify analytically. Empirically, Figure 4
shows that BayesDICE parametrized by kernel and neural network exhibit similar performance, demonstrating
the practical effectiveness of neural network as function approximators.

Interval coverage Interval log-width
-1

Reacher 0.9
(# trajectories = 25)

0.8 1

@® BayesDICE w. kernel 0.7 4
A BayesDICE w. neural network |

=== Expected coverage 05 4

T T T T T =5 =T T T T T
0.6 0.7 0.8 0.9 0.95 0.6 0.7 0.8 0.9 0.95

Figure 4: Confidence interval estimation on kernel and neural network parametrized BayesDICE.

Choice of the prior. The prior of the ratio variables is chosen to be unit Gaussian. We conducted experiments
where the prior mean ranges from [0.1,10] and prior variance ranges from [0.1,1], and observed the resulting
confidence intervals to be similar to those in the paper.

Choice of approximate posterior. We chose a Gaussian variational posterior for simplicity. A downside of
this choice is that sampled correction ratio can be negative. In practice, we found that is rarely the case, and
Gaussian posterior was sufficient to achieve strong performance. Moreover, BayesDICE can naturally incorporate
advanced parameterizations, e.g., flow and stochastic differential equations which can ensure positivity.

Comparison to point estimators. The posterior mean estimate of BayesDICE differs from the point estimate
in DualDICE due to the prior (i.e., regularization). We summarize the average (across 10 seeds) log RMSE of
DualDICE (pt) and of the mean estimate from BayesDICE (i) on Bandit (B), FrozenLake (F), Taxi (T) and
Reacher (R) with varying number of trajectories in the table below. For our choice of prior and these tasks, the
performance of the point and mean estimators are similar.

Scalability of BayesDICE. Depending on the evaluation metric chosen, its structural properties can be
exploited to nullify the need to test all permutations in Algorithm 1. Such structural properties are present
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B50 B100 B200 F50 F100 T20 T50 R25
pt -496 -479 -5.69 -9.09 -831 -3.36 -5.06 -3.31
pwo =786 -9.14 -7.09 -9.94 -9.59 -3.24 -4.11 -3.06

in many natural metrics (such as top-k precision or regret). Therefore, BayesDICE can easily scale to larger
numbers of candidate policies.

E.4 Additional experimental results

A BayesDICE (ours) V CoinDICE ’ Bernstein % Bootstrapping b Student t —--- Expected coverage
Frozenlake (marginal) Taxi (marginal)
# trajectories = 50 # trajectories = 100 # trajectories = 20 # trajectories = 50

L {———2—9] W {———T—2

Interval coverage
°
2

Interval log-width

0‘6 0.7 0.8 0.9 0.95 Ojﬁ 017 U?S OT‘J U.'SS . U‘G 017 OVS 0.9
Confidence interval (1 — a)
Figure 5: Confidence interval estimation with concentration inequality baselines computed from marginalized

importance sampling (as opposed to the per-step importance sampling in the original paper. BayesDICE and
CoinDICE still perform much better than methods based on concentration inequality.
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Score @ Mean —— Mean-Std - True Top3 -~ Acc/Correlation/Precision/Regret Top3

Score = Acc. Top3 Score = Correlation Top3 Score = Precision Top3 Score = Regret Top3
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Figure 6: Additional k values for top-k ranking on bandit. Ranking results based on Algorithm 1 (blue lines)
always perform better than using mean ("Mean”) or high-confidence lower bound (”Mean - Std”).
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Figure 7: Additional k values for top-k ranking on reacher and additional selection criteria (precision and regret).
Ranking results based on Algorithm 1 (blue lines) generally perform much better than using mean (”Mean”) or
high-confidence lower bound ("Mean - Std”) for top-k accuracy and correlation. Precision and regret are similar
between posterior samples and the mean/confidence bound based ranking.
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Figure 8: BayesDICE outperforms other confidence-interval based policy selection approaches under the minimum
regret criteria across all trajectory lengths, behavior data (higher Alpha means behavior data is closer to optimal
policy), and top-k values considered for the bandit task.
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Figure 9: BayesDICE outperforms other confidence-interval based policy selection approaches under the maximum
correlation (between true and computed rankings) criteria across all trajectory lengths, behavior data (higher
Alpha means behavior data is closer to optimal policy), and top-k values considered for the reacher task.



	INTRODUCTION
	OFFLINE POLICY SELECTION
	Selection evaluation
	Bayes ranking simulation from the posterior

	BAYESDICE
	Alternative Representations of Policy Value
	Stationary Ratio Posterior Estimation

	RELATED WORK
	EXPERIMENTS
	Confidence interval estimation
	Policy selection

	CONCLUSION
	Proofs for Finite Sample Relaxation
	More Discussions on BayesDICE
	BayesDICE for Exploration vs. Exploitation Tradeoff
	Real-world use cases of BayesDICE
	Experiment details and additional discussion and results
	Environments and policies.
	Parametrization Details
	Additional empirical discussions
	Additional experimental results


