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Abstract

In high stake applications, active experimen-
tation may be considered too risky and thus
data are often collected passively. While in
simple cases, such as in bandits, passive and
active data collection are similarly effective,
the price of passive sampling can be much
higher when collecting data from a system
with controlled states. The main focus of the
current paper is the characterization of this
price. For example, when learning in episodic
finite state-action Markov decision processes
(MDPs) with S states and A actions, we show
that even with the best (but passively chosen)
logging policy, Ω(Amin(S−1,H)/ε2) episodes
are necessary (and sufficient) to obtain an
ε-optimal policy, where H is the length of
episodes. Note that this shows that the sam-
ple complexity blows up exponentially com-
pared to the case of active data collection, a
result which is not unexpected, but, as far as
we know, have not been published beforehand
and perhaps the form of the exact expression
is a little surprising. We also extend these
results in various directions, such as other cri-
teria or learning in the presence of function
approximation, with similar conclusions. A
remarkable feature of our result is the sharp
characterization of the exponent that appears,
which is critical for understanding what makes
passive learning hard.

1 Introduction

Batch reinforcement learning (RL) broadly refers to
the problem of finding a policy with high expected
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return in a stochastic control problem when only a
batch of data collected from the controlled system is
available. Here, we consider this problem for finite
state-action Markov decision processes (MDPs), with
or without function approximation, when the data is
in the form of trajectories obtained by following some
logging policy. In more details, the trajectories are
composed of sequences of states, actions, and rewards,
where the action is chosen by the logging policy, and
the next states and rewards follow the distributions
specified by the MDP’s transition parameters.

There are two subproblems underlying batch RL: the
design problem, where the learner needs to specify a
data collection mechanism that will be used to collect
the batch data; and the policy optimization problem,
where the learner needs to specify the algorithm that
produces a policy given the batch data. For the design
problem, often times one can use an adaptive data
collection process where the next action to be taken
is determined by the past data. Another way to say
this is that the data collection is done in an active way.
Recent theoretical advances in reward-free exploration
(e.g., Jin et al., 2020; Kaufmann et al., 2021; Zhang
et al., 2021) show that one can design algorithms to
collect a batch data set with only polynomial samples
to have good coverage over all possible scenarios in the
environment. Near-optimal policies can be obtained
for any given reward functions using standard policy
optimization algorithms with the collected data. A
complication arises in applications, such as healthcare,
education, autonomous driving, or hazard management,
where active data collection is either impractical or
dangerous (Levine et al., 2020). In these applications,
the best one could do is to collect data using a fixed,
logging policy, which needs to be chosen a priori, that
is before the data collection process begins, so that the
stakeholders can approve it. Arguably, this is the most
natural problem setting to consider in batch learning.
The fundamental questions are: how should one choose
the logging policy so as to maximize the chance of
obtaining a good policy with as little data as possible
and how many samples are sufficient and necessary to
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obtain a near optimal policy given a logging policy, and
which algorithm to use to obtain such a policy?

Perhaps surprisingly, before our paper, these questions
remained unanswered. In particular, while much work
have studied the sample complexity of batch RL, the
results in these works are focusing only on the pol-
icy optimization subproblem and as such fall short in
providing an answer to our questions. In particular,
some authors give sample complexity upper and lower
bounds as a function of a parameter, dm, which could
be the smallest visit probability of state-action pairs
under the logging policy (Chen and Jiang, 2019; Yin
and Wang, 2020; Yin et al., 2021a; Ren et al., 2021;
Uehara et al., 2021; Yin and Wang, 2021; Xie and Jiang,
2021; Xie et al., 2021a), or the smallest ratio of visit
probabilities of the logging versus the optimal policies,
again over all state-action pairs (Liu et al., 2019, 2020;
Yin et al., 2021b; Jin et al., 2021; Rashidinejad et al.,
2021; Xie et al., 2021b). The sample complexity results
depend polynomially on 1/dm, S,A and H, where H is
the episode length or the effective horizon. Although
these results are valuable in informing us the policy
optimization step of batch RL, they provide no clue
as to how to choose the logging policy to get a high
value for dm and whether dm will be uniformly bounded
from below when adopting such a logging policy. In
particular, if we take the first definition for dm, in some
MDPs dm will be zero regardless of the logging policy if
some state is not accessible from the initial distribution.
While this predicts an infinite sample complexity for
our problem, this is clearly too conservative, since if a
state is not accessible under any policy, it is unimpor-
tant to learn about it. This is corrected by the second
definition. However, even with this definition it remains
unclear whether dm will be uniformly bounded away
from zero for an MDP with a fixed number of states
and actions and the best instance-agnostic choice of
the logging policy. The lower bounds in these work also
fail to provide a lower bound for our setting. This is
because in these lower bounds the instance will include
an adversarially chosen logging policy, again falling
short of helping us. Essentially, these are the gaps that
we fill with this paper.

In particular, we first show that in tabular MDPs
the number of transitions necessary and sufficient to
obtain a good policy, the sample complexity of learn-
ing, is an exponential function of the minimum of the
number of states and the planning horizon. In more
details, we prove that the sample complexity of obtain-
ing ε-optimal policies is at least Ω(Amin(S−1,H+1)) for
γ-discounted problems, where S is the number of states,
A is the number of actions (per state), and H is the

effective horizon defined as H = b ln(1/ε)
ln(1/γ)c. For finite

horizon problems with horizon H, we prove the ana-

logue Ω(Amin(S−1,H)/ε2) lower bound. These results
for tabular MDPs immediately imply exponential lower
bounds when linear value function approximation is
applied with S replaced by d, the number of features.
We also show that warm starts (when one starts with a
policy which is achieving almost as much as the optimal
policy) do not help either, crushing the hope that one
the “curse” of passivity can be broken by adopting a
straightforward two-phase data collection process (Bai
et al., 2019; Zhang et al., 2020; Gao et al., 2021). We
then establish nearly matching upper bounds for both
the plug-in algorithm and pessimistic algorithm, show-
ing that the sample complexity behaves essentially as
shown in the lower bounds. While the upper bounds
for these two algorithms may be off by a polynomial
factor, we do not expect the pessimistic algorithm to
have a major advantage over the plug-in method in
the worst-case setting. In fact, the recent work of Xiao
et al. (2021) established this in a rigorous fashion for
the bandit setting by showing an algorithm indepen-
dent lower bound that matched the upper bound for
both the plug-in method and the pessimistic algorithm.
In the average reward case we show that the sample
complexity is infinite.

How do our results relate to the expectations of RL
practitioners (and theoreticians)? We believe that most
members of our community recognize that batch RL
is hard at the fundamental level. Yet, it appears that
many in the community are still highly optimistic about
batch RL, as demonstrated by the numerous empirical
papers that document successes of various levels and
kinds (e.g., Laroche et al., 2019; Kumar et al., 2019;
Wu et al., 2019; Jaques et al., 2019; Agarwal et al.,
2020b; Kidambi et al., 2020; Yu et al., 2020; Gulcehre
et al., 2020; Fu et al., 2020), or by the optimistic tone
of the above-mentioned theoretical results. The enthu-
siasm of the community is of course commendable and
nothing is farthest from our intentions than to break it.
In connection to this, we would like to point out that
our results show that if either H, or S (or d when we
have d features) is fixed, batch RL is in fact tractable.
Yet, the lower bound assures us that we cannot afford
batch RL if both of these parameters are large, a result
which one should not hide from. Perhaps the most
important finding here is the curious interplay between
the horizon and the number of states (more generally,
we expect a complexity parameter of the MDP to stand
here), which is reasonable yet we find it non-obvious.
Certainly, the proof that shows that the interplay is
“real” required some new ideas. Returning to the em-
pirical works, recent studies identify the tandem effect
from the issue of function approximation in the batch
RL with passive data collection (Ostrovski et al., 2021).
Our results suggest that there is a need to rethink how
batch RL methods are benchmarked. In particular,
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a tedious examination of the benchmarks shows that
the promising results are almost always produced on
data sets that are collected by a noisy version of a
near-optimal policy. The problem is that this choice bi-
ases the development of algorithms towards those that
exploit this condition (e.g., the pessimistic algorithm),
yet, this mode of data collection is unrealistic.1

Another highlight of our result is that it implies an
exponential gap between the sample complexity of pas-
sive and active learning. Recently, a similar conclusion
is drawn in the paper of Zanette (2021), which served
as the main motivation for our work. Zanette demon-
strated an exponential separation for the case when
batch learning is used in the presence of linear function
approximation. A careful reading of the paper shows
that the lower bound shown there does not apply to
the tabular setting as the data collection method of
this paper allows sampling from any distribution over
the state-action space, which, in the tabular setting is
sufficient for polynomial sample complexity.

2 Notation and Background

Notation We let R denote the set of real numbers,
and for a positive integer i, let [i] = {0, . . . , i−1} be the
set of integers from 0 to i−1. We also let N = {0, 1, . . . }
be the set of nonnegative integers and N+ = {1, 2, . . . }
be the set of positive integers. For a finite set X , we
use ∆(X ) to denote the set of probability distributions
over X . We also use the same notation for infinite sets
when the set has a clearly identifiable measurability
structure such as R, which in this context is equipped
by the σ-algebra of Borel measurable sets. We use I to
denote the indicator function. We also use 1 to be the
identically one function/vector; the domain/dimension
is so that the expression that involves 1 is well-defined.

We consider finite Markov decision processes (MDPs)
given by M = (S,A, Q), where S is a finite state space,
A is a finite action space, Q is a stochastic kernel
from the set S ×A of state-action pairs to R× S. In
particular, for any (s, a) ∈ S × A, Q(·|s, a) gives a
distribution over pairs composed of a real number and
a state. If (R,S′) ∼ Q(·|s, a), R is interpreted as a
random reward incurred and S′ the random next state
when action a is used in state s. Since the identity of
the states and actions plays no role, without loss of

1Qin et al. (2021) points to another problem with the
benchmarks; namely that they fail to compare to the noise-
free version of the near-optimal policy used in the data
collection. Brandfonbrener et al. (2021) observe that simply
doing one step of constrained/regularized policy improve-
ment using an value estimate of the behavior policy performs
surprisingly well in offline RL benchmarks. They hypothe-
size that the strong performance is due to a combination of
favorable structure in the environment and behavior policy.

generality, in what follows we assume that S = [S] and
A = [A] for some S,A positive integers.

Every MDP also induces a transition “function”, P :
S×A → ∆(S), which is the marginal of Q with respect
to S′, and an immediate mean reward function r :
S × A → R, which is so that for any (s, a) ∈ S ×
A, r(s, a) gives the mean of R above. Since S and
A are finite, without loss of generality, we assume
that the immediate mean rewards lie in the [−1, 1]
interval. We also assume that the reward distribution
is ρ-subgaussian with a constant ρ > 0. For simplicity,
we assume that ρ = 1. For any (memoryless) policy π :
S → ∆(A), we define Pπ to be the transition matrix on
state-action pairs induced by π, where Pπ(s,a),(s′,a′) :=

π(a′|s′)P (s′|s, a). We denoteM(S,A) the set of MDPs
that satisfy the properties stated in this paragraph.
Since the identity of states and actions is unimportant,
we also use M(S,A) to denote the set of MDPs with
S states and A actions (say, over the canonical sets
S = [S] and A = [A]).

We use Eπ to denote the expectation operator un-
der the distribution Pπ induced by the interconnec-
tion of policy π and the MDP M on trajectories
(S0, A0, R0, S1, A1, R1, . . . ) formed of an infinite se-
quence of state, action, reward triplets. Here, it is
assumed that the initial state is randomly chosen from
a distribution that is supported on the whole of the
state space, but the identity of this distribution will
be unimportant. As such the dependence on this dis-
tribution is suppressed. Further, under Pπ, the dis-
tribution of St+1 follows P (·|St, At) given the history
Ht = (S0, A0, R0, . . . , Rt−1, St, At) while the distribu-
tion of At follows π(·|St) given Ht. To minimize clutter
the notation also suppresses the dependence on the
MDP whenever it is clear which MDP is referred.

For the discounted total reward criterion with discount
factor 0 ≤ γ < 1 the state value function vπ : S → R
under π is defined as,

vπ(s) := Eπ
[ ∞∑
t=0

γtr(St, At)
∣∣∣S0 = s

]
.

For µ ∈ ∆(S) and v : S → R, we define v(µ) =∑
s∈S µ(s)v(s)(= Es∼µ[v(s)]). The state-action value

function of π, qπ : S ×A → R, is defined as,

qπ(s, a) := r(s, a) + γ
∑

s′
P (s′|s, a)vπ(s′) .

The standard goal in a finite MDP under the discounted
criterion is to identify the optimal policy π∗ that maxi-
mizes the value function in every state s ∈ S such that
v∗(s) = supπ v

π(s) . In this paper though, we consider
the less demanding problem of finding a policy π that
maximizes vπ(µ) for a fixed initial state distribution
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µ, i.e., finding a policy π which achieves, or nearly
achieves v∗(µ).

For an initial state distribution µ ∈ ∆(S) and a policy
π, we define the (unnormalized) discounted occupancy
measure νπµ induced by µ, π, and the MDP as

νπµ (s, a) :=

∞∑
t=0

γtPπ(St = s,At = a|S0 ∼ µ) .

The value of a policy can be represented as an inner
product between the immediate reward function r and
the occupancy measure νπµ

vπ(µ) =
∑

s,a
r(s, a)νπµ (s, a) = 〈νπµ , r〉 .

For ε > 0, we define the effective horizon Hγ,ε :=

b ln(1/ε)
ln(1/γ)c.

2 In the case of fixed-horizon policy optimiza-

tion, instead of a discount factor, one is given a horizon
H > 0 and the value of a policy π given µ is redefined
to be vπ(µ) = Eπ[

∑H−1
t=0 r(St, At)

∣∣S0 ∼ µ]. As before,
the goal is to identify a policy whose value is close
to v∗(µ) = supπ v

π(µ). Finally, in the average reward
setting, vπ(µ) is redefined to be

vπ(µ) = lim inf
T→∞

Eπ
[

1

T

T−1∑
t=0

r(St, At)
∣∣∣S0 ∼ µ

]
.

For a given ε > 0, in all the various settings, we say that
π is ε-optimal in MDP M given µ if vπ(µ) ≥ v∗(µ)− ε.

3 Batch Policy Optimization

We consider policy optimization in a batch mode, or,
in short, batch policy optimization (BPO). A BPO
problem for a fixed sample size n is given by the tuple
B = (S,A, µ, n,P) where S and A are finite sets, µ is a
probability distribution over S, n is a positive integer,
and P is a set of MDP-distribution pairs of the form
(M,G), where M ∈ M(S,A) is an MDP over (S,A)
and G is a probability distribution over (S×A×R×S)n.
In what follows a pair (M,G) of the above form will
be called a BPO instance.

A BPO algorithm for a given sample size n and sets S,A
takes data D ∈ (S×A×R×S)n and returns a policy π
(possibly history-dependent). Ignoring computational
aspects, we will identify BPO algorithms with (possibly
randomized) maps L : (S ×A× R× S)n → Π, where
Π is the set of all policies. The aim is to find BPO
algorithms that find near-optimal policies with high
probability on every instance within a BPO problem:

2This is different with the normally used effective hori-

zon, ln(1/ε(1 − γ))
ln(1/γ)

, with only a ln(1/(1− γ)) factor.

Definition 1 ((ε, δ)-sound algorithm). Fix ε > 0 and
δ ∈ (0, 1). A BPO algorithm L is (ε, δ)-sound on
instance (M,G) given initial state distribution µ if

PD∼G
(
vL(D)(µ) > v∗(µ)− ε

)
> 1− δ ,

where the value functions are for the MDP M . Fur-
ther, we say that a BPO algorithm is (ε, δ)-sound on a
BPO problem B = (S,A, µ, n,P) if it is sound on any
(M,G) ∈ P given the initial state distribution µ.

Data collection mechanisms A data collection
mechanism is a way of arriving at a distribution G
over the data given an MDP and some other inputs,
such as the sample size. We consider two types of data
collection mechanisms. One of them is governed by
a distribution over the state-action pairs, the other is
governed by a policy and a way of deciding how a fixed
sample size n should be split up into episodes in which
the policy is followed. We call the first SA-sampling,
the second policy-induced data collection.

• SA-sampling: An SA-sampling scheme is speci-
fied by a probability distribution µlog ∈ ∆(S ×A)
over the state-action pairs. For a given sam-
ple size n, µlog together with an MDP M in-
duces a distribution Gn(M,µlog) over n tuples
D = (Si, Ai, Ri, S

′
i)
n−1
i=0 so that the elements of

this sequence form an i.i.d. sequence such that for
any i ∈ [n], (Si, Ai) ∼ µlog, (Ri, S

′
i) ∼ Q(·|Si, Ai).

• Policy-induced data collection A policy induced
data collection scheme is specified by (πlog,h),
where πlog : S → ∆(A) is a policy, which we
shall call the logging policy, and h = (hn)n≥1:
For each n ≥ 1, hn is an m-tuple (hj)j∈[m] of
positive integers for some m, specifying the length
of the m episodes in the data whose total length
is n. Then, for any n, the pair (πlog,hn) together
with an MDP M and an initial distribution
µ induces a distribution G(M,πlog,hn, µ) over
the n tuples D = (Si, Ai, Ri, S

′
i)
n−1
i=0 as follows:

The data consists of m episodes, with episode
j ∈ [m] having length hj and taking the form τj =

(S
(j)
0 , A

(j)
0 , R

(j)
0 , . . . , S

(j)
hj−1, A

(j)
hj−1, R

(j)
hj−1, S

(j)
hj

),

where S
(j)
0 ∼ µ, A

(j)
t ∼ πlog(·|S(j)

t ),

(R
(j)
t , S

(j)
t+1) ∼ Q(·|S(j)

t , A
(j)
t ). Then, for i ∈ [n],

(Si, Ai, Ri, S
′
i) = (S

(j)
t , A

(j)
t , R

(j)
t , S

(j)
t+1) where

j ∈ [m], t ∈ [hj ] are unique integers such that
i =

∑
j′<j hj + t. We call h data splitting scheme.

Now, under SA-sampling, the sets S, A, a logging dis-
tribution µlog and state-distribution µ over the respec-
tive sets give rise to the BPO problem B(µlog, µ, n) =
(S,A, µ, n,P(µlog, n)), where P(µlog, n) is the set of



Chenjun Xiao1,2 Ilbin Lee1 Bo Dai2 Dale Schuurmans1,2 Csaba Szepesvari1,3

all pairs of the form (M,Gn(M,µlog)), where M ∈
M(S,A) is an MDP with the specified state-action
spaces and Gn(M,µlog) is defined as above. Similarly,
a fixed policy πlog, fixed episode lengths h ∈ Nm+
for some m integer and a fixed state-distribution
µ give rise to a BPO problem B(πlog, µ,h) =
(S,A, µ, |h|,P(πlog,h)), where P(πlog,h) is the set of
pairs of the form (M,G(M,πlog,h, µ)) where M ∈
M(S,A) and G(M,πlog,h, µ) is a distribution as de-

fined above. Here, we use |h| to denote
∑m−1
s=0 hs which

is the sample size specified by h.

The sample-complexity of BPO with SA-sampling for
a given pair (ε, δ) and a criterion (discounted, finite
horizon, or average reward) is the smallest integer n
such that for each µ there exists a logging distribution
µlog and a BPO algorithm L for this sample size such
that L is (ε, δ)-sound on the BPO problem B(µlog, µ, n).
Similarly, the sample-complexity of BPO with policy-
induced data collection for a given pair (ε, δ) and a
criterion is the smallest integer n such that for each µ
there exists a logging policy πlog and episode lengths
h ∈ Nm+ with |h| = n and a BPO algorithm that is
(ε, δ)-sound on B(πlog, µ,h).

The SA-sampling based data collection is realistic when
there is a simulator that allows this type of data col-
lection (Agarwal et al., 2020a; Azar et al., 2013; Cui
and Yang, 2020; Li et al., 2020). Besides this scenario,
it is hard to imagine a case when SA-sampling can be
realistically applied. Indeed, in most practical settings,
data collection happens by following some policy, usu-
ally from the same initial state distribution that is used
in the objective of policy optimization.

For policy-induced data collection, a key restriction
on the logging policy is that it is chosen without any
knowledge of the MDP. Moreover, that the logging pol-
icy is memoryless rules out any adaptation to the MDP.
The intention here is to model a “tabula rasa” setting,
which is relevant when one must find a good policy in
a completely new environment but only passive data
collection is available. However, our lower bound shows
that there is not much to be gained even if the logging
policy is known to be a good policy: If the goal is
to improve the suboptimality level of the logging pol-
icy, by saying, a factor of two, the exponential sample
complexity lower bound still applies.

From a statistical perspective, the main difference be-
tween these two data collection mechanisms is that
for policy-induced data-collection the distribution of
(Si, Ai) will depend on the specific MDP instance, while
this is not the case for SA-sampling. As we shall see,
this makes BPO under SA-sampling provably exponen-
tially more efficient.

4 Lower Bounds

We first give a lower bound on the sample complexity
for BPO when the data available for learning is obtained
by following some logging policy:

Theorem 1 (Exponential sample complexity with pol-
icy-induced data collection in discounted problems).
For any positive integers S and A, discount factor
γ ∈ [0, 1) and a pair (ε, δ) such that 0 < ε < 1/2 and
δ ∈ (0, 1), any (ε, δ)-sound algorithm needs at least
Ω(Amin(S−1,Hγ,2ε+1) ln(1/δ)) episodes of any length
with policy-induced data collection for MDPs with S
states and A actions under the γ-discounted total ex-
pected reward criterion. The result remains true if the
MDPs are restricted to have deterministic transitions.

Remark 1. Random rewards are not essential in prov-
ing Theorem 1 as long as stochastic transitions are al-
lowed: First, the proof can be modified to use Bernoulli
rewards and stochastic transitions can be used to emu-
late Bernoulli rewards. Note also that for ρ-subgaussian
random reward, the sample complexity in Theorem 1 be-
comes Ω(max{1, ρ2}Amin(S−1,H+1) ln(1/δ)). The maxi-
mum appears exactly because stochastic transitions can
emulate Bernoulli rewards.

Simplifying things a bit, the theorem states that the
sample complexity is exponential as the number of
states and the planning horizon grow together and
without a limit. Note that this is in striking contrast to
sample complexity of learning actively, or even with SA-
sampling, as we shall soon discuss it. The hard MDP
instance used to construct the lower bound is adopted
from the combination lock problem (Whitehead, 1991).
The detailed proof is provided in the supplementary
material, as are the proofs of the other statements. By
realizing that tabular MDPs can be considered as using
one-hot features, the exponential lower bound still hold
for linear function approximation.

Corollary 1 (Exponential sample complexity with
linear function approximation in discounted problem).
Let d,A be positive integers. Then the same result
as Theorem 1 with S replaced by d holds when the
data collection happens for some MDP M ∈M(S, [A])
and in addition to the dataset the learner is also given
access to a featuremap φ : S → Rd such that for every
policy π of this MDP, there exists θ ∈ Rd such that
vπ(s) = φ(s)>θ, ∀s ∈ S, where vπ is the value function
of π in M . The result also remains true if the MDPs
are restricted to have deterministic transitions.

One may wonder about whether this exponential com-
plexity can be avoided if more is assumed about the
logging policy. In particular, one may hope that im-
proving on an already good logging policy (i.e., one
that is close to optimal) should be easier. Our next
result shows that this is not the case.
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Corollary 2 (Warm starts do not help). Fix πlog,
0 < ε < 1/2, δ ∈ (0, 1), S and A as before. Let Mπlog

2ε

denote a set of MDPs with deterministic transitions,
state space S = [S] and action space A = [A] such that
πlog is 2ε-optimal for all M ∈ Mπlog

2ε . Then for any
length of sampled episodes, any (ε, δ)-sound algorithm
needs at least Ω(Amin(S−1,H+1) ln(1/δ)) episodes, where
H = Hγ,2ε.

The third corollary shows that when the logging policy
is not uniform, the lower bound gets worse.

Corollary 3 (The uniform policy is the best
logging policy). If πlog is not uniform at every
state, then the sample complexity in Theorem 1
increases, and in particular, Au can be replaced
by maxS′⊂S,|S′|=u

∏
s∈S′ maxa

1
πlog(a|s) where u =

min(S− 1, H + 1).

For fixed-horizon policy optimization, we have the fol-
lowing result similar to Theorem 1

Theorem 2 (Exponential sample complexity with pol-
icy-induced data collection in finite-horizon problems).
For any positive integers S and A, planning horizon
H > 0 and a pair (ε, δ) such that 0 < ε < 1/2 and
δ ∈ (0, 1), any (ε, δ)-sound algorithm needs at least
Ω(Amin(S−1,H) ln(1/δ)/ε2) episodes with policy-induced
data collection for MDPs with S states and A actions
under the H-horizon total expected reward criterion.
The result also remains true if the MDPs are restricted
to have deterministic transitions.

Remark 1 and Corollaries 1 to 3 also remain essentially
true; we omit these to save space. As shown in the next
result, the sample complexity could be even worse in av-
erage reward MDPs. The different sample complexities
of the average reward problems and the two previous
settings can be explained as follows. In discounted and
finite-horizon problems, rewards beyond the planning
horizon do not have to be observed in data to find a
near optimal policy. In contrast, this is not the case
for the average reward criterion: rewards at states that
are “hard” to reach may have to be observed enough
in data. Thus, the fact that the planning horizon is
finite is crucial for a finite sample complexity.

Theorem 3 (Infinite sample complexity with policy-in-
duced data collection in average reward problems). For
any positive integers S and A, any pair (ε, δ) such that
0 < ε < 1/2 and δ ∈ (0, 1), the sample complexity
of BPO with policy-induced data collection for MDPs
with S states and A actions under the average reward
criterion is infinite.

For SA-sampling, the sample complexity becomes poly-
nomial in the relevant quantities: Staying with dis-
counted problems, this is implied by the results of
Agarwal et al. (2020a) who study plug-in methods when

a generative model is used to generate the same number
of observations for each state-action pair. In particu-
lar, they show that in this setting, if N samples are
available in each state-action pair then the plug-in algo-
rithm will find a policy with vπ ≥ v∗−ε1 provided that
N = Ω(ln SA

(1−γ)δ/(ε
2(1− γ)3)). This implies a sample

complexity upper bound of size Õ(SAH3 ln(1/δ)/ε2)
where H = 1/(1− γ), though for the stronger require-
ment that π is optimal not only from µ, but from each
state. The upper bound is essentially matched by a
lower bound by Sidford et al. (2018) who prove their
result in Section D of their paper using a reduction to
a result of Azar et al. (2013) that stated a similar sam-
ple complexity lower bound for estimating the optimal
value. Our result is stronger than these results, which
require the algorithm to produce a “globally good” pol-
icy, i.e., a policy that is near-optimal no matter the
initial state, while in our result, the policy needs to be
good only at a fixed initial state distribution.

Theorem 4. Fix any γ0 > 0. Then, there exist some
constants c0, c1 > 0 such that for any γ ∈ [γ0, 1), any
positive integers S and A, δ ∈ (0, 1), and 0 < ε ≤
c0/(1−γ), the sample size n needed by any (ε, δ)-sound
algorithm that produces as output a memoryless policy
and works with SA-sampling for MDPs with S states
and A actions under the γ-discounted expected reward

criterion must be so that is at least c1
SA ln(1/(4δ))
ε2(1−γ)3 .

Our proof for the lower bound essentially follows the
ideas of Azar et al. (2013), but an effort was made
to make the proof more streamlined. In particular,
the new proof uses Le Cam’s method. We leave it for
future work to extend the result to algorithms whose
output is not restricted to memoryless policies.

5 Upper Bounds

We now consider the “plug-in” algorithm for BPO and
the discounted total expected reward criterion and will
present a result for it that shows that this simple ap-
proach essentially matches the sample complexity lower
bound of Theorem 1. For simplicity, we assume that the
reward function is known.3 Given a batch of data, the
plug-in algorithm uses sample means to construct esti-
mates for the transition probabilities. These can then
be fed into any MDP solver to get a policy. The plug-in
method is an obvious first choice that has proved its
value in a number of different settings (Agarwal et al.,
2020a; Azar et al., 2013; Cui and Yang, 2020; Li et al.,
2020; Ren et al., 2021; Xiao et al., 2021).

3As noted also, e.g., by Agarwal et al. (2020a), the
sample size requirements stemming from the need to obtain
a sufficiently accurate estimate of the reward function is
a lower order term compared to that needed to accurately
estimate the transition probabilities.
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For the details, let D = (Si, Ai, Ri, S
′
i)
n−1
i=0 be the data

available to the algorithm. We let

N(s, a, s′) =

n−1∑
i=0

I (Si = s,Ai = a, S′i = s′)

denote the number of transitions observed in the data
from s to s′ while action a is used. We also letN(s, a) =∑
s′ N(s, a, s′) be the number of times the pair (s, a) is

seen in the data. Provided that the visit count N(s, a)
is positive, we let

P̂ (s′|s, a) =
N(s, a, s′)

N(s, a)

be the estimated probability of transitioning to s′ given
that a is taken in state s. We let P̂ (s′|s, a) = 0 for all
s′ ∈ S when N(s, a) is zero.4 The plug-in algorithm re-
turns a policy by solving the planning problem defined
with (P̂ , r), exploiting that planning algorithms need
only the mean rewards and the transition probabilities
(Puterman, 2014). By slightly abusing the definitions,
we will hence treat (P̂ , r) as an MDP and denote it by
M̂ . In the result stated below we also allow a little
slack for the planner; i.e., the planner is allowed to
return a policy which is εopt-optimal.

The main result for this section is as follows:

Theorem 5. Fix S, A, an MDP M ∈M(S,A) and a
distribution µ on the state space of M . Suppose δ > 0,
ε > 0, and εopt > 0. Assume that the data is collected
by following the uniform policy and it consists of m
episodes, each of length H = Hγ,(1−γ)ε/(2γ). Let π̂ be

any deterministic, εopt-optimal policy for M̂ = (P̂ , r)

where P̂ is the sample-mean based empirical estimate of
the transition probabilities based on the data collected.
Then if

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ε2

)
,

where Ω̃ hides log factors of S,A and H, we have
vπ̂(µ) ≥ v∗(µ)−4ε− εopt with probability at least 1− δ.

Remark 2. Our proof technique for the upper bound
can be directly applied to the fixed H-horizon setting
and gives an identical result.

In summary, when the logging policy is the uniform one,
the plug-in algorithm will find an O(ε) optimal policy
with Õ(S3Amin(H,S)+2ln (1/δ) /(ε2(1− γ)4)) episodes.

4We note that the particular values chosen here do not
have an essential effect on the results. For example, when

P̂ (·|s, a) is the uniform distribution over S, it will only
effect the constant factor in Theorem 5 (see Eq. (15) in the
appendix).

We note that for BPO with policy-induced data collec-
tion, it is not possible to directly apply a reductionist
approach based on analysis for SA-sampling, which
requires a uniform lower bound on the number of tran-
sitions observed at all the state-action pairs, which
could even be infinite. The key to avoid this is to
show that the ratio of visit probabilities for an arbi-
trary policy vs. the uniform policy in step t is at most
Amin(t+1,S). We provide the proof of Theorem 5, as
well as an analogous result for the pessimistic policy
(Jin et al., 2021; Buckman et al., 2021; Kidambi et al.,
2020; Yu et al., 2020; Kumar et al., 2020; Liu et al.,
2020; Xiao et al., 2021) in the supplementary material.

6 Related Work

Our work is motivated by that of Zanette (2021) who
considers the sample complexity of BPO in MDPs and
linear function approximation. One of the main results
in this paper (Theorem 2) is that the (1/2, 1/2) sample
complexity with a “reinforced” policy-induced data col-
lection in MDPs whose optimal action-value function is
realizable with a d-dimensional feature map given to the

learner is at least Ω((1/(1− γ))
d−1
2 ). The “reinforced”

data collection gives the learner full access to the tran-
sition kernel and rewards at states that are reachable
from the start states with the policy (or policies) cho-
sen. Thus, the learner here has more information than
in our setting, but the problem is made hard by the
presence of linear function approximators. As noted
by Zanette, the same setting is trivially easy in the fi-
nite horizon setting, thus the result shows a separation
between the infinite and finite horizon settings. The
weakness of this separation is that the “reinforced data
collection” mechanism is unrealistic. A second result
in the paper (Theorem 3) shows that in the presence
of function approximation, even under SA-sampling,
the sample complexity is still exponential in d (as in
Theorem 2 mentioned above) even when the features
are so that the action-value functions of any policy can
be realized. This exponential sample complexity is to
be contrasted with the fully polynomial result available
for the same setting when a generative model is avail-
able (Lattimore et al., 2020). Thus, this result shows
an exponential separation between passive and active
learning. It is interesting to note that this separation
disappears in the tabular setting under SA-sampling.

For linear function approximation under SA-sampling a
number of authors show related exponential (or infinite)
sample complexity when the sampling distribution is
chosen in a semi-adversarial way (Amortila et al., 2020;
Wang et al., 2021; Chen et al., 2021) in the sense that
it can be chosen to be the worst distribution among
those that provide good coverage in the feature space
(expressed as a condition on the minimum eigenvalue of
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the feature second moment matrix). The main message
of these results is that good coverage in the feature
space is insufficient for sample-efficient BPO. Since the
hard examples in these works are tabular MDPs with
O(d) state-action pairs, the uniform distribution over
the state-action space is sufficient to guarantee poly-
nomial sample complexity in the same “hard MDPs”.
Hence, these hardness results also have a distinctly
different feature than the hardness result we present.

A different line of research can be traced back to the
work of Li et al. (2015) who were concerned with sta-
tistically efficient batch policy evaluation (BPE) with
policy-induced data-collection. The significance of this
work for our paper is that at the end of the paper the
authors of this work added a sidenote stating that the
sample complexity of finite horizon BPE must be expo-
nential in the horizon. Their example is a combination-
lock type MDP, which served as an inspiration for the
constructions we use in our lower bound proofs. No ar-
guments are made for the suitability of the lower-bound
for BPO, nor is a formal proof given for the exponential
sample complexity for BPE. As such, our work can be
seen as the careful examination of this remark in this
paper and its adoption to BPO. A closely related, but
weaker observation, is that the (vanilla) importance
sampling estimators for BPE suffer an exponential blow-
up of the variance (Guo et al., 2017), a phenomenon
that Liu et al. (2018) call the curse of horizon in BPE.
This exponential dependence is also pointed out by
Jiang and Li (2016), who provide a lower bound on the
asymptotic variance of any unbiased estimator in BPE.

Lately, much effort has been devoted to “breaking”
this aforementioned curse. The basis of these works
is the observation that if sufficient coverage for the
state-action space is provided by the logging policy, the
curse should not apply (i.e., plug-in estimators should
work well). Considering finite-horizon problems for
now, the coverage condition is usually expressed as
a lower bound dm on the smallest visit probabilities
of the logging policy. The main result here, due to
Yin et al. (2021a), is that the sample-complexity (or,
better, episode-complexity) of BPO, with an inhomoge-
neous H-step transition structure and up to constant
and logarithmic factors, is H3/(dmε

2), achieved by the
plug-in estimator. According to Yin et al. (2021b),
this complexity continues to hold for the discounted
setting when it represents the “step complexity” (as
opposed to “episode complexity”). The same work also
removes a factor of H both from the lower and upper
bounds for the finite horizon setting with homogeneous
transitions. A further strengthening of the results for
the homogeneous setting is due to Ren et al. (2021)
who remove an additional H factor under the assump-
tion that the total reward in every episode belongs

to the [0, 1] interval. These results justify the use of
coverage as a way of describing the inherent hardness
of BPO. These results are complementary to ours. The
lower bound in these works for fixed dm is achieved
by keeping the number of state-action pairs free, while
we consider sample complexity for a fixed number of
state-action pairs.

An alternative approach to characterize the sample-
complexity of BPO is followed by Jin et al. (2021) who,
for the inhomogeneous transition kernel, finite-horizon
setting, consider a weighted error metric. While their
primary interest is in obtaining results for linear func-
tion approximation, their result can be simplified back
to the tabular setting. Their main result then shows
that the minimax expected value of this weighted met-
ric is lower bounded by a universal constant, while the
pessimistic algorithm can match this bound with poly-
nomial factors. Note that the results that are phrased
with the help of the minimum coverage probability can
also be rewritten as results on the minimax error for
a weighted error, where the weights would include the
minimum coverage probabilities. All these results are
complementary to each other.

Average reward BPO with a parametric policy class for
finite MDPs using policy-induced data is considered
by Liao et al. (2020). The authors derive an “efficient”
value estimator, and the policy returned is defined
as the one that achieves the largest estimated value.
An upper bound on the suboptimality of the policy
returned is given in terms of a number of quantities
that relate to the policy parameterization provided that
a coverage condition is satisfied similar to the coverage
assumption discussed above.

Finally, we note that there is extensive literature on
BPE; the reader is referred to the works of (Yin et al.,
2021a; Yin and Wang, 2020; Ren et al., 2021; Uehara
et al., 2021; Pananjady and Wainwright, 2020) and the
references therein. The most relevant works for SA-
sampling are concerned with the sample complexity of
planning with generative models; see, e.g., (Azar et al.,
2013; Agarwal et al., 2020a; Yin and Wang, 2020) and
the references therein.

7 Conclusion

The main motivation for our paper is to fill a substan-
tial gap in the literature of batch policy optimization:
While the most natural setting for batch policy op-
timization is when the data is obtained by following
some policy, the sample complexity, the minimum num-
ber of observations necessary and sufficient to find a
good policy, of batch policy optimization with data
obtained this way has never been formally studied.
Our results characterize how hard BPO under passive
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data collection exactly is and how the difficulty scales
as the problem parameter changes. While our main
result that, with a finite planning horizon, the sample
complexity scales exponentially is perhaps somewhat
expected, this has never been formally established and
should therefore be a valuable contribution to the field.
In fact, both the lower and the upper bound required
considerable work to be rigorously establish and that
the sample complexity is finite is less obvious in light of
the previous results that involved “minimum coverage”
as a superficial argument with these results suggest
that the sample complexity could grow without bound
if some state-action pairs have arbitrary small visit
probabilities. That these results, as far as the details
are concerned, are non-obvious is also shown by the
gap that we could not close between the upper and
lower sample complexity bounds. Another non-obvious
insight of our work is that warm starts provably cannot
help in reducing the sample complexity. Our results
should be given even more significance by the fact that
the tabular setting provides the foundation for most of
the insights that lead to better algorithms in RL.
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Dale Schuurmans gratefully acknowledge funding from
the Canada CIFAR AI Chairs Program, Amii and
NSERC.

References

Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-
based reinforcement learning with a generative model
is minimax optimal. In COLT, pages 67–83, 2020a.

Rishabh Agarwal, Dale Schuurmans, and Mohammad
Norouzi. An optimistic perspective on offline rein-
forcement learning. In International Conference on
Machine Learning, pages 104–114. PMLR, 2020b.

Philip Amortila, Nan Jiang, and Tengyang Xie. A
variant of the Wang-Foster-Kakade lower bound for
the discounted setting. arXiv preprint 2011.01075,
2020.

Mohammad Gheshlaghi Azar, Rémi Munos, and
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Appendix: The Curse of Passive Data Collection in Batch Reinforcement Learning

The purpose of this appendix is to give the proofs for the results in the main paper.

A An absolute bound on the state-action probability ratios under the uniform
logging policy

For a policy π, t ≥ 0, (s, a) ∈ S ×A let

νπµ,t(s, a) := Pπ(St = s,At = a|S0 ∼ µ) .

As noted beforehand, ratios of these marginal probabilities appear in previous upper (and lower) bounds on
how well the value of a target policy πtrg can be estimated given data from a logging policy πlog. To minimize

clutter, let νtrg
µ,t stand for ν

πtrg

µ,t and, similarly, let νlog
µ,t stand for ν

πlog

µ,t . The purpose of this section is to present a

short calculation that bounds
νtrg
µ,t(s,a)

νlog
µ,t(s,a)

, which is the ratio that appears in the previously mentioned bounds. In

particular, we bound this ratio for the uniform logging policy when πlog(a|s) = 1/A.

Proposition 1. When πlog is the uniform policy, for any t ≥ 0, (s, a) ∈ S ×A and πtrg is any target policy,

νtrg
µ,t (s, a)

νlog
µ,t (s, a)

≤ Amin(t+1,S) . (1)

Proof. First we prove that the ratio is bounded by At+1. Fix an arbitrary pair (st, at) ∈ S ×A. Let s0:t denote a
sequence (s0, . . . , st) of states and let a0:t denote a sequence (a0, . . . , at) of actions. We have

νtrg
µ,t (st, at) =

∑
s0:t−1
a0:t−1

µ(s0)πtrg(a0|s0)p(s1|s0, a0) . . . πtrg(at−1|st−1)p(st|st−1, at−1)πtrg(at|st)

≤
∑
s0:t−1
a0:t−1

At+1µ(s0)πlog(a0|s0)p(s1|s0, a0) . . . πlog(at−1|st−1)p(st|st−1, at−1)πlog(at|st)

= At+1νlog
µ,t (st, at) .

Dividing both sides by νlog
µ,t (st, at) gives the desired bound. The inequality is tight when there is only one possible

path (s0, a0, s1, a1, . . . , st, at) to (st, at) in an MDP and the target policy is the deterministic policy taking the
actions in the unique path.

We now show that the ratio on the left-hand side of Eq. (1) is also bounded by AS. For this, let DET be the set
of stationary deterministic policies over S and A. Then, for (s, a) ∈ S ×A we have

νtrg
µ,t (s, a) ≤

∑
π∈DET

νπµ,t(s, a) = AS 1

AS

∑
π∈DET

νπµ,t(s, a) = ASν
πlog

µ,t (s, a) , (2)

where the first inequality follows because ν
πtrg

µ,t (s, a) ≤ maxπ ν
π
µ,t(s, a) = maxπ∈DET ν

π
µ,t(s, a), while the last follows

because the uniform policy and the uniform mixture of all deterministic policies are the same. To see the latter,
note that if P is the probability distribution induced by the interconnection of the uniform mixture of deterministic
policies and the MDP over the space of state-action histories (S0, A0, S1, A1, . . . ) ∈ (S ×A)N, for any t, a ∈ A,
and ht = (s0, a0, . . . , st−1, at−1, st), letting Ht = (S0, A0, . . . , St−1, At−1, St), we have

P(At = a|Ht = ht) =
1

AS

∑
π∈DET

Pπ(At = a|Ht = ht) =
1

AS

∑
π∈DET

I(a = π(st)) =
1

AS
AS−1 =

1

A
.

The statement follows because t, ht, and a were arbitrary and the probability measure induced by the intercon-
nection of a policy and the MDP is unique over the canonical probability space of the MDP whose sample set is
the set of state-action trajectories.

The inequality in Eq. (2) is tight under the same condition as before: when there is only one possible path to
(s, a) in an MDP and the target policy is the deterministic policy taking the actions in the unique path.

From the proof it is clear that the result continues to hold even if the target policy depends on the full history.
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sH−1 sH zasH−1 A

As0 As1 AsH−1

asH , R ∼ N

Figure 1: Illustration of the MDPs used in the proof of Theorem 1. For ε > 0, Let H = Hγ,2ε. The state space
consists of two parts S = {s0, s1, . . . , sH} ∪ {z}, where s0 is the initial state, z is a self-absorbing state. For any
s ∈ S, let as = arg mina πlog(a|s) be the action with minimal chance of being selected by πlog, and As = A\ {as}.
The transitions and rewards are as follows: State z is absorbing under any action. For i ∈ {0, . . . ,H − 1}, at
state si under action asi the MDP transits to si+1, while it transits to z under any other actions. From sH , the
next state is also z under any action. The rewards are deterministically zero for any state-action pair except
when the state is sH , and action aSH is taken, when it is random with either a positive or negative mean.

B Lower Bound Proofs

Before these proofs, an equivalent form of (ε, δ)-soundness will be useful to consider. Recall that L is (ε, δ)-sound
on instance (M,G) if

PD∼G
(
vL(D)(µ) > v∗(µ)− ε

)
> 1− δ ,

Now, PD∼G
(
vL(D)(µ) > v∗(µ)− ε

)
= 1 − PD∼G

(
vL(D)(µ) ≤ v∗(µ)− ε

)
. Hence, L is (ε, δ)-sound on instance

(M,G) if and only if

PD∼G
(
vL(D)(µ) ≤ v∗(µ)− ε

)
< δ .

Finally, by reordering, this last display is equivalent to

PD∼G
(
v∗(µ)− vL(D)(µ) ≥ ε

)
< δ .

Thus, L is not (ε, δ) sound on (M,G) if

PD∼G
(
v∗(µ)− vL(D)(µ) ≥ ε

)
≥ δ . (3)

We will need some basic concepts, definitions, and results from information theory. For two probability measures,
P and Q over a common measurable space, we use DKL(P,Q) to denote the relative entropy (or Kullback-Leibler
divergence) of P with respect to Q, which is infinite when P is not absolutely continuous with respect to Q,
and otherwise it is defined as D(P ||Q) =

∫
log( dPdQ )dP , where dP/dQ is the Radon-Nikodym derivative of P

with respect to Q. By abusing notation, we will use P (X) to denote the probability distribution P (X ∈ ·) of
a random element X under probability measure P . For jointly distributed random elements X and Y , we let
P (X|Y ) denote the conditional distribution of X given Y , P (X ∈ ·|Y ), which is Y -measurable. With this, the
chain rule for relative entropy states that

DKL(P (X,Y ), Q(X,Y )) =

∫
DKL(P (X|Y ), Q(X|Y ))dP +DKL(P (Y ), Q(Y )) ,

which, of course, extends to any number of jointly distributed random elements.

We will also need the following result, which is given, for example, as Theorem 14.2 in the book of Lattimore and
Szepesvári (2020).

Lemma 1 (Bretagnolle–Huber inequality). Let P and Q be probability measures on the same measurable space
(Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp (−DKL(P,Q)) , (4)
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where Ac = Ω \A is the complement of A.

Proof of Theorem 1. We first consider the case where S ≥ H := Hγ,2ε + 2.

We let {s0, s1, . . . , sH , z} be arbitrary, distinct states and choose µ to be the distribution that is concentrated at
s0. Let πlog be the distribution used to construct the batch (which could depend on µ). We now define two MDPs,
M1,M−1 ∈ M(S,A) (cf. Fig. 1). For any s ∈ S, let as = arg mina πlog(a|s) be the action with the minimal
chance of being selected by πlog. Note that πlog(as|s) ≤ 1/A.

The transition structure in the two MDPs are identical, the transitions are deterministic and almost all the
rewards are also the same with the exception of one transition. The details are as follows. State z is absorbing:
For any action taken at z, the next state is z. For i < H, si is followed by si+1 when asi is taken, while the next
state is z when any other action is taken at this state. At sH under any action, the next state is z. The rewards
are deterministically zero for any state-action pair except when the state is sH and action asH is taken at this
state. In this case, the reward R is drawn from a Gaussian with mean α ∈ {−1,+1} in MDP Mα.

We will use vπα, v∗α and νµ,α to denote the value function of a policy π on Mα, the optimal value function on Mα,
and the discounted occupancy measure on Mα with µ as the initial state distribution, respectively. Note that

v∗1(s0) = γH ≥ γ
ln(1/(2ε))
ln(1/γ) = 2ε, where the first inequality is because γ ≤ 1 and H ≤ ln(1/(2ε))

ln(1/γ) by its definition.

Note also that v∗−1(s0) = 0.

Fix πlog and the episode lengths h = (h0, . . . , hm−1). We show that if the number of episodes m is too small,
then no algorithm will be sound both on M1 and M−1.

For this fix an arbitrary BPO algorithm L. Let the data collected by following the logging policy πlog be
D = (Si, Ai, Ri, S

′
i)
n−1
i=0 . Let π be the output of L. Let Pα be the distribution over (D, π) induced by using πlog

on Mα with episode lengths h and µ and then running L on D to produce π. Note that both P1 and P−1 share
the same measure space. Let Eα be the expectation operator for Pα.

Define the event E = {vπ1 (s0) < ε}. Let Ec be the complement of E. Let a ∨ b denote the maximum of a and b.
We first prove the following claim:

Claim: If

P1(E) ∨ P−1(Ec) ≥ δ (5)

then L is not (ε, δ)-sound.

Proof of the claim. By Eq. (3), L is not (ε, δ)-sound if

P1(v∗1(s0)− vπ1 (s0) ≥ ε) ∨ P−1(v∗−1(s0)− vπ−1(s0) ≥ ε) ≥ δ .

By v∗1(s0) ≥ 2ε, we have

P1(v∗1(s0)− vπ1 (s0) ≥ ε) ≥ P1(vπ1 (s0) ≤ ε) ≥ P1(vπ1 (s0) < ε) = P1(E) .

Similarly, by v∗−1(s0) = 0, we have

P−1(v∗−1(s0)− vπ−1(s0) ≥ ε) = P−1(vπ−1(s0) ≤ −ε) ≥ P−1(vπ1 (s0) ≥ ε) = P−1(Ec) ,

where the inequality follows because if vπ1 (s0) ≥ ε holds then since vπ1 (s0) = 〈νπ1 , rπ1 〉 = νπ1 (sH , asH )rπ1 (sH , asH ) =
νπ1 (sH , asH ) and since the transitions in M1 and M−1 are same, we have νπ−1(sH , asH ) = νπ1 (sH , asH ) ≥ ε and
therefore vπ−1(s0) = −νπ−1(sH , asH ) ≤ −ε.

Putting things together, we get that

P1(v∗1(s0)− vπ1 (s0) ≥ ε) ∨ P−1(v∗−1(s0)− vπ−1(s0) ≥ ε) ≥ P1(E) ∨ P−1(Ec) ≥ δ,

where the last inequality follows by our assumption.
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It remains to prove that Eq. (5) holds. For this, note that by the Bretagnolle-Huber inequality (Lemma 1) we
have,

P1(E) ∨ P−1(Ec) ≥ P1(E) + P−1(Ec)

2
≥ 1

4
exp(−DKL(P1,P−1)) . (6)

It remains to upper bound DKL(P1,P−1). Let U0 = S0, U1 = A0, U2 = R0, U3 = S′0, U4 = S1, . . . , U4(n−1) = S′n−1.
Further, for 0 ≤ j ≤ 4n− 1 let U0:j = (U0, . . . , Uj) and let U0:−1 stand for a “dummy” (trivial) random element.
By the chain rule for relative entropy,5

DKL(P1,P−1) = E1[DKL(P1(π|U0:4(n−1)),P−1(π|U0:4(n−1)))]

+

4(n−1)∑
j=0

E1[DKL(P1(Uj |U0:j−1),P−1(Uj |U0:j−1))] .

Note that, P1-almost surely, P1(π|U0:4(n−1)) = P−1(π|U0:4(n−1)) since, by definition, L assigns a fixed
probability distribution over the policies to any possible dataset. For 0 ≤ j ≤ 4(n − 1), let Dj =
DKL(P1(Uj |U0:j−1),P−1(Uj |U0:j−1)). Since the only difference between M1 and M−1 is in the reward dis-
tribution corresponding to taking action asH in state sH , unless j = 4i+ 2 for some i ∈ [n] and Si = sH , Ai = asH ,
we have Dj = 0 P1-almost surely. Further, when j = 4i + 2, P1-almost surely we have Dj = I{Si = sH , Ai =
asH}(1− (−1))2/2 = 2I{Si = sH , Ai = asH} by the formula for the relative entropy between N (1, 1) and
N (−1, 1). Therefore,

DKL(P1,P−1) = 2E1

[
n−1∑
i=0

I{Si = sH , Ai = asH}

]
≤ 2mP1(SH = sH , AH = asH ) ≤ 2m

AH+1
,

where the first inequality follows from that, by the construction of M1, sH can be visited only in the Hth step of
any episode, the data in distinct episodes are identically distributed, and there are at most m episodes. The
second inequality follows because

P1(SH = sH , AH = asH ) = P1(AH = asH |SH = sH)P1(SH = sH)

= P1(AH = asH |SH = sH)P1(AH−1 = asH−1
, SH−1 = sH−1)

= P1(AH = asH |SH = sH)P1(AH−1 = asH−1
|SH−1 = sH−1) . . .P1(A0 = as0 |S0 = s0)

= πlog(as0 |s0) . . . πlog(asH |sH) ≤ 1

AH+1
,

where the last inequality follows by the choice of asi , i ∈ [H + 1]. Plugging the upper bound on DKL(P1,P−1)
into Eq. (6), we get that

P1(E) ∨ P−1(Ec) ≥ 1

4
exp(−2mA−(H+1))

which is larger than δ if m ≤ (AH+1 ln 1
4δ )/2. The result then follows by our previous claim.

To prove the result for S < Hγ,2ε+2, we use the same construction as described above with Hγ,2ε′ = S−2 < Hγ,2ε

for some ε′ ≥ ε. Then any learning algorithm L needs at least (AHγ,2ε′+1 ln 1
4δ )/2 episodes to be (ε′, δ)-sound. To

be (ε, δ)-sound it needs at least the same amount of data. This finishes the proof.

Proof of Corollary 2. The result directly follows from the lower bound construction in Theorem 1.

Proof of Corollary 3. We first consider the case S ≥ H + 2. Recall that H = Hγ,2ε. Define Smin to be the set of
H + 1 states that have the smallest πlog,min(s) values, where we let πlog,min(s) = mina∈A πlog(a|s). Construct the
same MDPs as in the proof of Theorem 1 using the states in Smin to form the chain. Then, the same proof holds
with AH+1 replaced by ∏

s∈Smin

1

πlog,min(s)
. (7)

5Here, we use a notation common in information theory, which uses P (X) (P (X|Y )) to denote the distribution of X
induced by P (the conditional distribution of X, given Y , induced by P , respectively).
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Since πlog is not uniform, the above value is strictly greater than AH+1.

For the case S < H + 2, let Smin to be the set of S − 1 states that have the smallest πlog,min(s) values. Construct
the same MDPs as above. Then the same arguments hold as in the last part of the proof of Theorem 1 except that
AS−1 is replaced by equation 7, which is strictly greater than AS−1. This concludes the proof of the corollary.

Proof of Theorem 2. This proof is similar to the proof of Theorem 1. We first consider the case where S ≥ H + 1.
We construct the same MDPs as in the proof of Theorem 1 except that the chain consists of H states, that is,
ending at sH−1 and the hidden reward R is at (sH−1, asH−1

). The logging policy πlog collects m trajectories with

length H as the dataset D = (Si, Ai, Ri, S
′
i)
mH−1
i=0 , where S0 = SH = · · · = S(m−1)H = s0. Now we consider two

MDPs Mα ∈M, α ∈ {2ε,−2ε}, where the reward R ∼ N (α, 1) on Mα.

We use the same notation as in the proof of Theorem 1. Define the event E = {vπ2ε(s0) < ε}. Then, by following
the same arguments we can show that L is not (ε, δ)-sound on M2ε if P2ε(E) ≥ δ and that L is not (ε, δ)-sound
on M−2ε if P−2ε(E

c) ≥ δ.

By the Bretagnolle–Huber inequality, we have

max{P2ε(E),P−2ε(E
c)} ≥ P2ε(E) + P−2ε(E

c)

2
≥ 1

4
exp(−DKL(P2ε,P−2ε)) .

Similarly as in the proof of Theorem 1, we obtain

DKL(P2ε,P−2ε) = 8ε2E2ε

[
mH−1∑
i=0

I{Si = sH−1, Ai = asH−1
}

]

= 8mε2E2ε

[
H−1∑
i=0

I{Si = sH−1, Ai = asH−1
}

]

= 8mε2P2ε(SH−1 = sH−1, AH−1 = asH−1
) ≤ 8mε2

AH
,

where the second equality is obtained by the fact that the episodes are independently sampled. Combining the

above together we have that if m ≤ AH ln 1
4δ

8ε2 , max{P2ε(E),P−2ε(E
c)} ≥ δ, which means that L is not (ε, δ)-sound

on either M2ε or M−2ε.

To prove the result for S ≤ H, we use the same construction as described above with H ′ = S− 1 < H. Then any

learning algorithm L needs at least
AH
′

ln 1
4δ

8ε2 trajectories to be (ε, δ)-sound. This finishes the proof.

Proof of Theorem 3. We use MDPs similar to those in the proof of Theorem 1 but with some key differences.
Let the state space consist of three parts S = {s0, s1, . . . , sH−1} ∪ {y} ∪ {z}, where H = S − 2. Consider µ
concentrated on s0. For any s ∈ S, let as = arg mina πlog(a|s). At si for i ∈ {0, . . . ,H − 2}, it transits to si+1 by
taking asi and transits to z by taking any other actions, where z is an absorbing state. At sH−1, by taking any
action it transits to y with probability p > 0 and goes back to s0 with probability 1− p. y is also an absorbing
state, but there is a reward R for any action in y. The rewards are deterministically zero for any other state-action
pairs.

Now consider two such MDPs Mα ∈ M, α ∈ {2ε,−2ε}, where the reward R ∼ N (α, 1) on Mα. We keep using
the same notation vα and νµ,α, the latter of which denotes the occupancy measure on Mα with µ as the initial
state distribution. Also, we use the rest of notation in the proof of Theorem 1. Recall that π is the output policy
of a learning algorithm L.

Define the event E = {vπ2ε(s0) < ε}.

Claim: If

P2ε(E) ∨ P−2ε(E
c) ≥ δ (8)

then L is not (ε, δ)-sound.
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Proof of the claim. By Eq. (3), L is not (ε, δ)-sound if

P2ε(v
∗
2ε(s0)− vπ2ε(s0) ≥ ε) ∨ P−2ε(v

∗
−2ε(s0)− vπ−2ε(s0) ≥ ε) ≥ δ .

By the definition of M2ε, the optimal policy is choosing asi at si for i ∈ {0, . . . ,H − 2}. We have v∗2ε(s0) = 2ε,
because p is positive, and thus, the optimal policy reaches y in finite steps with probability one. Thus, we have

P2ε(v
∗
2ε(s0)− vπ2ε(s0) ≥ ε) = P2ε(2ε− vπ2ε(s0) ≥ ε) ≥ P2ε(v

π
2ε(s0) < ε) = P2ε(E) .

Similarly, by v∗−2ε(s0) = 0, we have

P−2ε(v
∗
−2ε(s0)− vπ−2ε(s0) ≥ ε) = P−2ε(v

π
−2ε(s0) ≤ −ε) ≥ P−2ε(v

π
2ε(s0) ≥ ε) = P−2ε(E

c) ,

where the inequality follows because if vπ2ε(s0) ≥ ε holds then since vπ2ε(s0) = 〈νπ2ε, rπ2ε〉 = 2ενπ2ε(y) and since the
transitions in M2ε and M−2ε are same, we have νπ−2ε(y) = νπ2ε(y) ≥ 1/2 and therefore vπ−2ε(s0) = −2ενπ−2ε(y) ≤ −ε.

Putting things together, we get that

P2ε(v
∗
2ε(s0)− vπ2ε(s0) ≥ ε) ∨ P−2ε(v

∗
−2ε(s0)− vπ−2ε(s0) ≥ ε) ≥ P2ε(E) ∨ P−2ε(E

c) ≥ δ,

where the last inequality follows by our assumption.

Following the same arguments in the proof of Theorem 1, we have

DKL(P2ε,P−2ε) = 8ε2E2ε

[
n−1∑
i=0

I{Si = y}

]
= 8ε2

n−1∑
i=0

P2ε{Si = y}

= 8ε2p

n−1∑
i=1

P2ε{Si−1 = sH−1} ≤
8ε2np

AH−1
.

Combining the above together and using the Bretagnolle–Huber inequality (Lemma 1) as we did in the proof

of Theorem 1, we have that if n ≤ AH−1 ln 1
4δ

8ε2p , then L is not (ε, δ)-sound on either M2ε or M−2ε. We obtain the
result by sending p to zero from the right hand side.

For the proof of Theorem 4, we will need some results on the relative entropy between Bernoulli distributions,
which we present now. Let Ber(p) denote the Bernoulli distribution with parameter p ∈ [0, 1]. As it is well
known (and not hard to see from the definition),

D(Ber(p),Ber(q)) = d(p, q)

where d(p, q) is the so-called binary relative entropy function, which is defined as

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) .

Proposition 2. For p, q ∈ (0, 1), defining p∗ to be p or q depending on which is further away from 1/2,

d(p, q) ≤ (p− q)2

2p∗(1− p∗)
. (9)

Proof. Let R be the unnormalized negentropy over [0,∞)2. Then, by Theorem 26.12 of the book of Lattimore
and Szepesvári (2020), for any x, y ∈ (0,∞)2,

DR(x, y) =
1

2
‖x− y‖2∇R(z)

for some z on the line segment connecting x to y. We have R(z) = z1 log(z1) + z2 log(z2) − z1 − z2. Hence,
∇R(z) = [log(z1), log(z2)]> and ∇R(z) = diag(1/z1, 1/z2), both defined for z ∈ (0,∞)2. Thus,

DR(x, y) =
(x1 − y1)2

2z1
+

(x2 − y2)2

2z2
.
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Figure 2: Illustration of the MDPs used in the proof of Theorem 4. The initial distribution µ concentrates
on state {s0}. The pair (s′, a′) is the one where µlog takes on the smallest value (which is below 1/(SA)) and
without loss of generality s′ 6= s0 and taking any action in s0 makes the next state s′. We have p0 < p̄ < p1, all
in the [1/2, 1) interval. In MDP Mi with i ∈ {0, 1}, the probability of transitioning under action a′ from s′ to z,
an absorbing state, is pi, while with probability 1− pi, the next state is s′. All other actions use probability p̄ at
this state. All other states under any action lead to z. The rewards are deterministically zero except at state s′,
when all actions yield a reward of one, regardless of the identity of the next state.

Now choosing x = (p, 1 − p), y = (q, 1 − q), we see that x, y ∈ (0,∞)2 if p, q ∈ (0, 1). In this case, with some
α ∈ [0, 1], z = αx+ (1−α)y = (αp+ (1−α)q, α(1− p) + (1−α)(1− q))> = (αp+ (1−α)q, 1− (αp+ (1−α)q))>.
Hence, z2 = 1− z1 and

d(p, q) =
(p− q)2

2z1
+

(p− q)2

2(1− z1)
=

(p− q)2

2z1(1− z1)
.

Now, z1(1− z1) ≥ p∗(1− p∗) (the function z 7→ z(1− z) has a maximum at z = 1/2 and is decreasing on “either
side” of the line z = 1/2). Putting things together, we get

d(p, q) =
(p− q)2

2z1(1− z1)
≤ (p− q)2

2p∗(1− p∗)
.

Now we re-state Theorem 4 and prove it.

Theorem 6 (Restatement of Theorem 4). Fix any γ0 > 0. Then, there exist some constants c0, c1 > 0 such
that for any γ ∈ [γ0, 1), any positive integers S and A, δ ∈ (0, 1), and 0 < ε ≤ c0/(1 − γ), the sample size n
needed by any (ε, δ)-sound algorithm that produces as output a memoryless policy and works with SA-sampling
for MDPs with S states and A actions under the γ-discounted expected reward criterion must be so that is at least

c1
SA ln(1/(4δ))
ε2(1−γ)3 .

Proof of Theorem 6. The proof also uses Le Cam’s method, just like Theorem 1. At the heart of the proof is
a gadget with a self-looping state which was introduced by Azar et al. (2013) to give a lower bound on the
sample complexity of estimating the optimal value function in the simulation setting where the estimate’s error is
measured with its worst-case error.

The idea of the proof is illustrated by Fig. 2. Fix an initial state distribution µ concentrated on an arbitrary
state s0 ∈ S. Let µlog be the logging distribution chosen based on µ and let (s′, a′) be any state-action pair that
has the minimum sampling probability under µlog. Note that µlog(s′, a′) ≤ 1/(SA). Assume that s′ 6= s0. As we
shall see by the end of the proof, there is no loss of generality in making this assumption (when s′ = s0, the lower
bound would be larger).

We construct two MDPs as follows. The reward structures of the two MDPs are completely identical and the
transition structures are also identical except for when action a′ is taken at state s′. In particular, in both MDPs,
the rewards are identically zero except at state s′, where for any action the reward incurred is one. The transition
structures are as follows: Let p0 < p̄ < p1 be in (0, 1), to be determined later. At s0, by taking any action the
system transits to s′ deterministically. At s′, for any a ∈ A \ {a′}, taking action a leads to s′ as the next state
with probability p̄ and to z with probability 1− p̄, where z is an absorbing state. The transition under a′ at s′ is
similar, except that in Mi (i ∈ {0, 1}), the probability that the next state is s′ is pi (and the probability that the
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next state is z is 1− pi). At any state s ∈ S \ {s0, s
′}, taking any action moves the system to z deterministically.

The optimal policy at s′ in M1 is to pull the action a′, while in M0 all the other actions are optimal. It is easy to
see that in any of these MDPs, for a ∈ A,

q∗(s′, a) =
1

1− γP (s′|s′, a)
.

Now we select p0, p̄, and p1. Let b be a constant such that 1 < b < 1−γ/2
1−γ . We will choose a specific value for b at

the end of the proof. The values of p0, p̃ and p1 will depend on b. In particular, we choose p̃ ∈ (1/2, 1) so that

b =
1− γp̃
1− γ

,

while we set p0 = p̃. Then p0 = (1− b+ γb)/γ. Note that p0 > 1/2 by its choice. Let f(p) = γ
1−γp . Note that for

any deterministic policy π, vπ(µ) = f(P (s′|s′, π(s′))) and also v∗(µ) = f(p̄) in MDP M0 and v∗(µ) = f(p1) in
MDP M1.

By Taylor’s theorem, for some p ∈ [p0, p1], we have

f(p1) = f(p0) + f ′(p)(p1 − p0) ≥ f(p0) + f ′(p0)(p1 − p0) ,

where the inequality follows by p1 > p0 and the fact that f ′ is increasing. Thus, if p1 − p0 ≥ 4ε/f ′(p0), we have
f(p1) ≥ f(p0) + 4ε. Because of the choice of p0,

f ′(p0) =
γ2

(1− γp0)2
=

γ2

(1− γ)2b2
.

We let p1 = p0 + 4ε/f ′(p0). Then, we have p1 < 1 given that ε ≤ c0/(1− γ) := γ(b−1)
8(1−γ)b2 , because

p1 − 1 = p0 + 4ε/f ′(p0)− 1 =
1− b+ γb

γ
+

4(1− γ)2εb2

γ2
− 1

=
4(1− γ)2εb2 + γ(γ − 1)(b− 1)

γ2
≤ (γ − 1)(b− 1)

2γ
< 0 , (10)

where the first inequality is due to the choice of ε. Lastly, we set p̄ so that f(p̄) = [f(p0) + f(p1)]/2 (such p̄
uniquely exists because f is increasing and continuous). Note that f(p1)− f(p̄) ≥ 2ε and f(p̄)− f(p0) ≥ 2ε.

Let P0 and P1 be the joint probability distribution on the data and the output policy of any given learning
algorithm L, induced by µ, µlog, L, and the two MDPs M0 and M1, respectively. For any algorithm L, let
E = {π(a′|s′) ≥ 1/2}, where π is the output of L.

If E is true, in M0,

vπ(µ) = π(a′|s′)f(p0) + (1− π(a′|s′))f(p̄) ≤ f(p0) + f(p̄)

2
≤ (f(p̄)− 2ε) + f(p̄)

2
= f(p̄)− ε .

Thus, L is not (ε, δ)-sound for M0 if P0(E) ≥ δ. If Ec holds, in M1,

vπ(µ) = π(a′|s′)f(p1) + (1− π(a′|s′))f(p̄) ≤ f(p1) + f(p̄)

2
≤ f(p1) + (f(p1)− 2ε)

2
= f(p1)− ε .

Therefore, if P1(Ec) ≥ δ, then L is not (ε, δ)-sound for M1.

By the Bretagnolle-Huber inequality (Lemma 1) we have,

max{P0(E),P1(Ec)} ≥ P0(E) + P1(Ec)

2
≥ 1

4
exp (−DKL(P0||P1)) .

Recall that n is the number of samples. Since M0 and M1 differ only in the state transition from (s′, a′), by the
chain rule of relative entropy, with a reasoning similar to that used in the proof of Theorem 1, we derive

DKL(P0,P1) = nP0(Si = s′, Ai = a′)DKL(Ber(p0),Ber(p1)) ≤ n

SA
· (p0 − p1)2

2p1(1− p1)
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=
n

SA
· 16ε2(1− γ)4b4

2γ4p1(1− p1)

<
n

SA
· 16ε2(1− γ)3b4

γ3(b− 1)p0
,

where the first inequality is due to Proposition 2 and the second inequality is due to Eq. (10) and the fact that
p0 < p1.

Now fix γ0 ∈ (0, 1) and let γ ≥ γ0 and choose b = 0.5(1 + 1−γ0/2
1−γ0 ) ∈ (1, 1−γ/2

1−γ ). Then, combining the above

together and reordering show that if n ≤ c1
SA ln(1/(4δ))
ε2(1−γ)3 where c1 =

γ3
0(b−1)p0

16b4 , we can guarantee that L is not

(ε, δ)-sound on either M0 or M1, concluding the proof.

C Upper bound proofs

We start with some extra notation. We identify the transition function P as an SA× S matrix, whose entries
Psa,s′ specify the conditional probability of transitioning to state s′ starting from state s and taking action a,
and the reward function r as an SA× 1 reward vector. We use ‖x‖1 to denote the 1-norm

∑
i |xi| of x ∈ Rn.

Recall first that we defined Pπ to be the transition matrix on state-action pairs induced by the policy π. Define
the H-step action-value function for H > 0 by

qπH =

H−1∑
h=0

(γPπ)hr .

We let vπH denote the H-step state-value function. In what follows we will need quantities for M̂ , which, in

general could be any MDP that differs from M from only its transition kernel. Quantities related to M̂ receive a
“hat”. For example, we use P̂ for the transition kernel of M̂ , P̂π for the state-action transition matrix induced by
a policy π and P̂ , etc.

In subsequent proofs, we will need the following lemma, which gives two decompositions of the difference between
the action-value functions on two MDPs, M and M̂ :

Lemma 2. For any policy π, transition model P̂ , and H > 0,

qπH − q̂πH = γ

H−1∑
h=0

(γPπ)h(P − P̂ )v̂πH−h−1 , (11)

q̂πH − qπH = γ

H−1∑
h=0

(γP̂π)h(P̂ − P )vπH−h−1 . (12)

Proof. By symmetry, it suffices to prove Eq. (11). For convenience, we re-express a policy π as an S × SA
matrix/operator Π. In particular, as a left linear operator, Π maps q ∈ RSA to

∑
a π(a|·)q(·, a) ∈ RS. Note that

with this Pπ = PΠ, P̂π = P̂Π, vπh = Πqπh and v̂πh = Πq̂πh . To reduce clutter, as π is fixed, for the rest of the proof
we drop the upper indices and just use vh, v̂h, qh and q̂h.

Note that for H > 0,

qH = r + γPΠqH−1 , and

q̂H = r + γP̂Πq̂H−1 .

Hence,

qH − q̂H = γ(PΠqH−1 − P̂Πq̂H−1)

= γ(P − P̂ )Πq̂H−1 + γPΠ(qH−1 − q̂H−1) .

Then using Πq̂H−1 = v̂H−1 and recursively expanding qH−1 − q̂H−1 in the same way gives the result, noting that
q0 = r = q̂0.
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We need two standard results from the concentration of binomial random variables.

Lemma 3 (Multiplicative Chernoff Bound for the Lower Tail, Theorem 4.5 of Mitzenmacher and Upfal (2005)).
Let X1, . . . , Xn be independent Bernoulli random variables with parameter p, Sn =

∑n
i=1Xi. Then, for any

0 ≤ β < 1,

P
(
Sn
n
≤ (1− β)p

)
≤ exp

(
−β

2np

2

)
.

Lemma 4. Let n be a positive integer, p > 0, δ ∈ (0, 1) such that

2

np
ln

1

δ
≤ 1

4
. (13)

Let Sn be as in the previous lemma, p̂ = Sn/n. Then, with probability at least 1− δ, it holds that

p̂ ≥ p/2 > 0

while we also have

1

p̂
≤ 1

p
+

2

p

√
2

np
ln

1

δ
.

on the same (1− δ)-probability event.

In what follows, we will only need the first lower bound, p̂ ≥ p/2 from above; the second is useful to optimize
constants only.

Proof. According to the multiplicative Chernoff bound for the low tail (cf. Lemma 3), for any 0 < δ ≤ 1, with
probability at least 1− δ, we have

p̂ ≥ p−
√

2p

n
ln

1

δ
.

Denote by Eδ the event when this inequality holds. Using Eq. (13), on Eδ we have

p̂ ≥ p−
√

2p

n
ln

1

δ
= p

(
1−

√
2

pn
ln

1

δ

)
≥ p

(
1− 1

2

)
=
p

2
> 0 ,

and thus, thanks to 1/(1− x) ≤ 1 + 2x which holds for any x ∈ [0, 1/2],

1

p̂
≤ 1

p

1

1−
√

2
np ln 1

δ

≤ 1

p
+

2

p

√
2

np
ln

1

δ
.

Our next lemma bounds the deviation between the empirical transition kernel and the “true” one:

Lemma 5. With probability 1− δ, for any (s, a) ∈ S ×A,

‖P̂ (·|s, a)− P (·|s, a)‖1 ≤ β(N(s, a), δ) (14)

where for u ≥ 0,

β(u, δ) = 2

√
S ln 2 + ln u+(u+1)SA

δ

2u+
,

where u+ = u ∨ 1.
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Proof. By abusing notation, for u ≥ 0, let β(u) = 2

√
S ln 2+ln

u+(u+1)

δ

2u+
, where u+ = u ∨ 1. We will prove below the

following claim:

Claim: For any fixed state-action pair (s, a), with probability 1− δ,

‖P̂ (·|s, a)− P (·|s, a)‖1 ≤ β(N(s, a)) .

Clearly, from this claim the lemma follows by a union bound over the state-action pairs. Hence, it remains to
prove the claim.

For this fix (s, a) ∈ S × A. Recall that the data D = ((Si, Ai, Ri, S
′
i)i∈[n]) that is used to es-

timate P̂ (·|s, a) consists of m trajectories of length H obtained by following the uniform policy πlog

while the initial state is selected from µ at random. In particular, for j ∈ [m], the jth trajectory is

(S
(j)
0 , A

(j)
0 , R

(j)
0 , . . . , S

(j)
hj−1, A

(j)
H−1, R

(j)
H−1, S

(j)
H ), where S

(j)
0 ∼ µ, A

(j)
t ∼ πlog(·|S(j)

t ), (R
(j)
t , S

(j)
t+1) ∼ Q(·|S(j)

t , A
(j)
t ).

Clearly, if q := P
(
∃0 ≤ i ≤ H − 1 : S

(0)
i = s,A

(0)
i = a

)
= 0 then N(s, a) = 0 holds with probability one. The

claim then follows since when N(s, a) = 0, P̂ (·|s, a) is identically zero, hence,

‖P̂ (·|s, a)− P (·|s, a)‖1 = ‖P (·|s, a)‖1 = 1 ≤ 1.177 . . . ≤ β(0) . (15)

Hence, it remains to prove the claim for the case when q > 0, which we assume from now on. For convenience,
append to the data infinitely many further trajectories, giving rise to the infinite sequence (Si, Ai, Ri, S

′
i)i≥0. Let

τ0 = 0 and for u ≥ 1, let τu = min{i ∈ N : i > τu−1 and Si = s,Ai = a} be the “time” indices when (s, a) is
visited, where we define the minimum of an empty set to be infinite. Since q > 0, almost surely (τu)u≥0 is a
well-defined sequence of finite random variables. Now let Xu = S′τu be the “next state” upon the uth visit of

(s, a). Let p̂u(s′) =
∑u
v=1 I{Xv=s′}

u . Note that

P̂ (·|s, a) = p̂N(s,a)(·) (16)

provided that N(s, a) > 0. By the Markov property, it follows that (Xv)v≥1 is an i.i.d. sequence of categorical
variables with common distribution p(·) := P (·|s, a).

Now,

‖p̂u − p‖1 = max
y∈{−1,+1}S

〈p̂u − p, y〉 ,

while

〈p̂u − p, y〉 =
1

u

u∑
v=1

y(Xv)−
∑
s′

p(s′)y(s′)︸ ︷︷ ︸
∆v

.

Now, (∆v)1≤v≤u is an i.i.d. sequence, |∆v| ≤ 2 for any v and E∆v = 0. Hence, by Hoeffding’s inequality, with
probability 1− δ,

1

u

u∑
v=1

∆v ≤ 2

√
ln 1

δ

2u
.

Since the cardinality of {−1,+1}S is 2S, applying a union bound over y ∈ {−1,+1}S , we get that with probability
1− δ,

‖p̂u − p‖1 ≤ 2

√
S ln 2 + ln 1

δ

2u
.
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Applying another union bound over u, owing to that
∑∞
u=1

1
u(u+1) = 1, we get that with probability 1− δ, for

any u ≥ 1,

‖p̂u − p‖1 ≤ 2

√
S ln 2 + ln u(u+1)

δ

2u
= β(u) .

Since ‖p̂0 − p‖1 ≤ 1 ≤ β(0) (cf. Eq. (15)), the claim follows by Eq. (16).

We now state a lemma that bounds, with high probability, the error of predicting the value of some fixed policy
when the prediction is based on a transition kernel P ′ which is “close” to the true transition kernel P , where
closedness is based on how often the individual state-action pairs have been visited. This notion of closedness is
motivated by Lemma 5; this lemma can be used when P ′ = P̂ , or some other transition kernel in the vicinity of
P̂ . The former will be needed in the analysis of the plug-in method presented here; while the latter will be used
in the next section where we analyze the pessimistic algorithm.

Lemma 6. Let δ ∈ (0, 1) and m be the number of episodes collected by the logging policy and fix any policy π.
For any P ′ such that for any (s, a) ∈ S ×A,

‖P ′(·|s, a)− P (·|s, a)‖1 ≤
C√

N(s, a) ∨ 1
,

with probability at least 1− δ for C > 0, we have

vπ(µ)− vπP ′(µ) ≤ 4γCSA
min(H,S)

2 +1

(1− γ)2
√
m

+
8γSA

(1− γ)2

ln SA
δ

m
+ ε . (17)

Proof. Note that

γHγ,ε ≤ γ1+
ln(1/ε)
ln(1/γ) = γε .

Hence, for H = Hγ,(1−γ)ε/(2γ),

γH ≤ 1
2 ε(1− γ) .

Owning to that the immediate rewards belong to [−1, 1], it follows that for any policy π,

qπ − qπP ′ ≤ qπH − qπP ′,H + ε1 , (18)

where we use qπP ′,H to denote the H-step value function under transition model P ′. Define Nh(s, a) as the
number of episodes when the hth state-action pair in the episode is (s, a). Note that N(s, a) ≥ Nh(s, a). Let
Zh = {(s, a) ∈ S ×A : νπµ,h(s, a) > 8

m ln SA
δ } and let F be the event when

Nh(s, a)

m
≥
ν
πlog

µ,h (s, a)

2

holds for any (s, a) ∈ Zh.6 By Lemma 4, P(F) ≥ 1− δ.

Assume that F holds. Combining Eq. (18) with Lemma 2, we get that on this event

vπ(µ)− v̂π(µ) ≤ (µπ)>(qπH − qπP ′,H) + ε

= γ

H−1∑
h=0

γh(νπµ,h)>(P − P ′)vπP ′,H−h−1 + ε (by Eq. (11))

≤ γ

1− γ

H−1∑
h=0

γh
∑
s,a

νπµ,h(s, a)‖P (·|s, a)− P ′(·|s, a)‖1 + ε (by ‖v̂πH−h−1‖∞ ≤ 1/(1− γ))

6Note that Zh, and thus also F depends on π, which is the reason that the result, as stated, holds only for a fixed
policy.
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≤ γ

1− γ

H−1∑
h=0

γh
∑

(s,a)∈Zh

νπµ,h(s, a)‖P (·|s, a)− P ′(·|s, a)‖1 +
8γSA

m(1− γ)2
ln

SA

δ
+ ε (by the definition of Zh)

≤ γ

1− γ

H−1∑
h=0

γh
∑

(s,a)∈Zh

√
νπµ,h(s, a)‖P (·|s, a)− P ′(·|s, a)‖1 +

8γSA

m(1− γ)2
ln

SA

δ
+ ε (by νπµ,h(s, a) ≤ 1)

≤ γAmin(H,S)/2

1− γ

H−1∑
h=0

γh
∑

(s,a)∈Zh

√
ν
πlog

µ,h (s, a)‖P ′(·|s, a)− P (·|s, a)‖1 +
8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by Proposition 1)

≤ 2γAmin(H,S)/2C

1− γ

H−1∑
h=0

γh
∑

(s,a)∈Zh

√
ν
πlog

µ,h (s, a)
1√

Nh(s, a) ∨ 1
+

8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by the definition of P ′)

≤ 2γAmin(H,S)/2C

1− γ

H−1∑
h=0

γh
∑

(s,a)∈Zh

√
ν
πlog

µ,h (s, a)

√
2

mν
πlog

µ,h (s, a)
+

8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by the definitions of F and Zh)

≤ 4γAmin(H,S)/2C

(1− γ)2
√
m

SA +
8γSA

m(1− γ)2
ln

SA

δ
+ ε .

This finishes the proof.

For the plug-in method we use the previous lemma with P ′ = P̂ , resulting in the following corollary:

Corollary 4. Let δ ∈ (0, 1) and m be the number of episodes collected by the logging policy and fix any policy π.
With probability at least 1− δ, we have

vπ(µ)− vπ
P̂

(µ) ≤ 8γSA
min(H,S)

2 +1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ

2m
+

8γSA

(1− γ)2

ln 2SA
δ

m
+ ε .

Proof. Fix δ ∈ (0, 1). Let Eδ be the event when for any (s, a) ∈ S ×A,

‖P̂ (·|s, a)− P (·|s, a)‖1 ≤ β(N(s, a), δ) , (19)

where β is defined in Lemma 5, which also gives that P(Eδ) ≥ 1− δ. Further, defining

Cδ = 2

√
S ln 2 + ln n(n+1)SA

δ

2
,

note that β(u, δ) ≤ Cδ/
√
u ∨ 1. Now, let Fδ be the event when the conclusion of Lemma 6 holds. Then, on the

one hand, by a union bound, P(Eδ/2 ∩ Fδ/2) ≥ 1− δ, while on the other hand on Eδ/2 ∩ Fδ/2, the condition of
Lemma 6 holds for P ′ defined so that

P ′(·|s, a) =

{
P̂ (·|s, a) , if ‖P̂ (·|s, a)− P (·|s, a)‖1 ≤ β(N(s, a), δ/2) ;

P (·|s, a) , otherwise .

with C := Cδ/2.

Furthermore, on Eδ/2, P̂ (·|s, a) = P (·|s, a) holds for any (s, a) pair. Hence, the result follows by replacing δ with
δ/2 in Eq. (17) and plugging in Cδ/2 in place of C.

We now are ready to prove the upper bound of plug-in algorithm.

Theorem 7 (Restatement of Theorem 5). Fix S, A, an MDP M ∈M(S,A) and a distribution µ on the state
space of M . Suppose δ > 0, ε > 0, and εopt > 0. Assume that the data is collected by following the uniform policy
and it consists of m episodes, each of length H = Hγ,(1−γ)ε/(2γ). Let π̂ be any deterministic, εopt-optimal policy
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for M̂ = (P̂ , r) where P̂ is the sample-mean based empirical estimate of the transition probabilities based on the
data collected. Then if

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ε2

)
,

where Ω̃ hides log factors of S,A and H, we have vπ̂(µ) ≥ v∗(µ)− 4ε− εopt with probability at least 1− δ.

Proof. We upper bound the suboptimality gap of π̂ as follows:

v∗(µ)− vπ̂(µ) = v∗(µ)− v̂π
∗
(µ) + v̂π

∗
(µ)− v̂π̂(µ) + v̂π̂(µ)− vπ̂(µ)

≤ v∗(µ)− v̂π
∗
(µ) + v̂π̂(µ)− vπ̂(µ) + εopt . ( π̂ is εopt-optimal in M̂)

By Corollary 4 and a union bound, with probability at least 1− δ, for any deterministic policy π obtained from
the data D we have

vπ(µ)− v̂π(µ)

≤ 8γSA
min(H,S)

2 +1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ + S ln A

2m
+

8γSA

(1− γ)2

ln 2SA
δ + S ln A

m
+ ε

≤ 8γS
3
2 A

min(H,S)
2 +1

(1− γ)2

√
ln 2 + ln H2SA

δ + ln 2m+ ln A

2m
+

8γSA

(1− γ)2

ln 2SA
δ + S ln A

m
+ ε ,

Thus, given that

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ε2

)
,

where Ω̃ hides log-factors, with probability at least 1− δ we have,

v∗(µ)− vπ̂(µ) ≤ v∗(µ)− v̂π
∗
(µ) + v̂π̂

∗
(µ)− vπ̂

∗
(µ) + εopt ≤ 4ε+ εopt .

C.1 Pessimistic Algorithm

We present a result in this section for the “pessimistic algorithm” in the discounted total expected reward criterion
to complement the results in the main text (Jin et al., 2021; Buckman et al., 2021; Kidambi et al., 2020; Yu et al.,
2020; Kumar et al., 2020; Liu et al., 2020; Yu et al., 2021). The sample complexity we show is the same as for the
plug-in method. While this may be off by a polynomial factor, we do not expect the pessimistic algorithm to have
a major advantage over the plug-in method in the worst-case setting. In fact, the recent work of Xiao et al. (2021)
established this in a rigorous fashion for the bandit setting by showing an algorithm independent lower bound
that matched the upper bound for both the plug-in method and the pessimistic algorithm. As argued by Xiao
et al. (2021) (and proved by Jin et al. (2021) in the context of linear MDPs, which includes tabular MDPs), the
advantage of the pessimistic algorithm is that it is weighted minimax optimal with respect to a special criterion.

The pessimistic algorithm with parameters δ ∈ (0, 1) and εopt > 0 chooses a deterministic εopt policy π̃ of the

MDP with reward r and transition kernel P̃ , the latter of which is obtained via

P̃ = arg min
P ′∈Pδ

v∗P ′(µ) ,

where for a transition kernel P ′ we use v∗P ′ to denote the optimal value function in the MDP with immediate
rewards r and transition kernel P ′, and Pδ is is defined as

Pδ =
{
P ′ : for any (s, a) ∈ S ×A , ‖P̂ (·|s, a)− P ′(·|s, a)‖1 ≤ β(N(s, a), δ)

}
,

where β is defined in Lemma 5. Recall that the same result ensures that P , the “true” transition kernel belongs
to Pδ with probability at least 1− δ.
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Theorem 8 (Pessimistic algorithm). Fix S, A, an MDP M ∈M(S,A) and a distribution µ on the state space
of M . Suppose δ > 0, ε > 0, and εopt > 0. Assume that the data is collected by following the uniform policy and
it consists of m episodes, each of length H = Hγ,(1−γ)ε/(2γ). Then, if

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ε2

)
,

where Ω̃ hides log factors of S,A and H, we have vπ̃(µ) ≥ v∗(µ)− 2ε− εopt with probability at least 1− δ, where
π̃ is the output of the pessimistic algorithm run with parameters (δ, εopt).

Proof. Let us denote by vπP ′ the value function of policy π in the MDP with reward r and transition kernel P ′.
Let ∆π = vπ

P̃
(µ)− vπ(µ) and let π∗ is an deterministic optimal policy in the “true” MDP. Such a policy exists

(e.g., see Theorem 6.2.10 of Puterman (2014)). We have

v∗(µ)− vπ̃(µ) = v∗(µ)− vπ̃
P̃

(µ) + ∆π̃

≤ v∗(µ)− v∗
P̃

(µ) + ∆π̃ + εopt (by the definition of π̃)

≤ v∗(µ)− vπ
∗

P̃
(µ) + ∆π̃ + εopt (because vπ

∗

P̃
≤ v∗

P̃
)

≤ ∆π∗ + ∆π̃ + εopt . (because v∗(µ) = vπ
∗
(µ))

Hence, it remains to upper bound ∆π∗ and ∆π̃. For this, we make the following claim:

Claim: Fix any policy π. Then, with probability at least 1− δ, we have

vπ(µ)− vπ
P̃

(µ) ≤ 16γSA
min(H,S)

2 +1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ

2m
+

8γSA

(1− γ)2

ln 2SA
δ

m
+ ε .

Proof of Claim. For the latter, note that the proof of Corollary 4 can be repeated with the only change that now
instead of Eq. (19), we have

‖P (·|s, a)− P̃ (·|s, a)‖1 ≤ ‖P (·|s, a)− P̂ (·|s, a)‖1‖P̂ (·|s, a)− P̃ (·|s, a)‖1 ≤ 2β(N(s, a), δ) .

From this claim, by a union bound over all the AS deterministic policies, we get that with probability 1− δ, for
any deterministic policy π,

vπ(µ)− vπ
P̃

(µ)

≤ 16γSA
min(H,S)

2 +1

(1− γ)2

√√√√(S ln 2 + ln 2n(n+1)SA
δ + S ln A

)
2m

+
8γSA

(1− γ)2

ln 2SA
δ + S ln A

m
+ ε .

Since π̃, by definition is also a deterministic policy, the last display holds with probability 1− δ for π̃ as well.
Putting things together gives that

v∗(µ)− vπ̃(µ)

≤ 32γSA
min(H,S)

2 +1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ + S ln A

2m
+

16γSA

(1− γ)2

ln 2SA
δ + S ln A

m
+ 2ε+ εopt .

The proof is finished by a calculation similar to that done at the end of the proof of Theorem 7.
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