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Abstract. Discovering groups of genes that share common expression
profiles is an important problem in DNA microarray analysis. Unfortu-
nately, standard bi-clustering algorithms often fail to retrieve common
expression groups because (1) genes only exhibit similar behaviors over
a subset of conditions, and (2) genes may participate in more than one
functional process and therefore belong to multiple groups. Many algo-
rithms have been proposed to address these problems in the past decade;
however, in addition to the above challenges most such algorithms are
unable to discover linear coherent bi-clusters—a strict generalization of
additive and multiplicative bi-clustering models. In this paper, we pro-
pose a novel bi-clustering algorithm that discovers linear coherent bi-
clusters, based on first detecting linear correlations between pairs of gene
expression profiles, then identifying groups by sample majority voting.
Our experimental results on both synthetic and two real datasets, Sac-
charomyces cerevisiae and Arabidopsis thaliana, show significant perfor-
mance improvements over previous methods. One intriguing aspect of
our approach is that it can easily be extended to identify bi-clusters of
more complex gene-gene correlations.

1 Introduction

Microarray analysis involves monitoring the expression levels of thousands of
genes simultaneously over different conditions. Although such an emerging tech-
nology enables the language of biology to be spoken in mathematical terms,
extracting useful information from the large volume of experimental microarray
data remains a difficult challenge. One important problem in microarray analy-
sis is to identify a subset of genes that have similar expression patterns under
a common subset of conditions. Standard clustering methods, such as K-means
clustering [8, 5], hierarchical clustering [16, 19] and self-organizing map [17], are
usually not suitable for microarray data analysis for two main reasons: (1) genes
exhibit similar behaviors not over all conditions, but over a subset of conditions,
and (2) genes may participate in more than one functional processes and hence
belong to multiple groups. Thus, traditional clustering algorithms typically do
not produce a satisfactory solution. To overcome the limitations of the tradi-
tional clustering methods, the concept of bi-clustering was developed where one



seeks groups of genes that exhibit similar expression patterns, but only over a
subset of the sample conditions. Figure 1 illustrates a gene expression matrix
without any obvious bi-clusters (left) and an expression matrix with a salient
bi-cluster (right).

Fig. 1. Example of a constant row bi-cluster in gene expression matrix. The left image
shows a gene expression matrix without any obvious bi-clusters; the right image shows
an expression matrix with a constant row bi-cluster.

The term bi-clustering, also called co-clustering, or two-mode clustering was
first mentioned by Hartigan in [7] and latter formalized by Mirkin in [14]. Cheng
and Church [4] were the first to apply bi-clustering to gene expression analysis.
Since then, dozens of bi-clustering algorithms have been proposed for the gene
expression analysis. The general bi-clustering problem and many of its variants
were proved to be NP-hard in [4], and therefore most bi-clustering algorithms
comprise heuristic approaches unless special restrictions are made on the bi-
cluster type and(or) bi-cluster structure. Among such bi-clustering algorithms,
the majority assume that a expression matrix contains multiple bi-clusters rather
than a single bi-cluster. Under the multiple bi-cluster circumstance, different bi-
cluster structures can be considered, such as exclusive row and(or) column bi-
clusters, checkerboard structure bi-clusters, non-overlapping tree-structured bi-
clusters, non-overlapping non-exclusive bi-clusters, overlapping bi-clusters with
hierarchical structure, arbitrarily positioned overlapping bi-clusters, and arbi-
trarily positioned overlapping bi-clusters [13]. The specific variant of the problem
we address with the algorithm proposed in this paper, the Linear Coherent Bi-
cluster Discovering (LCBD) algorithm, is the last form of bi-cluster structure;
i.e., arbitrarily positioned overlapping bi-clusters. This last form is a a more
general structure that covers most of the other bi-cluster structures.

Before designing a bi-clustering algorithm, one needs to determine what type
(model) of individual bi-clusters to be looking for. There are six primary types
considered in the literature, illustrated in Figure 2: (a) the constant value model,
(b) the constant row model, (¢) the constant column model, (d) the additive co-



herent model, where each row or column is obtained by adding a constant to
another row or column, (e) the multiplicative coherent model, where each row
or column is obtained by multiplying another row or column by a constant
value, and (f) the linear coherent model, where each column is obtained by mul-
tiplying another column by a constant value and then adding a constant [6].
To understand which type of bi-cluster structure makes the sense for gene ex-
pression analysis, one should note that the ultimate purpose is to identify pairs
of biologically related genes such that, under certain conditions, one activates
or deactivates the other, either directly or indirectly, during a genetic regula-
tory process. Because a gene may regulate a group of other genes, this problem
becomes identifying groups of such genes, i.e., bi-clusters. Housekeeping genes,
which are constitutively expressed over most conditions, are not biologically or
clinically interesting. The genes that the first two bi-cluster models, i.e., (a) and
(b) find tend to be this kind. Therefore, most existing algorithms are based on
either the additive model (d) or the multiplicative model (e) [6]. Since type (f)
is a more general type that unifies types (c), (d), and (e), we focus on seeking
type (f) bi-clusters in this paper.
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Fig. 2. Examples of different bi-cluster types: (a) constant value model; (b) constant
row model; (¢) constant column model; (d) additive coherent model; (e) multiplicative
coherent model; (f) linear coherent model

Our algorithm, the Linear Coherent Bi-cluster Discovering (LCBD) algo-
rithm, is based on first detecting linear correlations between pairs of gene ex-
pression profiles, then identifying groups by sample majority voting. To evaluate
our algorithm, we will compare its performance to six existing, well known bi-
clustering algorithms: Cheng and Church’s algorithm, CC [4]; Samba [18]; Or-



der Preserving Sub-matrix Algorithm, OPSM [1]; Iterative Signature Algorithm,
ISA [10,9]; Bimax [15]; and Maximum Similarity Bi-clusters of Gene Expression
Data, MSBE [12]. The first five algorithms were selected and implemented in the
survey [15]. The last algorithm, MSBE, is the first polynomial time bi-clustering
algorithm that finds optimal solutions, but under certain constraints. To briefly
explain each of the first five bi-clustering algorithms: in [4] Cheng and Church
defined a merit score, called mean squared residue, to evaluate the quality of a
bi-clustering, and then develop a greedy algorithm for finding d-bi-clusters. Yang
et al. improved Cheng and Church’s method by allowing missing values in gene
expression matrices. Tanay et al. [18] and Preli¢ et al. [15] search for bi-clusters of
up-regulated or down-regulated expression values, while the original expression
matrices are discretized to binary matrices during a pre-processing phase. Th-
mels et al. [10,9] used gene and condition signatures to evaluate bi-clusters, and
propose a random iterative signature algorithm (ISA) when no prior information
of the matrix is available. Ben-Dor et al.[1] attempt to find the order-preserving
sub-matrix (OPSM) bi-clusters in which all genes have same linear ordering,
based on a heuristic algorithm.

The remainder of the paper is organized as follows: First, we present the
details of our LCBD method in Section 2. Then Section 3 describes the experi-
mental evaluation of our proposed method, comparing its performance on both
synthetic and real data to other algorithms. Section 4 then assesses the advan-
tages and disadvantages of the LCBD algorithm and proposes some possible
approaches that may overcome the drawbacks of the LCBD algorithm.

2 Methods and Algorithms

Let A(I,J) be an n x m real valued matrix, where I = {1,2,3,...,n} is the set
of genes and J = {1,2,3, ...,m} is the set of samples. The element a;; of A(I,J)
represents the expression level of gene ¢ under sample j. A row vector A(i,J)
and a column vector A(I, j) represents the ith gene over all the samples and the
jth sample over all the genes, respectively. Our algorithm is composed of three
major steps.

In the first step, for each pair of genes A(p,J) and A(q,J), where p,q €
{1,2,3,...n} and p # ¢, we construct a two-dimension binary matrix that rep-
resents the 2D image of the two vectors with z-coordinates A(p,J) and y-
coordinates A(q, J), respectively. A pixel in the 2D image is denoted by a 1
in the binary matrix. Using the binary matrix as input, we then identify lines in
the 2D image based on the Hough transform. The Hough transform technique
works on the following principle: First note that each point (pixel) in a 2D image
can be passed through by an infinite number of lines, and each of which can be
parameterized by r and 0, where r is the perpendicular distance between the
origin and the line and @ is the angle between the perpendicular line and the
x-coordinate. Then note that the set of lines that pass through a point forms a
sinusoidal curve in the r — 6 coordinate space. Now, if there is a common line
that passes through a set of points in the original 2D image, their corresponding



sinusoidal curves must have a point of intersection in the r» — 6 space. So by
finding a point of intersection in r — 6 space, one can identify a line that passes
through a set of points in the original 2D space. Each line in the 2D image is a
linear correlation between a pair of genes under a subset of samples. To allow for
possible overlaps in the final bi-clusters, we let the Hough transform identify at
most k& non-reduplicative lines. Therefore, for each pair of genes, we can collect
at most k sample sets over which the two genes are linearly correlated. After
collecting sample sets for each gene pair, we obtain an n X n upper trianglular
matrix, where each element contains at most k sample sets (See Figure 3 for an
illustration). We denote each element in the matrix as .S;;. Note that for each 2D
image, the horizontal lines and vertical lines in the 2D image are not eliminated
since they might not represent linear correlations.
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Fig. 3. Illustration of an n X n gene pairwise sample sets matrix

In the second step, for vector of sample sets, S;;, we count the samples that
appear in each element of S;;. We then collect the top w voted samples into a
sample pool and the corresponding genes who voted for these samples into a gene
pool. The sample and gene pools thus constitute an initial bi-cluster. Then, for
the remaining samples, we iteratively add them and their corresponding gene
into the sample and gene pools, respectively, as long as by adding them the
mean gene-gene correlation coeflicient of the current bi-cluster remains above a
threshold. The user specified parameter w should be greater than 3, because one
can always draw a line between any 2 random points but the possibility that
more than 2 random points lie on the same line is very small unless there is
a linear correlation. In this step, each sample sets vector S;; will construct at
most one bi-cluster that necessarily contains gene .



In the third step, we remove redundancy in the bi-cluster sets generated in
step two. If two bi-clusters share more than 60% identical elements, one of the
two will be removed depending on which has more identical elements. Algorithm
1 describes the LCBD algorithm.

Algorithm 1 The LCBD Algorithm

Input An n X m real value matrix A(I,J), k, w.
Output A set of bi-clusters A(gi, s;), where g; C I and s; C J.

fori =1tondo
for j =i+ 1tondo
Construct binary matrix B; ; for vectors A(¢, J) and A(j, J);
Do Hough transform based on B; ; and k to obtain a set of sample sets, S;s;
end for
end for

for i =1 ton do
Select the top w most voted samples in S;; as the initial sample pool s;;
Select the genes whose corresponding gene pair sample sets contain all the initial
samples gi;
Construct the initial bi-cluster A(gs, s;);
while gene-wise mean correlation coefficient of A(g;, s;) < threshold do
Add the most voted sample in the leftover sample sets to the sample pool s;;
Add the corresponding gene into the gene pool g;;
Update bi-cluster A(gi, s:);
end while
end for

Remove redundant bi-clusters in the set A(gs,s;) that has > 60% overlapping ele-
ments.
Output the set of bi-clusters A(g;, si);

3 Results

We tested our algorithm on both synthetic datasets and two real datasets Sac-
charomyces cerevisiae and Arabidopsis thaliana. For the synthetic datasets, we
evaluate the algorithms based on how well they identify the real bi-clusters em-
bedded in the expression matrix beforehand. We adopt the Preli¢’s match score
function [15] as a quantified evaluation of merit: Let M;, Ms be two sets of
bi-clusters. The gene match score of M; with respect to M, is given by the
function

. 1 |G1 n G2|
SG(M17 M2) = ﬁ Z max(G2702)6M2m
LG, onem !



S& (M1, M2) reflects the average of the maximum match scores for all bi-clusters
in My with respect to the bi-clusters in Ms. In our experiment, M5 is one or more
reference (optimal) bi-cluster(s) embedded in the expression matrix beforehand.
For the parameter settings of the existing algorithms, we follow the previous
works [12] and [15].

3.1 Results on Synthetic Data

Because most existing bi-clustering algorithms do not work on linear coherent bi-
clusters, we select two bi-clustering algorithms OPSM and ISA that seek additive
bi-cluster structures to compare to our LCBD algorithm, since an additive bi-
cluster is a special case of a linear coherent bi-cluster. For the MSBE algorithm,
we found in our testing that prior knowledge of a reference gene and reference
sample for recovering a synthetic bi-cluster had a great effect on its final result,
we therefore do not include the MSBE algorithm into the synthetic experiments
because we assume that this prior knowledge is blind to all the algorithms tested.

Constant bi-cluster To produce an expression matrix with an additive bi-
cluster, we first randomly generated an 100 x 50 matrix. The values of the expres-
sion matrix obey either a normal distribution (with mean 0 ad SD 1) or a unique
distribution (with minimum 0 and maximum 1), since a real data distribution
could be either one of them [3, 11, 6]. Within the expression matrix, we randomly
select a row and 10 columns to form a size 10 reference gene vector. We then
randomly select 9 other row vectors under the same samples and re-calculate
their expression values based on the equation A(i, J.) = m; x A(io, Jr) + b,
where A(ig, J,) is the reference gene vector, m; equals to 1, and b; is a random
constant. Random noise is then added to the synthetic bi-cluster: a certain per-
cent of elements in the bi-cluster is randomly selected and replaced with random
values which obey the same distribution as the background matrix. We tested
noise levels of 0% to 25% with increasing steps of 5%. At each noise level we
generated 50 synthetic matrices with bi-clusters and reported a final match score
that is the mean over the 50 results. Figure 4 shows that our LCBD algorithm
obtained the highest match scores for all noise levels and distributions, compared
to the two additive bi-cluster type algorithms OPSM and ISA. As one can see,
the LCBD algorithm is robust to noise even at noise level 25%. This occurs a
line will be identified by the Hough transform as long as it passes through at
least 3 points (samples) and during the majority sample voting. Although the
expression value under some samples is destroyed, there are sufficiently many
others that their expression values under these samples are not destroyed and
thus these samples still obtain more votes than random samples that are not
within the linear coherence bi-cluster.

Linear coherent bi-cluster Because the LCBD algorithm seeks bi-clusters
of the linear coherent type, we can then test it directly on the linear coher-
ent bi-clusters. In this experiment, we only use unique distribution expression
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Fig. 4. Match scores of different additive model bi-clustering algorithms on synthetic
dataset under unique distribution and normal distribution

matrix, since the normal distribution matrix shows similar results. To gener-
ate a linear coherent bi-cluster in a expression matrix, we use the same pro-
cedure as in the constant bi-cluster experiment, except that in the equation
A(i, J.) = m; x A(ig, Jr) + b;, the m;’s are no longer 1’s but random values.
The left part of Figure 5 shows the match scores of the LCBD algorithm un-
der different noise levels and different bi-cluster sizes; the right part of Figure 5
shows the corresponding gene discovery rates of the LCBD algorithm under the
same noise level and bi-cluster size. From Figure 5, we can see that the match
score and gene discovery rates are generally higher on larger bi-clusters. This is
the case because whether a line can be identified during the Hough transform
depends more on the absolute number of points that a line passes through than
the proportion of points a line passes through. This suggests that the LCBD
algorithm should be better at discovering large bi-clusters.
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Fig. 5. Match score and gene discovering rate of the LCBD method on synthetic dataset
of different bi-cluster size and noise level under unique distribution



Overlapping test To test the LCBD algorithm on discovering multiple over-
lapping bi-clusters, we generated two linear coherent bi-clusters in the expression
matrix and let them overlap to some degree. Figure 6 shows the mean match
scores of the LCBD algorithm on discovering two overlapping bi-clusters at noise
level 10%. For the overlapping elements, we replace their original values with the
sum of the two overlapping values. The overlapping elements are not linear co-
herent elements and can be viewed as noise elements.
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Fig. 6. Match score of the LCBD method of different bi-cluster overlapping rate on
synthetic dataset under unique distribution

3.2 Results on Real Data

The documented descriptions of functions and processes that genes participate in
has become widely available prior knowledge. The Gene Ontology Consortium
in particular provides one of the largest organized collection of gene annota-
tions. Following the idea in [18,15], we investigate whether the genes identified
in bi-clusters produced by the different algorithms show significant enrichment
with respect to a specific Gene Ontology annotation. We use two web-servers,
FuncAssociate [2] and EasyGo [21], to evaluate the groups of genes produced
in our bi-clustering results. The FuncAssociate computes the hypergeometric
functional enrichment score, cf. [2], based on Molecular Function and Biologi-
cal Process annotations. The resulting scores are adjusted for multiple testing
by using the Westfall and Young procedure [20,2]. The EasyGo calculates the
functional enrichment score in a similar way. In detail, based on availability, we



tested the bi-clustering results from the Saccharomyces Cerevisiae dataset on the
FuncAssociate web-server and the results from the Arabidopsis thaliana dataset
on the EasyGo web-server. The Saccharomyces Cerevisiae dataset contains 2993
genes and 173 conditions and the Arabidopsis thaliana dataset contains 734 genes
and 69 conditions. Figure 7 and Figure 8 show the proportion of gene groups
of bi-clusters that are functionally enriched at different significance levels. The
LCBD algorithm demonstrates the best results (all 100%) on the Arabidopsis
thaliana dataset, compared to other seven algorithms; The LCBD results are
also competitive to the best results derived from the MSBE algorithm on the
Saccharomyces Cerevisiae dataset. These results on real datasets indicate that
linear coherent bi-clusters are a useful form of bi-cluster structure to extract
from gene expression datasets, and could be a bi-cluster type that exists widely
in other gene expression datasets.
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Fig. 7. Proportion of bi-clusters significantly enriched by any GO biological process
category (S. Cerevisiae). « is the adjusted significant scores of the bi-clusters

4 Discussion and conclusion

In this paper, we have developed a novel bi-clustering algorithm, the Linear
Coherent Bi-cluster Discovering algorithm (LCBD), which seeks linear coherent
bi-clusters in gene expression data. Our experimental results on the synthetic
data show that the LCBD algorithm can accurately discover additive and linear
coherent bi-clusters, while being robust to the noise level and bi-cluster size.
Our results on the two real datasets revealed that the linear coherent bi-clusters
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discovered by LCBD are functionally enriched and therefore biologically mean-
ingful.

The drawback of using the traditional Hough transform technique for iden-
tifying linear correlations is that it can suffer from sparse data problems: even
if some points lie perfectly on a common line, if the binary pixel matrix is too
sparse, the traditional Hough transform might not find this line because differ-
ent parameter values are needed to make the transform work appropriately for
different sparsity levels. The sparse data problem may occur when the sample
size of the expression matrix is small. However, the sparse data problem can
be addressed by applying more advanced image analysis techniques such as the
sparse resistant Hough transform or other feature recognition techniques.

The time complexity of the LCBD algorithm is worse than most algorithms
mentioned in this paper, and improving its efficiency is an important direction
for future work. It appears that selecting a set of representative genes, rather
than all genes, to construct the n X n sample set matrix is a promising approach,
since redundancies often occur if ones uses all genes. One intriguing aspect of
the LCBD algorithm is that it can easily be extended to identify bi-clusters of
more complex gene-gene correlations.
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