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Abstract. Labeled data is often sparse in common learning scenarios,
either because it is too time consuming or too expensive to obtain, while
unlabeled data is almost always plentiful. This asymmetry is exacer-
bated in multi-label learning, where the labeling process is more complex
than in the single label case. Although it is important to consider semi-
supervised methods for multi-label learning, as it is in other learning
scenarios, surprisingly, few proposals have been investigated for this par-
ticular problem. In this paper, we present a new semi-supervised multi-
label learning method that combines large-margin multi-label classifica-
tion with unsupervised subspace learning. We propose an algorithm that
learns a subspace representation of the labeled and unlabeled inputs,
while simultaneously training a supervised large-margin multi-label clas-
sifier on the labeled portion. Although joint training of these two in-
teracting components might appear intractable, we exploit recent devel-
opments in induced matrix norm optimization to show that these two
problems can be solved jointly, globally and efficiently. In particular,
we develop an efficient training procedure based on subgradient search
and a simple coordinate descent strategy. An experimental evaluation
demonstrates that semi-supervised subspace learning can improve the
performance of corresponding supervised multi-label learning methods.
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1 Introduction

In many real world data analysis problems, complex data objects such as docu-
ments, webpages, images and videos can be simultaneously assigned into multiple
categories, and hence have multiple class labels. Multi-label classification is an
important supervised learning problem that has received significant attention
in the machine learning research literature. Although the earliest work on this
problem simply reduced multi-label classification to a set of independent bi-
nary classification problems [1], it was quickly realized that such an approach
was unsatisfactory [2] since such labels are usually not independent: most often



2 Y. Guo and D. Schuurmans

they exhibit strong correlations. Capturing label correlations in an effective, yet
tractable manner has led to a diverse set of formulations for multi-label learning,
including pairwise label dependency methods [3, 4], large-margin methods [5–8],
ranking based large margin methods [9–12], structure exploitation methods [13–
18] and others. Of these, it has recently been observed that large-margin based
approaches offer effective and efficient multi-label learning methods. In partic-
ular, it has been shown that a large-margin formulation based on minimizing a
“calibrated separation ranking loss” demonstrates state-of-the-art performance
in multi-label text categorization [8].

However, just as in any supervised learning scenario, a key bottleneck is ob-
taining sufficient labeled data to achieve reasonable generalization performance.
In practice, one often encounters a significant amount of unlabeled data, even
while labeled examples remain scarce, since labeling is an expensive and time-
consuming process. This issue is even more salient in multi-label learning, since
manually assigning multiple labels, correctly, is more challenging than assign-
ing atomic labels. Thus, we address the challenge of exploiting significant unla-
beled data to reduce the amount of labeled training data required for effective
multi-label classification. Although supervised multi-label learning has received
significant attention, semi-supervised multi-label learning is far from being well
explored. A handful of preliminary studies have explored semi-supervised multi-
label learning, using approaches such as non-negative matrix factorization [19],
graph-based methods [20], and dimensionality reduction [21]. Unfortunately,
these proposals rely on local optimization schemes for training, and do not offer
reliable off-the-shelf procedures that protect end-users from local minima.

In this work, we propose a new approach for exploiting unlabeled data to
help multi-label learning in a transductive setting, by simultaneously learning
the underlying subspace feature representations of the data with a large margin
multi-label classification model. Automatically discovering useful feature repre-
sentations of data has been a long standing research of machine learning—from
early unsupervised approaches, such as principal component analysis (PCA)—
to recent supervised convex feature learning, such as multi-task feature learning
[22]. Here we exploit recent results for semi-supervised convex subspace learn-
ing, which we adapt to large-margin multi-label classification. Our approach is
based on two key recent ideas: (1) using calibrated separation ranking loss for
large margin multi-label classification [8], and (2) using induced matrix norms to
efficiently combine subspace learning with semi-supervised training [23]. By in-
troducing a structured regularizer on the learned representation, and exploiting
a particular induced matrix norm, we formulate the semi-supervised multi-label
learning problem as a convex max-min optimization problem with no local max-
ima or minima. We then develop a specialized subgradient coordinate descent
algorithm to solve the training problem efficiently, recovering a global solution.

The goal is to discover a subspace feature representation that captures dis-
criminative structure that is not only shared across labeled and unlabeled data,
but also shared across the multiple labels. Our experimental results demonstrate
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that the proposed method can surpass the performance of some state-of-the-art
supervised results for multi-label text categorization.

The remainder of the paper is organized as follows. After first introducing
basic background concepts and notation, we review previous work on large mar-
gin multi-label classification in Section 2, with a particular emphasis on the
calibrated separation ranking loss used for state-of-the-art multi-label text cat-
egorization [8]. Based on this particular multi-label classification approach, we
then present a semi-supervised formulation in Section 3 that exploits implicit
subspace learning through structured matrix norm regularization. An efficient
global optimization algorithm is then presented in Section 4. Finally, we present
an experimental evaluation in Section 5 and conclude the paper with a discussion
of future research directions in Section 6.

1.1 Preliminaries: Definitions and Notation

Throughout this paper we will use capital letters to denote matrices, bold non-
capital letters to denote column vectors, and regular non-capital letters to denote
scalars, unless special declaration is given.

We use Id to denote a d × d identity matrix; and use 1 to denote a column
vector with all 1 entries, generally assuming its length can be inferred from
context. Given a vector x, ‖x‖2 denotes its Euclidean norm.

Given a matrix X, ‖X‖2F denotes its Frobenius norm; the block norm ‖X‖p,1
is defined as ‖X‖p,1 = (

∑
i(
∑
j |Xij |p)

1
p ); and the trace norm is defined as

‖X‖tr =
∑
i σi(X), where σi(X) denotes the ith singular value of X. We use

Xi: to denote the ith row of a matrix X, use X:j to denote the jth column of
X, and use Xij to denote the entry at the ith row and jth column of X. We
also need to make use of a general form of induced matrix norm given by the
definition ‖X‖(Z,p) := maxz∈Z ‖Xz‖p. It can be shown [23] that this defines a
valid matrix norm for any bounded closed set Z ⊂Rn such that span(Z) =Rn
and any 1 ≤ p ≤ ∞. Finally, for matrices, we use ‖X‖ to refer to a generic
norm on X, and ‖Y ‖∗ to denote its conjugate norm. The conjugate satisfies
‖Y ‖∗=max‖X‖≤1 tr(X>Y ) and ‖X‖∗∗=‖X‖, where tr denotes trace.

2 Background

Our main formulation is based on combining two key components: an effective
large-margin formulation for multi-label learning, and an efficient approach for
automated representation learning that avoids local optima.

2.1 Large Margin Multi-label Classification

Multi-label classification is a widely studied problem in supervised machine
learning, for which large margin methods provide one of the state-of-the-art
approaches. By maximizing discriminative classification margins, expressed by
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different loss functions, supervised large margin learning methods are both effi-
cient, and demonstrate good generalization performance.

In particular, [8] has recently proposed an effective method for supervised
multi-label learning that exploits the dependence structure between labels in a
simple yet effective manner. The basic idea is to simultaneously train a set of L
predictors, one for each class label, but under a coordinated loss: the calibrated
separation ranking loss captures the sum of two hinge losses, one of which is
between the prediction value of the least positive labeled class and the predic-
tion value of a threshold dummy class, and the other of which is between the
prediction value of the least negative labeled class and the prediction value of
the threshold dummy class.

More formally, in the supervised multi-label learning setting, one is given an
input data matrix X ∈ Rt×d and label indicator matrix Y ∈ {0, 1}t×L, where
L denotes the number of classes. We also assume a feature mapping function
φ(·) is fixed. Then, given an input instance x, the L dimensional response vector
s(x) = φ(x)>W is recovered using W , giving a “score” for each label. These
scores will be compared to a threshold to determine which labels are to be
predicted. Then the calibrated separation ranking loss is given by

max
l∈Yi:

(1 + s0(Xi:)− sl(Xi:))+ + max
l̄∈Ȳi:

(1 + sl̄(Xi:)− s0(Xi:))+. (1)

So, for example, given a test example x, its classification is determined by y∗l =
arg maxyl∈{0,1} yl(sl(x)− s0(x)).

It is shown in [8] that minimizing this loss under standard squared regular-
ization can be formulated as a standard convex quadratic minimization problem

min
W,u,ξ,η

α

2
(‖W‖2F + ‖u‖22) + 1>ξ + 1>η (2)

subject to ξi ≥ 1 +Xi:(u−W:l) for l ∈ Yi:,∀i = 1 · · · t
ηi ≥ 1−Xi:(u−W:l̄) for l̄ ∈ Ȳi:,∀i = 1 · · · t
ξ ≥ 0,η ≥ 0

where l ∈ Yi: lists through the indices of all entries of Yi: that contain 1 val-
ues, and Ȳ denotes the complementary of Y , i.e., Ȳ = 1 − Y . Obviously the
loss function only captures the classification relevant separation ranking that
separate positive labels from negative labels for each instance, instead of the
pairwise rankings among all label pairs in [9]. By conducting calibrated separa-
tion ranking, the label separation on new testing instances can be automatically
determined using the trained predictors.

In [8] this approach is shown to demonstrate superior generalization and
efficiency in supervised multi-label text categorization, so we make use of this
loss in our semi-supervised formulation.

2.2 Unsupervised Representation Learning

To allow unlabeled data to influence the training of a multi-label classifier we
consider the approach of learning a new input data representation that makes
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the label correlations more apparent. We begin by adopting a recent approach to
representation learning that offers a tractable way to learn a latent representation
and a data reconstruction model.

Initially, consider the case where one is just given unlabeled data X. A simple
goal for representation learning is to learn an m × d dictionary B of m basis
vectors, and a t×m representation matrix Ψ containing new feature vectors of
length m, so that X can be accurately reconstructed from X̂ = ΨB. To measure
approximation error we consider the loss function 1

2‖X̂ − X‖
2
F . Note that the

factorization X̂ = ΨB is invariant to reciprocal rescalings of B and Φ, so to avoid
degeneracy their individual magnitudes have to be controlled. We will assume
that each row Bi: of B is constrained to belong to a bounded closed convex set
B = {b : ‖b‖2 ≤ 1}. The generic training problem can be expressed

min
B∈Bm

min
Ψ

1

2
‖ΨB −X‖2F + γ‖Ψ>‖p,1 (3)

where γ ≥ 0 is a trade-off parameter. Some standard approaches to represen-
tation learning can be recovered by particular choices of p in (3). For example,
a standard form of sparse coding can be recovered by choosing p = 1 [24]. In-
stead, choosing p = 2 results in a regularizer that encourages entire columns Ψ:j

(features) to become sparse [25] while otherwise only smoothing the rows, hence
implicitly reducing the dimensionality of the learned representation Ψ .

Unfortunately, the straightforward formulation (3) is not jointly convex in
B and Ψ , and even recent formulations resort to local minimization strategies.
However, a key observation is that the training problem can be solved globally if
the number of learned features m is indirectly controlled through the use of the
‖Ψ>‖p,1 regularizer. As noted, for p > 1, such a regularizer will already naturally
encourage entire columns Ψ:j (features) to become sparse [25]. A key result that
leads to a tractable reformulation is the following identity from [23, 26].

Proposition 1. [23, Theorem 1]:

min
B∈B∞

min
Ψ

1

2
‖ΨB −X‖2F + γ‖Ψ>‖p,1 = min

X̂

1

2
‖X̂ −X‖2F + γ‖X̂‖∗(B,p∗) (4)

where minB∈B∞ denotes minm∈N minB∈Bm , and ‖ · ‖∗(B,p∗) is the conjugate of an
induced matrix norm.

The latter problem is convex, and for p = 1 or p = 2 can be readily solved
for X̂, after which the optimal factors B and Ψ can be readily recovered [23, 26].

3 Simultaneous Multi-label Classification and
Representation Learning

Our main contribution in this paper is to combine these two components to for-
mulate a multi-label classification and representation learning framework that
uses unlabeled data to guide the learning of a multi-label classifier. Such an
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approach enables semi-supervised learning, where unlabeled data assists in the
otherwise supervised training of a classification model. We will investigate semi-
supervised learning in a transductive setting, where a set of labeled and unla-
beled data is provided, and one seeks an accurate labeling over the unlabeled
portion.3 The main advantage of the proposed formulation is that it admits
an efficient global training scheme that combines multi-label classification with
representation learning.

Note that global training schemes offer a significant advantage to the end-
user, since they do not need to concern themselves with the inner workings of any
particular solver. Rather, it is sufficient to focus on understanding the nature
of the problem formulation, and the solver can be used as a black box. This
separation of implementation from specification frees the end-user to focus on
engineering useful features, or imposing trade-offs between training errors and
regularization penalties, without having to understand the inner workings of a
solver. In this paper, however, we need to show that a suitably efficient solver
can exist, which we do in the next section.

To develop a combined formulation of multi-label classification and repre-
sentation learning, consider the following set-up. Let X ∈ Rt×d be the input
feature matrix and let X` ∈ Rt`×d be the labeled submatrix formed by the first
t` rows of X, where t` + tu = t. Let Y ∈ {0, 1}t`×L be the label matrix over the
supervised portion.

We would like to learn a (tl + tu) × m representation matrix Ψ = [Ψl;Ψu],
an m × d basis dictionary B, and an m × L prediction model W , such that
X = [Xl;Xu] can be reconstructed from X̂ = ΨB, and Y can be reconstructed
from Ŷ = ΨlW . To accommodate the offset in the calibrated separation ranking
loss (1) we consider a linear prediction function over the subspace representation
Ψ(W:l−u). Then by combining (2) and (3) we reach the joint training formulation

min
Ψ,B∈Bm

min
W,u,ξ,η

α

2
(‖W‖2F + ‖u‖22) + 1>ξ + 1>η +

β

2
‖X − ΨB‖2F + γ‖Ψ>‖p,1 (5)

subject to ξi ≥ 1 + Ψi:(u−W:l) for l ∈ Yi:,∀i = 1 · · · t`
ηi ≥ 1− Ψi:(u−W:l̄) for l̄ ∈ Ȳi:,∀i = 1 · · · t`
ξ ≥ 0,η ≥ 0

where now the multi-label predictions are made from the learned representation
Ψ , which is the only component that connects the multi-label training problem to
the representation learning problem. Note that for p > 1 the regularizer ‖Ψ>‖p,1
will tend to reduce the dimensionality of the learned representation Ψ , which
gives an automated form of subspace learning directly coupled to the multi-
label training problem. Unfortunately, (5) does not immediately offer a plausible
global training algorithm that avoids local minima: although it is straightforward

3 The approach we propose here is in principle extendible to a semi-supervised learning
scenario where the test data is not available during training. However, such out-of-
sample classification entails significant additional technicality that is currently left
to future work.
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to observe that (5) is convex in each of the components B, W , Ψ , u, ξ and η given
the others, it is not jointly convex. Fortunately Proposition 1 can be generalized
to accommodate the more general formulation given here, as we now show.

3.1 Equivalent Reformulation as a Convex Problem

Unlike staged training procedures that separate the unsupervised from the super-
vised phase [27], and previous work on semi-supervised dimensionality reduction
that relies on alternating minimization [28], here we demonstrate a jointly convex
formulation that allows all components to be trained simultaneously.

Let M = ΨB and Z = Ψ(W − [u, · · · ,u]) denote the reconstruction and
response matrices respectively. To simplify the development below, we set u = 0
and therefore let Z = ΨW and M = ΨB; hence Z ∈ Rt×L and M ∈ Rt×d.
Substituting this into (5) yields

min
Ψ,B∈Bm,W,ξ,η

min
Z=ΨW,M=ΨB

α

2
‖W‖2F + 1>ξ + 1>η +

β

2
‖X −M‖2F + γ‖Ψ>‖p,1 (6)

subject to ξi ≥ 1− Zil for l ∈ Yi:,∀i = 1 · · · t`
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,∀i = 1 · · · t`
ξ ≥ 0,η ≥ 0.

To achieve compatibility with the reformulation exploited by Proposition 1 we
replace the regularization penalty ‖W‖2F with a constraint on the norms of rows
Wi: in W . In particular, we constrain each Wi: to the bounded closed set W =
{w : ‖w‖2 ≤ α}. This leads to a slightly modified formulation

min
Ψ,B∈Bm,W∈Wm,ξ,η

min
Z=ΨW,M=ΨB

1>ξ + 1>η +
β

2
‖X −M‖2F + γ‖Ψ>‖p,1 (7)

subject to ξi ≥ 1− Zil for l ∈ Yi:,∀i = 1 · · · t`
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,∀i = 1 · · · t`
ξ ≥ 0,η ≥ 0.

Finally, by relaxing the feature number m and instead allowing the rank reducing
regularizer ‖Ψ>‖p,1 to automatically choose the dimension, [23, Proposition 3]
shows that the problem (7) is equivalent to

min
Z,M,ξ,η

1>ξ + 1>η +
β

2
‖X −M‖2F + γ‖[M,Z]‖∗(U,p∗) (8)

subject to ξi ≥ 1− Zil for l ∈ Yi:,∀i = 1 · · · t`
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,∀i = 1 · · · t`
ξ ≥ 0,η ≥ 0

where as in Proposition 1, ‖·‖(U,p∗) is a conjugate of an induced matrix norm, but
now with respect to the closed bounded set U := {[b; w] : ‖b‖2 ≤ 1 and ‖w‖2 ≤ α}.
Importantly, the problem (8) is jointly convex in Z, M , ξ and η, since norms are
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always convex. For p = 1 or p = 2, given an optimal pair [M,Z], the underlying
factors Ψ , B and W can be efficiently recovered using a procedure outlined in
[23]. However, for the purposes of transduction, Z itself is sufficient for determin-
ing the label predictions on the unlabeled data, so this extra recovery procedure
can be bypassed.

3.2 Tractable Special Case

Even though the problem (8) is convex, it is not guaranteed to be tractable,
since not every induced matrix norm is tractable to compute [29]. However, the
important special cases of p = 1 and p = 2 both allow the induced norm ‖·‖(U,p∗)
to be efficiently evaluated. In particular, for p = 2, [23] establishes the following
useful characterization.

Proposition 2. [23, Lemma 5]: ‖[M,Z]‖∗(U,2) = maxρ≥0 ‖D−1
ρ [M,Z]>‖tr where

Dρ =

[√
1 + α2ρ Id 0

0
√
α2 + 1

ρ IL

]
. (9)

This proposition shows that for the case p = 2 the conjugate induced norm
can be efficiently computed: all that is required is a line search over a scalar
variable ρ ≥ 0, where for each value of ρ the inner calculation can be efficiently
evaluated by computing the singular value decomposition of [M,Z]D−1

ρ .
Below we find it more convenient to work with a re-parameterized version of

the calculation.

Proposition 3. max
ρ≥0
‖D−1

ρ [M,Z]>‖tr = max
0≤θ≤1

‖Eθ[M,Z]>‖tr where

Eθ =

[√
θ Id 0

0
√

1−θ
α IL

]
. (10)

This proposition is easy to establish by noting the relationships D−1
ρ =

E 1
α2ρ+1

, E−1
θ = D 1−θ

α2θ

, θ = 1
α2ρ+1 , and ρ = 1−θ

α2θ , hence optimizing with D−1
ρ over

the range ρ ≥ 0 is equivalent to optimizing with Eθ over the range 0 ≤ θ ≤ 1.
Thus, we obtain the following convex optimization problem that is equivalent

to (8) for the special case when p = 2:

max
0≤θ≤1

min
Z,M,ξ,η

1>ξ + 1>η +
β

2
‖X −M‖2F + γ‖Eθ[M,Z]>‖tr (11)

subject to ξi ≥ 1− Zil for l ∈ Yi:,∀i = 1 · · · t`
ηi ≥ 1− Zil for l̄ ∈ Ȳi:,∀i = 1 · · · t`
ξ ≥ 0,η ≥ 0.

To verify that this problem has no local optima, first note that the inner problem
is convex in Z, M , ξ and η for each fixed θ. Furthermore, it can be shown that
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‖Eθ[M,Z]>‖tr is concave in θ. Since a pointwise minimum of concave functions
is concave, the outer optimization in θ also has no local maxima. To solve (11), all
one has to do is run a simple outer concave maximization over a scalar variable,
while each inner minimization is a standard convex minimization. Essentially,
the inner problem has the same complexity as the standard multi-label learning
problem, which only has to be repeated a few times (say, around 10) to achieve
an accurate solution.

4 Optimization Algorithm

The semi-supervised optimization problem we formulated above in (11) is a
convex optimization problem but with a non-smooth trace norm. To develop an
efficient optimization algorithm for it, we first derive an equivalent reformulation
following a well-known variational formulation of the trace norm [22, 30]:

Proposition 4. Let Q ∈ Rt×d. The trace norm of Q is equal to

‖Q‖tr =
1

2
inf
S�0

tr(Q>S−1Q) + tr(S), (12)

and the infimum is achieved for S = (QQ>)1/2.

Following this proposition, we can reformulate (11) as the following

max
0≤θ≤1

min
Z,M,ξ,η

inf
S�0

1>ξ + 1>η +
β

2
‖X −M‖2F (13)

+
γ

2
tr([M,Z]EθS

−1Eθ[M,Z]>) +
γ

2
tr(S)

subject to ξi ≥ 1− Zil for l ∈ Yi:,∀i = 1 · · · t`
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,∀i = 1 · · · t`
ξ ≥ 0,η ≥ 0

which maintains the convexity of the original formulation of (11). Although the
reformulated problem remains a non-smooth max-min optimization problem, an
efficient optimization procedure can still be developed. In particular, we develop
a simple subgradient-based binary line search procedure, combined with a block-
descent inner minimization, to solve this problem.

First, consider the max-min optimization problem in (13) as a non-smooth
concave optimization problem over θ

max
0≤θ≤1

f(θ) (14)

where the objective function is a non-smooth function defined by a convex min-
imization problem

f(θ) = min
M, {Z,ξ,η}∈C

inf
S�0

1>ξ + 1>η +
β

2
‖X −M‖2F (15)

+
γ

2
tr([M,Z]EθS

−1Eθ[M,Z]>) +
γ

2
tr(S).
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Here we use C to denote the feasible region defined by the linear constraints
in (13) over variables {Z, ξ,η}. For such a non-smooth optimization problem,
subgradient-based methods such as proximal bundle methods can be generally
applied. Nevertheless, we develop a much simpler binary line search procedure
to tackle this specific one dimensional optimization problem over θ.

4.1 Binary Line Search

The idea of binary line search is to iteratively reduce the searching region (inter-
val) for the optimal θ value, eliminating at least half of the feasible region each
time. At the beginning of the binary line search, θ is upper-bounded by Vu = 1
and lower-bounded by V` = 0, which is its full feasible region, i.e., the feasible
line segment. In each iteration of the binary line search, we set θ as the midpoint
of its upper bound and lower bound values, θ = (Vu + V`)/2. We then compute
the subgradient of f(θ) at this current point θ. Following Danskin’s theorem,
the subgradient of f(θ) can be computed as

∂f

∂θ
=
γ

2

∂tr([M∗, Z∗]EθS
∗−1Eθ[M

∗, Z∗]>)

∂θ
(16)

where M∗, Z∗, S∗−1 are the optimal solution for the convex minimization prob-
lem in (15) with the given θ value. Since f(θ) is concave in θ, a positive subgra-
dient value at θ indicates that the optimal θ∗ value is larger than the current θ
value, while a negative subgradient value indicates that the optimal θ∗ value is
smaller than the current θ value. Therefore, we increase the lower bound of θ to
its current value when ∂f

∂θ > 0, and reduce the upper bound of θ to its current

value when ∂f
∂θ < 0; thus ensuring the search interval is halved at each iteration.

By repeating the binary line search step, the feasible subinterval containing
the optimal θ∗ value can be quickly reduced at an exponential rate. When the
subgradient is close to 0 or the interval between upper and lower bound values is
sufficiently small, an optimal θ value can be returned. The overall binary search
procedure is described in Algorithm 1.

4.2 Block-Coordinate Descent for Inner Convex Minimization

Both the computation of each subgradient value of f(θ) in the binary line search
procedure and the final optimal solution recovery require solving the convex
minimization problem in (15); i.e., the inner minimization problem in (13), for
optimal M∗, Z∗ and S∗−1 given a fixed θ value. Although this optimization
problem is convex, it is nevertheless challenging to design an efficient and scalable
optimization algorithm to tackle the typically large parameter matrices M,Z,
and S. For example, even for a given S, the Hessian matrix for the quadratic
programming problem in M and Z can be too large to fit in memory for even a
medium-sized data set with large number of input features.

Therefore, we develop a scalable block-descent optimization algorithm to
solve the convex minimization problem iteratively. Specifically, in each iteration,
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we conduct an optimization over each of the three sets of variables, {S}, {M}
and {Z, ξ,η}, in turn, given all other variables fixed. The optimization over each
of the three sub-problems is conducted as follows.

Optimization over Z. Given fixed S and M values, the minimization problem
over the remaining variables Z, ξ,η forms a standard quadratic program with
linear constraints; i.e.,

min
Z,ξ,η

1>ξ + 1>η +
γ

2
tr([M,Z]Q[M,Z]>) (17)

subject to ξi ≥ 1− Zil for l ∈ Yi:,∀i = 1 · · · t`
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,∀i = 1 · · · t`
ξ ≥ 0,η ≥ 0

where Q = EθS
−1Eθ. Note that the linear constraints are only expressed in

terms of the labeled part of Z and ξ, η. It is easy to see that

tr([M,Z]Q[M,Z]>) = tr([M,Z]

[
Qdd QdL
QLd QLL

]
[M,Z]>) (18)

= tr(MQddM
> + 2ZQLdM

> + ZQLLZ
>)

where Qdd denotes the d × d top-left submatrix of Q, QLL denotes the L × L
bottom-right submatrix of Q, and QdL = Q>Ld denotes the other two submatrices
of Q. Moreover, it is known that the matrix Z and matrix M can both be
decomposed into two submatrices corresponding to the labeled and unlabeled
data, Z = [Zl;Zu] and M = [M l;Mu]. Thus (18) can be further rewritten as

(18) = tr(Z`QLLZ
`>) + 2tr(Z`QLdM

`>) + tr(MQddM
>) (19)

+tr(ZuQLLZ
u>) + 2tr(ZuQLdM

u>)

which clearly shows that the optimization over submatrices Z` and Zu can be
conducted independently.

By setting the derivative of the objective (17) (which is also the derivative
of (19)) with respect to Zu to 0, we can obtain a closed-form solution for Zu:

Zu = −MuQdLQ
−1
LL. (20)

Although no closed-form solution exists for Z` due to the linear constraints
in (17), note that the objective in (19) actually can be further decomposed into
independent terms for each row of Z`. Furthermore, the linear constraints in (17)
are row-wise separable regarding Z`, ξ,η as well. Therefore, we can optimize each
row of Z` independently by solving a small standard quadratic programming.
For example, the ith row of Z, Zi: and ξi,ηi, can be optimized as

min
Zi:,ξi,ηi

ξi + ηi +
γ

2
Zi:QLLZ

>
i: + γZi:QLdM

>
i,: (21)

subject to ξi ≥ 1− Zil for l ∈ Yi:,
ηi ≥ 1 + Zil̄ for l̄ ∈ Ȳi:,
ξi ≥ 0,ηi ≥ 0
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Algorithm 1 Binary Line Search

Input: X,Y, α, β, γ, a small constant τ > 0.
Initialize: set V` = 0, Vu = 1.
Repeat:

1. set θ = V`+Vu
2

.
2. given the current θ, solve the inner minimization problem (15)

for M∗, Z∗, S∗−1 using block-coordinate descent method.
3. compute the subgradient ∂f

∂θ
according to Eq.(16).

4. if ‖ ∂f
∂θ‖ < τ then return end if

5. if ∂f
∂θ

> 0 then V` = θ else Vu = θ end if
Until (Vu − V`) < τ

Algorithm 2 Block-Coordinate Descent Optimization

Input: X,Y, α, β, γ, a small constant τ > 0.
Initialize: set M = X and randomly initialize Z.
Repeat:

1. recompute S using Eq.(24).
2. with given S,M , recompute Zu using Eq.(20), and recompute

each row Z`i: by solving the quadratic programming in (21).
3. with given S,Z, recompute M using Eq.(23).

Until changes in M,Z is smaller than τ .

which can be solved using any standard quadratic program solver.

Optimization over M . Given fixed Z, ξ, η and S, we optimize M as an
unconstrained quadratic optimization problem

M = arg min
M

β

2
‖X −M‖2F +

γ

2
tr([M,Z]Q[M,Z]>). (22)

Setting the derivative of the objective function with respect to M to 0 yields

M = (βX − γZQLd)(βI + γQdd)
−1. (23)

Optimization over S. Given Z, ξ, η and M , the minimization over S has a
closed-form solution as suggested in the Proposition we presented above; i.e.,

S = (Eθ[M,Z]>[M,Z]Eθ + εiI)1/2 (24)

where εi > 0 is a small value added to achieve an invertible S.

The overall block-coordinate descent procedure is given in Algorithm 2. By
employing the block-coordinate descent inner convex minimization, the binary
line search algorithm we developed obviously provides a scalable optimization
tool for the target non-smooth convex optimization problem.
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Table 1. Data set properties: k = # classes, T = # instances, C = label cardinality.

Arts Comp. Edu. Entain. Health Recr. Ref. Sci. Soc. Socie.

k 11 12 8 9 9 11 10 7 7 14
T 2525 2046 2816 2649 2932 2454 795 951 1181 4559
C 2.54 2.74 2.54 2.53 2.18 2.51 2.16 2.52 2.29 2.89

5 Experiments

To evaluate the proposed method, we conducted experiments on a set of multi-
topic web page classification data sets [31]. Each data set consists of web pages
collected from the yahoo.com domain. We preprocessed the data sets by first
removing the largest class label (which covered more than 50% of the instances)
and removing class labels that had fewer than 250 instances (for some data sets,
we even used larger thresholds 300 and 400 to obtain larger label cardinalities).
When the label cardinality of a data set is close to 1, the classification task
is close to a standard single label multi-class task. The effectiveness of multi-
label learning can be best demonstrated on data sets whose label cardinalities
are reasonably large. We also removed any instances that had no labels or every
label. For the input feature representation, we removed the less frequent features
and converted the remaining integer features into a standard tf-idf encoding. The
properties of the preprocessed data sets are summarized in Table 1.

We compared our proposed method (referred to as TRANS in the results)
with four other large margin multi-label learning baselines:

• CSRL, the large margin multi-label learning method developed in (2) [8],
based on a calibrated separation ranking loss.
• CONS, a variant of CSRL that replaces the regularizer ‖W‖2F with the con-

straint ‖Wi:‖2 ≤ α, as in Section 3.1.
• dCSRL, which first uses PCA to reduce the input dimension of the combined

labeled and unlabeled data, then applies the CSRL method.
• dCONS, which first uses PCA to reduce the input dimension of the combined

labeled and unlabeled data, then applies the CONS method.

Although numerous multi-label learning methods appear in the literature
we restrict our attention to convex training methods to ensure that the results
are repeatable independent of any particular implementation. In particular, for
supervised multi-label losses we focus our comparison on CSRL, since previous
work has demonstrated that this obtains state-of-the-art performance among
convex supervised approaches [8]. (Note that the semi-supervised formulation
presented in this paper can be easily applied to any convex multi-label loss [23].
However, finding tractable convex reformulations for losses specifically tailored
for multi-labeled classification, such as F-measure [4], remains an open problem
in the literature—e.g., the advanced formulation given in [4] still relies on an
NP-hard constraint generation oracle.)
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Table 2. Average transductive micro-F1 results over 10 repeats (± standard deviation).

Data set CSRL CONS TRANS dCSRL dCONS

Arts 0.42±0.01 0.37±0.01 0.50±0.01 0.44±0.01 0.42±0.01

Computers 0.45±0.02 0.34±0.01 0.53±0.01 0.42±0.01 0.41±0.02

Education 0.56±0.02 0.45±0.01 0.61±0.01 0.56±0.01 0.49±0.02

Entertainment 0.61±0.03 0.44±0.02 0.63±0.01 0.50±0.02 0.46±0.03

Health 0.60±0.02 0.35±0.01 0.64±0.01 0.49±0.01 0.44±0.01

Recreation 0.48±0.02 0.32±0.05 0.53±0.01 0.41±0.01 0.39±0.01

Reference 0.55±0.02 0.41±0.01 0.55±0.01 0.36±0.01 0.34±0.01

Science 0.68±0.01 0.54±0.04 0.72±0.01 0.64±0.01 0.56±0.01

Social 0.63±0.01 0.53±0.06 0.67±0.01 0.55±0.01 0.48±0.01

Society 0.31±0.02 0.29±0.01 0.43±0.01 0.34±0.01 0.31±0.01

Table 3. Average transductive macro-F1 results on 10 repeats (± standard deviation).

Data set CSRL CONS TRANS dCSRL dCONS

Arts 0.37±0.01 0.34±0.02 0.47±0.01 0.43±0.01 0.41±0.02

Computers 0.39±0.02 0.28±0.01 0.48±0.02 0.40±0.01 0.40±0.02

Education 0.48±0.02 0.39±0.01 0.54±0.01 0.54±0.01 0.47±0.02

Entertainment 0.50±0.05 0.34±0.01 0.53±0.03 0.46±0.01 0.42±0.03

Health 0.52±0.02 0.31±0.01 0.57±0.01 0.47±0.01 0.42±0.01

Recreation 0.37±0.02 0.28±0.02 0.45±0.01 0.38±0.01 0.36±0.01

Reference 0.34±0.01 0.32±0.01 0.42±0.01 0.32±0.01 0.30±0.01

Science 0.62±0.02 0.47±0.04 0.67±0.01 0.61±0.01 0.54±0.01

Social 0.53±0.02 0.44±0.05 0.58±0.02 0.51±0.01 0.45±0.01

Society 0.19±0.02 0.24±0.01 0.34±0.01 0.32±0.01 0.29±0.01

To also provide a comparison to semi-supervised methods, along the lines
of [19–21], we furthermore include the latter two competitors, which use the
unlabeled and labeled data to first learn a low dimensional representation for the
input data. Note that the dimensionality reduction in this case is independent
of the target labels. The goal of these experiments therefore is to isolate the
consequences of using unlabeled data for subspace identification, and using label
information in choosing such subspaces.

In these experiments we simply set the regularization parameters for TRANS
to α = 0.01, β = 100 and γ = 50, and set the regularization parameter for
CSRL and CONS to α = 0.01. The target dimensionality was set to 50 for
the dimensionality reduction methods dCSRL and dCONS. The performance of
each method is evaluated using the macro-F1 and micro-F1 measures [32]. We
randomly selected 200 instances from each data set to be the labeled part, and
another 1000 instances to be the unlabeled part. The process is repeated 10
times to generate 10 random partitions. The average performance and standard
deviations of the five methods are reported in Table 2 and Table 3 respectively.

One can see from these results that the unlabeled data generally provides an
improvement in generalization accuracy over the baseline supervised methods.
First, using dimensionality reduction as a preprocessing step only gave mixed
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benefits for the CSRL and CONS methods, although CONS generally benefited
more. Interestingly, the proposed TRANS method, which learns a low dimen-
sional subspace that also depends on the training labels, obtains a systematic
and noticeable improvement over the other methods. TRANS significantly im-
proves the macro-F1 measure over all comparison methods in every case, while
achieving the same result for micro-F1 measure in every case except the “Refer-
ence” data set. The run times of TRANS and CSRL on 1200 data points (200
labeled and 1000 unlabeled) were approximately 10m for TRANS and 1m for
CSRL, respectively, using simple Matlab implementations.

6 Conclusions

We have proposed a new method for semi-supervised multi-label classification
that combines a state-of-the-art large margin multi-label learning approach with
a current representation learning method. A key aspect of this approach is that
it allows an efficient global training procedure. Experimental results show that
the semi-supervised combination can outperform corresponding supervised and
simple semi-supervised learning methods in a transductive setting.

There remains several important directions for future work. The current for-
mulation is transductive; an out-of-sample extension of our approach is possible
using a proposed technique from [23]. It also remains to investigate other rep-
resentation learning formulations, such as p = 1, to determine their impact on
performance. Another interesting direction is to extend the work of [4] to incor-
porate a tractable convex relaxation of F-measure for training.
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