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Abstract— This paper studies thefixed-charge facility location
problem—an important problem in logistics and operations
research that has wide application to many areas of commerce
and industry. The problem is to locate a small number of
facilities among nodes in a network to provide good service to
the client nodes while confining the total construction cost. The
problem is NP-hard, but of sufficient importance to warrant
developing practical heuristics. To handle large instances, we
propose an algorithm based on recent advances in belief
propagation and graphical models. In particular, we adapt a
form of affinity propagationto approximate the problem at hand.
Our experimental results demonstrate significant improvements
over other popular heuristics for large-scale facility location
problems.

Index Terms— Facility Locations, Belief Propagation

I. I NTRODUCTION

The discrete facility location problem is a standard problem
in logistics and operations research. It has broad applica-
tion in many areas of business, government, transportation
and communications industry [14], [4], [13], [5], [2]. For
example, in business management, almost every enterprise
one can think of has the problem of locating facilities at
one time or another: industrial firms determine locations
for fabrication and warehouses; retail outlets locate stores.
In public affairs, government agencies locate offices and
provide a variety of services such as schools, hospitals, and
ambulance bases. In transportation, agencies set up vehicle
inspections and auxiliary facilities. More recently, in tele-
and wireless-communications, firms need to decide where to
establish routers and base stations.

In these scenarios, the ability of a firm to get its products
effectively to the market, or the ability of an agency to
deliver high-quality services depends on how the firm’s or
agency’s facilities are located relative to other facilities and
to its customers. To formalize this problem, several classical
facility location models have been established.

In this paper, we consider a scenario where one is given
a discrete set of candidate nodes where the facilities can be
located. The goal is to locate facilities in the network to
optimize the service quality provided to the clients (nodes)

while constraining the overall cost of facility construction.
We will address the fixed-charge problem where the cost of
constructing a facility at each node is known beforehand.
We therefore aim to locate facilities so as to achieve small
construction costs while providing good services to the client
nodes under different circumstances. Obviously the final
facility sites will depend both on the individual construction
costs and on the resulting service qualities.

The main challenge is that the fixed-charge facility location
problem is NP-hard, therefore it is usually not practical to
produce a globally optimal solution. This task remains a
central challenge in the field of operations research, where
key methodologies have been developed for producing ap-
proximate solutions. For small-scale problems one can use
relaxation-based methods, which can often achieve good
accuracy while providing error bounds. For large-scale prob-
lems, however, one is compelled to seek efficient heuristics.

Recently, based on the advances in probabilistic inference
and graphical models [11], [7], [1], [15], [16], [10], a method
called affinity propagation[3] was developed to provide an
efficient clustering method. In this paper, we show how
this algorithmic strategy can be adapted to the fixed-charge
facility location problem. In particular, we develop a natural
extension of the affinity propagation method that provides an
efficient and highly effective heuristic for this problem.

The remainder of the paper is organized as follows. We
first formalize the fixed-charge facility location problem and
review popular solution techniques. We then illustrate our
new approach based on affinity propagation, and provide an
experimental comparison to competing approaches.

II. F IXED-CHARGE FACILITY LOCATION PROBLEM

A. Problem Definition

We formulate the (uncapacitated) fixed-charge facility lo-
cation problem as follows. Given a set of nodesX =
{x1, · · · , xN} in a network, suppose there areQ states, and
let pq (1 ≤ q ≤ Q) denote the probability of the network
being in stateq, andγ be the construction cost of a facility.
Also let sq (j, j′) be a function that measures the quality of
service if xj′ is chosen as a facility location to serve node



xj (1 ≤ j, j′ ≤ N ) in stateq. Without loss of generality,
we assumesq (i, j) ≤ 0 and sq (i, i) = 0 for all i, j, q

for the remainder of the paper. We are interested in seeking
an assignmentc = {c11, c12, · · · , c1Q, c21, · · · , cNQ}, where
ciq indicates the facility that nodexi has chosen in stateq,
to maximize the objective:

L (c) =

Q
∑

q=1

N
∑

i=1

pqsq (i, ciq) − γC. (1)

Here C denotes the number of distinct elements in the
assignmentc, i.e., the number of facilities that we will
construct.

The objective in this model is to locate a number of
facilities among the nodes so that the service quality to each
point by its closest facility in different states is maximized,
balancing the construction costs of the facilities. Ratherthan
requiring the number of facilities to be givena priori, this
model automatically determines this number by taking into
consideration the costγ, and thus provides a mechanism for
automatic facility selection. Sometimes−γ is also referred as
a preferencevalue, which quantifies the extent of willingness
or likelihood for a node to be chosen as a facility.

Different from the study of clustering problems in statistics
[9], [6], the effect of different states is an important concern
when studying facility locations. Let us consider the problem
of locating ambulance stations in a city [4]. We hope to
trade off the establishment costs versus the averaged travel
times from the closest station to each spot. (We assume there
are enough ambulances so that each station always has one
available for service.) Based on the travel time, we divide the
problem into a number of states with respective probabilities
such as quiet hours, rush hours, and normal hours. In each of
the states, a spot is served by a unique facility. And each spot
may use different stations at different states. Generally,the
optimal solution to this multi-state facility location problem
often has a smaller average response time than the optimal
solution if we simply average the states into one and use the
same station for each spot in all the states.

When all states have the same probability, i.e.p1 =
· · · = pQ = 1

Q
, the objective becomes the maximization

of 1
Q

∑Q

q=1

∑N

i=1 sq (i, ciq) − γC, or equivalently, the max-
imization of

Q
∑

q=1

N
∑

i=1

sq (i, ciq) − γQC. (2)

To facilitate our discussion, we have assumed two simplifi-
cations in the paper. One is that the construction cost at each
candidate facility site is the same. The other is that all states
have the same probability. This is not always the case in
practice. However, our solution introduced below can handle
both cases, when the individual costs are different or when
the state probabilities are non-uniform, without significant
alteration.

B. Conventional Heuristics

Computing optimal solutions to the problems in (1) and
(2) is well-known to be hard. Much effort has been made
on investigating these problems. Integer programming can
be used to obtain an optimal solution if it can scale to the
problem instance at hand. However, this method is often
impractical. Even a very small problem (say, with a hundred
nodes) requires too much time.

For larger problems, one needs to resort to approxima-
tions and heuristics to cope with the inherent NP-hardness.
Construction heuristics and improvement heuristics are both
typically used [2]. The ADD and DROP heuristics are two
popular construction algorithms based on a greedy approach.
Note that both the service quality and the construction cost
increase as facilities are added to the solution. Starting from
an empty set, the ADD algorithm greedily adds facilities until
it fails to find one whose addition will result in a increase
in the objective. The DROP algorithm works in a similar
manner except from the other side.

These construction algorithms can be improved by using
a substitution and a neighborhood search heuristic [8], [5].
One begins with any set of facility sites and searches for the
best possible substitution before making any site exchanges.
Every combination of a node in the current solution and a
node that is not is evaluated and the best is identified. If that
combination increases the objective, an exchange is made.
If no combination results in an objective increase, halt. This
algorithm can be further improved by a HYBRID approach,
at the price of being more complicated. One begins with the
solution obtained by a construction heuristic, e.g., by ADD
heuristic. Next, the construction and improvement procedures
are alternated until no more improvement can be made.

These seemingly-oldheuristics are popular in practice.
Although many years has passed, the HYBRID heuristic
still gives state-of-the-art performances in accuracy formany
problems and typically forms a baseline in comparison [12].

C. Affinity Propagation

Affinity propagation[3] is a fundamentally different ap-
proach that was originally proposed to tackle clustering
problems. It can be shown that this algorithm applies to
a special case of the problem formulated in (2), which
corresponds to the case ofQ = 1.

When applied to the location problems, the method con-
siders all the nodes as potential facilities and each node
is assigned with a preference number−γ, the negative of
the construction cost at each node, that representsa priori
knowledge of how good the node is as a facility. In the
cases that all nodes are equally suitable, all numbers take
the same value. This provides a control parameter: the larger
the preference value, the more facilities one is likely to find.

Then the method operates by exchanging messages be-
tween each pair of nodes until a good set of facilities



emerges. Two types of real-valued messages (responsibility
andavailability) are transmitted between the nodes and each
undertakes a different kind of competition. The messages are
updated by simple rules. The magnitude of each message
reflects the currentaffinity that one node has for choosing
another node as its facility. At any time, the facilities can
be identified by combining the messages flowing in and out.
This message-passing procedure will be repeated until the
algorithm terminates.

III. SOLUTION

In this paper, we extend the affinity propagation algorithm
to solve the fixed-charge facility location problem which
allows Q ≥ 1. The extended algorithm is able to deal with
the node objects with dynamic affinities. Using this extension,
we provide an efficient heuristic to facility locations.

A. A Factor Graph Representation

To maximize the objective in (2), we define the following:

g (c) =

Q
∏

q=1

N
∏

i=1

es′

q(i,ciq)
N
∏

k=1

δk (c) (3)

where

s′q (i, ciq) =

{

sq (i, ciq)
−γ

if ciq 6= i

if ciq = i
.

δk (c) is 0 if there exist1 ≤ j ≤ N and1 ≤ q1, q2 ≤ Q such
that cjq1

= k andckq2
6= k; δk (c) is 1 otherwise.

Taking logarithm of (3), we have

log g (c) =

Q
∑

q=1

N
∑

i=1

s′q (i, ciq) +

N
∑

k=1

log δk (c) . (4)

Each log δk (c) is a penalty term and forces a constraint on
the label assignment. The constraint can be understood as
follows. Suppose a nodexk has been chosen as the facility
site by a nodexi in one state, thenxk must decide to be
its own facility in all Q states. These constraints together
guarantee a valid configuration of the assignment.

When the objective is maximized, eachlog δk (c) is forced
to be0 and the penalty terms are eliminated, leaving the result

Q
∑

q=1

N
∑

i=1

s′q (i, ciq) . (5)

Noting thats′q (i, ciq) contributes a−γ if xi is chosen as a
facility andsq (i, i) = 0 for all i, q, the maximizer of (5) can
be easily verified to be equivalent to the maximizer of (2).

After establishing the objective equivalence in studying (2)
and (3), we study (3) instead. The objective function can be
represented by a factor graph. In Figure 1, each function
term ing (c) is represented by a function node, depicted in a
rectangle, and each labelciq by a variable node, depicted in a
circle. Edges exist only between function nodes and variable

c11 c1Q cN1 cNQ

1 2 k N

f1 fQ f1 N fQ N

Fig. 1. A factor graph representation of the maximization problem. In the
graph,fq (i, j) denotes a functiones′q(i,j).
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Fig. 2. The messages flow between variable nodes and functionnodes. Left:
the messages flowing in and out of a variable node. Right: the messages
flowing in and out of a function node.

nodes. A variable node is connected to a function node if
and only if the function’s term depends on the variable. So
the termes′

q(i,ciq) has a corresponding function connected to
the single variableciq. The termδk (c) has a corresponding
function connected to variablesc11, · · · , c1Q, c21, · · · , cNQ.
The global function,g (c), is given by the product of all the
functions represented by the function nodes.

B. A Belief Propagation-based Solution

To maximizeg (c) of (3), we use the max-product proce-
dure [7] to search over valid label configurations in the graph,
which becomes the max-sum rule after taking the logarithm.
Messages are sent iteratively from each variable nodeciq to
each function nodeδk (c), and vice versa. In Figure 2, the
message,mciq→δk

(j), sent fromciq to δk (c), consists ofN
real numbers, one for each possible valuej of ciq, and is
given by:

∑

k′ 6=k

mciq←δk′
(j) + s′q (i, j) . (6)

The message,mciq←δk
(j), which is sent fromδk (c) to ciq,

is given by:

max
j11,··· ,ji,q−1,ji,q+1,··· ,jNQ

[

log δk (j11, · · · , ji,q−1, jiq, ji,q+1, · · · , jNQ)
+

∑

i′,q′:i′q′ 6=iq mci′q′→δk
(ji′q′ )

]

.(7)



Algorithm 1 An Extended Affinity Propagation Algorithm for Fixed-Charge Facility Location Problems.
1: t = 0
2: Initialize messagesat

q (i, k) = 0 (1 ≤ i, k ≤ N, 1 ≤ q ≤ Q).
3: repeat
4: for eachi, q, k do
5: rt+1

q (i, k) = s′q (i, k) − maxk′ 6=k

[

s′q (i, k′) + at
q (i, k′)

]

.

6: at+1
q (i, k) =







∑

q′:q′ 6=q rt+1
q′ (i, k) +

∑

i′,q′:i′ 6=i max
(

0, rt+1
q′ (i′, k)

)

min
{

0,
∑

q′ rt+1
q′ (k, k) +

∑

i′,q′:i′ 6=k&i′q′ 6=iq max
(

0, rt+1
q′ (i′, k)

)}

k = i

k 6= i

7: end for
8: t = t + 1
9: Estimateĉt

iq by argj max
[

at
q (i, j) + s′q (i, j)

]

.
10: until some convergence criterion is satisfied

return ĉt
iq ’s.

Each message update involvesN numbers, which is
impractical for large problems. But using a similar trick
as adopted when deriving the affinity propagation (AP)
algorithm, we are able to further simplify the messages
significantly. This basic idea is to analyze the different values
of j, k, i and eliminate the penalty termslog δk (c). Then
we cancel the constant terms and get the simplification.1

Finally the message updates ofN numbers are reduced to a
single number, which makes the message passing efficient in
practice.

The simplified scalar messages also involve two kinds.
One is aresponsibilitymessagerq (i, k), sent fromciq to δk,
reflects the accumulated confidence for nodei in choosing
nodek as its facility in stateq, combining the opinions from
other nodes that nodek should be a facility. The other is an
availability messageaq (i, k), sent fromδk to ciq, collects
the evidences from the nodes at different states in deciding
whether nodek would be an appropriate facility.

The details are given in Algorithm 1. It can be regarded
as an extended AP algorithm. WhenQ = 1, this is exactly
the standard AP algorithm.

Here we give some more illustrations of the algorithm.
The messages are initialized in step 2. We simply set all
the availability messages to be zero. We may also choose to
initialize the responsibility messages instead.

The major computations are from the message updates
in step 5 and 6. For each update, it involves only simple
summation and subtraction operations. A naı̈ve implemen-
tation would haveO

(

QN3
)

operations for all updates per
iteration. However, the message sums can be re-used, and
the actual computational requirement becomesO

(

QN2
)

. For
sparse problems where a subset ofM (≪ QN2) pairwise
service relationships between the nodes are available, the
computational requirement can be further reduced toO (M),
which is appealing for many real applications.

1Here we omit the derivation. Details will be available online.

Similar to the standard AP algorithm, a damping factor
λ that takes valid values within[0.5, 1) will be used when
updating the messages to avoid numerical difficulties in
certain circumstances. Thus the message updating rules in
step5 and6 will be followed by

rt+1
q (i, k) = λrt

q (i, k) + (1 − λ) rt+1
q (i, k)

and

at+1
q (i, k) = λat

q (i, k) + (1 − λ) at+1
q (i, k) .

After each iteration, the value of a variableciq can be
estimated in step9 by summing up all messages flowing into
nodeciq and taking the value that maximizes the summation.

The algorithm is terminated after some convergence crite-
rion is satisfied. In practice we often choose to terminate the
algorithm when the facility assignments do not change for a
fixed number of iterations, or when a maximum number of
iterations have been reached.

IV. EXPERIMENTS

To evaluate the effectiveness of the extended AP algorithm,
we implemented it inC language, compiled as a Matlab
subroutine, and carried out a series of experiments.

A. Settings

Our experiments were designed following the test pro-
cedure of “K-median” benchmarks and “Euclidean” bench-
marks in “UflLib”. 2 We randomly generated different num-
bers (N ) of points in a10-dimensional space according to a
uniform distribution. Then we sought a number of facilities
from these points to optimize the objective of (2).

For each dataset, we tested different numbers of states,
Q = 1, Q = 3 and Q = 5 respectively. In the first state,
the measures1 (i, j) (1 ≤ i, j ≤ N ) is computed as the
negative Euclidean distance of a pair of points(xi, xj). In

2http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/



TABLE I

COMPARISON OF ACCURACIES. THE EXPERIMENTS THAT WERE NOT

FINISHED WITHIN 72 HOURS ARE SHOWN AS“ N.A .”. γ = 1 AND γ = 5

INDICATE THE COST PARAMETER IS SET TO BE1 AND 5 TIMES THE

MEDIAN RESPECTIVELY.

Relative Performance (%)
N γ Q AP:ADD AP:DROP AP:HYBRID
100 1 1 0.49 1.6 −0.04

3 0.13 2.3 0.10
5 0.2 2.8 −0.0015

5 1 0 0 0
3 0.03 0.80 0.03
5 0 3.0 0

500 1 1 1.1 1.3 0.020
3 0.57 1.9 0.029
5 0.32 2.4 0.016

5 1 0.020 1.2 0.020
3 0.50 1.6 −0.021
5 0.14 0.85 −0.010

1000 1 1 0.83 2.4 0.040
3 0.71 1.2 −0.13
5 0.53 1.5 −0.010

5 1 0.13 2.5 −0.011
3 0.32 0.95 0.013
5 0.017 1.9 −0.010

2000 1 1 0.73 n.a. 0.13
3 0.54 n.a. −0.013
5 0.55 n.a. 0.045

5 1 0.73 n.a. 0.13
3 0.54 n.a. −0.013
5 0.55 n.a. 0.045

the following stateq (2 ≤ q ≤ Q), each measuresq (i, j)
is calculated as the product ofs1 (i, j) and a non-negative
random number

∣

∣r
q
ij

∣

∣, wherer
q
ij is generated from a normal

distribution with mean1.0 and variance0.1.
We used two sets of cost parametersγ. One is the median

of all s1 (i, j)’s (1 ≤ i, j ≤ N ), which produces a moderate
number of facilities, e.g.,̃100 facilities for a1, 000 nodes.
The other is5 times the median of alls1 (i, j)’s, which
produces a small number of facilities, e.g.,˜10 facilities
for 1, 000 nodes. For AP, we used a default damping factor
λ = 0.9. The message updates are terminated after the
identified facilities remain unchanged for100 iterations, or a
maximum of1000 iterations has been used.

B. Comparisons

We compared the extended AP algorithm with the popular
heuristics mentioned above, including ADD, DROP and
HYBRID. We run each algorithm on problems with different
node numbers (N ) and states (Q). We would like to know the
accuracyamong these algorithms. Since the exact solution
and objective value of these problems are difficult to obtain,
we give the accuracy by the relative residuals. We computed
two objective values in (2):LAP using AP andLHY BRID

using HYBRID, and obtained the relative performance by

LAP − LHY BRID

−LAP

× 100%.

Running Time (Q=1)

Running Time (Q=3)

Running Time (Q=5)

Running Time (Q=1)

Running Time (Q=3)

Running Time (Q=5)

(a) γ = 1 × median (b) γ = 5 × median

Fig. 3. Comparison of running time between AP and ADD, DROP,
HYBRID algorithms under different settings (from left:Q = 1, Q = 3,
Q = 5). The experiments that were not finished within72 hours are not
reported.

With this measure, a positive value means AP performs better
than HYBRID in accuracy. The higher the value, the more
improvement AP has obtained. On the other hand a negative
value means HYBRID gives better accuracy. Similarly we
compared AP with ADD and with DROP.

Table I shows the performances. As shown in the table, AP
has achieved comparable results with HYBRID. And both are
better than the simple ADD and DROP heuristics.

Given the comparable performance in accuracy, we would
also like to investigate the computational efficiency. An exact
comparison of theoretical complexity is not feasible sincethe
running time of the conventional heuristics depends heavily
on the final number of facilities. However, the empirical
studies have shown that the extended AP algorithm achieves
improvement over conventional solutions. Figure 3 gives the
running time under different settings. The horizontal axis
depicts the number of nodes used in each experiment. The
vertical axis depicts in a log-scale the number of seconds
needed to finish an experiment.

When γ is set to be the median of alls1 (i, j)’s, for a
problem with N = 100 nodes andQ = 1 state, AP runs
only around several times quicker than HYBRID and slightly
slower than ADD. However, when the problem gets larger,
AP begins to show its clear advantage in running time. For
a problem with2000 nodes and5 states, AP requires around
50 seconds while all the heuristics require more than10, 000
seconds. A speedup of over200 is achieved. Similar trends
are also observed whenγ is set to be5 times the median.

From these figures, we can see, although the ADD and
DROP heuristics are conceptually simple, their straightfor-



ward implementation requires significant overhead per move.
In fact, a theoretic analysis may reveal a complexity of
O

(

QN2
)

for each addition or deletion of facilities, which is
prohibitive for large-scale problems.

Another practical concern is the memory requirement. For
a problem withN nodes, all the algorithms require equally
O

(

N2
)

storage if the pairwise node service relationship
is dense. All the algorithms benefit from the same sparse
representations if the relationship is not dense. So their
memory requirements are essentially similar. We omit further
discussions here.

V. CONCLUSION

In this paper, we have studied the fixed-charge facility
location problem. With a max-product assumption in a factor
graph, we propose an extension of the affinity propagation
algorithm. The experimental results show that this algorithm
has comparable performance in accuracy with the popular
search strategies. More importantly it shows clear improve-
ment in running efficiency, and thus provides a reasonable
solution to the large-scale problems.

Our approach is fundamentally different from the previous
heuristics in facility location problems. It is based on the
recent advances in probabilistic inference and graphical mod-
els. Although the exact inference over graphical models is
generally difficult, the approximation techniques often work
surprisingly well and provide high quality solutions to many
practical applications. The problem we discussed in this paper
is a good example.

Besides the fixed-charge facility location problem, some
other facility location and related logistics problems may
also potentially benefit from the idea of affinity propagation,
which deserves our further study in both scientific research
and engineering designs.
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