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Abstract

We present a variational Bayesian framework
for performing inference, density estimation and
model selection in a special class of graphical
models—Hidden Markov Random Fields (HM-
RFs). HMRFs are particularly well suited to im-
age modelling and in this paper, we apply them
to the problem of image segmentation. Unfor-
tunately, HMRFs are notoriously hard to train
and use because the exact inference problems
they create are intractable. Our main contribu-
tion is to introduce an efficient variational ap-
proach for performing approximate inference of
the Bayesian formulation of HMRFs, which we
can then apply to the density estimation and
model selection problems that arise when learn-
ing image models from data. With this varia-
tional approach, we can conveniently tackle the
problem of image segmentation. We present ex-
perimental results which show that our technique
outperforms recent HMRF-based segmentation
methods on real world images.

1. Introduction

A number of variational algorithms have been developed
for performing density estimation and model selection in
complex graphical models with hidden variables (Jordan
et al., 1999; Attias, 2000; Beal & Ghahramani, 2003).
However, these techniques do not exploit all of the struc-
ture available in real world models; for example, the struc-
ture presented in image data where latent (pixel) variables
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exhibit strong spatial correlations (Besag, 1986).

Hidden Markov Random Fields (HMRF) are a particu-
larly natural model to apply in domains with numerous,
correlated hidden variables of this form, and have been
extensively applied in areas such as computational vision
(Forbes & Peyrard, 2003; Heitz & Bouthemy, 1993). How-
ever, because of the large number of hidden variables and
their complex graphical structure, density estimation in
these models is computationally hard. The problem is made
even harder by the fact that there is an intrinsic “model se-
lection” problem: one also needs to determine how many
values (i.e. components) each hidden variable can take on.

Early work on learning HMRFs attempted to use EM for
density estimation, but assumed the number of components
for each variable was knowna priori (Zhang, 1992)—
hence avoiding the model selection problem altogether.
However, because inference in these models is intractable,
approximation strategies still had to be devised to imple-
ment EM. The main source of difficulty in HMRF infer-
ence, as we will see, is the need to compute the normaliza-
tion constant (the “partition function”). In Zhang (1992),
the author employs a simple mean field approximation to
achieve tractability. Since then, most authors have adopted
a mean field approximation for the inference step in EM.
However, a significant amount of effort has been recently
devoted to more effectively approximating inference in an
HMRF; for example by using loopy belief propagation and
convex optimization methods (Yedidia et al., 2003; Opper
& Saad, 2001; Wainwright & Jordan, 2003). None of this
work however addresses the model selection problem.

Since Zhang (1992), some work has addressed the model
selection problem for HMRFs. Cross validation was first
investigated in Zhang (1993). More recently, authors have
been exploring techniques for explicitly approximating a
Bayesian posterior. For example, Stanford and Raftery
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Figure 1.An exemplar2 × 2 HMRF model. The white nodes
are the latent variablesx, and the grey nodes are the observed
variablesy. {α, W, β} denote the parameters.

(2002) introduced the PLIC criterion for model selection,
based on making independence assumptions to render com-
putation of the partition function tractable. More recently
a technique based on approximating the Bayesian Infor-
mation Criterion (BIC) has been proposed by Forbes and
Peyrard (2003), referred to asBICGBF , which we con-
sider below. Although these techniques are increasingly
effective at choosing the right number of components, they
still retain heuristic elements. For example, none of these
existing methods can provide any distributional informa-
tion about the predicted parameters of an HMRF.

In this paper, we propose a variational Bayesian approach
for image modelling that solves the three problems—
inference, density estimation, and model selection—within
a unified and principled framework. To demonstrate the
practical utility of HMRFs and our approximation tech-
nique, we conduct a set of experiments on unsupervised im-
age segmentation and obtain favorable results against cur-
rent methods, such asBICGBF .

2. The HMRF model

An HMRF is a graphical model where the random vari-
ables are partitioned into an observed setY = {yi, i ∈ V }
and an unobserved setX = {xi, i ∈ V }, such that each ob-
served variableyi is connected only to a corresponding hid-
den variablexi; there are no direct links between observed
variables; and hidden variables can be directly linked to
each other, usually in a regular spatial or temporal pattern.
In this paper, we concentrate on the nearest-neighbor MRFs
which are particularly suitable for vision applications (Be-
sag, 1986). We callX the label field which defines a MRF,
andY the sensor field. The model also possesses certain
parameters. For example, Fig. 1 illustrates a small HMRF
model with2× 2 hidden and visible variables.

More formally, an HMRF is specified by a graphG =
(V,E), whereV denotes the set of nodes andE denotes
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Figure 2.The graphical model view of the proposed the hierar-
chical Bayesian HMRF model. Fig.1 illustrates how the variables
x = xi andy = yi are statistically correlated in this model. No-
tice hereβk = (µk, sk) define a Gaussian distribution for feature
φ(xi, yi). See text for details.

the set of edges. For each indexi, the hidden variablexi,
which takes valuek ∈ {1, ...,K}, is linked with the visible
variableyi ∈ R by some edgêe. Thus, we letE = {E , Ê}
whereÊ is the set of edges betweenX andY , andE is the
set of edges withinX. Let the edgee(i, j) ∈ E connect
a pair of adjacent hidden nodes, and the edgeê(i, i) ∈ Ê
link the hidden nodexi and the corresponding observa-
tion yi. Let N be the number of nodes inX (andY ), and
let xe denote the local configuration(xi, xj) over an edge
e(i, j) ∈ E . Associated with any edgee connecting two
neighbouring nodes(xi, xj), there is the potential function
represented asφ(xe). Similarly, for any(xi, yi) pair there
is an associated potential function represented asφ(xi, yi).
In this paper, we assume Potts model (Besag, 1986) for fea-
ture functionφ(xe) = δ(xi 6= xj), e = (i ∼ j) associated
with parameterα, and Gaussian distributionβi,k = βk for
featureφ(xi, yi) with xi taking valuek.

To determine the probability distribution specified by an
HMRF, we first need a “model”,m, which specifies, be-
sides the priors, how many values each hidden variable
xi ∈ X can take (assumeK), and hence how many para-
meters are associated with each local potential. For a given
modelm, let θ = (α, β,W ) denote the set of parameters
specifying the local potentials, whereα ∈ R for the Potts
model,β = {βk}

K
k=1, andW = {wk}

K
k=1. A modelm and

parametersθ define a probability distribution overX,Y by:

p(X,Y |m, θ) = p(Y |X,β)p(X|W,α)

with the components defined as follows. First, the sensor
conditional likelihood is given by:

p(Y |X,β) =

N
∏

i=1

p(yi|xi, βxi
),

p(yi|xi = k, βk) ∼ N (yi;µk, s−1
k ).

henceβk = (µk, sk) is associated witĥE , as meanµk and
precisionsk. Second, denoteW = {wk}

K
k=1 as the mixing
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weights for each nodexi. Also, the distribution overX
is given by a Markov random field (MRF), for which we
adopt the K-class Potts model. The Gibbs function that
respects the Hammersley-Clifford theorem (Jordan et al.,
1999), is given by:

p(X|W,α) = exp{
∑

i

log wi,k+α
∑

e

φ(xe)−Z(α,W )},

Z(α,W ) = log
∑

X

exp{
∑

i

log wi,k +α
∑

e

φ(xe)} (1)

whereα is associated withE , andwi,k = wk for nodexi

taking valuek.

In the HMRF model,β controls the contributions from sen-
sors;α determines the interaction strength among neighbor
nodes in the label fieldX; andW takes care of the distri-
bution of nodes{xi}, assigning values in{1, · · · ,K}, by
the global constraint

∑

k wk = 1. Our goals thus turn out
to be: (i) decide the modelm. That is, decide the number
of components (classes)K which also decides the dimen-
sionality of the parameters (θ); (ii) estimate the parameters
θ; and (iii) infer theX configuration.

2.1. A Hierarchical Bayesian framework

Following the Bayesian methodology, consider a specific
HMRF modelm ∈ M whereM = {1, · · · ,M} denotes
the model space. The joint density function form is:

p(Y,X, θ|m) = p(Y |X,β)p(X|W,α)p(θ|m).

wherep(θ|m) contains the set of hyper-priors for the para-
metersθ, as:

p(θ|m) =

K�
k=1

p(µk|µ0, γ0)

K�
k=1

p(sk|s0, N0)p(α|α0, η0)p(W |ξ).

By taking conjugate priors, the priors forµ, s are Gaussian
and Gamma distributions respectively, as:

p(µ|µ0, γ0) ∼ N (µ;µ0, γ
−1
0 ),

p(s|s0, N0) ∼ Γ(s; s0, N0).

Similarly, the priors on the mixing weightsW and Potts
weightα are Gaussian and Dirichlet, as:

p(α|α0, η) ∼ N (α;α0, η
−1),

p(W |ξ) ∼ D(W ; ξ1, ..., ξK).

Fig.2 graphically illustrates the hierarchical Bayesian for-
mulation. Here all unknown quantities (parameter nodes,
latent variable nodes) are treated as random variables and
are denoted as white nodes. In contrast, observed data are

denoted as grey nodes. Round nodes represent latent vari-
ables and square nodes represent pre-fixed prior variables
which are either determined empirically from the data or set
as uninformative priors (O’Ruanaidh & Fitzgerald, 1996).
The plates with label “K” and “N” denote K and Niid
copies of such variables. The plate with label “MRF, N”
denotes the latent N copies of variables that form a MRF.

2.2. Related Models

The proposed HMRF model has close connections with
several existing graphical models, such as Boltzmann ma-
chines (BMs) and hidden Markov models (HMMs). When
we omit the mixing weightW in the fixed modelm, the
HMRF can be regarded as a variant of the BM (Ackley
et al., 1985) with both latent and observed nodes. Given a
graphical model over variablesx, the Boltzmann Machine
can be defined as

p(x|Λ) = exp
{

∑

i6=j

Λi,jxixj − Z
}

where Λ is a symmetric matrix with zero-diagonal ele-
ments, andZ is the log partition function. The HMRF
model could thus be modelled as a Boltzmann Machine
with a sparse and highly structured2N × 2N Λ matrix.

The HMRF can also be viewed as a 2D generalization of
HMM (Jordan et al., 1999), where the HMRF is defined
over a general nearest-neighbor graph rather than a 1D se-
quence for HMM. This difference, however, leads to the
intractability of inference in HMRFs due to the global par-
tition functionZ(α,W ).

3. Variational approximation

The hierarchical Bayesian framework poses a significant
challenge for optimization. There are, in general, two ap-
proaches for coping this problem: one is to use Monte
Carlo sampling techniques; the other, as we adopt here, is
to employ deterministic approximation methods. In addi-
tion to a speed-up, the adoption of conjugate priors in the
modelling phase allows analytical solutions of integrals to
be computed practically. In this paper, we apply the vari-
ational approximation method, and call this formulation
variational Bayesian HMRF (VB-HMRF) for convenience.

Also, for ease of notation, we denote three log-evidence
functionsL(θ;Y ) = log p(Y |θ), L(m;Y ) = log p(Y |m),
andL(Y ) = log p(Y ). Following MacKay (1991), we can
write, by applying Jensen’s Inequality (Jordan et al., 1999),

L(θ;Y ) ≥ Eq(X) [log p(Y |X,β)]−KL(q(X)||p(X))

= L(q(X), θ), (2)

L(m;Y ) ≥ Eq(θ) [L(θ;Y )]−KL(q(θ)||p(θ))

≥ L(q(X), q(θ)), (3)
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L(Y ) ≥ Eq(m) [L(m;Y )]−KL(q(m)||p(m))

≥ L(q(m)). (4)

whereKL(·||·) denotes the relative entropy;L(q(X), θ),
L(q(X), q(θ)) andL(q(m)) are the lower bounds of the re-
spective log evidence functions; andq(X), q(θ) are the ap-
proximating distribution functions. Interestingly, the sec-
ond inequality of Eq.(3) is obtained by substituting the in-
equality in Eq.(2) ofL(θ;Y ) into the first inequality; sim-
ilarly, we derive the second inequality of Eq.(4). These
lower bounds derivations, although not necessarily con-
cave, provides intuitions for iteratively ascending schemes.
It is known (Attias, 2000; Neal & Hinton, 1998) that the
EM algorithm maximizes the first lower boundL(q(X), θ)
and is equivalent to the ML estimate. The variational Bayes
approach, as a generalization of ML, maximizes the second
lower boundL(q(X), q(θ)) and outputs the prior-corrected
posterior density estimates ofX and θ (MacKay, 1991).
Herein, we mainly focus on the second (and refer to it
as short-handedL) and third lower bounds in the latter
derivations. The technical details of deriving the set of up-
date equations are omitted due to space constraints. The
main idea is that, instead of computing the true proba-
bility distributions (p(X|Y, θ,m) andp(θ|X,Y,M)) of a
given HMRF,1 one can approximate them by maximizing
L(q(X), q(θ)), where the approximate distributionsq(X)
andq(θ) can be chosen to alleviate the computation burden.

To simplify the notation we use the following short-cuts:

q(xi) =
∑

X.\i

q(X), q(xe) =
∑

X.\(i,j)

q(X)

qik = q(xi = k), Nk =
∑

i

qik

yk =
1

Nk

∑

i

qikyi, y2
k =

1

Nk

∑

i

qiky2
i

µ̃k =
s0

s̃k

µ0 +
NkEq[sk]

s̃k

yk, s̃k = s0 + NkEq[sk]

N̂k = N0 +
Nk

2
, ŝk

−1 = s−1
0 +

Nk

2
sµk

−1

sµk

−1 = y2
k − 2ykuk +

1

Nk

(µ̃k
2 + s̃k

−1)

log ωk =

∫

ωk

log ωkdωk = Ψ(ξk+Nk)−Ψ(
∑

k ξk+Nk)

log sk =

∫

sk

log skdsk = Ψ(N̂k) + log Ŝk

Eq[Sk] =

∫

sk

q(sk)skdsk = N̂kŜk.

Here Ψ(·) denotes the digamma function, and·\i repre-
sents the entire set except theith element.

1They turn out to be computationally infeasible due to the ex-

Figure 3.Exemplar synthetic images. In scanline order, a) is a 2-
class image withα = 1.5 andµ = {80, 60} and allσ = 60;
b) is a 3-class image withα = 1.5 and µ = {60, 120, 200}
and allσ = 40; c) is a 4-class image withα = 1.4 andµ =
{50, 105, 160, 210} and allσ = 30; d) is a 5-class image with
α = 1.3 andµ = {40, 85, 130, 175, 215} and allσ = 25.

Inference By taking the functional derivative of Eq.(3) and
equating to zeroδL/δq(X) = 0, we get the update:

log q(X) = Eq(β)

[

∑

i

log p(yi|xi, βi,k)

]

+

Eq(W )

[

∑

i

log wi,k

]

+ Eq(α)



α
∑

i∼j

e(xi, xj)



 + const.

Parameter Estimation We evaluateq(θ) by δL/δq(θ) =
0, and get the following update equations

q(µk) ∼ N (µk; µ̃k, s̃k
−1), (5)

q(sk) ∼ Γ(sk; ŝk, N̂k), (6)

q(ωk) ∼ D(
∑

i

qik + ξk), (7)

q(α) ∝ exp

{

α
∑

X

q(X)
∑

e

φ(xe)−
1

2
(α− α0)

2η

}

,

(8)
whereµ̃k ands̃k denote the prior-corrected mean and pre-
cision parameters for the Gaussian, andŝk andN̂k denote
the scale and shape parameters for the gamma distribution.

Model Selection The VB framework is known (Attias,
2000) to be equivalent to the BIC framework as the sample
size goes to infinity, and the posterior densityp(θ) peaks
around the ML estimationθML:

BIC(m) = L(θML;Y )−
|θ|

2
log N (9)

istence of integrals and the partition functionZ(α, W ).
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Figure 4.Some exemplar real world images.

where|θ| denotes the size of the parameter space.

If we evaluate atδL(q(m))/δq(m) = 0, and assume uni-
form distribution overM, we get:

q(m) =
exp{Lm}

∑

m′ exp{Lm′}
(10)

whereLm denotesL(q(X), q(θ)) for modelm.

3.1. The Mean Field Approximation

Thus far, we have been executing an exact inference step.
In practice, the computational complexity of evaluating
q(X) grows exponentially with the number of nodes in
graph G. Therefore, we must resort to approximation meth-
ods which include, for example, the family of mean field
algorithms. Given a graphG, we define a subgraphGH =
(V,EH), where EH ⊆ E. The essence of the mean
field algorithms is as follows: instead of computing the
exact probabilityq(X), a factorability assumption is im-
posed by deliberately removing some edges from the orig-
inal graphG.2 Thus, one approximatesq(X) by qH(X) =
∏

h∈H qh(xh), resulting in the variational E step:

qH(X) = arg max
qH(X)

L(qH(X), q(θ)). (11)

Naive Mean Field Algorithm Consider the simplest case
when all edges are removed fromG, forming a subgraph
GH0

= (V,EH0
) with EH0

= ∅ all nodes{xi i ∈ V }
within X are independent of each other. This is the Naive
Mean Field (NMF) setting, with the probability function
being factorized asq(X) =

∏

i∈V q(xi).

In this NMF approximation, sinceEH0
= ∅, for any node

i and its neighbouring nodej,3 the correlation termxixj is
replaced byxiµj whereµj is the estimated mean value of

2Here we only consider the removal of the edges withinX.
3j is the neighbouring node ofi, when(i, j) ∈ E. Sometimes

we also use the notationj ∈ ∂i.

xj . Thus we compute in the E step:

qik = ωks
1
2

k exp{−
1

2
Eq[Sk]((yi − µ̃k)2 + S̃k

−1
) (12)

+
1

2
Eq(α)[α]

∑

j∈∂i

e(xi = k, µj)}, (13)

wherelog ωk, log sk andEq[Sk] denote the weight, preci-
sion and expected precision estimates, respectively.

In the same manner,q(α) is given as:

q(α) ∝ exp







1

2
α

∑

i

∑

j∈∂i

µiµj −
1

2
(α− α0)

2η







(14)

4. Experiments

The BICGBF Method We conduct experiments on un-
supervised segmentation of both synthetic images and real
world images, and compare the results with theBICGBF

method. TheBICGBF method is a first-order approxima-
tion of Eq.(9) on HMRF provided simulated field approxi-
mation4. However for the sake of simplicity, here we solely
consider the naive mean field approximation. Define the
log-partition function as:

Z(θ, Y ) = (15)

log�
X

exp ��
i

log wi,k + α�
e

φ(xe) + log p(Y |X, β)�
It has been shown that both partition functions in Eq.(1) and
Eq.(15) can be approximated via the GBF bound (Forbes
& Peyrard, 2003), provided the mean field approximation.
For example,

Z(α,W ) ≈ Zmf (α,W )+4Zmf (α,W )
.
= ZGBF (α,W )

Since we can further write:

L(θ;Y ) = Z(θ;Y )− Z(α,W )

we can plug these approximations into the BIC criteria in
Eq.(9), to arrive at Eq.(23) of (Forbes & Peyrard, 2003):

BICGBF = ZGBF (θ;Y )− ZGBF (α,W )−
|θ|

2
log N.

Experiments On Synthetic Images We first compare the
BICGBF method with the proposed VB-HMRF method
on synthetic images (Forbes & Peyrard, 2003) sampled

4The simulated field approximation (Forbes & Peyrard, 2003)
is an simulated annealing variant of the naive mean field algo-
rithm, which samples the conditional distribution with a Gibbs
sampler. It was shown to have more accurate results than the naive
mean field algorithm.
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K = 2, α = 1.5
Estimated K = 2
BICGBF 50
VB-HMRF 50

K = 3, α = 1.5
Estimated K < 3 K = 3 K > 3
BICGBF 0 49 1
VB-HMRF 2 47 1

Table 1.Comparison ofBICGBF and VB-HMRF on datasets of
fifty synthetic images of 2-class (3-class).
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Figure 5.The predictive posterior distributions of means(µ1, µ2)
and precisions(s1, s2) of the hand image, by applying the VB-
HMRF method, and the predicted expectation ofα value is0.8.
The model dimension isK = 2 as in Fig.7.

from a known model (class number) and parameters (θ) us-
ing a Gibbs sampler. Fig.3 shows some representative im-
ages from this dataset. Due to space constraints, we only
compare the model selection results here.

Table 1 considers the model estimation characteristic on
datasets of 2-class or 3-class synthetic images (each dataset
contains fifty images sampled from fixed model and pa-
rameters). TheBICGBF method performs quite well on
these synthetic datasets. The VB-HMRF method performs
generally on par withBICGBF . However, since we es-
sentially consider a simpler image model with fixed pa-
rameters, the synthesized images tend to be noisier than
the real ones, this results in the slightly inferior perfor-
mance of VB-HMRF. In these experiments, the VB-HMRF
method favors simpler models (smaller K values which in-
curs larger regions for fixed image.), while theBICGBF

method doesn’t have such tendency.

Experiments On Real World Images We have observed
that theBICGBF method and the proposed VB-HMRF
method give similar results on synthetic images. However,
while dealing with real world images (Some exemplar im-
ages are shown in Fig.4), the VB-HMRF delivers more rea-
sonable results than theBICGBF method.

µ 32.3 66.4 120.5 159.2 174.0 178.9
s 0.008 0.005 0.003 0.078 1.294 0.024

Table 2.The mean/variance parameters estimate of applying the
BICGBF method to the hand image, with the model is picked
K = 6 in Fig.7.

Fig.6 and Fig.7 present experimental results on document
and hand images, respectively. In the first row of each
figure, the left side shows theBICGBF values as a func-
tion of K, the feasible models, while the right side shows
the predicted distribution for the model space whereK ∈
{2 . . . 6}. The second row presents the inference results for
the BICGBF and the VB-HMRF methods, respectively,
after picking the model with the highestBICGBF values
or the MAP model. Note that the presented segmentation
results are the MAP pixel classification, with different col-
ors representing different classes in the models. In the third
row, the density estimations of both methods are plotting
against the image histogram. For the remaining woman
and remote sensing images in Fig.4, the VB-HMRF gives
3 classes for both images, while theBICGBF reports4
classes for the woman image and5 classes for the remote
sensing image.

In these experiments, the estimated parameters of
BICGBF are point estimates in the parameter space, while
the counterparts of VB-HMRF are predicted posterior dis-
tributions. As an example, Table 2 shows the resultant
mean-variance parameters point estimates for the hand
image, from application of theBICGBF method; Fig.5
shows the corresponding predictive distributions estimate
with the proposed VB-HMRF. Notice that the inference5

results of VB-HMRF method tend to be smoother com-
pared to theBICGBF method. In addition, the VB-HMRF
method favors the model with fewer components, com-
pared to theBICGBF method. In particular, the proposed
approach cleanly segments the textured background of the
hand image, while theBICGBF produces noisy results,
when the raw colors are used in both cases. By adopting
more salient features (such as wavelet coefficients) with the
proposed approach, we believe that the two rings on the fin-
gers can be further preserved.

Implementation Details As shown in Fig.2, several pri-
ors have to be set in the implementation in line with the
empirical Bayesian methods (O’Ruanaidh & Fitzgerald,
1996); We adopt the same settings throughout the exper-
iments presented in this paper, as follows. For the normal
prior of the meanµ, the meanµ0 is set as the mean of
the image data, and the precisionγ0 is set to a real value
that is closely related to the sensor variance, here we use

5Inference in image segmentation domain is the pixel classifi-
cation problem.
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Figure 6.Top-left shows theBICGBF values as function of
model space (K ∈ {2...6}), and middle-left is the resultant 6-
class segmentation; Similarly, top-right shows the posterior dis-
tribution over the model space, and middle-right is the resultant
2-class segmentation, by applying the VB-HMRF method. In the
bottom panel, the blue spikes show the image histogram; the red
curve is theBICGBF predicted distribution estimated from the
parameters (θ) with K = 6; the green curve is the VB-HMRF
predicted posterior distribution estimated from the parameters (θ)
with K = 2.
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Figure 7.Top-left shows theBICGBF values as function of
model space (K ∈ {2...6}), and middle-left is the resultant 6-
class segmentation; Similarly, top-right shows the posterior dis-
tribution over the model space, and middle-right is the resultant
2-class segmentation, by applying the VB-HMRF method. In the
bottom panel, the blue spikes show the image histogram; the red
curve is theBICGBF predicted distribution estimated from the
parameters (θ) with K = 6; the green curve is the VB-HMRF
predicted posterior distribution estimated from the parameters (θ)
with K = 2, and the predicted expectation ofα value is 1.5.
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γ0 = (sup y−inf y)2

4 . For the gamma prior of the precision
s, the scales0 is set to104 and the shape parameterN0 to
3×10−4. For the normal prior of the Potts weightα, we set
the meanα0 to zero and the precisionη0 to 1/100. Finally,
the Dirichlet priors of the mixing weightsW are all set as
ξ = 5.

In the implementation, an iterative procedure is employed
as follows:

1. Choose a modelm.

(a) Sett = 0. Initialize the latent variables shown in
Fig.2 by a standard K-means algorithm.

(b) iterationt: inference of the latent variablesX, µ,
s, α andW by Eq.(12),(5),(6),(7) and Eq.(14),
respectively.

(c) t← t + 1, goto 2

2. Compute the lower boundL for the modelm. Take the
MAP of theq(X) distribution as the pixel labelling of
this model.

In practice, the inner loop iterates 60 times to guarantee the
convergence. After exploring all modelsm ∈ M, once we
have the predictive model space distribution Eq.(10), we
can decide the MAP model (eg.K value) accordingly. The
implementation is a mixture of matlab and c codes. In the
experiments, it takes less than one minute for processing a
100 by 100 image with two classes, for bothBICGBF and
VB-HMRF methods, on a Pentium 4 PC.

5. Conclusion

We presented a Bayesian framework for image modelling
and applied it to the problem of unsupervised image seg-
mentation. We obtained favorable results relative to re-
cent HMRF-based segmentation methods based on BIC.
The improvement is due to the fact that BIC, since it origi-
nates from large sample theory, relies on large sample size
for asymptotically stable behavior. By contrast, due to the
model averaging effect, the variational Bayesian approach
has reasonable performance at small sample size, as in seg-
mentation problems on limited size images.

The framework is quite generic and could be applied to a
broad class of image modelling problems, including image
content retrieval and video data segmentation. To improve
the performance upon image segmentation problem, future
work includes exploring task specific feature functions; in-
corporating more domain-specific knowledge into the pri-
ors for both the model and the parameter spaces, as for ex-
ample, the data-driven approach of Tu and Zhu (2002).
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