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Abstract— Credit risk analysis is not only an important
research topic in finance, but also of interest in everyday life.
Unfortunately, the non-linear nature of the widely accepted
Black-Scholes option price model, which sits at the very heart of
the structural credit risk model, causes great difficulty when in-
ferring the latent asset value sequence from observed data. The
main contribution of this paper is to address this problem by
pursuing maximum likelihood state estimation (MLE) instead of
the usual particle filtering approach. Experiments demonstrate
the competitiveness of the proposed MLE approach: it achieves
a much lower inference error and a much lower running time
than particle filtering methods. This work has merit for the
general problem of inferring latent values for probabilistic time-
series.

I. INTRODUCTION

Credit risk is not only an important research topic in
finance, it is also relevant to everyday life. Take the sub-
prime mortgage crisis as an example where a failure in credit
risk assessment has played a critical role in precipitating a
world wide financial crisis that has profoundly affected the
global economy, particularly that of the US, since it emerged
in the summer of 2007. It is of paramount importance to
have a good understanding of the credit risk associated with
various assets in financial markets.

The structural credit risk model founded by Merton [8]
provides a tool to understand the risk entailed by corporate
equities. Before giving an introduction of the structural credit
risk model, we need to introduce the concepts of financial
derivatives, options and option pricing. A financial derivative
is an instrument whose price is determined by another asset.
Financial derivatives are critical for risk management since
they enable the handling of risk exposure to stock prices,
interest rates or exchange rates. Options are a popular type
of financial derivatives. An option specifies the maturity time
T and the strike price K. A European option can only be
exercised at time 7', but the owner may choose not to exercise
it. The payoff to the owner of a European call option is
max(Sr — K,0), where St is the price of the underlying
asset at time 7'. Black and Scholes [2] developed the option
pricing formula. Merton [8] treated the equity of a corporate
as an option on its asset, and founded the structural approach
to credit risk modeling. Recently, Duan and Fulop [4] have
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refined the structural credit risk model by adding a noise
term to the observed equity price to account for the fact that
the observed equity prices may have been contaminated by
trading noises, such that the proposed model in [4] allows the
observed equity price to diverge from the equilibrium values
due to microstructure noises [7].

We are interested in inferring the latent asset values from
the observed equity prices. Usually, the latent asset states
are inferred using particle filtering, which will be introduced
in Section II-B. In this paper, we propose to use an offline
maximum likelihood estimate (MLE) approach to infer the
latent asset value in the structural credit risk model. The
offline strategy we introduce is intended to provide better
results than an online counterpart such as particle filtering,
because each iteration of an offline algorithm guarantees an
improvement, while online updates only promise improve-
ment on average over a number of iterations. We compare the
performance of our proposed approach with various particle
filtering methods, including sampling importance resampling
(SIR) [5], auxiliary particle filters (APF) [11] and regularised
particle filters (RPF) [9]. Our experimental results validate
the claim that the MLE approach achieves a much lower
inference error and running time than current particle filtering
approaches.

The remainder of this paper is organized as follows. First
we introduce the dynamic state space model and discuss
two main approaches to inferring the latent state sequence,
namely, MLE and particle filtering. After introducing the
structural credit risk model, we demonstrate how MLE and
particle filtering can, respectively, be used to infer the latent
asset value from observed price data. Next we conduct
a performance study that compares and contrasts the two
approaches before concluding the paper.

II. DYNAMIC STATE SPACE MODEL

In [8], the equity of a corporation is treated as an option on
its assets, which leads to the structural approach to credit risk
modeling. The widely-accepted Black-Scholes option pricing
formula [2] relates the latent asset value to the observed
equity value through a non-linear equation. Together these
lead to the well-known non-linear statistical model used
to address the structural credit risk analysis task. We first
introduce a generic dynamical system model in this section
and then specialize it to the structural credit risk model in
Section III-A.

The generic dynamical system model consists of the state
process {x;,¢ € N} and observation process {y,,t € N}



given by:
x; = i (Xe—1,Vi-1), (1)

Y: = ht (Xtu nt)7 (2)

respectively, where f; : "= x R™ — R" and h; : "= x
R"m — R are possibly non-linear functions, and {v;,t €
N} and {n;,t € N} are ii.d. state and observation noise
sequences, with n,, n,, n, and n,, being respectively the
dimensions of state, state noise, observation and observation
noise. The noise distributions may be non-Gaussian.

The state transitions p(x;|x;—1) follow a Markov process;
while the observation model p(y,|x;) implies that the obser-
vations are assumed to be conditionally independent given
the states. The prior distribution at ¢ = 0 is denoted by p(xXo).
In what follows, we describe in detail our MLE approach,
and to keep our paper self-contained, we also provide an
account of variants of particle filtering algorithms that will be
used later in the experimental section. These variants include
sampling importance resampling, the auxiliary particle filter
and the regularized particle filter.

A. MLE

The penalized negative log likelihood function and its
partial derivatives for the dynamic state space model (1, 2)
are defined as
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where T is the number of observations.

To infer the latent values x, instead of using the popular
particle filtering approach, we propose to directly maximize
the penalized negative log likelihood function PN L(x). This
MLE strategy possesses in fact quite a few theoretical merits.
First it provides asymptotically unbiased estimate of the
optimal time-series model in hindsight. In other words, the
bias goes to zero as the number of examples increases to
infinity. Moreover, it asymptotically achieves the Cramer-
Rao lower bound, which guarantees the variance of the
estimator reaches the lowest estimation error possible in the
mean square sense. Numerically our approach computes a
maximum likelihood latent state sequence by using a quasi-
Newton method. We use a quasi-Newton approach because it
only requires the approximate rather than the exact Hessian
matrix, which would be prohibitively expensive in practice.
In particular, we employ a limited memory BFGS (L-BFGS)
[10] solver, which requires one to evaluate only the PNL
function values and gradients, and is both memory and run-
time efficient in our scenario.

B. Farticle filters

Particle filters allow one to estimate latent variables in
non-linear, non-Gaussian dynamical systems [3], [1], like the
dynamic state space model (1, 2) introduced above. A filter
usually estimates the posterior distribution p(xXo.|y;.,) and
the filtering density p(x:|y;.;), where X1.; = {X1,X2, ..., X¢ }
and y;., = {¥1,¥2,---,¥:}. Next we introduce the essen-
tial components of particle filtering, sequential importance
sampling and resampling, and also discuss auxiliary particle
filters and regularized particle filters.

Particles refer to a set of N weighted samples {x}.,;i =
1,2,...,N} drawn from a proposal distribution g(Xo.¢|y;.;)-
Particle filters can approximate the posterior density
p(Xo:t|y1.;) using these samples. With such particles, in-
tractable integration problems, such as computing expecta-
tions, may be reduced to summations. Its convergence is
justified by the strong law of large numbers.

Sequential Importance Sampling. It is desirable to com-
pute a sequence estimate of the posterior distribution without
modifying the previously simulated states. To this end, we
can use the following proposal distribution and the weights:

q(x0:t1y1.¢) = q(X0:t—1[¥1.0-1)7(X¢|X0:4—1,¥1.4)  (6)
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Resampling. A common problem for sequential impor-
tance sampling is particle degeneracy, where only one par-
ticle will have significant weight, after a few iterations.
Resampling is an approach to addressing the degeneracy
problem.

The effective sample size Ny is defined as a measure of
the degeneracy [6]:

i
t = Wiq

)

N

Np=—
T 1 F var(wit)

®)
where w;’ = p(xi[y,.,)/q(xi[x_y,¥y,,). which usually can-
not be evaluated exactly. An approximation Ny of Ny can
be obtained by:

_— N
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where w{ is the normalized weight obtained using (7).
Resampling works by eliminating particles with low

weights and duplicate particles with high weights. It resam-

ples from the following discrete approximation of p(x:|y;.;):

©)

N
p(xelyr) = > wid(x —x}) (10)
i=1
where 0(-) is the Dirac delta measure. Resampling maps
the weighted measure {X;, w:} to an unweighted mea-
sure {f(i,N ~11. Several resampling algorithms are avail-
able, e.g., the residual, stratified and systematic resampling
schemes [1].
Sampling importance resampling. Sampling importance
resampling in [5] uses the prior as the proposal distribution.



As a result, we only need the likelihood for computing
weights:

q(X¢[X0:t—1,¥1.4) = P(Xe[Xt—1), (11)
wy = wi_1p(y|x;)- (12)

This proposal is widely used for its simplicity. It conducts
resampling at every time step, so that it may lead to a quick
loss of particle diversity. Moreover, it does not consider the
most recent observation.

Auxiliary particle filters. The auxiliary particle filter [11]
takes advantage of the most recent observation. It introduces
an important density q(x, iy,.;) to sample the pair (x],i’),
where i/ refers to the index of the particle at time step ¢ —
1 [1]. One can derive,

P, i[y1.) o POV [Xe)p(elx; 1 )wi s (13)

and define,

q(X¢,yy.,) OCP(Yt|Ni)P(Xt|XL1)lea (14)

where ¢ is some characterization of x;, given x:_;. For
: i

example, it can be a sample i} = p(x¢|x;—1). Therefore, we

have,

HxiZ1) _ p(yelxt)
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Regularized particle filter. Resampling is a popular
approach to reduce the degeneracy problem. However, the
diversity among particles might be lost, which can finally
lead to the outcome of “particle collapse” where all particles
occupy a single point in the state space. Regularized particle
filters [9] were proposed as a potential solution.

The RPF differs from SIR in the resampling step. RPF
resamples from a continuous approximation of the posterior
density p(x¢|y;.;), given in (16) below, while SIR resamples
from the discrete approximation (10):

s DR

Wy = W1
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Ku(x) = —K(%) a7
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is the rescaled Kernel density, h is the Kernel bandwidth,
n, is the dimension of the state x, and w}5 are normalized
weights. The Kernel density is a symmetric probability
density function such that,

/K(x)dx = 1,/xK(x)dx =0, / [Ix]|? K (x)dx < oo

The Kernel and bandwidth are chosen to minimize the mean
integrated square error between the true posterior density and
the regularized approximation (16). When all the samples
having the same weights, the optimal choice of kernel is the
Epanechnikov kernel:

[ R, i x] <1
Kopt = 0 na

18
, otherwise (18)

where ¢, is the volume of the unit hypersphere in R"=.
The optimal bandwidth i for a Gaussian density with unit
covariance matrix is:

cpt(ng + 4)(2y/m)"e N]Y/ (et D)

The optimal solution (18) and (19) applies to the special
case where particles have equal weights and the underlying
density is Gaussian. However, these results can achieve sub-
optimal performance for general cases. As our experiments
will show, RPF with (18) and (19) achieves rather good
results.

hopt = [8 (19)

III. STRUCTURAL CREDIT RISK MODEL

In the following, we present the structural credit risk
model founded by Merton [8], based on the work on option
pricing [2], and its recent extension by Duan and Fulop [4]
that accounts for trading noises. We also briefly discussion
credit risk applications.

A. Structural credit risk model

Merton founded the structural approach to credit risk
modeling by treating the equity of a corporate as an option
on its assets [8]. Suppose the value of the corporate at time
t, V;, follows a geometric Brownian Motion, with drift and
volatility parameters p and o:

AV, = pVidt + oV, dW, (20)

The corporate finances its assets with two claims: equity and
a zero-coupon bond maturing at time 7' with a principle
payment of F. At time T, equity holders repay the bond
if the asset is greater than the principle, V > F'. Otherwise,
equity holders declare bankruptcy and the bond holders own
the corporate. Therefore, the equity holders receive at time
T, S, = max(V; — F,0). This shows that the equity can
be regarded as a call option on the asset. Thus we can use
Black-Scholes formula [2] to determine its price:

S, =V, ®(dy) — Fe " T D& (d, — o/T — 1)

In(V;/F)+ (r+0%/2)(T —t)
ovVT —t

It is usually more accurate to simulate InV; in practice.
Using It6’s lemma, the process followed by InV; is:

ey

dy =

(22)

2

dinVy = (1 — %)dt T odW,. (23)
We can obtain its discrete-time form:
2
InV, = InVi_1 + (4 — %)h N (24)

where h is the time interval and &, are i.i.d. standard normal
variables.

Noises exist in the financial market, as reported in the
microstructure literature, for example, see [7]. Thus the
relationship between the latent asset value and the observed
equity value predicted by (21) is contaminated by noises.



Duan and Fulop [4] suggested a multiplicative noise structure
to express the logarithmic equity value as:

InS; = InS; + Sy (25)

where S’t is given in (21) and v; are i.i.d. standard normal
variables.

B. Credit risk applications

It is desirable to know the credit spread of a corporate
bond over the Treasury rate and the default probability of
the corporate. The latent asset values inferred are essential
for these credit risk applications. For example, the default
probability is the probability that the asset value at time 7'
is less than the face value of the bond F'. With V;, 4 and o,
the formula to compute the default probability is:

In(F/Vi) = (u— )T —1t)

PV, u,0) =® 26
( ty b ) ( Um ) ( )
IV. INFERENCE OF THE STRUCTURAL CREDIT RISK
MODEL

In the following, we describe how to infer the latent
asset value with particle filtering or MLE, assuming model
parameters are given.

A. Filtering out asset values

We have the state process by (24) and the observation
process (25), given u, o and 0. The following gives the
sketch of the algorithm for particle filtering. It is a modified
sampling importance resampling, where resampling may not
take place in every step. N is the number of particles. N
is a predefined resampling threshold.

For time step :
1) Fort=1: N
e Draw InV} ~ p(InV;[InV}" ;). Calculate w; =
wi_p(InS|InV}).
2) Normalize weights: w! = w!/ Zjvzl wl.
3) Resampling
o Calculate J/\f:ff using (9). If J/\f:ff < Nr, resampling.
Set w; = 1/N.

B. Inference of asset values with MLE

For the state process (24) and the observation process (25),
the negative log likelihood function N L(InV') follows:

| [ x| o | 8 |

Experiment Set 1 0.2 0.3 0.001:0.001:0.020

Experiment Set 2 || 0.2 0.7 0.001:0.001:0.020

Experiment Set 3 0.2 | 0.05:0.05:1.00 0.004

Experiment Set 4 || 0.2 | 0.05:0.05:1.00 0.016
TABLE I

PARAMETER SETTINGS FOR j1, 0 AND 4. a : A : b MEANS FROM a TO b
WITH STEP SIZE A.

We can compute the partial derivative for an optimization
procedure:

OPN L(InV ONL(InV
# = AnV + # (28)
In particular,
ONL(InV)
OlnV,
1S, —InS, 08
82 g, omy

1
+W[(1HVZ —InV;_1) — (InVi41 — InV}4)] (29)

fort = 2,--- T — 1. We can derive the partial derivatives
for t =1 and t = T similarly.

V. PERFORMANCE STUDY

We simulate 252 days’ (one trading year) of data. We set
1, 0 and o according to the parameter setting in Table I, as
suggested in the simulation study in [4]. With these parame-
ters, we simulate trajectories of InV according to (24). With
asset values V;, we simulate equity prices S; contaminated
by noises according to (25). We examine the performance
of auxiliary particle filters (APF), regularised particle filters
(RPF), sampling importance resampling (SIR) and MLE for
the inference of the latent asset value. We use the L-BFGS
package to solve the optimization problem in MLE.

We measure the root mean square error (RMSE) and the
running time. Since in a simulation study, we know the true
latent asset value, we define the RMSE as:

1 i=T

ﬁ Z(IHV — 1/11\‘//)2

T =2

RMSE = (30)

where InV is the true latent log asset value and InV is the
latent log asset value inferred by APF, RPF, SIR, or MLE.
Figures 1 report the results for RMSE. The curves for APF,
RPF and SIR overlap; and the curve for MLE is much lower
than the curves for particle filtering approaches. Figures on

= — Zlog p(InS|InV;, 0,6) — ZIOg p(InS[InV;, i, o) the right show the results for the running time. The curve

NL(InV)
T T
t=1 t=2
t=T T
1 St o 1 Vi o? 2
s 2 Ing) + g D (g = (= )

+log 67Tt

for MLE is much lower than the curves for particle filtering
approaches. These results indicate clearly that the MLE
approach has a much lower RMSE and a much lower running
time. On the other hand, MLE makes a point-inference; while

(27) a particle filtering approach returns a distribution represented
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Fig. 1.

by the particles. Moreover, the MLE approach conducts the
inference in an offline, batch mode, in contrast to the online
manner by the particle filtering approaches.

VI. CONCLUSION

Credit risk analysis is not only an important research topic
in finance, but also of interest in everyday life. The non-
linearity nature of the structural credit risk model makes it
rather difficult to infer the latent asset value sequence. The
main contribution of this paper is to address this inference
problem by an MLE approach and is solved by the L-
BFGS algorithm that is usually done using particle filtering.
Experiments demonstrates the superiority of the proposed
MLE approach to the particle filter approaches, in partic-
ular, auxiliary particle filters, regularised particle filters and
sampling importance resampling. This work has the merit for
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the general problem of inferring latent values for probabilistic
time-series.
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