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Abstract

We present a variational Bayesian framework
for performing inference, density estimation and
model selection in a special class of graphical
models—Hidden Markov Random Fields (HM-
RFs). HMRFs are particularly well suited to im-
age modelling and in this paper, we apply them
to the problem of image segmentation. Unfor-
tunately, HMRFs are notoriously hard to train
and use because the exact inference problems
they create are intractable. Our main contribu-
tion is to introduce an efficient variational ap-
proach for performing approximate inference of
the Bayesian formulation of HMRFs, which we
can then apply to the density estimation and
model selection problems that arise when learn-
ing image models from data. With this varia-
tional approach, we can conveniently tackle the
problem of image segmentation. We present ex-
perimental results which show that our technique
outperforms recent HMRF-based segmentation
methods on real world images.

exhibit strong spatial correlations (Besag, 1986).

Hidden Markov Random Fields (HMRF) are a particu-
larly natural model to apply in domains with numerous,
correlated hidden variables of this form, and have been
extensively applied in areas such as computational vision
(Forbes & Peyrard, 2003; Heitz & Bouthemy, 1993). How-
ever, because of the large number of hidden variables and
their complex graphical structure, density estimation in
these models is computationally hard. The problem is made
even harder by the fact that there is an intrinsic “model se-
lection” problem: one also needs to determine how many
values (i.e. components) each hidden variable can take on.

Early work on learning HMRFs attempted to use EM for
density estimation, but assumed the number of components
for each variable was knowa priori (Zhang, 1992)—
hence avoiding the model selection problem altogether.
However, because inference in these models is intractable,
approximation strategies still had to be devised to imple-
ment EM. The main source of difficulty in HMRF infer-
ence, as we will see, is the need to compute the normaliza-
tion constant (the “partition function”). In Zhang (1992),
the author employs a simple mean field approximation to
achieve tractability. Since then, most authors have adopte
a mean field approximation for the inference step in EM.

1. Introduction However, a significant amount of effort has been recently

A number of variational algorithms have been developedi€voted to more effectively approximating inference in an
for performing density estimation and model selection inHMRF; for example by using loopy belief propagation and
complex graphical models with hidden variables (JordarfONvex optimization methods (Yedidia et al., 2003; Opper
et al., 1999; Attias, 2000; Beal & Ghahramani, 2003).& Saad, 2001; Waanflght & Jordan, 2003) None of this
However, these techniques do not exploit all of the strucWOrk however addresses the model selection problem.

ture available in real world models; for example, the struc-since Zhang (1992), some work has addressed the model
ture presented in image data where latent (pixel) variablegelection problem for HMRFs. Cross validation was first
investigated in Zhang (1993). More recently, authors have
been exploring techniques for explicitly approximating a
Bayesian posterior. For example, Stanford and Raftery
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Figure 2.The graphical model view of the proposed the hierar-
Figure 1.An exemplar2 x 2 HMRF model. The white nodes Chical Bayesian HMRF model. Fig.1 illustrates how the variables

are the latent variables, and the grey nodes are the observed® = #i @ndy = y; are statistically correlated in this model. No-
variablesy. {a, W, 3} denote the parameters. tice hereB, = (ux, si) define a Gaussian distribution for feature
o(zi, y;). See text for details.

(2002) introduced the PLIC criterion for model selection, he set of edges. For each indixthe hidden variable;,
based on making independence assumptions to render COlgnich takes valué < {1, ..., K}, is linked with the visible
putation of the partition function tractable. More recgntl variabley; € R by some edgé. Thus, we letls = {gyg}

a technique based on approximating the Bayesian Infofyhereé is the set of edges betweghandY’, and€ is the
mation Criterion (BIC) has been proposed by Forbes andet of edges within\. Let the edge:(i, /) € £ connect
Peyrard (2003), referred to @1C“B¥, which we con- 5 pair of adjacent hidden nodes, and the eélgei) € &
sider below. Although these techniques are increasinglyink the hidden nodez; and the corresponding observa-
effective at choosing the right number of components, they;gp, y;. Let N be the number of nodes i (andY’), and
still retain heuristic elements. For example, none of thesggt x. denote the local configuratiof:;, z;) over an edge
existing methods can provide any distributional informa-e(i’j) € €. Associated with any edge connecting two
tion about the predicted parameters of an HMRF. neighbouring nodegr;, x), there is the potential function

In this paper, we propose a variational Bayesian approacfgPresented as(z.). Similarly, for any(z;, ;) pair there

for image modelling that solves the three problems—IS @n associated potential function representeg(as, ;).
inference, density estimation, and model selection—withinin this paper, we assume Potts model (Besag, 1986) for fea-
a unified and principled framework. To demonstrate theture functiong(z.) = 6(x; # x;),e = (i ~ j) associated
practical utility of HMRFs and our approximation tech- With parametery, and Gaussian distributiof} ,, = 3. for
nique, we conduct a set of experiments on unsupervised inféatureg(z;, y;) with z; taking valuek.

age segmentation and obtain favorable results against cUfy determine the probability distribution specified by an

rent methods, such d87/C5". HMRF, we first need a “model”n, which specifies, be-
sides the priors, how many values each hidden variable
2. TheHMRF mod€ z; € X can take (assumg), and hence how many para-

] ] _ meters are associated with each local potential. For a given
An HMRF is a graphical model where the ran'dom vari-modelm, letd = (a, 3, W) denote the set of parameters
ables are partitioned into an observedet {y;,i € V}  gpecifying the local potentials, whetee R for the Potts
and an unobserved s&t = {z;,i € V}, suchthateach ob-  model, 3 = {3,}X_,, andiW = {w; }’_,. Amodelm and

served variablg; is connected only to a corresponding hid- parameters define a probability distribution ove¥, Y by:
den variabler;; there are no direct links between observed

variables; and hidden variables can be directly linked to p(X,Y|m,0) = p(Y|X, B)p(X|W, @)

each other, usually in a regular spatial or temporal pattern, iy, the components defined as follows. First, the sensor
In this paper, we concentrate on the nearest-neighbor MRFS, gitional likelihood is given by:

which are particularly suitable for vision applicationse(B

sag, 1986). We calk the label field which defines a MRF, N

andY the sensor field. The model also possesses certain pY[X.3) = Hp(yim’ﬁm)’
parameters. For example, Fig. 1 illustrates a small HMRF =1 )

model with2 x 2 hidden and visible variables. p(yilwi =k, Br)  ~ N(yis e, s )-

More formally, an HMRF is specified by a gragh = hencel, = (uk, si) is associated wit, as meanu;, and

(V, E), whereV denotes the set of nodes afddenotes  precisions;. Second, denotd” = {w; } X, as the mixing
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weights for each node;. Also, the distribution ovetX denoted as grey nodes. Round nodes represent latent vari-
is given by a Markov random field (MRF), for which we ables and square nodes represent pre-fixed prior variables
adopt the K-class Potts model. The Gibbs function thatwhich are either determined empirically from the data or set
respects the Hammersley-Clifford theorem (Jordan et al.as uninformative priors (O’Ruanaidh & Fitzgerald, 1996).
1999), is given by: The plates with label “K” and “N” denote K and Md
copies of such variables. The plate with label “MRF, N”
p(X|W,a) = eXp{Z log w; +a Z ¢(xe)—Z(a, W)},  denotes the latent N copies of variables that form a MRF.

2.2. Related Models
Z(a, W) =log Z exp{z log w;  + Z d(ze)} (1)
X i e

The proposed HMRF model has close connections with
. . . _ several existing graphical models, such as Boltzmann ma-
wherea is associated with, andw . = wj fornodex;  pineq (BMs) and hidden Markov models (HMMs). When
taking valuek. we omit the mixing weight?” in the fixed modeln, the

In the HMRF model3 controls the contributions from sen- HMRF can be regarded as a variant of the BM (Ackley
sors;a determines the interaction strength among neighboet al., 1985) with both latent and observed nodes. Given a
nodes in the label field; andW takes care of the distri- graphical model over variabl&s the Boltzmann Machine

bution of nodes{z;}, assigning values if1,--- , K}, by  can be defined as
the global constrain} _, w;, = 1. Our goals thus turn out ZIA) — A TT — 7
to be: (i) decide the modeh. That is, decide the number p(T[A) = exp { Z R }

of components (classe&) which also decides the dimen- 7

sionality of the parameterg (ii) estimate the parameters Where A is a symmetric matrix with zero-diagonal ele-
9: and (iii) infer theX configuration. ments, andZ is the log partition function. The HMRF

model could thus be modelled as a Boltzmann Machine

2.1. A Hierarchical Bayesian framework with a sparse and highly structured/ x 2N A matrix.

The HMRF can also be viewed as a 2D generalization of
cHMM (Jordan et al., 1999), where the HMRF is defined
over a general nearest-neighbor graph rather than a 1D se-
qguence for HMM. This difference, however, leads to the

Y, X,0lm) = p(Y|X, X|W, 0lm). intractability of inference in HMRFs due to the global par-
P im) = p(Y|X, B)p(X|W, a)p(8m) tition function Z (o, ).

Following the Bayesian methodology, consider a specifi
HMRF modelm € M whereM = {1,---, M} denotes
the model space. The joint density function foris:

wherep(6|m) contains the set of hyper-priors for the para-

meters), as: 3. Variational approximation

K K The hierarchical Bayesian framework poses a significant

p(0m) = ] pluelrov0) [ [ p(sklso, No)p(alao, no)p(WE).  challenge for optimization. There are, in general, two ap-
k=1 k=1 proaches for coping this problem: one is to use Monte
By taking conjugate priors, the priors for s are Gaussian ~ Carlo sampling techniques; the other, as we adopt here, is

and Gamma distributions respectively, as: to employ deterministic approximation methods. In addi-
tion to a speed-up, the adoption of conjugate priors in the

(1l o, v0) ~ N(u;uoﬁo_l), modelling phase allows analytical solutions of integrals t
be computed practically. In this paper, we apply the vari-
p(s|s0, No) ~ I'(s; 50, No). ational approximation method, and call this formulation

- . . . variational Bayesian HMRF (VB-HMRF) for convenience.
Similarly, the priors on the mixing weightd” and Potts

weight« are Gaussian and Dirichlet, as: Also, for ease of notation, we denote three log-evidence
functionsL(6;Y) = logp(Y6), L(m;Y) = log p(Y|m),
plalag,n) ~ N(a;ag,n™ 1), andL(Y) = log p(Y). Following MacKay (1991), we can

write, by applying Jensen’s Inequality (Jordan et al., 999
L(6:;Y) = Eyx)llogp(Y[X, 8)] — KL(q(X)||lp(X))
L(¢(X),0), @)

Eqo) [L(0;Y)] = KL(q(0)||p(6))
L(q(X),4(0)), @)

Fig.2 graphically illustrates the hierarchical Bayesian f

mulation. Here all unknown quantities (parameter nodes,

latent variable nodes) are treated as random variables anb(m;Y')
are denoted as white nodes. In contrast, observed data are

AVANIY)
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LY) = Eyum) [L(m;Y)] = KL(q(m)||p(m))

L(q(m)). (4)

where K L(-||-) denotes the relative entropy(¢(X),0),
L(q(X),q(0)) andL(g(m)) are the lower bounds of the re-
spective log evidence functions; agdX ), ¢(0) are the ap-
proximating distribution functions. Interestingly, thecs
ond inequality of Eq.(3) is obtained by substituting the in-
equality in Eq.(2) ofL(6;Y") into the first inequality; sim-
ilarly, we derive the second inequality of Eq.(4). These
lower bounds derivations, although not necessarily con-
cave, provides intuitions for iteratively ascending sckem

It is known (Attias, 2000; Neal & Hinton, 1998) that the

AVARAYS

£
EM algorithm maximizes the first lower bourti¢(X), 9) —

and is equivalent to the ML estimate. The variational Bayes

Eigure 3.Exemplar synthetic images. In scanline order, a) is a 2-

approach, as a generalization of ML, maximizes the secon i !
bp 9 class image withh = 1.5 andp = {80,60} and allo = 60;

lower boundC(¢(X), ¢(¢)) and outputs the prior-corrected b) is a 3-class image with — 1.5 and . = {60, 120,200}
posterior density estimates of and¢ (MacKay, 1991). 4 a1, — 40: ¢) is a A-class image with — 14 anélu _
Herein, we mainly focus on the second (and refer to itr5 105 160,210} and allc = 30; d) is a 5-class image with
as short-handed’) and third lower bounds in the latter o — 1.3 andy = {40, 85,130, 175,215} and alloc = 25.
derivations. The technical details of deriving the set of up

date equations are omitted due to space constraints. The

main idea is that, instead of computing the true probalnferenceBy taking the functional derivative of Eq.(3) and
bility distributions ((X|Y,6,m) andp(d|X,Y, M)) ofa  equating to zer6L/éq(X) = 0, we get the update:

given HMRF! one can approximate them by maximizing

L(q(X),q(0)), where the approximate distributionsX) logq(X) = Eyg

. . +
andq(#) can be chosen to alleviate the computation burden.

> logp(yi|zi, Bix)

To simplify the notation we use the following short-cuts: Z Z
Eqw) logwi k| + Eqa) | ) e(xi,x;)| + const.
q(x;) = Z q(X), q(we) = Z q(X) i i~j
X X\
i = q(x; = k), Ny = Z%‘k Parameter Estimation We evaluatey(6) by 6L£/0q(0) =
i 0, and get the following update equations
1 — 1
—_ o 2_ _* a2 Lo
Yk = Ny qucym Y = N, Z%k% q(uk) ~ N(,U/k;,uknsk 1)7 (5)
s NeE,[si]__ o . q(sk) ~ T(sk; Sk, Ni), (6)
Ph= gt T B S = ot Nl awr) ~ D i+ &), ™
. N N, g
Nk:NO'i‘?k, sAkflzsale?ksM‘l

ale) o< exp {azqm S olee) - la— ao>2n} ,

S = uE - 2w + i(/%2 + 5,7 (8)
Ny where(i; ands;, denote the prior-corrected mean and pre-

_ _ _ cision parameters for the Gaussian, apcand N, denote
log . = /wklog wdw = W(&+Ne) = (2 &+ Ne) e Soale and shape parameters for the gamma distribution.

log 5 :/ log spdsk = ¥(Ny,) + log Sk Model Selection The VB framework is known (Attias,
Sk 2000) to be equivalent to the BIC framework as the sample
size goes to infinity, and the posterior dengity) peaks

Eq[Sk] = /SkQ(Sk)Skdsk = NiSk. around the ML estimatiofi, s :

Here ¥(-) denotes the digamma function, and repre-

16|
. BIC(m)=1L Y log N
sents the entire set except tile element. cim) (Orrr;Y) o8 ©)

2

1They turn out to be computationally infeasible due to the ex-istence of integrals and the partition functiditc, W).
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x;. Thus we compute in the E step:
1 1 N ~ -1
G = @i5; exp{=5 B[ Skl((yi —4in)* + ¢ ) (12)
1
+ 5Eq@ (0] Y e(w: =k, )}, (13)
jEBi

wherelog Wy, log 5, and E,[Si] denote the weight, preci-
sion and expected precision estimates, respectively.

In the same manneg(«) is given as:

Figure 4.Some exemplar real world images.

q(@) o< exp *az D iy — (e —ag)’n p (14)

i JEOL
where|d| denotes the size of the parameter space. ]
If we evaluate abL(g(m))/dq(m) = 0, and assume uni- 4. Experiments
form distribution overM, we get: The BIC“BF Method We conduct experiments on un-
supervised segmentation of both synthetic images and real
_ exp{ln} world images, and compare the results with WeC 5"
q(m) = 42 (10) GBF i ; i
ot €XP{ L} method. TheBIC method is a first-order approxima-
tion of Eq.(9) on HMRF provided simulated field approxi-
whereL,,, denotesC(¢(X), ¢(¢)) for modelm. matiorf. However for the sake of simplicity, here we solely
consider the naive mean field approximation. Define the
3.1. The Mean Field Approximation log-partition function as:
Thus far, we have been executing an exact inference stepZ(6,Y) = (15)

In practice, the computational complexity of evaluating
q(X) grows exponentially with the number of nodes in IOgZeXP{ZIngm +az¢ ze) + logp(Y]X, ﬁ)}

graph G. Therefore, we must resort to approximation meth- X
ods which include, for example, the family of mean field
algorithms. Given a grap@¥, we define a subgrapfi;; = It has been shown that both partition functions in Eq.(1) and

(‘/‘7 EH)! where E’H C F. The essence of the mean Eq(15) can be apprOXimated via the GBF bound (Forbes
field algorithms is as follows: instead of computing the & Peyrard, 2003), provided the mean field approximation.
exact probabilityq(X), a factorability assumption is im- For example,

posed by deliberately removing some edges from the orlg-
inal graphG.2 Thus, one approximateg X ) by ¢, (X) =
1,7 an(zn), resulting in the variational E step:

Z(a, W) = Z™ (a, W)+AZ™ (0, W) = Z9BE (a, W)
Since we can further write:

qu(X) = arg Jnax L(gn(X),q(0)).  (11) L(6;Y) = Z(6;Y) — Z(a, W)
we can plug these approximations into the BIC criteria in

Naive Mean Field Algorithm Consider the simplest case Eq.(9), to arrive at Eq.(23) of (Forbes & Peyrard, 2003):
when all edges are removed fraf#y forming a subgraph

Gy, = (V, En,) with By, = @ all nodes{z; i € V}
within X are independent of each other. This is the Naive
Mean Field (NMF) setting, with the probability function
being factorized ag(X) = [[;cy (). Experiments On Synthetic Images We first compare the
BICSBF method with the proposed VB-HMRF method
on synthetic images (Forbes & Peyrard, 2003) sampled

BICYBY = zGBF(g.y) — ZGBF(Q,W)—%logN.

In this NMF approximation, sinc&,, = @, for any node
i and its neighbouring nodg?® the correlation term;x; is
replaced byr;; wherep; is the estimated mean value of  *The simulated field approximation (Forbes & Peyrard, 2003)
- is an simulated annealing variant of the naive mean field algo-
2Here we only consider the removal of the edges witkin rithm, which samples the conditional distribution with a Gibbs

3, is the neighbouring node éfwhen(i, j) € E. Sometimes  sampler. It was shown to have more accurate results than the naive
we also use the notatighe Ji. mean field algorithm.
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K=2a=15 p| 32.3 | 66.4 | 120.5| 159.2| 174.0| 178.9
Estimated K=2 s | 0.008| 0.005| 0.003| 0.078| 1.294 | 0.024
BICYBE 50
VB-HMRF 50 Table 2.The mean/variance parameters estimate of applying the
BICSEY method to the hand image, with the model is picked
K=3a=15 K = 6in Fig.7.

Estimated K<3|K=3| K>3

BICYBF 0 49 1

VB-HMRF 2 47 1

Fig.6 and Fig.7 present experimental results on document
Table 1.Comparison oB/C“5F and VB-HMRF on datasets of and hand images, respectively. In the first row of each

fifty synthetic images of 2-class (3-class). figure, the left side shows thBIC“E* values as a func-
tion of K, the feasible models, while the right side shows
0.4 0.4 the predicted distribution for the model space wh&res
03 03 {2...6}. The second row presents the inference results for
02 0.2 the BICYBF and the VB-HMRF methods, respectively,
0.1 A 01 /\ after picking the model with the highe&/C“E¥ values
o — “80 o — 2 or the MAP model. N.ote that the p.resent.ed ;egmentation
results are the MAP pixel classification, with different-col
03 03 ors representing different classes in the models. In thné thi
row, the density estimations of both methods are plotting
025 /\ 025 against the image histogram. For the remaining woman
s and remote sensing images in Fig.4, the VB-HMRF gives
02 1os 11 %35 &7 &8 oo 3 classes for both images, while tH/C“P* reports4
x10” x107 classes for the woman image ahalasses for the remote

sensing image.
Figure 5.The predictive posterior distributions of me&ps, u2) . .
and precisiongs1, s;) of the hand image, by applying the vB- In these experiments, the estimated parameters of
HMRF method, and the predicted expectatiomofalue is0.8.  BIC“PF are point estimates in the parameter space, while
The model dimension i& = 2 as in Fig.7. the counterparts of VB-HMRF are predicted posterior dis-
tributions. As an example, Table 2 shows the resultant
mean-variance parameters point estimates for the hand
from a known model (class number) and parame®#rag-  image, from application of thé3/C“Z* method; Fig.5
ing a Gibbs sampler. Fig.3 shows some representative imshows the corresponding predictive distributions estmat
ages from this dataset. Due to space constraints, we onlyith the proposed VB-HMRF. Notice that the inferertce
compare the model selection results here. results of VB-HMRF method tend to be smoother com-
Table 1 considers the model estimation characteristic OHared to the31CPF method.. In addition, the VB-HMRF
datasets of 2-class or 3-class synthetic images (eacreﬂata@etmd favors tg% Fmodel with fewe.r components, com-
contains fifty images sampled from fixed model and pa_pared to heBIC method. In particular, the proposed
rameters). TheBICGBF method performs quite well on approach cleanly segments the textured background of the

i i GBF i
these synthetic datasets. The VB-HMRF method performg?]nd |trrr]1age, Whllle th&31C d _prl';)(jtlrj]ces nOIS)é resgltsi_
generally on par withBIC%B¥. However, since we es- when the raw colors are used In both cases. by adopting

sentially consider a simpler image model with fixed pa-"°"® salient features (such as wavelet coefficients) wéh th

rameters, the synthesized images tend to be noisier tha{?{oposed approach, we believe that the two rings on the fin-
the real ones, this results in the slightly inferior perfor- gers can be further preserved.

mance of VB-HMREF. In these experiments, the VB-HMRF Implementation Details As shown in Fig.2, several pri-
method favors simpler models (smaller K values which in-ors have to be set in the implementation in line with the
curs larger regions for fixed image.), while tBdC“2F  empirical Bayesian methods (O’Ruanaidh & Fitzgerald,
method doesn’t have such tendency. 1996); We adopt the same settings throughout the exper-

Experiments On Real World Images We have observed iments presented in this paper, as follows. For the normal
that the BIC“5¥ method and the proposed VB-HMRF prior of the meary,, the meary is set as the mean of
method give similar results on synthetic images. Howeverthe image data, and the precisiof is settoa real value
while dealing with real world images (Some exemplar im_that is closely related to the sensor variance, here we use
ages are shown in Fig.4), the VB-HMRF delivers more rea-  Sinference in image segmentation domain is the pixel classifi-
sonable results than tHe/C“B¥ method. cation problem.
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¢ has been o yearsinge '/
Cuban fighter pilets fired Cuban fighter pilots fired
on two mnirmed Mizini- on two unarmed Miami-
based Cesanas off Cuba’s
northern coast, killing four on
board. But the reverberations
from the attack continue.
Now, the repercussions are
reaching the World Trade Or-
ganization, the Geneva body
set up in 1995 to settle trade
disputes, The U.8., which was
a driving force behind creat-
ing the WT0,.is jeopardizing
the fledgling body by threat-
ening to boycott 8 WTO panel
inveatigating the Helms-Bur- 5000 ; — B CGBF
ton Act, an outgrowth of the
Cesana incident. VB-HMRF

Signed just weeks after the ) )
shoot-down, the law added poeal Hl image histogram
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Figure 7.Top-left shows theBICYE! values as function of

model space X € {2...6}), and middle-left is the resultant 6-
Figure 6.Top-left shows theBICSEF values as function of class segmentation; Similarly, top-right shows the posterior dis-
model space € {2...6}), and middle-left is the resultant 6- tribution over the model space, and middle-right is the resultant
class segmentation; Similarly, top-right shows the posterior dis2-class segmentation, by applying the VB-HMRF method. In the
tribution over the model space, and middle-right is the resultanbottom panel, the blue spikes show the image histogram; the red
2-class segmentation, by applying the VB-HMRF method. In thecurve is theBIC'“?¥ predicted distribution estimated from the
bottom panel, the blue spikes show the image histogram; the regarametersé() with K = 6; the green curve is the VB-HMRF
curve is theBICYEF predicted distribution estimated from the predicted posterior distribution estimated from the paramefrs (
parametersd) with K = 6; the green curve is the VB-HMRF with K = 2, and the predicted expectation@falue is 1.5.
predicted posterior distribution estimated from the paramef#rs (
with K = 2.
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