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Abstract

Images and other high-dimensional data can frequently
be characterized by a low dimensional manifold (e.g. one
that corresponds to the degrees of freedom of the camera).
Recently, nonlinear manifold learning techniques have been
used to map images to points in a lower dimension space,
capturing some of the dynamics of the camera or the sub-
jects. In general, these methods do not take advantage of
any prior understanding of the dynamics we might have, re-
lying instead on local Euclidean distances that can be mis-
leading in image space.

In practice, we frequently have some prior knowledge
regarding the transformations that relate images (e.g. ro-
tation, translation, etc). We present a method for augment-
ing existing embedding techniques with additional informa-
tion derived from known transformations, either in the form
of tangent vectors that locally characterize the manifold or
distances derived from reconstruction errors. The extra in-
formation is incorporated directly into the cost function of
the embedding technique. The techniques we augment are
largely attractive because there is a closed form solution for
their cost optimization. Our approach likewise produces a
closed form solution for the augmented cost function. Ex-
periments demonstrate the effectiveness of the approach on
a variety of image data.

1 Introduction

Automatically finding low-dimensional manifolds that
characterize data observed in high-dimensional space has
been a subject of inquiry for several decades. With the abun-
dance of complex data like video and images available to-
day, such methods are more relevant than ever. Traditional
techniques such as principal component analysis (PCA) [1]
and multidimensional scaling (MDS) [2] embed data points
in a linear subspace of the original space while attempting to
preserve relationships amongst the original points (e.g. re-
construction error or pairwise distance). Recently, the basic
notions underlying these techniques have been extended to
discover nonlinear manifolds that cannot be captured by the

simpler methods. Recent nonlinear manifold methods in-
clude kernel PCA [3], locally linear embedding (LLE) [4],
Isomap [5], the Laplacian Eigenmap method (LEM) [6],
and Semi-definite Embedding [7].

While differing in the relationships they preserve and
the exact mechanisms used to preserve relationships, these
methods all use Euclidean distance between points as the
basis for the embedding. However, if we consider data
such as the pixels of grayscale images (a vector of width×
height pixels), even a relatively small and simple transfor-
mation (e.g. rotation) of a three-dimensional object can re-
sult in a deceptively dramatic change to its image. Between
two such consecutive images, the Euclidean distance can be
quite large, potentially leading to the false conclusion that
the two images are only weakly related.

Image data often has an underlying invariant and asso-
ciated transformations, like rotation, that naturally imply a
manifold on which neighbouring points are small transfor-
mations of one another. We can often characterize these
transformations based on prior knowledge regarding the
source of the images (e.g. video data is likely to contain
shifts, rotations, changes of illumination, etc). We propose
a method for exploiting the extra information offered by the
transformations to correct potentially misleading observa-
tions based on Euclidean distance.

Other research has sought to use prior information re-
garding transformations, particularly with image data, in the
context of clustering using probabilistic models that directly
incorporate transformations [8], augmented distance mea-
sures in a supervised learning context [9], and for tracking
[10]. Drawing from this body of research, we extend non-
linear embedding techniques to take advantage of known
transformations, allowing for unsupervised learning of em-
beddings that better reflect the underlying dynamics.

We will start by explaining two methods for constructing
distances based on known transformations. The first con-
siders angles between tangent spaces induced by the trans-
formation, and the second uses sequences of transforma-
tions that greedily minimize reconstruction error. Next, we
briefly review some contemporary embedding techniques
and follow this by deriving a new embedding cost func-
tion to combine different distance information. Aside from



its immediate application as a correction for image embed-
ding, this cost function is a general purpose framework for
combining embedding techniques derived from MDS and
PCA. We present experiments demonstrating that the aug-
mentation gives embeddings that capture more features of
the image data, including clustering together images related
to each other by a transformation.

2 Tangent Correction Distance

Consider some high-dimensional data that lives on a
lower-dimensional manifold. If the data lie densely along
the manifold (e.g. very small steps of rotation) the Eu-
clidean distances between consecutive points may be small
enough to capture the manifold (see Figure 1 (a)). If, how-
ever, the data are sparsely distributed (Figure 1 (b)), the
distances may too large to be informative. Intuitively, one
would wish to fill in the gaps along the manifold by gener-
ating new points likely to lie on the manifold. It is here that
our known transformations come into play.

(a) Dense data along mani-
fold

(b) Sparse data along man-
ifold

(c) Sparse data plus "vir-
tual" points

(d) Sparse data and associ-
ated tangents

Figure 1. Data and tangents along the mani-
fold

One strategy is to generate “virtual” points by applying
transformations to real data points and then learn the mani-
fold using both the real and the virtual points (Figure 1 (c)).
In this research, we instead adopt a strategy similar to that
used by Chapelle and Schölkopf for using known transfor-
mations in support vector machines [11]. Rather than ex-
plicitly creating points and adding them, we use the trans-
formations to obtain tangent vectors at the real data points.
The underlying assumption here is that the transformation
locally characterizes the manifold, so that tangents to the

transformation function approximate tangents to the mani-
fold (Figure 1 (d)).

More formally, if we have a set of vectors in the original
high dimensional space, X, and a transformation T (xi, θ),
parameterized by a scalar θ, we obtain a tangent vector dxi

for each point according to dxi = limθ→0
1
θ (T (xi, θ) −

T (xi, 0)) or, alternatively, dxi = ∂
∂θ |θ=0T (xi, θ) .

The intuition behind our treatment of these tangent
spaces is as follows. If the tangents of two points xi and
xj are unaligned (as in Figure 2 (b)) rather than aligned (as
in Figure 2 (a)), the Euclidean distance is probably inac-
curate. While there is no guarantee that the Euclidean dis-
tance between aligned points is accurate for points that are
very distant along the manifold (there may be many curves
along the way), over smaller distances the alignment pro-
vides some good evidence of the reliability of Euclidean
distance. We therefore use the angle between tangent spaces
as a correction to the Euclidean distance in our embedding
cost functions. A simple way to do this is to compute the
sine of the angle between each pair of tangent spaces and
treat this as a new measure of distance. Clearly sine gives us
a number between 0 and 1 for each pair, where 0 means the
pair is parallel (aligned) and 1 means the pair is orthogonal
(unaligned). More formally, we construct a matrix, D(T ),
containing the sine squared of the angle between each pair
of tangent vectors.

D(T ) = 1 − 〈dxi, dxj〉2
〈dxi, dxi〉 〈dxj , dxj〉

(a) Aligned (b) Unaligned (dotted line is
Euclidean distance)

Figure 2. Alignment of tangent vectors

3 Transformation Reconstruction Distance

An alternative way to use transformations in image com-
parison is to apply a transformation to an image i and then
measure the distance of this transformed image to another
image j. We call this distance the reconstruction error, rep-
resenting how well image i can be used to reconstruct the
target image j. If the target image j is truly a transformed
version of the original, then the corresponding reconstruc-
tion error should be very small.
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In general, if images on the manifold were the result
of repeated applications of the transformation, it should
be possible find a sequence of images in the data set with
very small reconstruction error at each step in the sequence.
Finding such a sequence can be seen a shortest path prob-
lem on a graph weighted by the reconstruction errors. This
is similar to the approach used by Isomap to obtain so-called
geodesic distances [5]. We call the sum of the reconstruc-
tion errors along the path the transformation reconstruction
distance.

Both of these corrections (tangent correction and trans-
formation reconstruction) can be combined with any em-
bedding method that has a cost function similar in form to
locally linear embedding (LLE) and the Laplacian Eigen-
map method (LEM). We will first provide a brief back-
ground on the relevant embedding methods and then derive
the combined cost function.

4 Embedding Methods

Before presenting tangent corrected embedding, it is
necessary to quickly review some background in dimen-
sionality reduction techniques, which we will later com-
bine to form a new embedding cost function. In general,
these methods take t points x1, . . . , xt in high-dimensional
space and map them to points y1, . . . , yt in some lower di-
mensional space. These lower dimensional points are called
codes. Broadly speaking, the embedding process attempts
to preserve some structure inherent in the original set of
points by imposing similar structure on the codes.

4.1 Multidimensional Scaling

Multidimensional scaling (MDS) finds a mapping from
high-dimensional space to a lower-dimensional space while
preserving pairwise distances between points.

Given a t× t distance matrix D, MDS finds code vectors
y1, . . . , yt in d dimensions such that if dij denotes the Eu-
clidean distance between xi and xj , and d̂ij is the distance
between yi and yj , then dij is similar to d̂ij for all pairs of
points. We will specifically consider metric MDS [2], which
tries to minimize,

min
Y

t∑

i=1

t∑

j=1

(d2
ij − d̂2

ij)
2 (1)

where dij = ||xi − xj || and d̂ij = ||yi − yj ||. One way
to achieve this is to convert the distance matrix D to inner
products, XT X = − 1

2HDHT , where H = I − 1
t ee

T and
e is a column vector of all 1’s. We can now rewrite the

problem as

min
Y

t∑

i=1

t∑

j=1

(xT
i xj − yT

i yj)
2 (2)

It can be shown [2] that the closed form solution to this
minimization problem is Y = Λ1/2V T where Λ is a diag-
onal matrix containing the top d eigenvalues of XT X , and
V contains the corresponding eigenvectors.

4.2 Laplacian Eigenmap Method

Given t points in high-dimensional space, LEM [6] starts
by constructing a weighted graph with t nodes and a set
of edges connecting neighbouring points. Each edge is
weighted by Wij . The embedding map is then provided
by the following objective

min
Y

t∑

i=1

t∑

j=1

(yi − yj)
2Wij

subject to appropriate constraints. This objective can be re-
formulated as

min
Y

Tr(Y T Y L)

where L = R − W , R is diagonal, and Rii =
∑t

j=1
Wij .

This L is called the Laplacian function. Happily, principle
components analysis (PCA) gives us a closed form solution
for this minimization problem (i.e. make Y the eigenvectors
of L).

4.3 Locally Linear Embedding

Locally linear embedding (LLE) [4] builds a weight ma-
trix by attempting to reconstruct each point using a linear
combination of its k nearest neighbours

min
W

t∑

i=1

||xi −
k∑

j=1

WijxNi(j)||2

where Ni(j) is the index of the jth neighbour of the ith
point. It then selects code vectors so as to preserve the re-
construction weights by solving

min
Y

t∑

i=1

||yi −
k∑

j=1

WijyNi(j)||2

This objective can be reformulated as

min
Y

Tr(Y T Y L)
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where L = (I−W )T (I−W ). Note that the final objectives
for both LEM and LLE have the same form and differ only
in how the matrix L is constructed. Therefore, same closed
form solution (taking Y to be the eigenvectors of L) works.

It is worth mentioning here that the approach we explain
in the next section can be applied to augment any technique
that has an objective function of this form (essentially forms
of nonlinear PCA, e.g. kernel PCA [3]).

5 Combined Embedding

We will now present a new cost function that can com-
bine two different similarity measures into a single cost
function. The first similarity measure is derived from a
distance matrix, D(T ), which in our case could be one of
the two non-Euclidean distances presented above (i.e. tan-
gent correction distance or transformation reconstruction
distance). We then use the MDS transformation from Sec-
tion 4.1 to obtain M (T ) = − 1

2HD(T )H . The second sim-
ilarity measure is expressed in a matrix, L, derived from
a locality-preserving embedding method such as LLE (for
which L = (I − W )T (I − W ), where W is the matrix
of reconstruction weights) or LEM (in which case L is the
Laplacian). These PCA-derived methods attempt to mini-
mize local reconstruction error. Our derivation applies to
both LLE and LEM.

We can now form our combined embedding objective

min
Y

(1 − α)Tr(M (T ) − Y T Y )2 + αTr(Y T Y L) (3)

where Y is a matrix of code vectors and 0 ≤ α < 1.1 The
first trace term in this objective is essentially the MDS ob-
jective, trying to preserve the transformation-derived dis-
tances. The second trace term is the cost function of a
locality-preserving embedding method. The parameter α

mixes between the objectives, embedding on the basis of
the transformation-based distances as α tends to zero, and
on the locality-preserving objective as α tends to 1.

To solve this problem, we start by applying singular
value decomposition (SVD) to obtain M (T ) = V PV T ,
where V and P are the eigenvectors/values of M (T ). If
we also decompose Y T Y = QΛQT (Q and Λ are eigen-
vectors/values), then Y = Λ

1

2 QT , allowing us to rewrite
(3) as

minQ,Λ(1 − α)Tr(V PV T − QΛQT )2 + αTr(QΛQT L)

= minQ,Λ(1 − α)Tr(P − V T QΛQT V )2 + αTr(QΛQT L)

1In practice, we rescale the matrix M (T ) to have a norm similar to
L. The objective is to give the two parts of the objective function roughly
equal scale so that α is more meaningful. We omit this rescaling from the
presentation for the sake of simplicity.

If we now define G = V T Q, we can replace Q = V G

to get

minG,Λ(1 − α)Tr(P − GΛGT )2 + αTr(V GΛGT V T L)

= minG,Λ(1 − α)Tr(P − GΛGT )2 + αTr(V T LV GΛGT )

= minG,Λ Tr((1 − α)P 2) + Tr((1 − α)GΛGT GΛGT )

−2Tr((1 − α)PGΛGT ) + Tr(αV T LV GΛGT )

Note that P is a constant, so we can drop the first trace
term when we are minimizing. Collecting the third and
fourth trace terms together, we get

min
G,Λ

Tr((1 − α)GΛGT GΛGT ) − 2Tr(BGΛGT )

where B = (1−α)P − 1
2αV T LV . Note that B is constant,

so we can add Tr( 1
1−αB2) to complete the square without

affecting the minimization (4), and then factor to produce
the final objective (5)

minG,Λ Tr((1 − α)GΛGT GΛGT ) − 2Tr(BGΛGT )

+Tr( 1
1−αB2) (4)

= minG,Λ Tr( 1√
1−α

B −
√

1 − αGΛGT )2

= 1√
1−α

minG,Λ Tr(B − (1 − α)GΛGT )2 (5)

This now has the same form as the standard MDS prob-
lem, so we can solve it by finding the decomposition B =
USUT . For a d dimensional embedding, we then set Λ to
be the top d eigenvalues of S rescaled by (1 − α) and G

to be the corresponding eigenvectors from U .2 We have
now obtained a closed form solution to our mixed objective
function.

While we will not explore it in greater detail here, it
is worth noting that this derivation represents a general-
purpose way to combine two embedding techniques into
one. One of the techniques must have an MDS-like cost
function (e.g. Isomap), while the other must have a PCA-
like cost function (e.g. LLE, LEM). This means we can po-
tentially create a wide variety of hybrids that combine dif-
ferent similarity measures. For now we will focus on using
transformation-derived distances to improve the embedding
technique.

6 Transformations

We consider three transformation functions in our exper-
iments. The first, Tshift, is a simple shift operator that trans-
lates the image by a fixed number of pixels in one direction

2When B is not positive semi-definite, one can add λI to B, where λ

is the absolute value of the largest negative eigenvalue of S.
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Figure 3. Illustration of local pixel transforma-
tion to produce x

′ from x.

(one pixel, horizontally, in our experiments). This shift op-
erator wraps around at the boundaries. The second transfor-
mation, Trot, is a fixed angel rotation about the center of the
image.

The third transformation, Tlocal, is a data-dependent
transformation that attempts to characterize the relationship
between an image and its nearest Euclidean distance neigh-
bour as a parameterized local filter applied over the whole
image. Let x be the original image and x′ be its nearest
Euclidean distance neighbour. Each pixel x′

i in x′ is deter-
mined by a weighted combination of corresponding neigh-
bouring pixels in the original image, x′

i = θT xN(i), where
xN(i) is a vector containing the pixels neighbouring xi and
θ is a weight vector. An illustration is given in Figure 3.
When using this transformation, a weight vector is com-
puted for each image that minimizes the Euclidean distance
between the transformed original and the nearest neighbour
to the original, minθ||x′ − Tlocal(x, θ)||. This is why we
call it a “data-dependent” transformation. In all of the ex-
periments presented here, the neighbourhood was the eight
immediate neighbours.

7 Experimental Results

We experimented with embeddings for a variety of im-
ages using the following methods: LLE, Isomap, LEM, and
transformation-corrected LEM (TC-LEM) with the tangent
correction and the transformation reconstruction correction,
respectively. These last two methods correspond to using
the combined embedding objective (3), where L is LEM’s
Laplacian matrix. Each method was tried with a variety of
neighbourhood settings and the best chosen. In most cases
LEM, LLE, and Isomap behaved very similarly so we use
LEM here as a representative for comparison. Parameters
are specified in parentheses after the method (i.e. LEM(k)
and TCE-LEM(k, α), where k is the number of neighbours
used to build the Laplacian). Note that TCE-LEM(k, 1) is
effectively identical to LEM(k).

Figure 5 shows the 2-D embedding using of a set of ten
handwritten digit images (0 through 9 - see Figure 4 for the
raw images), with each image shifted horizontally against a
white background. The TC-LEM embedding used the Tlocal

transformation and the tangent correction distance. Plotting
the actual images leads to overlaps, so the plot only shows
the number associated with each digit and indicates the de-
gree of shift by the darkness or lightness of the digit (dark-
est - leftmost and lightest - rightmost). At first glance the
manifold produced by LEM seems informative, and it has
indeed captured the shift of the images along the horizontal
axis. However, the other dimension is essentially meaning-
less, and LEM is incapable of distinguishing the digits. By
contrast, TC-LEM, using Tlocal, captures the shift of the
images on the vertical axis and also manages to separate the
digits effectively along the horizontal axis.

Figure 6 shows similar results for TC-LEM using Tshift

and the reconstruction transformation distance. Again, TC-
LEM is able to cluster the digits while still capturing the
shift, although there is some overlap in the densest region.

Figure 7 shows the effects of adjusting the mixing pa-
rameter, α, for TC-LEM using Tlocal and tangent correc-
tion. Recall that α = 1 is pure LEM, which tends to se-
quence the data by shift. α = 0 is using the transformation-
derived correction alone, and tends to cluster the data. This
tendency toward clustering vs. sequencing is consistent in
our experience and suggests that TC-LEM may be viewed
as simultaneously trying to cluster and embed. The α pa-
rameter can be used to control this tendency in a straight-
forward fashion.

Figure 8 show the 2-D embedding of a set of eighteen
images of a teapot. The teapot is viewed from two different
angles (see Figure 4 for the raw images) and each subset is
rotated in the plane in nine steps through to 180 degrees.
LEM captures the rotation (along the horizontal axis) but
fails to distinguish between the two views (the vertical axis
has no readily apparent meaning and the two sets overlap al-
most perfectly). TC-LEM, using Tlocal and tangent correc-
tion, captures both rotation in the plane (as a “loop” of im-
ages) and the two distinct views of the teapot (there are two
loops). Figure 9 shows similar results for Trot and trans-
formation reconstruction distance. In this case, however, it
broke the set into four clusters instead of two, suggesting
that paths found in reconstruction space did not completely
connect the images within a cluster.

In general, all methods are capable of identifying mean-
ingful relationships in the data but only TC-LEM is reliably
capable of capturing both the dimension corresponding to
the sequencing of images and the other distinguishing fea-
tures (e.g. different objects).

8 Conclusions

We have demonstrated that known transformations in-
herent in the image domain can be used to augment non-
linear embedding techniques by correcting potentially mis-
leading Euclidean distances. Transformation corrected em-
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Figure 4. Original digit and teapot images used in experiments.
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Figure 5. Schematic plot of two-dimensional manifold found by (from left to right) TC-LEM(3, 0.65)
using Tlocal and tangent correction (left), a blowup of the dense part of that plot (middle), and LEM(3)
(right) for images of all ten digits with multiple images for each digit shifted horizontally by varying
amounts. Actual images are not plotted but the shift is indicated by the darkness of the digit (leftmost
- darkest; rightmost - lightest).
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Figure 7. TC-LEM on digit data using Tlocal and tangent correction for two values of α = 0.45 and
α = 0.65, showing the shift between clustering and spreading depending on α.

Figure 8. Schematic plot of two-dimensional manifold found by (left) TC-LEM(0.2) using Tlocal and
tangent correction, and (right) LEM for images of a teapot viewed from two different angles and
rotated in the plane. Arrows indicate the angle of rotation for each image and points (square or star)
indicate the teapot image.
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TCE−LEM (recon error, 5, 0.72)

Figure 9. Schematic plot of two-dimensional manifold found by (left) TC-LEM(0.2) using Trot and
transformation reconstruction distance, and (right) LEM for images of a teapot viewed from two
different angles and rotated in the plane.

beddings reliably capture the dimension corresponding to a
sequence of such transformations and other distinguishing
features along with it. Computationally, the method retains
the advantages of the techniques we augment by having a
closed form solution for the optimization and represents a
general purpose method for combining MDS-derived and
PCA-derived embedding methods. Future work consists in
extending the approach to use multiple transformations si-
multaneously, more sophisticated methods for characteriz-
ing the local manifold, and trying new combinations of em-
bedding techniques.
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