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Abstract

We make three contributions toward better under-
standing policy gradient methods in the tabular
setting. First, we show that with the true gradient,
policy gradient with a softmax parametrization
converges at a O(1/t) rate, with constants de-
pending on the problem and initialization. This
result significantly expands the recent asymptotic
convergence results. The analysis relies on two
findings: that the softmax policy gradient satis-
fies a Lojasiewicz inequality, and the minimum
probability of an optimal action during optimiza-
tion can be bounded in terms of its initial value.
Second, we analyze entropy regularized policy
gradient and show that it enjoys a significantly
faster linear convergence rate O(e~*) toward soft-
max optimal policy. This result resolves an open
question in the recent literature. Finally, com-
bining the above two results and additional new
Q(1/t) lower bound results, we explain how en-
tropy regularization improves policy optimization,
even with the true gradient, from the perspective
of convergence rate. The separation of rates is
further explained using the notion of non-uniform
Lojasiewicz degree. These results provide a theo-
retical understanding of the impact of entropy and
corroborate existing empirical studies.

1. Introduction

The policy gradient is one of the most foundational con-
cepts in Reinforcement Learning (RL), lying at the core of
policy-search and actor-critic methods. The policy gradi-
ent theorem (Sutton et al., 2000), in particular, establishes
a general foundation for policy search methods, by show-
ing that an unbiased estimate of the gradient of a policy’s
expected return with respect to its parameters can still be
recovered from an approximate value function (provided the
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approximation is a best fit). As an approach to RL, policy
gradient ascent is particularly appealing due to its simplicity
and directness: it targets the quantity of interest, it is inher-
ently sound given appropriate step size control, and it can
be readily combined with network function approximation
to achieve effective empirical performance (e.g., Schulman
et al., 2015; 2017).

Despite the prevalence and importance of policy optimiza-
tion methods in RL, the theoretical understanding of policy
gradient ascent has, until recently, been severely limited. A
key barrier to understanding is the inherent non-convexity
of the expected return landscape with respect to standard
policy parametrizations. As a result, little has been known
about the global convergence behavior of policy gradient as-
cent. Recently, important new progress in understanding the
convergence behavior of policy gradient has been achieved
in the tabular setting. Although tabular RL is an extremely
simplified scenario, it has often provided a necessary first
step to understanding deeper questions about RL algorithms.
In particular, Bhandari & Russo (2019) have shown that,
without parametrization, projected gradient ascent on the
simplex does not suffer from spurious local optima. Subse-
quently, Agarwal et al. (2019) contributed further progresses
by showing that (1) without parametrization, projected gra-
dient ascent converges at rate O(1/+/%) to a global optimum;
and (2) with softmax parametrization, policy gradient con-
verges asymptotically. Agarwal et al. (2019) also analyze
other variants of policy gradient, and show that policy gradi-
ent with relative entropy converges at rate O(1/+/%), natural
policy gradient (mirror descent) converges at rate O(1/t),
and given a “compatible” function approximation natural
policy gradient converges at rate O(1/+/1).

Despite these recent advances, many open questions remain
in understanding the behavior of policy gradient methods,
even in the tabular setting and even with the true gradi-
ent. In this paper, we consider the following three open
questions raised by the current work in this area. (1) The
convergence rate of policy gradient methods with softmax
parametrization was previously unknown. The best previous
result, due to Agarwal et al. (2019), established asymptotic
convergence without any characterization of rate. (2) The
convergence rate of entropy regularized softmax policy gra-
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dient methods was also unknown, and explicitly stated as an
open problem in Agarwal et al. (2019). (3) It was not pre-
viously understood, theoretically, why entropy helps policy
optimization. There have been recent empirical studies that
provide suggestive observations (Ahmed et al., 2019), but a
theoretical explanation has been missing.

In this paper, we provide answers to these three stated open
questions.

First, we prove that with the true gradient, policy gradient
methods with a softmax parametrization converge to the
optimal policy at a O(1/t) rate, with constants depending
on the problem and initialization. This result significantly
strengthens the recent asymptotic convergence results of
Agarwal et al. (2019). Our analysis relies on two novel
findings: (1) that the softmax policy gradient satisfies a
Lojasiewicz-type inequality but with dependence on the op-
timal action probability under the current policy; (2) the
minimum probability of an optimal action during optimiza-
tion can be bounded in terms of its initial value. Combining
these two findings, with a few other properties we describe,
it can be shown that softmax policy gradient ascent achieves
a O(1/t) convergence rate.

Second, we analyze entropy regularized policy gradient and
show that it enjoys a linear convergence rate of O(e™*) to-
ward softmax optimal policy, which is significantly faster
than vanilla softmax policy gradient. This result resolves
an open question in Agarwal et al. (2019, Remark 5.5),
where the authors analyzed a more aggressive relative en-
tropy regularization rather than the more common entropy
regularization. A novel insight is that the entropy regular-
ized gradient update behaves similarly to the contraction
operator in value learning, with a contraction factor that
depends on the current policy.

Third, we provide a theoretical understanding of entropy
regularization in policy gradient methods. (1) We prove
a new lower bound of Q(1/t) for softmax policy gradient.
This means the upper bound of O(1/t) for softmax policy
gradient we establish is optimal up to constant factors. This
result also provides a theoretical explanation of the opti-
mization advantage of entropy regularization: even with
access to the true gradient, entropy helps policy gradient
converge faster than any achievable rate of softmax policy
gradient ascent without regularization. (2) We study the
concept of non-uniform Lojasiewicz degree and show that,
without regularization, the Lojasiewicz degree of expected
reward cannot be positive, which only allows O(1/t) rates
to be established. We then show that after adding entropy
regularization, the Lojasiewicz degree of maximum entropy
reward becomes 1/2, which is sufficient to obtain linear
O(e™") rates. This change of Lojasiewicz degree and the
relationship between gradient norm and sub-optimality re-
veals a deeper reason for the improvement in convergence

rates. The theoretical study we provide corroborates ex-
isting empirical studies on the impact of entropy in policy
optimization (Ahmed et al., 2019).

The remainder of the paper is organized as follows. After
introducing notation and defining the setting in Section 2,
we present the three main contributions in Sections 3 to 5 as
aforementioned. Section 6 gives our conclusions.

2. Notations and Settings

For a finite set X, we use A(X) to denote the set of prob-
ability distributions over X. A finite Markov decision pro-
cess (MDP) M = (S, A, P, r,~) is determined by a finite
state space S, a finite action space 4, transition function
P:Sx A— A(S), reward functionr : S x A — R, and
discount factor y € [0,1). Given a policy 7 : S — A(A),
state value of 7 is defined as

VT (s) = [Z V'r(se, a 1 (1)

so=s, atNTr( |s¢), P
st+1~P(cse,at)

We also let V™ (p) = E,, [V™(s)], where p € A(S) is
an initial state distribution. The state-action value of 7 at
(s,a) € S x Ais defined as

Q" (s,a) :=r(s,a) + 'yZP(s’Ls, a)V™(s"). ()

We let A™(s,a) == Q7 (s,a) — V7 (s) be the so-called ad-
vantage function of 7. The (discounted) state distribution of
7 is defined as

dz (s) = (

Z'y Pr(s

t=0

_S|SQ,7T,7D), (3)

and we let d (s) == Esy~p [d7 (s)]. Given p, there exists
an optimal policy 7* such that

V™ (p) =

max

m:S—A(A) v (,0) @)

We denote V*(p) := V™ (p) for conciseness. Since S x A
is finite, for convenience, we can assume that the one step
reward lies in the [0, 1] interval without loss of generality:

Assumption 1 (Bounded reward). r(s,a) € [0, 1], ¥(s,a).

The following softmax transform can extract a correspond-
ing probability distribution from any given vector.

Softmax transform. Given the function 0 : S x A —
R, the softmax transform of 6 is defined as my(-|s) =
softmax(0(s, -)), where for all a € A,

exp{0(s,a)}

W@(dlS) = Za’ exp{e(Sa a/)}.

(&)
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Due to its origin in logistic regression, we call the values
of 0 the logit values and the function itself a logit function.
We also extend this notation to the case when there are no
states: For 6 : [K] — R, we define 7y := softmax(6) using

mo(a) = exp{b(a)}/ >, exp{f(d’)} (a € [K]).

H matrix. Given any distribution 7 over [K], let H(7) :=
diag(m) — mn T € REXK where diag(n) € RE*X is the
diagonal matrix that has 7 at its diagonal. The H matrix
will play a central role in our analysis, e.g., in Section 4,
because for 7y := softmax(0) and 6 € R, H(7y) is the
Jacobian of the 6 — 7y map:

dm\'_ g 6
<d€) = H(mp). (6)

Finally, we recall the definition of smoothness from convex
analysis:

Smoothness. A function f : © — R is S-smooth (w.r.t.
£y norm, 8 > 0)ifforall 0,0’ € ©,

) 10 - (L0 = 0)| < 51 o8

3. Policy Gradient

Policy-based RL methods usually represent policy as para-
metric functions, and employ different update rules to do
policy improvement in parameter spaces. Representative
policy-based RL methods include REINFORCE (Williams,
1992), Natural Policy Gradient (Kakade, 2002), Determinis-
tic Policy Gradient (Silver et al., 2014), and Trust Region
Policy Optimization (Schulman et al., 2015). Policy-based
RL methods require gradient information of parameters.
The policy gradient theorem expresses the gradient in a
convenient form, which we will need:

Theorem 1 (Policy gradient theorem (Sutton et al., 2000)).

Suppose 0 — mg(als) is differentiable w.r.t. 0, V(s, a),

ovre(p) 1 Omg(als)
86 - 1— 0% SNI%Z(" Z 69 Q (s,a) )

where p € A(S) is an initial state distribution.

3.1. Vanilla Softmax Policy Gradient

In this paper we focus on the policy gradient method that
uses the softmax parametrization. Since we consider the
tabular case, the policy is then parametrized using the logit
0 : S x A — R function and 7y (+|s) := softmax(4(s,)).
The vanilla form of policy gradient for this case is shown in
Algorithm 1.

With some calculation, Theorem 1 can be used to show that
the gradient takes the following special form in this case:

Algorithm 1 Policy Gradient Method
Input: Learning rate n > 0.
Initialize logit 04 (s, a) for all (s, a).
fort =1to T do .

Orp1 — 0, +1n- %oi(u)-
end for

Lemma 1. Softmax policy gradient w.r.t. 0 is

8V779(,U,) 1 o -
99(s,a) 14 -d?(s) - mg(als) - A™(s,a).  (8)

Due to the space, the proof of this, as well as of all the
remaining results are given in the appendix. While this
lemma was known (Agarwal et al., 2019), we included a
proof for the sake of completeness.

Recently, Agarwal et al. (2019) showed that softmax policy
gradient asymptotically converges to 7*, i.e., V™ (p) —
V*(p) as t — oo provided that p(s) > 0 holds for all state
s. We strengthen this result to show that the rate of con-
vergence (in terms of value sub-optimality) is O(1/t). The
next section is devoted to this result. For better accessibility,
we start with the result for the bandit case (when the MDP
has a single state and v = 0) so that we can better focus on
explaining the main ideas underlying our result.

3.2. Convergence Rate
3.2.1. ONE STATE: AN ILLUSTRATIVE CASE

We illustrate main idea using MDPs with one state, K ac-
tions and discount v = 0 (i.e., a bandit problem). In this
case, Eq. (1) reduces to maximizing the expected reward,

max [E [r(a)]. 9

0:A—R a~mg [ ( )] ( )
With softmax parametrization 7y := softmax(6), even in
this simple setting, the objective is non-concave in 6, as can
be shown by means of a simple example:

Proposition 1. On some problems, 0 — Eq ., [r(a)] is a
non-concave function over R¥.

The one-state case allows some simplifications which are
worth describing. In particular, here Lemma 1 simplifies to
drgr
df(a)

= mg(a) - (r(a) — mg 7). (10)

Applying the above gradient in Algorithm 1 for any y,, we
have the following update rule:

Update 1 (Softmax policy gradient, expected reward).
Oi11(a) < O0i(a) +n - mp,(a) - (r(a) — 7r(;:7°), Va € [K].

As is well known, if a function is smooth, then a small
gradient update will be guaranteed to improve the objective
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value. By some calculations, we show that the expected
reward objective in Eq. (9) is S-smooth with 5 < 5/2:

Lemma 2 (Smoothness). Vr € [0,1]", g 1 is 5/2-smooth.

Smoothness alone (as is also well known) is not sufficient
to guarantee that gradient updates converge to a global op-
timum. For non-convex objectives, the next best thing to
guarantee convergence to global optima is to establish that
the gradient of the objective at any parameter of interest
dominates the sub-optimality of the parameter. Inequal-
ities of this form are known as a Lojasiewicz inequality
(Lojasiewicz, 1963). The objective function of our problem
also satisfies such an inequality, although of a weaker, “non-
uniform” form. For the following result, for simplicity, we
assume that the optimal action is unique. We will comment
on how to lift this assumption later.

Lemma 3 (Non-uniform Lojasiewicz). Assume r has one
unique optimal action. Let m* = argmax, ca 7' r. Then,

where a* := arg max,, ¢k 7(a) is the optimal action.

dﬁg r
do

> mp(a®) - (7" — 7T9)TT, (11
2

Note 7 (a*) is the optimal action’s probability of the current
policy mg. The weakness of this inequality is that the right-
hand side scales with g (a*) — hence we call this inequality
non-uniform. As a result, the inequality is not very useful if
7y, (a*) becomes very small during the updates.

Nevertheless, this already suffices to get an intermediate re-
sult, which we state next. The proof of this result combines
smoothness and the Lojasiewicz inequality we derived.

Lemma 4 (Pseudo-rate). Using Update 1 withn = 2/5,
(m* —m,) T < 5/(t-c}), (12)

forallt > 0, where ¢; '= min;<s<; mg, (a*) > 0, also

T
Z(ﬂ'* —mp,) 1 < min{ﬁ/w, (5logT)/c% + 1}.

t=1

Remark 1. 7y, (a*) can be small at initialization and dur-
ing optimization. Consequently, its minimum c; can be quite
small, and the upper bound in Lemma 4 can be large, or
even vacuous. The dependence on gy, (a*) is from Lemma 3.
We show that it is impossible to eliminate or improve de-
pendence on y(a*) in this result. Consider v = (5,4,4)7,
o = (2¢,1/2 — 2¢,1/2) where € > 0 is small number. By

-
calculation, (7* — 7r9)Tr =1-2¢>1/2 LZ%T = (2 —
dﬂ;T

4e?, —e+4e?, —e) T, a0 = ev/6 — 24e + 32¢2 < 3e.
2

Hence, for any constant C' > 0,

-
dmy r

o (13)

C- (1" —mg) r>0C/2>3e > H
2

which means for any Lojasiewicz-type inequality, C neces-
sarily depends on € and hence on mg(a*) = 2e.

The necessary dependence on g, (¢*) makes it not sufficient
to claim a true O(1/t) rate just by Lemma 4, since it is still
unclear whether ¢; can be a function of ¢. Our next result
eliminates this possibility. In particular, this follows by
recalling the asymptotic convergence result of Agarwal et al.
(2019) that states that g, (a*) — 1 as ¢ — oo. From this
and because mp(a) > 0 for any § € RX and action a, we
immediately conclude that 7y, (a*) remains bounded away
from zero during the course of the updates:

Lemma 5. We have inf;>; mp, (a*) > 0.

With some extra work, one can also show that eventually 6,
enters a region where 7y, (a™) can only increase:
Proposition 2. For any initialization there exist to > 0
such that for any t > to, t — mp, (a*) is increasing. In
particular, when mg, is the uniform distribution, to = 1.

With Lemmas 4 and 5, we can now obtain an O(1/t) con-
vergence rate for softmax policy gradient method:
Theorem 2 (Arbitrary initialization). Using Update 1 with
n=2/5, fort >0,

(m* —mg,) T r < CJt, (14)

where 1/C' = [infy>1 7, (a*)]> > 0 is a constant that
depends on r and 01, but it does not depend on the time t.

Proposition 2 suggests that one should set 6, so that 7,
is the uniform distribution, with which we can strengthen
the previous result by showing that inf;> 7y, (a*) > 1/K,
leading to the promised strengthening of the asymptotic
convergence results of Agarwal et al. (2019):

Theorem 3 (Uniform initialization). Using Update 1 with
n=2/5and 7y, (a) = 1/K, Va, forall t > 0,

(7" —mp,) T < 5K/,

T
Z (7* — mp,) 7 < min {K\/ﬁ, 5K%log T + 1} .
t=1

Remark 2. In Section 5, we prove a lower bound Q(1/t) for
the same update rule, showing that the upper bound O(1/t)
of Theorem 2, apart from constant factors, is unimprovable.

In general it is difficult to characterize how constant C' in
Theorem 2 depends on the problem and initialization. But
in simple 3-armed cases this dependence is relatively clear.
Lemma 6. Let r(1) > r(2) > r(3) and A :=r(1) — r(2).
Then, infi>1 m, (a*) = miny <4<y, 7o, (1), where

o me (1) 3
to = mm{ﬂ'et(?)) > ZA} . (15)

Note that the smaller A and 7y, (a*) are, the larger ty is,
which potentially means C' in Theorem 2 can be larger.
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0, = (0.05,0.01,0.94) "

(b) Good & bad initializations.

(a) Softmax gradient flow.

(d) w;r and 7y, (a™)

of bad initialization.

a*)

of good initialization.

(c) 7T;;7‘ and g, (

Figure 1. Visualization of proof idea for Lemma 5.

Visualization. Let » = (1.0,0.9,0.1)T. In Fig. 1(a),
the region {my : mp(1)/m(3) > 3/(2A)} is the one that
is below the red line. Any globally convergent iteration
will enter this region within finite time (it contains 7* in
its closure) and never goes out (this is the main idea in
Lemma 5). Subfigure (b) shows the behavior of the gradient
updates with “good” (s, = (0.05,0.01,0.94) ") and “bad”
(mg, = (0.01,0.05,0.94) ") initial policies. While these
are close to each other, the iterates behave quite differently
(in both cases 7 = 2/5). From the good initialization, the
iterates converge quickly toward the optimal policy: after
100 iterations the distance to the optimal policy is already
quite small. At the same time, starting from a “bad” initial
value, the iterates are first attracted toward a sub-optimal
action. It takes more than 7000 iterations for the algorithm
to escape this sub-optimal corner! This is a typical behavior
of non-convex optimization, and it verifies our theoretical
findings. In subfigure (c), we see that 7y, (a*) increases for
the good initialization, while in subfigure (d), for the bad
initialization, we see that it initially decreases.

Non-unique optimal actions When the optimal action is
not unique, the earlier statements remain valid. However,
the arguments need to be slightly modified. Instead of using
a single 7y (a*), we need to consider ) ... 4. mo(a*), i.e.,
the sum of probabilities of all optimal actions.

3.2.2. GENERAL MDPs
For general MDPs, the optimization problem takes the form

VTp) = ) Q™ (s.a)

max
0:Sx A—R

max g mo(a
0:Sx A—R s~p

According to Assumption 1, r(s,a) € [0,1], Q(s,a) €
[0,1/(1—7)], and hence the smoothness property still holds,
as also shown by Agarwal et al. (2019).

Lemma 7 (Smoothness). V™ (p) is 8/(1 — ~)3-smooth.

As shown before, smoothness and the Lojasiewicz inequal-
ity are sufficient to prove a convergence rate. As noted
by Agarwal et al. (2019), the main difficulty is to estab-
lish a Lojasiewicz inequality for softmax parametrization.
In Lemma 3, we showed that a non-uniform Lojasiewicz

inequality holds as in the one-state cases. Fortunately,
Lemma 3 can be generalized to general MDPs, under the
exploration assumption considered by Agarwal et al. (2019):

Lemma 8 (Non-uniform Lojasiewicz). Suppose p(s) > 0
for all state s. Then,

oV (p)
a0

ming mg(a*(s)|s)
2 VS [dgT /e

V() =V (p)],

where a*(s) = argmax, 7*(als), s € S.

Similarly, we need to show that ming 7g, (a*(s)|s) is uni-
formly bounded away from zero, generalizing Lemma 5:

*(s)]s) > 0.

Using Lemmas 7 to 9, we prove that softmax policy gradient
converges to optimal policy with rate O(1/t) in MDPs:

Lemma 9. inf,cs;>1 7y, (a

Theorem 4. Suppose 11(s) > 0 for all state s. Using Algo-
rithm 1 withn = (1 — ~)3/8 and 7y, (a*(s)|s) € Q(1) for
every s € S, with some constant C > 0, for all t > 0,

.
dy

Vi(p) - "

) 165C
Ve (p) < \

1-7)5t

i

o Nl

As far as we know, this is the first convergence-rate result
for softmax policy gradient for MDPs.

Remark 3. Theorem 4 implies that the iteration com-
plexity ofAlgorithm 1 to achieve O(€) sub-optimality is
O((ls,y)s H ’ ), which, as a function of
€, is better than the results ongarwal et al. (2019) for

(1) projected gradient ascent on the simplex (O (% .

entropy regularization (O (% .

.
.
45

2
m ‘ ) ) or for (ii) softmax policy gradient with relative-
oo

a2
% H )). Our better
oo

dependence on € (or t) results from Lemmas 8 and 9 and a
different proof technique utilized in Theorem 4.

4. Entropy Regularized Policy Gradient

It Agarwal et al. (2019, Remark 5.5), an ‘“‘aggressive”
relative-entropy regularization is considered to get finite
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O(1/+/t) rate and Agarwal et al. (2019) pose as an open
problem whether the more common entropy regularization
also enjoys a similar rate. In this section, we resolve this
open question. Surprisingly, we show that entropy regu-
larization improves policy gradient significantly, achieving
linear O(e™t) convergence rate toward softmax optimal pol-
icy. In retrospect, perhaps this is not surprising as adding
strongly convex regularizers is a well known technique in
convex optimization to improve convergence of first-order
methods (Nesterov, 2018, Chapter 2).

4.1. Maximum Entropy RL

Entropy regularization has been widely used in RL objec-
tives (Mnih et al., 2016; Nachum et al., 2017; Haarnoja
et al., 2018; Mei et al., 2019). The idea here is to regularize

the values as follows:
V7 (p) == V"(p) + 7 H(p, 7).

Here, 7 > 0, the “temperature”, determines the strength of
regularization, and H(p, 7) is the “discounted entropy”, as
defined by Nachum et al. (2017):

[Z —~"log W(at|st)1 ey

t=0

(16)

H(p, ) ==
so~p,ar~m(:|st),
st41~P(|s¢,a¢)
Similar with Lemma 1, one can obtain the following ex-
pression for the gradient of the entropy regularized with the
softmax policy parametrization:

Lemma 10. [t holds that
ovVTe(u) 1
d(s,a) 11—

dﬁe( s) - mo(als) - A™(s,a), (18)

where AT (s, a) is the “soft” advantage function defined as
A™(s,a) = (s,a) — Tlogmg(als) — V™(s), (19)
Q™ (s,a) : T( +”Y§:7) ls,a)V™(s'). (20)

4.2. Convergence Rate

As in the non-regularized case, we first consider the one-
state (bandit) case to gain some insight.

4.2.1. ONE-STATE CASE

In the one-state case, Eq. (16) reduces to maximizing the
entropy-regularized reward,

max E [r(a) — 7logmg(a)].

21
0: A—R a~mg ( )

Again, Eq. (21) is a non-concave function of 6. In this case,
regularized policy gradient reduces to

d{wg(r —1logmg)}
do

= H(mg)(r — tlogmg), (22)

where H (my) is the same as in Eq. (6). Using the above
gradient in Algorithm 1 we have the following update rule.

Update 2 (Softmax policy gradient, maximum entropy re-
ward). 0441 < 0; +n - H(mg,)(r — 7logm,).

Due to the presence of regularization, the optimal solution
will be biased with the bias disapparing as 7 — 0:

*

Softmax optimal policy. 7 := softmax(r/7) is the op-

timal solution of Eq. (21).

Remark 4. At this stage, we could use arguments similar
to those of Section 3 to show the O(1/t) convergence of my,
to r. However, we can use an alternative idea to show that
entropy-regularized policy gradient converges significantly
faster. The issue of bias will be discussed later.

Our alternative idea analyzes the following update rule.

6,71

Update 3. 0,1 < 0, +n-H(r;,)(r—7logs,) — "% -

Updates 2 and 3 are equivalent in the sense that they provide
the same softmax policy sequence.

Lemma 11. If6; = 0 + c - 1 for some constant ¢ € R,
then mp, = 4, Vvt > 1.

As it turns out, in the case of Update 3, the update behaves
like a contraction operator in value learning, but with a
contraction factor that depends on the current policy.

Lemma 12 (Non-uniform contraction). Using Update 3
with ™y < 1, Vt > 0,

Gesallz < (1 =77 minmg, (@) - Gillae 23)

~ n ANT
where (; =10, —r — 7(707;) 1.1

This lemma immediately implies the following bound:
Lemma 13. Using Update 3 with tn < 1, Vt > 0,

2(rC + 1)WWK

Gl < ¢
exp {7'7] 25211 [min, . (a)]}

;@4

where we assume |01 ||oo < C for some constant C > 0.

Similar with Lemma 5, we show that minimum action prob-
ability can be lower bounded by its initial value.

Lemma 14. min, 7, (a)/ min, 75 (a) € Q(1), fort > 0.

Thus, 30— Hmma 5. (a)] € Q(2).

Essentially, what happens is min, 7 (a) — min, 7;(a) >
0, where the latter inequality holds thanks to r € [0, 1]
and 7 > 0. With Lemmas 11, 13 and 14, we prove that
entropy regularized softmax policy gradient enjoys a linear
convergence rate:



On the Global Convergence Rates of Softmax Policy Gradient Methods

Theorem 5. Using Update 2 withn < 1/7, forall t > 0,

2
5 o 20CH1PK/T

~ exp{2rn-QQ) - t}’ 25

where 8, := 1" (r — Tlogm*) — mg, | (r — 7log g, ).

4.2.2. GENERAL MDPs

For general MDPs, the problem is to maximize V™ (p) in
Eq. (16). The softmax optimal policy 7} is known to satisty
the following consistency conditions (Nachum et al., 2017):

7*(als) = exp {(Qﬂi (s,a) — f/ﬂi(s))/T} . (26)
f/“:(s) = TlogZexp {Q’T: (5,(1)/7'}. 27)

Using a somewhat lengthy calculation, we show that the
discounted entropy in Eq. (17) is smooth:

Lemma 15 (Smoothness). H(p, ) is (4 + 8log A)/(1 —
7v)3-smooth, where A = | A| is the total number of actions.

Our next key result shows that the augmented value function
V'™ (p) satisfies a better type of Lojasiewicz inequality:

Lemma 16 (Non-uniform Lojasiewicz). Suppose p(s) > 0
for all state s € S. Then,

8‘77‘—9 (M) st (7o %
| 8 i >C(0) - [V (p) =V (P)} ,  (28)
where
c(9) = \/\/? - min w(s) Iguan mo(als) - ili%g N

The entropy regularization helps prove the following result:

Lemma 17. Using Algorithm 1 with soft policy gradient
Eq. (18), we have inf;>1 min, , 7, (a|s) > 0.

With Lemmas 15 to 17, we show a O(e™") rate for entropy
regularized policy gradient in general MDPs:

Theorem 6. Suppose j(s) > 0 for all state s. Using
Algorithm 1 with entropy regularized softmax policy gra-
dient Eq. (18), n = (1 — 4)3/(8 + 7(4 + 8log A)) and
mo, (als) € Q(1), (s, a),

* [1/pl]

VWT (p) - Vﬂet (p) < exp {C-r K Q(l) K t}

1+7logA
(1=7)2"~

Sorallt > 0, where C, Q(1) > 0 are independent with t.

4.2.3. BIASED SOFTMAX OPTIMAL POLICY

As noted in Remark 4, 7% is biased, i.e., 7} # 7* for fixed
7 > 0. We discuss two usual ways to deal with this issue.

Two-stage. Note 7*(a*) > 7¥(a), Va, for any 7 > 0.
Therefore, using policy gradient with 7y, = 7}, we have
mo,(a*) > ¢; > 1/K. This suggests a two-stage method:
first, use entropy-regularized policy gradient for constant
O(log (1/A)) iterations (to make 7, (a*) > 7, (a), Ya);
second, use vanilla policy gradient. The convergence rate is

(r* —m9,) "7 < 5/(C% - ty), (29)

where t1 +to = t, t1 € O(log (7/A)), t2 is time of second
stage, and C € [1/K, 1). The initialization dependent ¢; no
longer exists, which is better than 5/(c? - t) as in Lemma 4.

Decayed entropy. Another usual way is to decay the reg-
ularization, e.g., 74 := 1/t. Consider the following update.

Update 4. 6,4y, < 0y +mn - H(mg,)(r — 1 log mg, ).

Tt
Tt41
There is also an alternative update that Lemma 12 holds but
~ 0 T
with ¢; == 740y — 1 — (”et% - 1. However, as 7+ — 0,
min, 75 (a) — 0, which means min, 75, (a) ¢ Q(1) as
w5, — 7. We conjecture the rate degenerates to O(1/t).

5. A Theoretical Understanding of Entropy
Regularization in Policy Gradient Methods

Ahmed et al. (2019) perform an empirical study to explain
the impact of entropy in policy optimization by introduc-
ing a loss perturbation method to facilitate visualization
of optimization landscape. They qualitatively show that in
some tasks, policies with higher entropy have smoother land-
scapes, and they possibly enjoy better optimization proper-
ties. However, this leaves open the question of whether the
conclusions of this empirical study hold in general.

In this section, we aim to provide new insights into why
entropy may help policy optimization, taking an optimiza-
tion perspective. We start by establishing a lower bound
that shows that the O(1/t) we established earlier for policy
gradient and softmax parametrization when entropy regular-
ization is not used cannot be improved. Next, we introduce
the notion of Lojasiewicz degree, which we show to increase
in the presence of entropy regularization, which, we connect
to faster convergence rates. Note that our proposal to view
entropy regularization as an optimization aid is somewhat
conflicting with the more common explanation that entropy
regularization helps by encouraging exploration. While it is
definitely true that entropy regularization encourages explo-
ration, the form of exploration it encourages is not sensitive
to epistemic uncertainty and as such fails to provide a satis-
factory solution to the exploration problem as explained by
O’Donoghue et al. (2020).

5.1. Lower Bounds

Sections 3 and 4 show that sofmax policy gradient converges
with arate O(1/t), while entropy regularized softmax policy
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gradient has a faster O(e~") rate. To claim that regulariza-
tion makes policy gradient converge faster, we need a lower
bound for softmax policy gradient.

Intuitively, smoothness and the Lojasiewicz inequality of
Lemma 3 together guarantee enough progress in each iter-
ation toward a global optimum. To get lower bounds, we
need to show that progress in every iteration cannot be too
large. As it turns out, the expected reward satisfies a reverse
Lojasiewicz inequality, with a problem-dependent constant:

Lemma 18 (Reverse Lojasiewicz). Denote A = r(a*) —
maxqzq+ 7(a) > 0 as the reward gap of r. Then,

e o

— ("=
LS A ( 0
Using smoothness, one can then upper bound the progress of
one step gradient update by the squared norm of the gradient.
Then, by Lemma 18, this progress is further upper bounded
by the square of the current sub-optimality. From this an
elementary calculation gives the desired lower bound:

dﬂ'g r
do

T, (30)

Theorem 7 (Lower bound). For large enought > 0, using
Update 1 with learning rate n € (0, 1],

2

r> .
T 6on-t

)" 31)

(7™ — T,

Note that Theorem 7 is a special case of general MDPs.
Therefore, the Q(1/t) lower bound also holds for MDPs:

Theorem 8 (Lower bound). For large enought > 0, using
softmax policy gradient Algorithm 1 with ) € (0, 1],

(1-9)°- (A%’
12n -t

where A* ‘= mingcs g-£q () {Q* (5, 0" (5)) —Q*(s,a)} >
0 is the optimal value gap of the MDP.

Vi) = V7o (p) = (32

Remark 5. Our convergence rates in Section 3 match the
lower bounds up to constant. However, the constant gap is
large, e.g., K? in Theorem 3, and A? in Theorem 7, which
is from Lemma 18 and happens when my is in vicinity of 7*.
Since any globally convergent iteration must be in vicinity
of the optimal policy T after large enough time, this large
constant gap seems unavoidable. We leave the improvement
of constant difference as an open problem.

With the lower bound established, we can confirm that en-
tropy regularization helps policy optimization by speeding
up convergence.

5.2. Non-uniform Lojasiewicz Degree

The discrepancy between convergence rates can explain the
advantage of entropy regularization, but the difference itself

is a result of a deeper reason. We investigate this point
through lens of Lojasiewicz degree, which is a key property
that is related to rates of non-convex optimization.

Definition 1 (Non-uniform Lojasiewicz degree). A function
f: X = R has Eojasiewicz degree ¢ € [0, 1] if

IVef(@)ll, 2 C) - | f(z) = f@)]'75,  (33)
Vo € X, where C(x) > 0 can be independent with x.

Lojasiewicz degree is closely related to convergence rates of
first- (Barta, 2017) and second-order methods (Nesterov &
Polyak, 2006; Zhou et al., 2018) in non-convex optimization.
Large Lojasiewicz degree corresponds to faster convergence
rate for the same optimization method.

First, we show that the Lojasiewicz degree of the expected
reward objective cannot be positive:

Proposition 3. The Lojasiewicz degree of Eqnr, [r(a)] can-
not be larger than 0 with C(6) = mg(a™).

Note that according to Remark 1, it is necessary that C'(6)
depends on 7y (a*). The difference between Proposition 3
and the reverse Lojasiewicz inequality of Lemma 18 is sub-
tle. Lemma 18 is a condition that implies impossibility to
get rates faster than O(1/t), while Proposition 3 says it is
not sufficient to get rates faster than O(1/t) using the same
technique as in Lemma 4. However, this does not preclude
that other techniques could give faster rates.

Next, we show that the Lojasiewicz degree of the entropy-
regularized expected reward objective becomes 1/2:

Proposition 4. With C(§) = /27 - min, mp(a), the
Lojasiewicz degree of Eqrr, [r(a) — Tlogmg(a)] is 1/2.

We postulate that the increase of Lojasiewicz degree is the
key to the faster convergence rate of policy gradient when
used on the entropy-regularized objective.

6. Conclusions and Future Work

We show matching bounds O(1/t) and 2(1/t) for the tab-
ular setting of softmax policy gradient methods, which is
a faster rate than those obtained for closely related policy
gradient methods in previous work. Important directions for
future work include the generalization of our results to the
case when the gradient needs to be estimated and/or a func-
tion approximator is used to represent policies. Moreover,
it may also be interesting to find new uses for non-uniform
Lojasiewicz inequalities in non-convex optimization and for
the notion of Lojasiewicz degree.

"Note that in literature (Lojasiewicz, 1963), C cannot depend
on z. Based on the examples we have seen, we relax this require-
ment.
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The appendix is organized as follows.

e Appendix A: proofs for the technical results in the main paper.

— Appendix A.1: proofs for the results of softmax policy gradient in Section 3.
— Appendix A.2: proofs for the results of entropy regularized softmax policy gradient in Section 4.
— Appendix A.3: proofs for the results of theoretical understanding of entropy in Section 5.

e Appendix B: supporting lemmas which are not presented in the main paper.

e Appendix C: remarks on sub-optimality guarantees for other entropy-based RL methods, which are not presented in the
main paper.

e Appendix D: simulation results to verify the convergence rates.

A. Proofs
A.1. Proofs for Section 3
Lemma 1. Softmax policy gradient w.r.t. 6 is

V™ () 1 o o
) T3 ~d? (s) - mo(als) - A™ (s, a). 34

Proof. See Agarwal et al. (2019, Lemma C.1). Our proof is for completeness. According to Theorem 1,

W,;;(m =1 i 5 o o [Z % Q™ (s, a)] (35)
For s/ # 5, 226(412) — 0 since 7(als') does not depend on 6(s, -). Therefore,
e = e [ S )
_ ﬁ LdT(s) (jg((j;) Q™ (s,") (37)
— ) Hm)Q () (B ©) (38)

According to H (g (+|s)) = diag(ma(-|s)) — ma(-|s)ma(-|s) T, for each component a, we have

%Z:,((l;)) = 1i7 -y (s) - mo(als) - [Q” s,a) Zﬂe als) - Q™ (s a)] (39)
= 1% d;?(s) - me(als) - [Q™ (s,a) — V7™ (s)] (V” Zwe als) - Q™ (s a)> (40)
= ﬁ d;’ (s) - mo(als) - A™ (s, a). O

Proposition 1. On some problems, 6 — E, ., [r(a)] is a non-concave function over R¥.

Proof. Consider the following example: r = (1,9/10,1/10)7, 8; = (0,0,0) ", mp, = softmax(6;) = (1/3,1/3,1/3)T,
2 = (In9,In 16,In25) T, and g, = softmax(f) = (9/50,16/50,25/50) . We have,

1 1 /2 259> 17T 14216 @1

—_ . T T — — . —_ _ = — =
y (Tor+ ) =5 (3 500 ) ~ 3000 24000
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On the other hand, § := 1 - (61 + 62) = (In3,In4,1n5) ", and 75 = softmax(d) = (3/12,4/12,5/12)".

71 14200

T "= 120 ~ 24000

Since 5 - (g, 7+ m4,7) > 75 7, Eqror, () [1(a)] is a non-concave function of 6.

Lemma 2 (Smoothness). Let g := softmax(6) and g := softmax(¢’). Vr € [0, 1]

drgr
de

(mgr — ) T — <

o =0 <51 - ol

Proof. Denote the second derivative w.r.t. 6 (i.e., Hessian) as

d (dnjr
S(r,0) :_dG{ d99 }
_ A4 [ (dre\" (dnjr
b do dmy

= die {H (mq)r} (Eq. (6))

=0 (diag(mg) — momy )1}

Note that S(r,0) € RE*K ‘and Vi, j € [K], the value of S(r,0) is,

d{mg (i) - (r(i) —mg 1)}
do(3)

- (r() = mg ) + o (i) -

Si,j =
_ dmg (i) d{r(i) —mg r}
do(4) do(j)
= (6i;ma(j) — wo(i)mo(4)) - (r(i) — g 1) — mo (i) - (wa(§)r(j) — ma(j)mq 1)
= 6i;m0(j) - (r(i) — mg ) — wo(i)mo(§) - (r(i) — g 1) — mo(i)ma(j) - (r(4) — w4 1),

where

1, ifi=j,
0, otherwise.

We show that the spectral radius of S(r, #) is smaller than or equal to 5/2. For any y € RX,

K K
ly S0y = D> Syl )

i=1 j=1

_ Zﬂe ) — 7 )y 7227@ (i) — 74 r)y(i) Y mo(3)y(3)

(Hiro)) (y©y) =2+ (H(za)r) " y- (x])]
1H (wo)rll - 1y © ylly +2- 1H (wo)rly -yl - Imolly - gl

IN

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
(51

(52)

(53)

(54)

(55)
(56)

where ® is Hadamard (component-wise) product, and the last inequality is by triangle inequality and Holder’s inequality.
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Note that ||y © y|l1 = |[yl|3, [|7ell1 = 1, and ||y||ec < ||y|2. Denote H; .(mg) as the i-th row vector of H (), Vi,

[ H (7o)l = mo (i) — ma (i) + 7o (i) - Y _ 70 (4) (57)
=:weu)—-w9@)2+-w@u)-zr—-w9u)) (58)
=2-79(1) - (1 — my(4)) (59
<1/2.  (z-(1—a)<1/aforze[0,1]) (60)
On the other hand,
|H (zo)rlly = ma(i) - (i) — w4 7| (61)
< ni?x (i) — 7 7] (62)
<1. (r e o, 1}K) (63)
Therefore we have,
ly"S(r,0)y| < [|H(mo)7llo - Ilyll5 +2- [ H (ma)r ], - Iyl (64)
= max |(Hia(m0)) " | - yll3 + 2 1 (ro)rlly - Iyl (65)
< max | Hi (o), - 7l - I3 + 21+ [lyll3 (66)
<(1/242) |yl =5/2- lyl;- (67)

Denote 8 = 6 + £(6' — 6), where £ € [0, 1]. According to Taylor’s theorem, we have,

dn ¥
(7o _WG)TT_< ZZT,9'—9>‘ =

: ‘(9’ —0)" S(r,00) (0 - 0) (68)

<=0 -0 O

B~ ot DN =

Lemma 3 (Non-uniform Lojasiewicz). Assume r has one unique optimal action. Let 7* := arg max . nlr. Vmp ==
softmax(0),

where ¢ = argmax, (g r(a) is the optimal action. Also, for non-unique optimal action cases,
1 * * T
| D mola’)| - (x —m) T, (70)

>
‘ 2 V |A*| a*cA*

where A* = {a* : r(a*) = max, r(a)} is the optimal action set.

dwg T
df

>mp(a®) - (7" — 71'9)T7", (69)
2

dﬂ'@T T
do

Proof. The claim follows from calculating the ¢5 norm of gradient,

drgr
df

) = <Z [76(a) - (r(a) — ﬂJr)f) (71)
g

=mg(a*) - (7" —mg) 1 (73)

(72)

—
N
B}
—
S
*
~—
—~
=
—~
S
*
~—
[
N
B3
<
~
—
[\v]
N—
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In case of non-unique optimal actions, define the optimal action set

A" = {a* cr(a) = maxr(a)} .

a

The argument holds with 7y (a*) replaced with 3 . . 4. mo(a*).

Z mo(a*) - (r(a*) —m, 1) (Cauchy-Schwarz)

= \/liTl [ Z ﬂg(a*)] (m* =)

a*eA*

Lemma 4 (Pseudo-rate). Let 7y, := softmax(6;). Using Update 1 with n = 2/5,

5 1
* T

— < = .z
(= = m0)Tr < 5o g,

for all ¢ > 0, where ¢; '= minj<s<; mg, (a*) > 0. And

)

T
* T .
_ <
g (m* —mp,) 7 < min - 2

t=1

{\/5T S5logT n 1}.

Proof. According to Lemma 2,

dr] r
(7r9t+1 - Wet)Tr - < dzt a9t+1 - 9t>
t

< =101 — 613,

= | Ot

which implies

dr] r 5
T T (4 2
WW“”%HT<—< Zﬁwl—@>+4'WH1—@M

do
arl | | drg,
I Ty, 5 o | dmg,r Opir =0, +1- T,
a0, 1 a0, t+1 t 6,
2 2
1 dﬂ;)rr
_ 1. ¢ =2
2 (n=2/5)
1
2
< _%t [(7* —m,)"r]",  (by the definition of c;)

which is equivalent with

2
C 2
(7T* - 7T9t+1)TT - (’/T* - Wat)TT' = _gt ' [(ﬂ—* - ﬂ—ef)—rr] :

Denote §; := (7% — mp,) T r. We prove 6; < C% . % by induction on ¢. For t = 2, since ¢3 € (0,1),
5 1
<1< —5- 5.
c; 2

)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)
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Suppose §; < 3 - %, t > 2. Consider f; : R — R, fi(z) =2 — % -2, f, is monotonically increasing in {O, ﬁ}

Ct

c
O S0 =507 (Eq.(89) (87)
5 1 &2 (5 1)\’ 5 1 _ 5
el s 0 < —=--< t>2 88
~c¢ t 5 (cf t) ftE 2.2 (88)
5 1 1
R 89
c? (t t2) (59)
5 1
< Z . 90
2 t+1 ©0)
< > ! (¢t > > 0) 1)
= C%—s—l 1 Ct Z Ct+1
which completes proof for §; < c% . % Summing up §; < C% % < C% %, we have
t t T
T
S5logT
3 (= me)Tr < 28 11 92)
t=1 ‘r

On the other hand, rearranging Eq. (85) and summing up 67 < % - (6; — §y41) < 5 - (6 — dy41) fromt = 1 to T,

T
5
<5 (60— 6i41) (93)
t=1 St
5
=z (61— orn) ©4)
5 .
< % (since dp41 >0, 61 < 1) (95)

Finally, we have,

C

T T T
VoT
S —me) =30 < VT | S0 < 2L
t=1 t=1 T

t=1
Lemma 5. We have inf,>1 1, (a*) > 0.

Proof. In particular, we prove inf;>1 g, (@*) = minj<;<¢, mg, (a*), Where tg = min{t : my, (a*) > aﬁ}’ and ¢ =

% . (1 — %), and A := r(a*) — maxgz4+ 7(a) > 0 is the reward gap of r. Note that ¢, depends only on 6; and ¢, and ¢

depends only on the problem. Define the following regions,

dw;,'—r d’]T;—’I" N
= : >
R1 {9 W) = db(a)’ Ya #a* 3, (96)
c K A
. = N * > = — - .
N {0 mp(a*) > = 1}, where ¢ == S <1 K) o7

The main proof idea consists of the following three parts.
e First, we show that R4 is a “nice” region, in the sense that, following gradient update, (i) if 6, € Rq, then 6,1 € R1;
(i) mo,.., (a) > g, (a").
e Second, we show that A, C R;.

e Third, there exists a finite time ¢, > 0, such that 6;, € N, and thus 6;, € R, which implies inf;>; 7w, (a*) =

ming <<y, 76, (@*).
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. " . drg r drg T .
First part. (i) if 6, € R4, then 6,11 € R4. Suppose % > % for action a. There are two cases.

(a) If mp, (a*) > mp, (a), then 0;(a™) > 6;(a). After one step gradient update,

. . dﬂ;r
Or11(a™) < 0(a*) +1m - RED (98)
> 8 dmy,r 99
- t(a)—i_n-d@t(a) O
= Oy 11(a), (100)
which implies 7y, , (a*) > 79, ., (a). Since r(a*) — 7T0Tt+17‘ > 0and r(a*) > r(a),
TO41 (a*) ' [r(a*) - 779Tt+1r > TO,11 (a) ' [r(a) - 770Tt+1r ’ (101)
. . . . dﬂgt+17" dw;t+1r .
which is equivalent with s (@) = dia(a) € Oi1 € Ra.
« dTl'ér’I‘ dﬂgr
(b) If mg, (a*) < g, (a), then by Wé*) > W(td)’
T, (a*) - [r(a*) — Wéz’l“] > mg,(a) - [r(a) — Wgtr] (102)
= my, (a) - [r(a*) — ﬂ'thr] —my,(a) - [r(a*) —r(a)], (103)
which after rearranging is equivalent with
* o, (a*)) * T
r(a”)—r(a) > 1— -r(a™) —my T (104)
(@)= r@) > (1= ) frfa) ]
= (1 —exp {6:(a*) — O(a)}) - [r(a*) — g, 7] . (105)
After one step gradient update, according to smoothness argument as in Eq. (80), Wé: L2 Wé: r,ie.,
0<r(a®)— 7T;rt+17“ <r(a*) —my,r. (106)
On the other hand,
0 " _g (" dﬂ‘;:T dﬂ(;:r 107
t+1(a’ )_ t+1((l) - t(a )+77 dﬁf(a*) - t(a) - d&t(a) ( )
> 0y(a”) — Oi(a), (108)
which implies
1 —exp{fit1(a”) — 0r11(a)} <1 —exp{b:(a™) — O:(a)}. (109)
And since 1 — exp {6:(a*) — 6:(a)} =1 — ?{:t((a(:)) > 0 (in this case 7y, (¢*) < 7, (a)),
(1= exp {0r41(a") = Ousa(@)}) - [(0”) = g, 7] < (1= exp {ula®) — O(@)}) - [r(a”) = 77] (110)
< r(a*) - r(a), (111)
which is equivalent with
7T9t+1 (a*) * T *
1—-—- — < — . 112
( o, (@) > {T(a ) W‘”HT} <r(a”) = r(a) (112)

Rearranging the above inequality,

Toa (@) [r(@) = 75, 7] = o (@) - [r(a) = 75, 7] (113)
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T T
which means o1 " o "
d0t+1(a*) — d0t+1(a)’

ie, 011 € Rq1. Now we have (i) if §; € Ry, then 6,1 € R;.

T T
0,7 dﬂ'str

Next we prove (ii) 7o, , (a*) > g, (a*). If §; € R4, then % > Jo.(y» Va # a”. After one step gradient update,

. exp {0i4+1(a*)}
_ 114
T4 41 (a ) Za exp {9t+1(a)} ( )
dn]) r
exp {9t(a*) +77'd0t(62*>}
= dWJtT (115)
doaexpqbi(a) +n- oty
" dTth?"
R exp {Gt(a )+ d@t(ga*)} ( dmg v - dﬂéﬁ”) (116)
= dnT do;(a*) — dO
S exp {9t(a)+77'd9t(°;*)} +(a*) i(a)
exp{gt(a*)} *
(@) 117
>, exp{0ia)y ) Y

Second part. N C R;. Suppose my(a*) > o1 There are two cases.

() If mp(a*) > max,2q+{mg(a)}, then § € Ry C R4 in the proof for Proposition 2.

() If mg(a*) < max,zq-{mg(a)}, we show that ;ZEZTI) > Zgg;;, Va # a*. For any specific a, we re-label the actions for

convenience, such that ¢* = 1, a = 2. Then we have,

drgr dmjr dmjr dmjr

)~ dbla) ~ db(n) da(z) D I ] S @ @) =] (e
K

= 2mg(1) - [r(1) — 7g 7] +Z7r9(z’)- [r(3) — g 7] (119)

K = K
= (2%9(1) + Zﬂ'o(z)) . [r(l) — WQTT] — Zﬂ'@(i) [r(1) = r(4)] (120)

11_(3 z}—(B
> <27r9(1) + Zm@) r@) —mgr] - Zm(i) (121)

7,]:{3 A p 1=3
> (27T0(1)+Z7T9(i)> '?—Zﬂe(i)v (122)

i=3 =3
where the second equation is according to
m9(2) - [r(2) —my ] + Zﬂg(i) fr@) —myr| =mgr—mgr =0, (123)
i#2

and the first inequality is by 0 < r(1) — r(¢) < 1, and the second inequality is because of

K K
r(1) —mgr = [1 —m(1)] - (1) — Zm(i) (i) = Zm(z‘) (1) = 7(d)] (124)
K
> Zﬂa(i) A > gﬁ%’f{ﬁe(a)} A (125)
> % (We(a*) < 21;22)5{7@(@}, gg}g{ﬂg(a)} = Hlé],X{ﬂ'g(a)} > ;{) (126)
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Note that ZlK:?) (i) = 1 — mp(1) — mp(2), we have

;ZE%::) - Zg({g > 7o(1) - % —[1—ma(1) — me(2)] - (1 —~ 2) (127)
= % : {m(l) (1 + % (1 —~ é)) —[1—m(2)] - % : <1 - IA()] (128)
> s (%) -umel s (1-%)] (R0zg) am
= 74(2) - (1 - IA{) >0, (130)

which means # € Rq, and thus N, C R;.

Third part. According to the asymptotic convergence results of Agarwal et al. (2019, Theorem 5.1), 7y, (a*) — 1 as
t — oo. Hence, there exists tg > 0, such that T0,, (a*) > +1 , which means 6;, € N, C Ry. According to the first part in
our proof, i.e., once 6; is in R4, following gradient update 0,1 will be in Rq, and 7y, (a*) is increasing in R, we have
infy mp, (@*) = min; <4<y, 7o, (a*). to depends on initialization and ¢, which only depends on the problem. O

Proposition 2. For any initialization there exist ¢y > 0 such that for any ¢ > g, t — 7, (a*) is increasing. In particular,
when 7y, is the uniform distribution, ¢y = 1.

Proof. to := min{t : 7, (a*) > 55}, where ¢ := J% - (1 — £) in the proof for Lemma 5 satisfies for any ¢ > to,
t — mp, (a*) is increasing. Next we show that when 7y, is the uniform distribution, ¢, = 1. Recall the definition of R4 in
the proof for Lemma 5, and define another region R as,

o dry drgr .
Rl._{ﬁ e )>d9(a),Va7€a}, (131)
Ro =10 :mp(a”) > mp(a), Ya # a*}. (132)

It is obvious that §; € R if 7y, is the uniform distribution. Next we show Ro C Rq. Suppose mg(a*) > mg(a). Then,

-
dmyr

00" =m(a*) - [r(a*) — WJT] (133)
> mg(a) - [r(a) — WJT] (r(a*) - mgr >0, r(a*) > r(a)) (134)
. dﬂ';r
" df(a)’ (135)
Therefore we have 1 € Ry and ty = 1. O]

Theorem 2 (Arbitrary initialization). Using Update 1 with = 2/5, for t > 0,
(7" —m,) Tr < OJt, (136)
where 1/C = [inf,;>1 7, (a*)]* > 0 is a constant that depends on r and 6y, but it does not depend on the time ¢.
Proof. According to Lemmas 4 and 5, the claim immediately holds, with 1/C = [inf,>; mp, (a*)]* € Q(1). O
Theorem 3 (Uniform initialization). Using Update 1 with n = 2/5 and 7y, (a) = 1/K, Va, forall t > 0,
(7" —mp,) ' < BK?/t, (137)

T
3wt —mo,) T < min{K\/5T, 5K2log T + 1}. (138)
t=1
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Proof. Since initial policy is uniform policy, g, (a*) > 1/K. According to Proposition 2, for all ¢t > t5 = 1, t — 7, (a*)
is increasing, we have mg, (a*) > 1/K, ¥Vt > 0, and ¢; := min;<s<; 7, (a*) > 1/K. According to Lemma 4,

. 5 1
(m* —me,)Tr < 5 =, (139)
c; t

we have (7% — mp,) 'r < 5K?2/t, ¥t > 0. Remaining results follow from Eq. (78) and cr > 1/K. O

Lemma 6. Let (1) > r(2) > r(3) and A := r(1) — r(2). Then, «* = 1 and inf;>1 7y, (1) = miny <4<y, 7, (1), where

L . ﬂgt(l) 3
o= {56 2 o) o

Proof. Recall the definition of R in the proof for Lemma 5,

d?T;—T dwl;rr N
= : > .
R1 {9 (e = d6(a)’ Ya # a (141)

We prove if :ZE;; > %, then 6 € R,. Suppose :ZE;; > %. There are two cases.

(@) If mp(1) > max{my(2), m(3)}, then § € Ry C R; in the proof for Proposition 2.
(b) If mp(1) < max{mp(2),my(3)}, then

QU

-
Ty

<

-
dmy r B

d6(1)  d0(2) ~ mo(1) - [r(1) —mg r] — mp(2) - [r(2) — mg 7] (142)
=2mg(1) - [r(1) — 74 r] + mo(3) - [r(3) — mg 7] (143)

B [27y(1)
= 7p(3) (3 [r(1) —mgr] = [r(3) — w(}r]] (144)

27my(1)
> 74(3) ) [r(1) — 7 r] — 1} (145)

_271'9(1) A
> my(3) - T (3) 3T 1] (146)
> mp(3) - (1-1) =0, (147)
where the second equation is according to

mo(1) - [r(1) — ﬂ(;rr] +m9(2) - [r(2) - ﬂgr] +m9(3) - [r(3) — ﬂ(;rr] =mgr—mgr =0, (148)

and the first inequality is by 0 < 7r(;r r —r(3) < 1, and the second inequality is because of

r(1) —mg r = [1 = m(1)] - (1) — [m9(2) - 7(2) + 7 (3) - (3)] (149)
=mp(2) - [r(1) — r(2)] + mp(3) - [r(1) — r(3)] (150)
> [mo(2) + mo(3)] - A (151)
> max{mp(2), m(3)} - A (152)
A

> <7r9(1) < max{mg(2),75(3)} . max{ms(2). 79(3)} = max{my(a)} > ;) (153)

g.

Note that since (1) > 7, r, and r(3) < 7, r, we have

drgr dmgr
o~ o) ~ "W P = mdr] = mo(3) - [r(3) — mg ] (154)
>0-0=0. (155)
Therefore we have Zg(gl; > Z;’é; and flg({; > f’lgé;, ie,0€R;. 0
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Lemma 7 (Smoothness). V™ (p) is 8/(1 — 7)3-smooth.

Proof. See Agarwal et al. (2019, Lemma E.4). Our proof is for completeness. Denote 6, = 6 + au, where o € R and
uwe RS54, Forany s € S,

00

a>’ (156)

87‘(’9
Z ‘< oz=07 19e"
S .

871'9

>

a=0

Since %’;9((5 |)) =0, for s’ # s,

3 Le (als Z ’<a7r9 )>’ (158)
= ng (als) - |u(s,a) — o (-|s) Tu(s, o (159)
< max [u(s, a)| + |m(-|s) "u(s, )| < 2 [Jull2. (160)
Similarly,
02y, (als) B 0 [ Omg,(als) 00,
; da?  la=0| ; <89a{ da } a=0" 8a>’ (161)
B 02wy, (als) 00, 06,
=2 (T G aa>‘ (162)
0?my(als)
:; <892(S7.)u(87'),u(87')>'. (163)
Denote S(a, ) = asgf((:,‘f;) € RAXA Vi, j € [A], the value of S(a, 6) is,
- HNHdiamelals) — mo(als)me(ils)}
Sij = 9005, ) (164)
= bia - [0jamo(als) — mo(als)ma(j]s)] — o (als) - [6i5ma(ils) — o (ils)ma(jls)] — ma(ils) - [6jama(als) — mo(als)mo(jls)],
(165)

where the § notation is as defined in Eq. (52). Then we have,

21mo(als A4
’ <a@92e((5 ’|.))u(s, ), u(s, )>‘ = ;; Si ju(s, i)u(s, 5) (166)
= my(als) - ‘u(s,a)2 —2-u(s,a) - mo(-|s) Tuls,-) — me(-|s) " (u(s,) ©u(s,-)) +2- (7r‘9(-|$)Tu(s7 ))2‘ )
(167)
Therefore we have,
Z aﬂ-g%.f;lb) o < max {u(s, a)?+2- ‘u(s, a) - 7r9(~|s)Tu(s, )’} + 7r‘9(-|$)T (u(s,) ©u(s,))+2- (779(-|3)Tu(s, ))2
(168)
< luls; )3 + 2 - luls, )3 + lluls, 5 +2- uls, )5 < 6- [Jull3. (169)

Define P(a) € RS*S, where V(s, 5'),

(s, = Zﬂ'e (a|s) - P(s'|s,a). (170)
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The derivative w.r.t. o is

E

-y {37@& (als)

oe=0:| (s,5") o Oa

BE

For any vector z € R, we have

[apm)

20 azox] ZZ {am) azo] P(s'|s,a) - 2(s).

The /., norm is upper bounded as

dP(a) _ e, (als) / /
H Oa a:o = max ZZ |: a—0:| -P(s|s,a) - x(s)
<maXZZ7’ (o) | o) e
87T
:mgxz 907’&:0 -

<2 fluflz - flzfle. (Eq.(158))
Similarly, taking second derivative w.r.t. o,

[5261;(204)

_ Z {a%g;(ﬂs)

- P(s'|s,a).
O‘_O:| (s,8") a—0:|

The ¢/, norm is upper bounded as

0%P(a)
da?

DY P ”gaz

a_o} P(s']s,a) - 2(s")

oo

8 T,
_maxZ’ 8042 =0

<6-lull3 - zlls.  (Eq.(168))

Next, consider the state value function of 7, ,

VTa(s) =Y mo,(als) - r(s,a) + 7 ) 7o, (als) Y P(s']s,a) - Ve (s),

which implies,
V™ (s) = e] M(a)rg
where
M(a) = (Id = vP(a)) ",

and rg, € RS, Vs,

o, (8) = Zﬂga (als) - r(s,a).

a

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)
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Since [P(«)] >0,V(s,s'), and

(s,8")
M(a) = (I1d —vP(a) ™' = > ' [P(a)],
t=0

we have [M(a)]

s,s’

1 1

1=—— (Id—yP(a))1 = M(a)l = —— -1
=~ ( 7P(a))1 = M(a) - b
which implies, Vi,
1
M ‘ S M@)o = ——
e, 2 M@y = 7
Therefore, for any vector x € RS,
.
|M(@)e], = max]|[M(a)]], o]
< max||(M(@),.| - 2l
1
= m Nlloo-

According to Assumption 1, (s, a) € [0, 1], ¥(s, a). We have,

70, |l oo = max [ro., (s)| = max

S 7o, (als) - (s, a)

Since % =0, for s’ # s,

[ 0re.(s)\ " 90
AN da

(o)

= |(H (o, Cls)) s ) T (s, )|
< | (o, (1)) (s )y - s, o -

Similar with Eq. (61), the ¢; norm is upper bounded as

1H (mo,,(-18)) (s, )l = D o, (als) - [r(s,a) =m0, (-|s) Tr(s, )]

< max |r(s, a) —my, (-\s)—'—r(s7 )‘
<L (r(s,a) €[0,1])
Therefore we have,

Ore,, ()

oo
< max || H (mg,, (-[5)) (s, )|, - [lu(s, )]l

< fJull2-

8119@
Oa

= max
s

) = 0,(s, s"). Denote [M ()], . as the i-th row vector of M (cr). We have

<1

(186)

(187)

(188)

(189)
(190)

(191)

(192)

(193)

(194)

(195)
(196)

(197)

(198)
(199)

(200)

(201)
(202)



On the Global Convergence Rates of Softmax Policy Gradient Methods

Similarly,
D?ry, ?rg, (s)
Oa? = T80z
= e | (2 [0ro.(9) 1) 00a
I AT o
e | £702(5) 96\ " 00a
- 962 da ) oo
*{m, (|s)"r(s,")}
_ . T [ ? .
= max u(s,-) 900 (5. 2 u(s, )’
<5/2-flu(s, )3 <3-[lull3.  (Eq.(64))
Taking derivative w.r.t. e in Eq. (183),
OV (s) T OP(a) T ro,,
aa =7 BSM(CK) aa M(oz)m)a—l—esM(a) 80&
Taking second derivative w.r.t. «,
D?VTea () 5 T OP(a) OP(a) T 0?P(a)
ez = 2% e, M(«) 50 M () 50 M(a)re, +7 e, M(a) 902 M(a)re
OP(a) Org 0?ry
. T (23 T (23
+2v-e; M() o M (o) 50 +e, M(a) T2
For the last term,
8%r 0%r
T (2 0o
< lle.ll. -
R R I AEC NN
1 827‘9
<. o .
~1-x ‘ da? la=0|| (Eq. (189))
3
<75 Jul3.  (Eq.(203))
For the second last term,
OP(«) Org OP(«) Org
T (23 (23
¢ M(a) fole! M(a) Oa la=0 _,Hﬂi(a) foe! M(a) Oa la=o||
1 OP(a) Ore
< . —= .
< [T | @)
2 Jull2 Org
< . o .
<T@ | Eeamy)
2 |lull2 ||Ore
< . = Eq. (1
S T=7 | a laso|_ (Eq. (189))
2 - [|ull2 2 2
< Nulle = - |ul|5. Eq. (200)

(203)

(204)

(205)

(206)

(207)

(208)

(209)

(210)

@211)

212)

(213)

(214)

215)

(216)

(217)

(218)
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For the second term,

9?P(a)
oa?

el M(a) @ Pla)

M(a)rg

a

0?P(a)
oa?

—_

. a_OH (Eq. (189))

M@,

o @y

(Eq. (189))

a=01lco

< ull3. (Eq. (192))

For the first term, according to Egs. (173), (189) and (192),

OP(«) OP(a) OP(a) OP(a)
-
<
D@ (@) (o || < |ar) 25 a0 2 as ||
1 1 1
<ol 2l
4 2
= N5
(1_,7)3 H ”2
Combining Egs. (211), (214), (219) and (224) with Eq. (209),
0?2V ™0 (5) s | T 0P () OP(a) T 0?P(a)
A A < . . -\
<oy el M@ 2w D sy, | el S
OP(«) Org d*rg
T (&3 T [e3
+2 s M(a) O (a) Oa la=0 +|es M(a) 0a? la=0
4 6 2 3
(o ap t a )
8 2
< - lul|3,
< sl
which implies for all y € RS54 and 6,
o TV (s) = (2 ) Vs (y )| 1ol
00 [yll2 062 lyll2 ?
mase [( 270, Ny
lull=1 |\ 062 Yliz
- PVToa(s)| o Fa\| oo
" ulez1|\ " 962 la—0 da’ Ba /| "2
~ AV ™0a (s) 9, ,
|ER?X1< { }1@_0,80>\-|yn2
0? V”a
= o | Z g
Hul\z 1
8
< - ||y||%. (Eq. 227))

(1—=9)?

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(231)

(232)

(233)

(234)

(235)

(236)
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Denote 8 = 6 + £(6' — 0), where £ € [0, 1]. According to Taylor’s theorem, Vs, V6, ¢’,

verts) - vents) - (25 -0) = 5

T 92V ™% (s)

/7
=0 a5

(6" —0)

4t
(1—7)?

< 10" =03 (Eq. (23D)

Since V™ (s) is 8/(1 — ~)3-smooth, for any state s, V™ (p) := Es., [V™(s)] is also 8/(1 — ~)3-smooth.

Lemma 8 (Non-uniform Lojasiewicz). Suppose i(s) > 0 for all state s. 7y (+|s) := softmax(é(s, -)), Vs.
-1

1 minmo(a’ (s)[s) - [V*(p) — V™ (p)]

> .
s VS

where a*(s) := arg max, 7*(al|s), Vs. Also

-
dy

o
dp

oV™e ()
00

1

dr
> || =2
5 VSA

Fi [V*(p) = V™ (p)]

oV ()
0

.[msin > mla(s)ls)

a(s)eAro(s)

where A7 (s) = {a(s) € A: Q™(s,a(s)) = max, Q" (s,a)} is the greedy action set for state s given policy .

Proof. Note a*(s) is the action that the optimal policy 7* selects under state s. We have,
1
-]
9 v 99(s,a)

l (s, >F

ovTe (p)
90

oV (u
o] (CaehySetwara, el = |, o] < [l )
1 1 o " o N
= = 75 Z |d# (s) - mo(a*(s)]s) - A™ (s,a*(s))| (Lemma 1)
1 1 T * o * To *
=15 ﬁzdue(S) ~m(a”(s)]s) - [A™(s,a”(s))|.  (d(s) = 0, mg(a*(s)]s) = 0)
Define the distribution mismatch coefficient as ng = max, g E; We have,
oV (p) 1 1 die(s) -
C— - -dT (8) -me(a®(s)|s) - |A™ (s, a™ (s
|70 2 T BT ey ) o ) A s o)
-1
1 1 d;
> TS d% m1n7r9 (s) Zd” ) |AT(s,a*(s))]
) ) d;,r* -1 .
-1
1 dy 1 - ™ (
\/ngZe min 7g(a*(s)|s) - i d; Z’R’ (als) - A™ (s, a)
-1
1 dp . 7o
Zﬁ' qme min g (a*(s)|s) - [V*(p) — V™ (p)]
m

(237)

(238)

(239)

(240)

(241)

(242)

(243)

(244)

(245)

(246)

(247)

(248)

(249)

(250)
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where the last equation is according to the performance difference lemma of Lemma 19. Next, given any policy , define
the greedy action set for each state s,

A (s) = {d(s) e A:Q"(s,a(s)) = max Q”(s,a)} . (251)
Using similar arguments, we have,
V™ () VT (u
H 50 = F Z 005, a) (CauchySchwarz) (252)
1
= — — dre A™( L 1 253
1=~ %SAES: Zwe (a]s) - |A™ (s, a)| (Lemma 1) (253)
1 1
> g e D mla)ls) 147 (s al) (254)
s a(s)e A7 (s)
> . g min Z mo(a(s)|s) ~Zd”*(s) : ’maXQ“ (s,a) — VT (s)
“1-v VSA ||d L P a ’ ’
a(s)e A7 (s) s
(255)
where the last inequality is because of for all a(s) € A™ (s),
A" (s,a(s)) = max Q™ (s,a) — V™ (s), (256)

which is the same value across all @(s) € .A™ (s). Then we have,

-1

V™ () 1 1 dr . _ :
> : i min Y mlals)ls)| Y dr () [max Q@ (s,a) — V™ (s)]
00 1— vV dy’ s — r a
2 7ovSA a(s) €A™ (3) E
(257)
=1 T 1
> L% Y mals)ls)| - 3T () [Q7 (s.a%(s)) — V™ (s)]
= \/57 dz;g Hlsln _ Telals)|s 1 ~ S,a S
oo | a(s)eATo(s) J s
(258)
1 a -1 T ] 1
_ P ; G ™
=5 || | Z mo(a(s)ls) | - T Z Zw (als) - A™(s,a)  (259)
v < | als)edmo(s) |
Il (| _
_ | Ze . | min Z mo@(s)|s)| - [V*(p) = V™ (p)] (260)
e To 5 ’
54 du o L a(s)eA o (s) ]
where the last equation is again according to Lemma 19. [

Lemma 9. inf s ;>1 mg, (a*(s)|s) > 0.

Proof. The proof is an extension of the proof for Lemma 5. Denote A*(s) = Q*(s,a"(s)) — max,£q+(s) @*(s,a) > 0
as the optimal value gap of state s, where a*(s) is the action that the optimal policy selects under state s, and A* =
minges A*(s) > 0 as the optimal value gap of the MDP. For each state s € S, define the following regions,

Ri(s) = {0 : aggﬂglz))) > %Z(T: (5)), Va # a*} , (261)
Ra(s) ={0: Q™ (s,a"(s)) = Q(s,a™(s)) — A"(s)/2}, (262)
Ra(s) = {0 : V™ (s) > Q™ (s,a"(s)) — A*(s)/2, for all large enough t > 0}, (263)
= mo(a*(s)|s c(s) where ¢(s ':#—
M) = {0 mola o)1) = S where o) = - a6t
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The proof idea also consists of similar parts.
e First, R1(s) N Ra(s) N R3(s) is a “nice” region, in the sense that, following gradient update, (i) if 0; € R1(s) N
Ra(s) NR3(s), then Oy 11 € Ri(s) NRa(s) N Ra(s); (i) mo,,, (a*(s)|s) > ma, (a*(s)]s).
e Second, NV.(s) NRa(s) NR3(s) C Ri(s) NRa(s) NR3(s).

e Third, there exists a finite time #o(s) > 0, such that 6, () € N(s) N Ra(

5) N R3(s), and thus 6,5y € Ri(s) N
R2(s) NR3(s), which implies inf;>1 g, (a*(s)|s) = ming <4<y, (s) To, (a*(5)]

o Last, define ty) = max; to(s), then we have inf,ec s ;>1 79, (a*(s)|s) = min; <<, ming mg, (a*(s)|s).

First part. (1) If0; € R1(s)NRa2(s)NR3(s), then f:11 € R1(s)NR2(s)NR3(s). Suppose 8; € R1(s)NR2(s)NR3(s).
We have 6,1 € R3(s) by the definition of R3(s). We have,

Q7% (s,a"(s)) > Q" (s,a™(s)) — A*(s)/2. (265)
According to smoothness arguments as Eq. (309), we have V™++1 (s") > V7o ('), and
Q1 (s,a"(s)) = Q™ (s,a"(s)) + Q"+ (s,a"(s)) — Q’”"(S a*(s)) (266)
= Q™ (s,a*(s)) + VZP (s'|s,a*(s)) - [V 01 (s") — V™o (s')] (267)
> QP (s,a(5)) + 0 > Q*(s,a"(s)) — A*(5)/2 (268)
which means ;1 € Ra(s). Next we prove 0y 1 € R1(s). Note that Va # a*(s),
Q™ (s,a"(s)) — Q™ (s,a) = Q”‘ (s,a”(s)) = Q%(s,a”(s)) + Q" (s,a"(s)) — Q™" (s, a) (269)
> —A(s)/2+ Q(s,a"(s)) — Q" (s,a) + Q"(s,a) — Q™" (s, a) (270)
> -A%(9)/24 Q" (5,0 @”—GQ%;Q<7> Q" (5,0) = Q" (s0) Q7D
= —A*(5)/2 + A¥( MZP ‘|s,a) - [V*(s') = V™o ()] (272)
> —A*(s)/24+ A*(s )—I—OzA (s)/2. (273)
Using similar arguments we also have Q"%+1 (s,a*(s)) — Q"%+ (s,a) > A*(s)/2. According to Lemma 1,
avﬂ-et (M) _ 1 un . . o,
26,05, ) -1 ~dy (s) - mg, (als) - AT (s, a) (274)
- % < dp" (s) - mo, (als) - [Q (s,a) — V™ (s)]. (275)
And since 62‘25 ;*((S))) > ag;:rs;(;;) , we have
o, (a”(s)]s) - [Q™ (s,a™(s)) = V™ (s)] = mg,(als) - [Q7" (s,a) = VT (s)]. (276)

Similar with the first part in the proof for Lemma 5. There are two cases.

(a) If mp, (a*(8)|s) > mp, (a|s), then B;(s,a*(s)) > 6:(s,a). After one step gradient update,

oV
Or1(s,a™(8)) + O(s,a*(s)) +n - (méﬁ(l(;))) 277)
>@@ﬂ%H7%;€(f:9Hﬂ&®a @78)

which implies 7y, , (a*(s)|s) > g, (als). Since Q™+ (s,a*(s)) — Q™1 (s,a) > A*(s)/2 > 0, Va, we have
Q1 (s, a%(s)) = Vet (s) = Q41 (s,a"(s)) = 22, Mo,y (als) - Q771 (s,a) > 0, and

0,1 (a%(s)]s) - [Q+1 (s,a7(s)) = V™1 (5)] = 7o, (als) - (@41 (s,a) — V1 (s))]. (279)
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which is equivalent with ngli?;*(éls ))) > 66‘;:11 (u‘;) ie., i1 € Ri(s).

(b) If 7y, (a* (5)|5) < 7, (als), then by 5oV "tUh > Sm),

o, (a”(s)[s) - [Q™ (s,a"(s)) — V™ (s)] > mg,(als) - [Q™ (s,a) — V™ (s)] (280)
= 7, (als) - [Q™ (s,a™(s)) = V™ (s) + Q™ (s,a) — Q™ (s,a"(s))],
(281)

which after rearranging is equivalent with

Q™ (s,a*(s)) — Q™ (s,a) > (1 — w> Q™ (s,a"(s)) — VTt (s)] (282)
— (1= exp {01(5,0°(5)) — O4l5, @)}) - [Q™ (s,0%(s) — V™ (s)] . (283)
Since 6;11 € R3(s), we have,
QU (5,0 (5)) = V7 (5) £ A%(6)/2 £ Q7 (s,°(5)) — Q0 (5, 0) 84
On the other hand,
Or11(s,a*(s)) — Oi11(s,a) = 04(s,a*(s)) + 7 - (m —0:(s,a) —n - (m (285)
> 0:(s,a*(s)) — 6:(s,a), (286)
which implies
1 —exp{0it1(s,a"(s)) — Or11(s,a)} <1 —exp{0:(s,a™(s)) — 0:(s,a)}. (287)

And since 1 — exp {0:(s,a*(s)) — 0:(s,a)} =1 — 0@ (918) ) (in this case 7o, (a*(s)|s) < mg, (als)),

o, (a]s)
(1 —exp{Oi+1(s,a"(s)) — Ory1(s,a)}) - [Q7+1 (s,a"(s)) — Vo1 (s)] < QT+1(s,a™(s)) — Q™+1(s,a), (288)
which after rearranging is equivalent with
T,y (a(s)]s) - [QT+1 (s, a™(s)) — V™1 (s)] > g, (als) - [Q7+1 (s,a) — Vo1 (s)], (289)

: VOt ()
which means 90, 11,2 ()

9t+1 S Rl(s) N RQ(S) N Rg(s)

aa‘;):z: EL’;) ie., 011 € Ri(s). Now we have (i) if 6; € R1(s) N Ra(s) N R3(s), then

Y

s) > mp, (a*(s)|s). If 6, € R1(s)NRa(s) NR3(s), then 80‘/ Pl > VW) oy, # a*.

Next we prove (i) 7g, , , (a*(s) 0:(s,a"(s)) = 00,(s, a) )

After one step gradient update,

_ exp{bi11(s,a"(s))}
)= Za exp {0;41(s,a)} (290)

% VOt (u
exp {01(5,0°() + - st}

0441 (a* (S) |S

- - (291)

>4 €XP {975(87 a)+n- aave,(; (al;) }

V™0 ()
o eXp{ot(s a ( )) +n- m} oV (,U) > oV (/.L) (292)
B > exp{ ,a) +n - M} 90:(s,a*(s)) — 00:(s,a)
00¢(s,a*(s))

_exp{0i(s,a*(s)} .
= S exp (6105, 0)} = my, (a*(s)]s). (293)
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Second part. N, (s)NRy(s)NRs(s) C Rq(s)NRa(s)NRs(s). Suppose 8 € Ry(s)NRs(s) and 7y (a* (s)|s) > -2
There are two cases.

(@) If mg(a*(s)|s) > max,q-(s){mo(als)}, then we have,

6‘/7"9(#) _ 1 .d™(s) -1 Cl* $)ls) - T (g a* $)) — V7o (s
00(s,a*(s)) - 1—~ du (5)-ma(a™(s)|s) - [Q™ (s,a™(s)) — V™ (s)] (294)
71 o e o
> 1~ -0 (s) - me(als) - [Q™ (s,a) — VT(s)] (295)
_ovV™(p)
~ 90(s,a)’ (296)

where the inequality is since Q7 (s, a*(s)) — Q™ (s,a) > A*(s)/2 > 0, Va # a*(s), similar with Eq. (269)

(b) mo(a* (s)|s) < max,sq-(s){ma(als)}, which is not possible. Suppose there exists an a # a*(s), such that g (a*(s)|s) <
mo(als). Then we have the following contradiction,

2ec(s) _, 2(1=7)-A%s)

mo(a”(s)|s) + me(als) > c(s)+1 A

> 1, (297)

where the last inequality is according to A > 2 (there are at least two actions), and A*(s) < 1/(1 — ).

Third part. (1) According to the asymptotic convergence results of Agarwal et al. (2019, Theorem 5.1), 7y, (a*(s)|s) — 1.
Hence, there exists 1(s) > 0, such that mg, , (a*(s)[s) > % (2) Q™o (s,a*(s)) — Q*(s,a*(s)), as t — oo.
There exists to(s) > 0, such that Q™2(») (s,a*(s)) > Q*(s,a*(s)) — A*(s)/2. (3) Q™ (s,a*(s)) — V*(s), and
V7ot (s) — V*(s), as t — oo. There exists t3(s) > 0, such that V¢ > ¢5(s), Q™ (s,a*(s)) — V™ (s) < A*(s)/2.

Define to(s) = max{t1(s),t2(s), t3(s)}. We have 0, () € N.(s) N R2(s) N R3(s), and thus 6, () € R1(s) N Ra(s) N
R3(s). According to the first part in our proof, i.e., once 0; is in R1(s) N Ra(s) N R3(s), following gradient update 6,1
will be in Ry (s) N Ra(s) NR3(s), and mg, (a*(s)|s) is increasing in R1(s) N Ra(s) N Ra(s), we have inf; g, (a*(s)]s) =
ming <4<y, (s) o, (a*(s)]s). to(s) depends on initialization and c(s), which only depends on the MDP and state s.

Last part. Define ¢, = max, to(s). Then we have inf,c s 1>1 79, (a*(s)|s) = min; <<, ming 7, (a*(s)|s) € Q(1). O

Theorem 4. Suppose 4(s) > 0 for all state s. Using Algorithm 1 with p = (1 — v)?/8 and 7y, (a*(s)|s) € Q(1) for every
s € S, with some constant C' > 0, for all t > 0,

0= 725 [
V¥(p) — V7 (p) < (1_7)%‘” el (298)
Proof. According to the value sub-optimality lemma of Lemma 20,
1
Vip) =V™(p) = T D dpr(s) Y (w*(als) — ma(als)) - Q(s,a) (299)
1 dre
- ﬁ S dﬁeég 'dﬁe(s)za:(ﬂ*(ab) — mo(als)) - Q* (s, a) (300)
< 1= ‘ a7 Zdﬂe Z *(a|s) —mg(als)) - Q" (s, a) (Z (7*(a]s) — mo(als)) - Q% (s, a) > 0)
' (301)
= (1_7 H H Zd Z “(als) — mo(als)) - Q" (s, a) (302)
1 1
= = (v — Ve
1~ HMHOO V(1) (W], (303)
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where the last equation is again by Lemma 20, and the last inequality is according to

- soEr;,u (1 - ’Y) Z’yt PI‘(St = S|SO’7T97P)
t=0

> E [(1=9)Pr(so = slso)]

=1 —=7) us).

According to Lemma 7,

v ) = v o = (P 01 - 0)] < g 0.
Denote 6y := V*(u) — V™ (11). Then we have,
Opr1 — 6 = V70 (u) — V™1 ()
<~ (P b - 00) + 16 - 0
= (-r+ 5 2) [ z (0 =04 25)
_ = Jovrew| _ (-7
16 || e |, <77 -8 )
. « |—2
<L % m~[qu&mw@sﬂ2wvwﬂ»—vmwmf (Lemma 5)
<L ff 4-pgnwmm%@wﬂ2~ﬁ
« ||—2

(304)

(305)

(306)
(307)

(308)

(309)

(310)

(311)

(312)

(313)

(314)

(315)

where the second last inequality is by d,’* (s) > (1 — 7) - u(s) similar with Eq. (304). According to Lemma 9,

infies,>1 o, (a*(s)|s) € Q(1) > 0. Using similar induction arguments as in Eq. (87), for some constant C' > 0,

)
165C dr
V() = V() € 2|
W=V = ||
which leads to the final result,
1|1 w6so e |* i1

v -vee s | - v s g5 15
) ( 1y uoo[ ] (=% | n | el

where 1/C = [inf,cs>1 79, (a*(s)|s)]> € Q(1) > 0.

(316)

(317)
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A.2. Proofs for Section 4

Lemma 10. Entropy regularized policy gradient w.r.t. 6 is

3V”e(u) 1 o .
B00.a) T W (s) melals)-A™(s,a)
aave<( -%) o1 iv 3 (s) - H(mo(]s)) | @™ (s,) = Tlog ma(ls)]

— () Hmals) [ Q7 (s.) — 78] s

where A™ (s, a) is soft advantage function defined as
A™ (s,a) == Q™ (s,a) — Tlog me(als) — V™ (s)
Q™ (s,a) = r(s,a) + 7Y P(s's,a)V™(s").

Proof. According to the definition of \7”9,
V™ (1) = ]E Zﬂ'e als) [Q”" s,a) — logmy(als )}

Taking derivative w.r.t. 0,

(318)

(319)

(320)

(321)
(322)

(323)

00 06

als)

(8 a)

dmg(als) T Ax
:Eu; 25 1@ 8(s,a>—ﬂogm<als> + E Zwa (als)

AV (s')

B Ome(als) 1., B T /
—EH; 20 Q™ (s,a) —Tlogmo(als)| + SINEN;WG(MS);P(S\&G) 0

= ﬁ dz9 (3) za: 871'98(;1|5) . {Qﬂ'e (s’a) — TlOg Wg(als)] ,

S

where the second equation is because of

1 Omglals)| Omg(als) 0 01
;”9(‘”5)' [m)(a|s) 0 } - Z 0 %;Ma's) a0 ="

Using similar arguments as in the proof for Lemma 1, i.e., for s’ # s, %7;"(&7]3) 0,

v (n) 1 o Omoals) Tr
905,y —1—n W) [ 8(;(3 ) [Q (5,0) _Tlogﬁe(w)ﬂ

:L«dl’j" < |8) Qwe . Tlogﬂe(.b)}

1—~n 8,
— ) Hima(s) [0 ->-Tlogm,(|)} (Ba.©)
= i) H () 070 ()~ 7019 + 7log Y esp{0(s,) - 1]
= g ) H19) [ 70t (H(mo(1))1 = 0, Lemma21)

v 0 [ - oQ™ 10
= =2 Tolals) [ (s.a) - Loz my(als) +s@#za:7re(a|8)-[ Lloa) L Omldl)

(324)

(325)

(326)

(327)

(328)

(329)

(330)

(331)

(332)

(333)
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For each component a, we have

%Z(TZ(S)) 1 i ~ -dp(s) - mo(als) - [Qm (s,a) — Tlogmy(a Zm) (als) {Q”G (s,a) — Tlog we(as)” (334)
= ﬁ ~dr? (s) - mo(als) - [Q”(s,a) — 7logme(als) — f/m’(s)} (335)
- % - d70(s) - mo(als) - A7 (s, ). .

Lemma 11. If 6; = 51 + c - 1 for some constant c € R, then mg, = TG, vt > 1.

Proof. Duplicate Updates 2 and 3 here for convenience.

Update 2: 0y11 < 0, +n - H(mp,)(r — 7log mg, ), (336)
~ ~ 01
Update 3: 011 < 0; +n- H(my,)(r — Tlogm,) — t7 1. (337)

Since f; = 0, +c-1, TG, = softmax(él) = softmax(él +c-1) = mp,. We prove by induction on ¢. Suppose 6; = O, 4c;-1
for some constant c; € R, for some ¢ > 1. We have my, = g, - According to Update 2,

Or11 < 0 +n- H(mp,)(r — Tlog mg,) (338)
=0;+ ¢t - 1+n- H(mg, ) (r — Tlogmg,) (339)
. 61 0,1
—9t+n-H(w9~t>(rTlog7rgt)}(~1+<ct+K>~1 (340)
~ 671
=01+ 7}( -1, (341)
which means 0,11 = §t+1 + ct41 - 1 for constant ¢4 = 9K ,and mp, | = Lra. O

Lemma 12 (Non-uniform contraction). Using Update 3 with 7np < 1, V¢ > 0,

IGesalle < (1= 70+ minmg, (@) - G2, (342)
where (; == 70, — r — 7(701;;)T1 -1.
Proof. Update 3 can be written as
. . 61
Ori1 < 0p —n - H(mg, )(Tlogmg, — 1) — ' 1 (343)
=0 H(m;) |70 1 Z {6,(a)} | -1 o1 1 344)
=0, —n mg,) |0 — 7 og » exp{f:i(a) Na (
~ 9T
=60,—n- H(7r0~t)(79t —r)— 7 1 (345)

5 N n T]. ~—|—1
:et—T]H(ﬂ'ét)<T6t—T—(79t[(T)1)-9}(1, (346)
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where the last two equations are from (7T9’t )1 = 0 as shown in Lemma 21. For all ¢t > 1,

(Tét—i-l — T)Tl

Ct+1 ¢=T§t+1—T—T-1
j 6, —7)"1 i 0, —m)71 (1041 —7)71
Totr(TtKT)'1+T(9t+19t)+<(TtKT) ,(Tt-*-lKT) >'1
i 0, —r) 1 _ i G, — 6,71
:Tet_T_%'l—FT(Ht_H—@t)—F%'L

For the last term,

T(ét_ét_irl)—rl T ~ (Tét—’l")T]. étT]. '
—K 12? 7’]H(7T§t) T@t—T—T'l +71 1-1

01 01
_L.tf.lTl.l:T.tf
K K

)

where the first equation is again by H (5, y'1=H (mg,)1 = 0. Using the update rule and combining the above,

(Tét—7¢T1.1> 071 1

5 671
Gor = = ey (o = C ) o By
= (Id — 70 - H(m,)) i
According to Lemma 22, with 7y < 1,

IGe41ll2 = || (Xd — 7 - H(mg,)) G,

< (1m0 minm @) - Il

Lemma 13. Let 5, == softmax (6, ). Using Update 3 with 71 < 1, Vt > 0,

2(r1C + 1)VK

1Gell2 <
tll2 exp {777 S22 [min, urs (a)]}

)

where we assume [|6;||o. < C for some constant C' > 0.

Proof. According to Lemma 12, for all £ > 0,

Gesallz < (1= 79+ minmg, @) - Gl
1

= . NGl
exp {77 - min, ur (a)} I
1
< ~(1—7‘ -min7; a)- _
= exp {9 min, 75, (a) } n-minmg (@) ) - [|G-1ll2
1
<

- : HCt—lH2
exp {777 Demi_1 [ming T4, (a)] }

1

B exp{ﬂ?Ziﬂ [mina Wés(a)]} Gl

(347)

(348)

(349)

(350)

(351)

(352)

(353)

(354)

(355)

(356)

(357)

(358)

(359)

(360)
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For initialized logit 61,

~ 0, —r)T1
[Cullz = |71 — 7 — % 1 (361)
2
- 6, —r)T1
< ||701 = rll2 + Th-n1 (362)
K
2
~ ’(7’51 - ’I“)T]_‘
=01 —rl2+ —F=— 363
I761 — 7|2 TR (363)
j 1761 —rll2 - |1
< 176y = 7ll2 + 364
I761 — 7|2 7K (364)
=2- ||7'(91 - ’I“HQ (365)
<2- (IITélllz + IITHQ) (366)
<2(rC +1)VK, (367)
where the last inequality is by assuming ||f; ||« < C for some constant C' > 0. O

Lemma 14. min, 7 (a)/ min, 75 (a) € (1), for ¢ > 0. Thus, 22;11 [min, 75 (a)] € ().

Proof. We prove min, 7 (a) € €(1) by induction. Suppose 61]loc < C for constant C' > 0. According to Eq. (361),
<12 < 2(C + VK, (368)

where (; = 0, —r — % -1, V¢t > 1. Suppose ||(t||2 < 2(7C + 1)\/? for some t > 1. We have, Va,

. ria)  (G—r/7)T1| 1 | 5 (r6, — )1
0:(a) = % == 70:(a) — r(a) e (369)
1 ~ 0, —r)T1
<= |7 r7%~ (370)
2
1
=2l G
<2(C+1/7)WK. (372)
Denote a; = arg min,, 0;(a), and ay = arg max, 6;(a). According to the above, we have the following results,
. 0, —7)"1
By(ar) > ") 4 (T Kr) —2(C +1/1\WK (373)
. i T
“By(az) > J(ZQ) _ (7 KT) L st yrvE, (374)

which can be used to lower bound the minimum probability as,

o= L > U < i b (02 ) o
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which can be further lower bounded using the above results,

(376)

(377)

(378)

(379)

i, (0) 2 - e {fu(ar) — Bu(a2)
! .eXp{min G PRy S B i e 1/7)\/7(}
= % -exp{r(al);r(az) —4(C+ 1/7’)@}
> % ~exp{71_ —4(C + 1/7)@} (r € [0, 1%, r(ar) = r(az) > 1)
1 1 1

> 0.

T K exp{l/t}  exp{d(C + 1/1)VEK}
According to Lemma 12, with 7p < 1,
[Gesllz < (1= 70+ minmg, (@) - G2 < 2(-C + DVE.

Therefore, for all ¢ > 0, we have
S i 1 1
T K exp{l/7} exp{4(C + 1/7')\/?}

€ Q(1),

min 7 (a)
and thus Zz;ll [min, 75 (a)] € Q).

Theorem 5. Let g, := softmax(6;). Using Update 2 with n < 1/7, for all ¢ > 0,

T, < 4K32(C +1/7)
= oxp {rn- Q1) 1)
< 2(rC +1)%K/1
O < exp {2 - Q(1) - t}’

(7 = mo,)

where 0, == 7| (r — Tlog ) — mg, " (r — T logm,).
Proof. According to Holder’s inequality,
* T *
(ﬂ-T - 7T‘9t) r< ||7T7' - 7Tl9t||oo : ||TH1

SK-|nr-mle  (ref0,1F)

=K- Hﬂ':fﬂ'étnm (Lemma 11)

_ 9, — 1\ T1
= K - ||softmax (Z) — softmax <9t + M . 1)

T TK

(6, — )71

-1
K

70, —r — (Lemma 23)

IN
|

(16, — )71
K

. 2K 2(rC + 1)VK (Lemma 13)

T exp {7'77 Zi;ll [min, ur (a)]}
AK3/? 7C +1
T exp{rn-Q(1) -t}

0 —r—

IA
|

2

IA

(Lemma 14)

(380)

(381)

(382)

(383)

(384)

(385)
(386)
(387)

(388)

(389)

(390)

(391)

(392)
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On the other hand, we have,

*

T (r—7lognt) — 7, | (r —7logmg,) T (r—rlogn?) —mg, | (r — rlogmt + Tlogn — Tlogm,) (393)

7r =7
= (7% —m,)" (r — 7logm®) + 7 - Dyy(mg,||75) (394)
=(r :_776%) 1-7- logZexp{r a)/7} + 7 Dgy(me, ||73) (395)
=7 - Dk (7, ||75) (396)
=1 Dgw(7g, [|I77) (Lemma 11) (397)
(-1 [

T ~ r TUt — T
< 2.6 - :
<3 0¢ . e 1 (Lemma 25) (398)

- 2
~ 0 — 7)1
- R A tK) 1 (399)
o
(b -n"1 [
~ 70y — 1

<5 TﬂtfrftT'IQ (400)

1 4 12K
<L rO+1) (Lemma 13) (401)

™ exp {2 XU [ming w5 (0)]}

2
L 20+ 1)K (Lemma 14) O

=7 exp{2m-Q(1) -t}
Lemma 15 (Smoothness). H(p, 7g) is (4 + 8log A)/(1 — «)3-smooth, where A := |.A| is the total number of actions.

Proof. Denote H™ (s) := H(s, 7). Also denote 6, = 6 + au, where o € R and u € R4, According to Eq. (17),

H™«(s)=  E o lz —~'log g, (at|st)] (402)
Ost+)1fi77(~9|gt,at§ " Li=0
= —Zwe ) -log mg,, (als) +727T9 (als) Z”P "Is,a) - H™=(s"), (403)
which implies,
H™ (5) = e M(a)hy,, (404)

where M () == (Id — yP(«)) " is defined in Eq. (184), P(a) is defined in Eq. (170), and hg, € RS, Vs,
Zﬂ'g ) -log mg_ (als). (405)

According to Eq. (405), hg,, (s) € [0,log A], Vs. Then we have,

[, || = max |hg, (s)| < log A. (406)
For any state s € S,

8}19@ (S) _ 8h9a (8) %

‘ Do _‘< 20, ’8a>’ 07
o 6h9a (S)
B ’<aea(-|s)’“(s’ )>‘ o
= |(H(mo, (+|s)) log g, (-]5), u(s, )] (409)
< ||H(ma, (:]5)) log e, (:)Ily - luls, )l - (410)
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The ¢; norm is upper bounded as

[1H (7., (-]s)) log ma, (-|s)[l, = Zﬂe (als) - [log g, (als) — g, (-|s) " logma, (-]s)|

< Zw(; (als) \logm) (als)| + |7r9 )T].Ogﬂ'ga(-‘S)D

=-2- Zma (als) - logmp,, (a|s) < 2-log A.

Therefore we have,

Ohyg,,
Oa

_ Ohy, (s)
o ‘ Jda

< max [ H (g, (|s)) log mo,, (-[s)l, - [u(s; )l
<2-log A - ullz-

The second derivative w.r.t. « is

82h9a(8) - 8]7,9
da2 | 80
| (#h0.ts) 902\ 00
- 802 Oa
B 82h3 (s)
<,>w@)<ﬂ
8%ha,, (s)

Denote the Hessian T'(s, 0 ) == Sgz(s5 -

T(s,0,) = =

82h9a (S) 3 { 8h9a (S) }
002(s,-)  00,(s,")

Note T'(s,0,) € RA*4 and Vi, j € A, the value of T'(s, 0,,) is,

7 Umo,(ils) - (= logm, (ils) — ho, (5))}
" 04 (s, )

_ dmg, (i]s) . . d{—logmy, (ils) — he,(s)}
- dga(S,j) : (_ logﬂ'ga (Z|S) - hea(s)) + 71—904(7"8) ' d9a(s,j)
= (050, (j|s) — ma, (ils)mo, (j|s)) - (= log 7, (ils) — ha, (s))
0, 19) - (s B, (1)~ o, ), ) — i, ls) - (g, (519 —

= 0ijme, (j|s) - (—logm, (i[s) — he, (s) — 1) — 7y, (i[s)me, (j|s) - (—logme, (i|s) — he, (s) —

— o, (ils)mo, (4]8) - (= log 7, (i]s) — he..(s))-

pa.(5)

(411)

412)

413)

(414)

(415)
(416)

417)

(418)

(419)

(420)

421)

(422)

(423)

(424)
(425)
(426)

(427)
(428)



On the Global Convergence Rates of Softmax Policy Gradient Methods

For any vector y € RA,

A A
" T(s,00)y] = D> Tisu(i)y(i) (429)

i=1 j=1

IA

—log g, (i[s) — he, (s) — 1) - y(i)? (430)

2|3 ma, (ils) (i) Y o, (713) - (~log g, (ils) — ho, ()) - 4(3)| + (ma (19)Tw)" @3D)

= [, C15)) (= 0z 0, (1) = 7o, (1) ©0)| @32)
+2- | (7, (1s) "y) - (H(mg, (-|s))(—log 7, (|5 y’ o, (-15)Ty)? (433)
< ||H (e, (+|s))(—log ma, (1)l - ly © yll, + ||7T9a('| Moo - lly ©ylly (434)

+2 [Imo, (18Il - [1ylloc - [1H (o, () (= log mo,, ([s))lly - 1ylloc + [lma, C[9)I3 - lyll3,  (435)

where the last inequality is by Holder’s inequality. Note that ||y © y||1 = [|y[|3, [[7e., (:8)[lsc < [I7o. (|8)[1. |7, (-]5)]]2 <
[I7o. (:18)|lx = 1, and ||y|lco < ||y]l2. The £oo norm is upper bounded as

| H (7o, (-15))(~ 10g o, (-15)) |« = max |, (als) - (~ log o, (als) + ma, (1s) T logmo, (-s)]  (436)
< max —g_ (as) - log g, (als) — . (-|s) T log mg. (-|5) (437)
< é +log A. <—9: loga < é for z € [0, 1]) (438)

Therefore we have,

|y " T(s,00)y| < |1H (ms,, (-|5)) (= log mo, (1)l - I1yl3 + lyll3 + 2 - H (7o, (-]5)) (= log 7o, (1)1 - IylI3 + lly13

(439)
1
< (e +log A+ 2) Nyll3 + 2 [1H (mo, (1) (= log 7o, (1)), - Iyl (Eq. (436)) (440)
1
< (e+10gA+2+2~logA> ylI3 (Eq. (411)) (441)
<3-(1+1logA) - |lyll3- (442)
According to the above results,
82 hga 82h9u (S)
‘ 902 = msax 760[2 (443)
0?hg, ()
T 6
= s )T S (@a4)
= max [u(s,-) " T(s, 0a)u(s, )] (445)
<3-(1+1logA)-max ||u(s,-)|3 (446)
<3-(1+logA) - ||lul3. (447)
Taking derivative w.r.t.  in Eq. (404),
OH™ (s) T OP(a) T Ohyg,,
B =7-e; M(a) e M(a)hg, +e5, M(c) P (448)
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Taking second derivative w.r.t. «,

O?H™ea () 5o T OP(«) OP(a) T 9?P(«)
T—QV e, M(a) e M(a) 5 M(a)hg, +7v- e, M(a) D2 M(a)hg,
6P(Oé) 8h9 82]19
. T (23 T @
+2y-e, M(a) e M(a) Do +e, M(a) 52
For the last term,
0%hg 0%hg
T (3 < . (]
T G| | < el |G|
1 0%hyg
< — = .
1—~ ‘ da? la=o| (Eq. (189))
< OB g aa)
For the second last term,
aP(a) 8h9 8P(a) ahg
T a < o
T M () 22 o) 2 25 a2 i
1 8P(Oz) 3h9a
- 1—7.H Ooa M{(e) Oa la=0|| (Eq. (189)
2 ||lull2 Ohg,,
< — .
1 M5l ®aa7y)
2 lull2 || Ohe
< . = .
e e lazo|| (Eq. (189))
2 Jlull2 4-log A
< -2-log A - = . Eq. (414)
e g A |lullz = e ull3 (Eq )
For the second term,
9?P(a) 9?P(a)
.
es M(a) 502 M(a)hg o SHM(a) 902 M(a)hy, ol
1 9?P(a)
< . .
< |G| | s
6 [|ull3
<
- 1—x HM(a)he" a:OHoo (Eq. (178))
6 - [lull3
< .
<qp tha a_OHOO (Eq. (189))
6-log A 9
< 22088 2. Eq. (406)
For the first term, according to Egs. (173), (189) and (406),
OP(«) OP(«) OP(«) OP(«)
.
<
es M(a) e M () e M(a)hg,, oS M () 50 M(«) e M(a)hg, amol
1 1 1
<17 2 Jullz - V'2'||U||2'17V-10gz4
4 logA

(449)

(450)

(451)

(452)

(453)

(454)

(455)

(456)

(457)

(458)

(459)

(460)

(461)

(462)

(463)

(464)

(465)

(466)
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Combining Egs. (451), (454), (459) and (464) with Eq. (449),

O?H™ea (5) 5 | T OP(a) OP(«) T 0?P(a)
e < . .
B2 |ao| S27 |6s Mla)—5 —M(a)—5 —M(ahe.| |+7-|es M(a)—5—=M(a)hs.|
467)
8P(a) 8h9 32]19
T Za T Z Wa 4
+ 2y |leg M(a) 50 M(«) Do o es M(a) 502 o (468)
4-log A 6-log A 4-logA 3-(1+1logA) 5
O e Rl e A e A = RN T o
8- log A 3
< ((1 — 51 _7) a3 (470)
4+ 8-logA
B 3, (471)
which implies for all y € R54 and 6,
o= () T ()|
. 472
e ‘ W) o \lylz)| e @72
82]:[_]171‘9
473
< max |( 520 >\ ol @
O?H™ e (s 00, 00,
Hﬁ?xl < 062 a=0 O’ 8a> ly ||2 “474)
OH™ 0 (s a0,
_|3|1?X1< { >}‘ =0’ 5@>’ ol @)
a?mm
e R @76)
448 -lo A
<~y Il (Ea c67) 77)
Denote 0 = 6 + £(0" — 0), where £ € [0, 1]. According to Taylor’s theorem, Vs, V6, 6,
o 1 217
H™o (5) — H™ (s) — <6H80(8),9'—9>‘ - (9'—9)T”H379§(5>(9/—9) 478)
3
2+4-logA
<oy M0 -0 (Ba@r2) (479)

Since H™ (s) is (44 8log A) /(1 —~)3-smooth, Vs, H(p, mp) := E,~, [H™ (s)] is also (4+8log A)/(1 —~v)3-smooth. [

Lemma 16 (Non-uniform Lojasiewicz). Suppose yi(s) > 0 for all state s € S. mg(-|s) = softmax(6(s, )), Vs.

vl _ ver . il SEUINE:
‘ o 22 g i /u(s) mino(als) - |76 ) = 7)) (480)
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Proof. According to the definition of soft value functions,

V™ (p) = V7™ (p) = o Y (r(se, ar) — Tlog wi(adlse)) | — V7™ (p) 481)
S0P, at~T L (*[St),s
St41~P(c|se,ae) -

—V™(p)  (482)

so~p,ar~1r(]st),
st1~P(c|se,ae) -

(483)

t=0

_ G t * (7o (7o

= E D oA (r(se,ar) — Tlogmi(arlsy) + V™ (s1) = V™ (s1))
t=0
St (r(se,ar) — Tlog wh(arse) + AV ™ (si41) — V™ (s1)

so~p,ae~Ty(+]se),
se41~P(-|st,at)

— % dZ: (s) Z?T:(a|s) . lr(s,a) — 7 logmr(als) + 'VZP(S/|S,(1)VM(8/) _ f/wg(s) ]
S - ) (484)
- ﬁ dy(s) | D wi(als) - [Q”(S’a) —7log 7Tif(als)} —Vm(s)]. (485)

Next, define the “soft greedy policy” 7g(-|s) := softmax(Q™ (s, -)/7), Vs, i.e.,

ol _ exp {Q”(s,a)/T}
7g(als) : Ya. (486)

S exp {Qrols,a)/r}

We have, Vs,

za:w:(cqs) . [Qﬂs(s, a) — 7log ﬂ'j(a|s)} < max za:ﬂ(m) : [QM(M) _ 7'10g7r(a|5)] (487)
= Zfre(a|s) . [Q”(s, a) — 7log ﬁg(a|8)} (488)
= 7log Zexp {Q” (s, a)/T} . (489)
Also note that,
V™o (s) = " molals) - [Q (s,0) — T log mo(als)| (490)
= Zﬂg(a\s) . _Q”(s,a) — 1log Ty (als) + Tlog Te(als) — Tlog my(als) (491)
=" molals) - [@™ (s,a) = Tlog my(als)| — 7 Dict.(mo(-19) 7o -15)) (492)

=7log ) exp {Q”@(&a)/T} — 7 - Dxr(ma(]9)[|7a(-]5))- (493)
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Combining the above,

V™ (p) — V™ (p) = ﬁZd lzw (als) - | @™ (s,0) ~ 7 log w3 (als)| — V™ (s) (494)
< 1_172112:(5). [TlogZexp{ (s,a /7} f/we(s) (495)
- ﬁ ngi(s) -7 Dp(mo(|s) |70 (0] 5)) (496)
~ 2
< 1—172;&( )72—‘ 7@”:(5,-) —0(s,-) C ’.)/;{_ ( ))Tl -1 (Lemma 25)
- 497)
- oLl ,) — 70(s, T 2
= 7 D) g |[@7 ) s AR I UURIR (498)
Taking square root of soft sub-optimality,
- . - 3 [ . ~ Aol WT 273
770 - V0] < e [T (9 5@ ) = 7o, - TR L ]
- h (499)
= 1 . _Z d’”i() = Qﬂe( ,)_ 9( .)_(QM(S?')_TQ(Sv'))Tl.l ik
- VI—y " P \ﬁ T K
) (500)
)™ (s,) —10(s,)) T
<= TVEO ‘Q“e )= b(s,) - GUEAZTED LG gy < faf)
- (501)
~ )™ (s,-) — 70(s, )T
<= | ZW ‘Q%,-)—Te(s,»—(@ () 0 ) Ly
(502)

On the other hand, the entropy regularized policy gradient norm is lower bounded as

~ r - 27 2
ovre(w |l oV (w)
00 ) n ; ( 00(s, a) ) ] (503)
o= ||
_ (p
2 \/IEZ aa??:f? ; (CauchySchwarz, [|z|l1 = [(1, |z[)| < [[1]|2 - [[=]]2) (505)
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which is further lower bounded as

8‘7‘“—9(“) 1 1 T 7o
|, > =i Zs:d“ (s) (15)) [@™(s5,) = 76(s, ] HQ (Eq. (319), Lemma 10) (506)
11 - (@ (s,-) —70(s,-)) "1
= —= 7= 2 a4 (s) || H(ma(:]5)) lQ’”’(S, ) = 70(s, ) — -1 (Lemma 21)
VS Lyt K )
(507)
1 1 - . - Qe (s,-) —10(s,-)) "1
> LS gm(s)  minmo(als) - Q7 (s,) — 700, ) - 1| (Lemma22)
\/g -7 s 8 N K 2
(508)
1 1 - )™ (s,) — 710(s,-)) "1
> =T gd?(s) -minmy(als) - || Q™ (s,) — 70(s, ) - @7(s) = o)1 (s09)
Denote Cg(s) = Q™ (s,-) — 76(s,-) — (Q“e(s,.);{fe(s,.))H - 1. We have,
8‘7“8('u) 1 1 Z .
—7 || 2 57— 2 4’ (s) -minmy(als) - [|1o(s) | (510)
‘ 00 ) VS 1—x . m a
N min \/d}}’ (s) - min 7y (als) - V27 - dg: h . = L Z Vdi®(s) - [ICo(s
- \/g 17’)/ s H s,a dzs - 17"}/ \/? dzg
511
> L i /@) minm(als) - V2T dz’:: o [Vﬂi(p)—f/ﬂ-e(p)_% (512)
V'S I—v s s dy’ o -
Vo | G fom o ome]?
> V2T . o |l [ () — e 7 (513)
g min p(s) - mino(als) | [ (p) (p)}
where the last inequality is by dj¢ (s) > (1 — ) - p(s) similar with Eq. (304). O

Lemma 17. Using Algorithm 1 with soft policy gradient Eq. (18), we have inf;>; min, , 7, (als) > 0

Proof. The augmented value function Vo (p) is monotonically increasing following gradient update due to smoothness,
i.e., Lemmas 7 and 15. And V™ (p) is upper bounded as

V7o (p) = sorpia NM (o) [Z’Y r(st,ar) — 7 log 7, (at|5t))] (514)
se41~P(|s0ar)
1 o
-1 ;d,;’ [Zm, (s,a) — 7logme, (als ))1 (515)
1 ™
< T dy’ (s) - (14 7log A) (r(s,a) <1, — th (als) -log g, (a]s) < logA) (516)
- s a
1 log A
< + 7 log . (517)
L—n

According to monotone convergence theorem, V7 (p) converges to a finite value. Suppose 7, (a|s) — 7g__ (a|s). For any
state s € S, define the following sets,

Ao(s) = {a:m_(als) =0}, (518)
A (s) ={a:mp_(als) > 0}. (519)
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Note that A = Ay (s) U.AL(s) since 7o (als) > 0, Va € A. We prove that for any state s € S, Ag(s) = 0 by contradiction.
Suppose s € S, such that Ag(s) is non-empty. For any ag € Ag(s), we have 7y, (ag|s) — ma__ (ap|s) = 0, which implies
—log g, (ag|s) — oo. There exists to > 0, such that V¢ > ¢,

1+ 7logA
—log mp, (apls) > ————. (520)
g o, (aols) =)
According to Lemma 10, V¢ > t,
oV o I i
s = o) m(aals) - A7 (5,a0) s21)
1 u [ A (770
= R ~d," (s) - ma, (apls) - | Q7 (s, a0) — Tlog g, (ag|s) — V™ (s)} (522)
1 o [ 1+7logA
> . dM(g). o= _ TP
z2 7 dyt (s) - mg, (aols) _0 7 log mg, (aols) = (523)
1 x [ 1+7logA 1+ 7logA
> () . loxr. _ =0, 524
= 1—+~ Iz (8) 7T9t(a0|8) | +7 T(l—’}/) 1—~ ( )
where the first inequality is by
Q™ (s, a0) = r(s,a0) +7 > P(s/ls,00) V™ (s') 2 0. (r(s,a0) = 0, V™ (s') > 0) (525)

This means 6, (s, ag) is always increasing V¢t > to, which implies 0 (s, ag) is lower bounded by constant, i.e., 0o (s, ag) > ¢
for some constant ¢, and thus exp {6, (ag|s)} > e > 0. According to

exp {foo (aols)}

o, (ao|s) = =0, (526)
o (001) = 5 Cexp (B lals)]
we have,
Z exp {0 (als)} = oo. (527)
On the other hand, for any a; € A4 (s), according to
exp {fc (a4 |s)}
o (ay]s) = > 0, (528)
) 2 exp (i lals)]
we have,
exp {0 (as]s)} = 00, Vay € A (s) (529)
which implies,
> Oso(ayls) = o (530)
a+€A+(S)
Note that V¢, the summation of logit incremental over all actions is zero:
V™o ( oV Ve () 8V”9t( )
Z = > + (531)
00:(s,a) aoeA ®) 004 (s ao) e (%’t(s ay)
= dp’ ( ZW s)A™ (s, a) (532)
- L LR (s) - [f/”@t (s) — Vo (s)] =0. (533)
1—7 K
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According to Eq. (521), Vt > o,

8V“9t
2 0. (534)
89t (s,a0)
ag€Ap(
According to Eq. (531), Vt > o,
8V”9t ( Z Vﬂ-gf
<0. (535)
ar €Ay (s )89t(8 ar) woeda(s) D0e(s aO)

which means Za+ CAL(s) 0+(s,ay) will always decrease for all large enough ¢ > 0. This is a contradiction with Eq. (530),
e, D e, (s Oi(s,aq) = .

To this point, we have shown that 4, (s) = () for any state s € S, i.e., 7, (+|s) will converge in the interior of probabilistic
simplex A(A). And at the convergent point 7y__ (+|$), the gradient is zero, otherwise by smoothness the objective can be
further improved, which is a contradiction with convergence. According to Lemma 10, Vs,

%Z;‘(’;W)) = — ' (5) - Hlmo (19) [Q (s.) = Tlog . (19)] = 0. (536)

Similar with Eq. (304), we have d;,"> (s) > (1 — ) - u(s) > 0 for all state s. Therefore we have, Vs,
H(mp.. (15)) [@7 (s.-) — 7 log ma..(15)] = 0. (537)

According to Lemma 21, H(my_ (-|s)) has eigenvalue 0 with multiplicity 1, and its corresponding eigenvector is ¢ - 1 for
some constant ¢ € R. Therefore, the gradient is zero implies that for all state s,

Qo= (s,-) — Tlogmo, (-|s) = ¢- 1, (538)
which is equivalent with
mo (+|s) = softmax(@”"oo (s,°)/7), (539)

which, according to Nachum et al. (2017, Theorem 3), is the softmax optimal policy 7*. Since 7 € (1) > 0 and,

0 < Qm(s,a) < %, (540)
we have mg__ (a|s) € Q(1), ¥(s, a). Since 7y, (als) — ma__ (als), there exists ¢y > 0, such that V¢ > ¢,
0.9 - (als) < mp,(als) <1.1-mp_(als), Y(s,a), (541)
which means inf;>, ming , 7, (als) € Q(1), and thus
ir;{ r£11an7r9t(a| s) = min{lgglto Hgllanﬂ'@ (als), gltfo Il;llanﬂ'gt( als )} =min{Q(1), (1)} € Q(1). O

Theorem 6. Suppose 1(s) > 0 for all state s. Using Algorithm 1 with entropy regularized softmax policy gradient Eq. (18),
n=(1-7)3/(8+7(4+8log A)) and 7y, (als) € (1), V(s,a),

_ - Hl/u”oO 1+7logA
V() = T ) < i LETIRA

for all ¢ > 0, where C, (1) > 0 are independent with ¢.

(542)
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Proof. According to the soft sub-optimality lemma of Lemma 24,

V7 () = Vo () = T 45 ) - D (19 )] (543)
= 1i Z 8 [d" (s) - 7 - D (a, (-|3)l|75 ()] (544)

TP 2 ey ) Dt (193 49) (545

<o \;Hoojgj[d2“<s>-T-z)KL<ﬂm<¢s>nw:<ws>ﬂ (546)

= ﬁ ~ HiHm V) = V)] (547)

where the last equation is again by Lemma 24, and the first inequality is according to dzgf (s) > (1 =) - u(s) similar with

Eq. (304). According to Lemmas 7 and 15, V™ (1) is 8/(1 — y)*-smooth, and H(z, m) is (4 4 81log A)/(1 — ~y)3-smooth.
Therefore, V™ (1) = V™ () + 7H(p, ) is B-smooth with 8 = (8 + 7(4 + 8log A)) /(1 — )3, i.e.,
. o V™o (p 44 7(2+4log A
VT () = V7o () — <89t()79t+1 - 9t>| < ((1 ~)8 ). 10241 — 045 - (548)
Denote 6, = V™ (1) — V™ (11). Then we have,
Orp1 — 0p = V™ () — V™01 (1) (549)
V™o (1) 4+7(2+4logA) )
< - <60t79t+1 — 0 )+ 1=~)? [NOr1 = Oclly (550)
- 2
44 7(2+4logA) OV ()
= —_ . . -_ 1
(e 2 ) | 2 &30
_ (1-7)° |[evees (w |? S € ke 552)
16 + 7(8 4+ 161og A) 00 5 8+ 7(4+8logA)
. -1
(1—7)° o . 2 - -
6T 6] MnAe) - [minm(als)| | V7 () = V™ ()] (Lemma 16)
(553)
(1 - 7)4 : [ : 2 d;:: B < e
_ . ) ) 5 d™ (s) > (1 —~) -
B T4+ 8logA)- 5 Mnple) - minmolals) | m o (d7(5) 2 (=) - o)
(554)
* 71
(1—7)* . [ 2 i <
S~ @/ 1 4tslogA). g mina(s) - lnfminm, (als)| - f= -l -0 (553)
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According to Lemma 17, inf; > min, , mg, (a|s) € (1) is independent with ¢. We have,

5 (1)’ . I
< |1-— . -Q(1) - ©0¢—
0 < B/r t4T8log ). 5 minals) - U= O-1
-
<ex ) min u(s) - (1) di o
=P 8/T+4+810gA) S W
-
<ex ) min p(s) - (1) di (t—1)p -0
=P 8/T+4+810gA) g e M !
-
v)* . dy 14+ 7log A
< . Q1) - (t—1 J = il
=P 8/T+4+810gA) S msln,u(s) (1) U (t=1) 1—7

where the last inequality is according to Eq. (514). Therefore we have the final result,

-
= s (G, -19(1) ) 1(+111:§2A ' HiHm

Vi (p) = V™ (p) < ——-

- ~ 1 1
ST,

where

o - 11— o
T (8/T+4+8logA)-S s

is independent with ¢.

A.3. Proofs for Section 5

Lemma 18 (Reverse Lojasiewicz). Denote A := r(a*) — maxg+,- 7(a) > 0 as the reward gap of 7.

‘ < \/5 * T

2_Z-(7r —mp) ' T
Proof. Note a* is the optimal action. Denote A(a) = r(a*) — r(a), and A = ming£q+ A(a).

(7" —m0)Tr = mgla) - v(a*) = Y m(a) - (a)
=Y mla)-r(a*) = > mola) r(a)

aFa* a#a*
= mo(a)- Aa)

a#a*

> Z mo(a) - A.

aFa*

drgr
de

On the other hand,

0<r(@)—mr=("—m) r=> mla) Ala) < Y mla)-1= > mpa).

a#a* a#a* aFa*

(556)

(557)

(558)

(559)

(560)

(561)

(562)

(563)

(564)

(565)

(566)

(567)

(568)
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Therefore the /5 norm of gradient can be upper bounded as

[N

dW;’" )2 * T.12 2 T.\2
mo(a®)? - [r(a®) —mgr]” + Z [m9(a)? - (r(a) — mg r)?] (569)
e ||, o
2 3
<12 D mla)| + ) [mola)® 17 (570)
aFa* aFa*
2 2\ 3
< |2 ma)| + | mla) (lzllz < [l=([1) (571)
a#a* aFa*
— V3 Y mola). (572)
aFa*
Combining the results, we have
drTr NG N A
’ 7] 2<\/§-;w0(a):A-A.;m(a)<A.(w — 7). O

Theorem 7 (Lower bound). For large enough ¢ > 0, using Update 1 with learning rate € (0, 1],

T A?
*— > —. 573
(" —m0) > g (579
Proof. According to the reverse Lojasiewicz inequality of Lemma 18,
dmg v V2
t <—-9 574
d 0,5 , = A ts ( )

drg. .
where 0; = (7" — 7g,) T > 0. Let 01 < 0; + 17 - %jr, and my,, , = softmax(6;,1) be the next policy after one step

gradient update. Using similar arguments as smoothness property,

0 — 01 < [0 — Opq1] (575)
= ’(m)t+1 — F@t)TT’ (576)
- dﬂ';?’ dﬁ(;:r
= |(mo,,, — To,) T — T‘%,ewl -0 )+ T@’eHl — 0, (577)
- dwgtr d’]T;;’I‘
< |(mg,y — mp,) T — Tat,@wrl =0y )|+ T@’aHl — b, (578)
) 9 drgr
< 1 10241 — Ocll5 + d&t NOrr1 — O¢ll5 (Lemma 2, and Cauchy-Schwarz) (579)
¢
2
2
~(5? dﬂ'g;T - dﬂ'(;';r
— (%) | o =0+ (580)
2
<91
<5 R0 (n € (0,1], and Lemma 18) (581)

According to convergence result Theorem 2 we have §; > 0, §; — 0 as t — co. We prove that for all large enough ¢ > 0,



On the Global Convergence Rates of Softmax Policy Gradient Methods

0 < % - 0441 by contradiction. Suppose §; > % ~Otg1.

9 1
R i (582)
2
10 9 1 10
> g “Opy1 — ?77 . E . < 5 6t+1) (f(x) = & — az? is increasing for < Va > 0) (583)
10 50
=g 01— Tn A2 041, (584)

which implies 6;41 > ,A[‘) for large enough ¢ > 0. This is a contradiction with §; — 0 as ¢ — oo. Now we have

0 < % - 044-1. Divide both sides of §; — d;11 < 7’7 . F 02 by 8¢ - 6141,

1 1 I 1 Ot 9n 1 10 5p
I/ B <= 22 585
Gr 5, -2 A 5,32 A9 A (585)

Summing up from 77 (some large enough time) to 73 + ¢, we have

1 1 on on
< t—1
6T1+t 6T1 - AQ ( ) AQ

-t (586)

Since T is a finite time, 07, > 1/C for some constant C' > 0. Rearranging, we have

1 1
* T
Tt — L) T =014 > > > . (587)
( 07,y 41) Ty+t i ST 0451 C+%-(T1+t)
By abusing notation ¢ :== T} + tand C' < % - t, we have
1 1 A?
(% —m,) T > — > — = : (588)
C+ 3%t zL-t+xk-t On-t
for all large enough ¢ > 0. O
Theorem 8 (Lower bound). For large enough ¢ > 0, using softmax policy gradient Algorithm 1 with 7 € (0, 1],
1— 5, A* 2
V() — Ve ) > 222 (A7) (589)

12n -t ’

where A* = minges gzq+(s)1Q*(5,a%(s)) — Q*(s,a)} > 0 is the optimal value gap of the MDP, and a*(s) =
arg max, 7*(als) is the action that the optimal policy selects under state s.

Proof. Suppose Algorithm 1 can converge faster than O(1/t) for general MDPs, then it can converge faster than O(1/t) for
any one-state MDPs, which are special cases of general MDPs. This is a contradiction with Theorem 7.

The above one-sentence argument implies a €2(1/t) rate lower bound. To calculate the constant in the lower bound, we need
results similar with Lemma 18. According to the reverse Lojasiewicz inequality of Lemma 26,

1 \/i
< L2,
s 1—=7v A

00,

where §; == V*(u) — V7 () > 0. Let 011 < 6, + 1 - M ,and g, (-|s) = softmax(0;41(s,-)), Vs € S be the
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next policy after one step gradient update. Using similar calculations as in Eq. (575),

6t — 01 < V701 () — V7o ()| (591)
w . OV o OV o
= V™1 () — V7™ (u) — 7(M),9t+1 -6 )+ v ) s 01 — 0 (592)
(‘39t 89t
ﬂ . OV o OV o
< v oy = vy — (208 g g [( 2, o, (593)
00, 00,
4 OV ™oy
< 5 1041 — 9t||§ + H(M) 01 — Ol (Lemma 7, and Cauchy-Schwarz)  (594)
(]. — ")/) 89,5 2
4? v (u) ||* AV (1)
_ . 0,01 =6 . 595
((1 _'7)3 +T]> H aet ) t+1 t+n aet ( )
< LU 67 (n € (0,1], and Lemma 26) (596)
Sy @ o
According to Theorem 4, we have §; > 0, §; — 0 as t — oo. Using similar arguments as in Eq. (582), we can show that for
all large enough ¢ > 0, &; < % - 0t4+1. Divide both sides of §; — §z41 < (11_07;’)5 . ﬁ 02 by 8y - Oyr1,
11 107 1 5 107 1 1 11n

< . e/ (597)

G 5 =P (B b (- (A2 10 (1—ap- (A

Using similar calculations as in the proof of Theorem 7, we have,

(1= (&%)

* _ 7r9t — >
OB GIIELESS T

(598)
for all large enough ¢ > 0. O

Proposition 3. The Lojasiewicz degree of E,r, [r(a)] cannot be larger than 0 with C(6) = my(a*).

Proof. We prove by contradiction. Suppose the Lojasiewicz degree of E, ., [r(a)] can be larger than 0. Then there exists
& > 0, such that,

Consider the following example, r = (6,4,2) ", mp = (1 — 3¢,2¢,¢) T with small number € > 0.

-
dmy r

L =) [(* 7o) 7] e (599)

2

(" —mg)Tr=r(a*) —mar=06—(6—8¢) =8¢ (600)
According to the reverse Lojasiewicz inequality of Lemma 18,

V2 Ve

-
dmy

Y2 (rr— S —a) T r< 22 (r —a) =6«
‘ a0 ||, < A (m* —mg) ' 5 (m" —mg) ' < 5 (7" —mg) ' T =06-€ (601)
Also note that mp(a*) = 1 — 3¢ > 1/4. Then for £ € (0, 1], we have
dmy 1
0T <6.e=--3-8 c<mpla’) 3-8 e=C(0) 3-8 e (602)
o |, 1

Next, since € > 0 can be very small,

where the second inequality is by (8 - €)¢ < 1/3 for small ¢ > 0 since ¢ > 0. This is a contradiction with the assumption.
Therefore the Lojasiewicz degree & cannot be larger than 0. O

-
dmy r

201l < C)-3-8e=C(0)-3-(8-€°-(8:)'*<CO) (8- =0C(0) [(n* - m)Tr]l‘i, (603)

2
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Proposition 4. With C(0) = /27 - min, g (a), the Lojasiewicz degree of Eyr, [r(a) — Tlog mg(a)] is 1/2.

Proof. Denote 6y = Eqr= [r(a) — Tlog 7¥(a)] — Eqor, [r(a) — 7log me(a)] as the soft sub-optimality. We have,

b= E_ [r(a)~7logn}(a)] = E [r(a) - 7logi(a)] = E [rlogn(a) —logmy(a) (604)
=7 10; > exp{r(a)/r} —rlog Y exp{r(a)/7} + 7 Dxr(mo|lw}) (7} = softmax(r/7)) (605)
=7 DKi(mei) a (606)
g; g—e—%q io (Lemma 25) (607)
:%- r—re—(’"_?Tlnl (608)

Next, the entropy regularized policy gradient w.r.t. 6 is

d{ﬂ'(;r(r —1logmg)}

p7] = H(mg)(r — 7logmy) (609)
= H(myp) (r — 70+ TlogZexp{H(a)} : 1) (610)
= H(mp) (r — 70) (611)
T
= H(my) <r—7’9—(r;;_9)1-1), (612)

where the last two equations are by H(mp)1 = 0 as shown in Lemma 21. Then we have,

d{mg (r—Tlogmy)}| (r—76)T1
H a0 , = H(’]Tg) r 70 T -1 , (613)
T
— 1
> minmg(a) - ||r — 76 — % 1 (Lemma 22) (614)
@ 2
. (r—70)T1
> minmy(a) - T—T@—T'l (615)
> minmg(a) - V27 - /6 (Eq. (604)) (616)
1
2
= V27 - minmy(a) - ( E [r(a) —7logni(a)]— E [r(a)— Tlogmg(a)]> ,  (617)
a anr a~Ty
which means the Lojasiewicz degree of E,r, [r(a) — 7log mg(a)] is 1/2 and C'(6) = /27 - min, 7 (a). O
B. Supporting Lemmas
Lemma 19 (Performance difference lemma (Kakade & Langford, 2002)). For any policies © and 7',
™ Tr/ 1 T Tr/
VTi(p) = V™ (p) = i dy(s) Zw(a|s) - AT (s,a). (618)

S a



On the Global Convergence Rates of Softmax Policy Gradient Methods

Proof. According to the definition of value function,

Vip)-V™(p)= E S ytr(se,ar)

so~p,ar~m(-|st),

stp1~P(se,ae) =T

t=0
- E D oA (s, a0) + VT (s1) = V™ (s1))

so~p,ar~m(-|st),

’

- V™ (p)

St+1~P(-]s¢,at) Lt=0
= S A (s, a) VT (s041) — V™ (50))
SDNP:atNﬂ'("St)v —0

str1~P(|se,ae) -

o0
t ’
= E E AT (s, at)
so~p,ar~m(-|st), .
stp1~P(lse,a) =0T

1
=1

d7(s) > w(als)- A" (s,a).

S a

Lemma 20 (Value sub-optimality lemma). For any policy m,
V*(p) - Zd” Z (afs) —m(als)) - Q" (s, a).

Proof. According to the definition of value function,

v Zw (als) - Q*(s,a) - Z (als) - Q(s,a)
_Z (als) (s,a) +Z s,a) — Q" (s,a))
:Z(w (als) — w(als)) - Q* (s, a) +’yZ7T (als) Y " P(s']s,a) [V*(s') = V()]

a

= 15 D Y (07 @)~ w)5) - Q).

S a

Lemma 21 (Spectrum of H matrix). Let 7 € A(A). Denote H(r) = diag(r) — nw . Let
Denote the eigenvalues of H () as

Then we have,

Proof. According to Golub (1973, Section 5),

m(1) =7 7w < A\ < 7w(1),
ai—1) <N <n(i), i=23,... K.

We show A\; = 0. Note

H(m)1 = (diag(n) —nr ) 1=m—7=0-1.

(619)

(620)

(621)

(622)

(623)

(624)

(625)

(626)

O

(627)

(628)

(629)
(630)

(631)
(632)

(633)
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Thus 1 is an eigenvector of H (7) which corresponds to eigenvalue 0. And for any vector z € R,

2
2 TH(m)z =Elz 0] - (]E[x]) = Var,[z] > 0, (634)
which means all the eigenvalues of H () are non-negative. O
Lemma 22. Let € A(A). Denote H(r) := diag(w) — 7 . For any vector z € R¥,
1 1
H(Id—H(w)) <x— ”37 : 1) = (1 —mainﬂ'(a)) Nz - ”37 1, (635)
1 1
HH(’IT) (x—xK-l) 22main7r(a)~ x—%-l ) (636)
Proof. x can be written as linear combination of eigenvectors of H (),
1
x:al-\/—?—i—agvg—l—---—l—a;{v[{ (637)
|
:7~1+a202+"'+aKU}(. (638)
Since H () is symmetric, {\/17, Vay...,V K} are orthonormal. The last equation is because representation is unique, and
1 2’1
T
a1t =r — = ——. 639
CUUR VR ©3
Denote
, r'1
T :x—7 1=asvs + + ag VK (640)
We have
2’13 = a3 + -+ + ak. (641)
On the other hand,
(Id — H(m))x' = as(1 — M)va + - +ag(l — Ak )vk (642)
Therefore
1
|(Id = H(m))2'||2 = (a3(1 = A2)®> + -+ ak (1 = Ag)?)? (643)
1
< ((a3 4 +ax) (1—X2)%)" (644)
= (- ) [E41P (645)
1-— mlnw ) Iz |2, (646)

where the first inequality is by 0 < w(1) < Ay < -+ < Ag < 7(K) < 1, and the last inequality is according to

A2 > m(1) = min, 7(a), and both are shown in Lemma 21. Similarly,

N

1H (m)a’[l2 = (a3A3 + -+ + ai A% )

> ((a3 + - +ak) - A3)
=Xz - [l2']2

N

> minn(a) - [|z']|2.
a

(647)

(648)
(649)
O
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Lemma 23. Let mp := softmax(6) and mg: = softmax(6’). Then

o — o]l o <2- 16—, - (650)

Proof. See Xiao et al. (2019, Lemma 5), our proof is for completeness. Since 7y, g € [0, 1]%

|6 — mor|| o, < [[log mg — loger || (651)
0—0 — <logz exp{f(a)} — logz exp{@’(a)}) 1 (652)
<|6—-90 + |log Zexp{@(a)} — log Zexp{@'(a)} (653)
<206, (654)
where the last inequality is according to Nachum et al. (2017, Lemma 8). [
Lemma 24 (Soft sub-optimality lemma). For any policy T,
. - 1 .
Vi (p) = V7 (p) = Fp— [d}(s) - 7 - Dxw(m(-]s) 77 (:]5))]- (655)
Proof. According to Nachum et al. (2017, Theorem 1), V(s, a),
7*(als) = exp {(Q”i (s,a) — V™ (s)) /T} : (656)
According to the definition of soft value function,
V™ (s) = V() = Vo (s) = > w(als) - [Q”(s, a) — Tlogﬂ'(a\s)} (657)
=V (s) — Z m(als) - [Q”(s, a) — tlogm*(als) + Tlog7* (als) — 7 log w(a\s)} (658)

= V7 (s) = Yo mlals) - [Q7(5,0) = G (5,0) + V™3 ()] + 7 Ducw(nCls) 7 Cls))  (Ea. (656))

(659)

= 7 Dy (m(-|s)||7(- HZ (a]s) ZP |5, a) [~’T:(s/)—‘7”(s')} (660)
- [d5(s") - 7 - Dxcw(m(-[s) | w7 (-] s"))]-

1—v4

S

Lemma 25 (KL-Logit inequality). Let 7y := softmax(0) and my: = softmax(6’). Then for any constant ¢ € R,

1
Dcw(mo|mor) < 5 -6 =0 — - 1| (661)
In particular, let ¢ :== %, we have
1 ©-0T1 |
Dy, (mg||mer) < 3 ‘0/9Ko1 (662)
o0

Proof. According to the £1 norm strong convexity of negative entropy over probabilistic simplex, i.e., for any policies 7, 7/,

1
Togn’ > 7" logm + (r' — )" logm + 3 | — ﬂ"Hf ) (663)
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we have (let m = my, and 7’ = 7y/),

Dy, (mgl|mer) = 7T;— log g — mgr | log mgr — (mg — 7r9/)T log Ty (664)
1
< (mg — 7T9/)T log g — 3" |lmg — 7T9/H? — (79 — 71'9/)T log 7o/ (665)
T 1 2
= (mg — mgr) ' (logmg — logme:) — 5 lmo — mor||7 (666)

= (mg —mgr) " [e -0 - <logZexp{9(a)} - 10gZexp{0’(a)}> : 1] - % o —mo||7 (667

= (o~ 70)T (0~ ) — 5 - o — 70| (668)
= (mg —mgr) " (0—9’—01)—%- H7T9—7T9/||? ((Wg—ﬂ'gx)Tc-l:(), VCGR) (669)
<|0—-0" —c-1| - |lmg — 7|, — % <o — 7r9/|ﬁ (Holder’s inequality) (670)
ggllefﬁ’fcilli@, 671)

. . . . 2
where the last inequality is according to ax — bx? < &

@ Va,b > 0. 0

Lemma 26 (Reverse Lojasiewicz). Denote A*(s) == Q*(s,a*(s)) — max,zq+(s) Q" (s, a) > 0 as the optimal value gap of
state s, where a*(8) is the action that the optimal policy selects under state s, and A* = mingcs A*(s) > 0 as the optimal
value gap of the MDP. Then we have,

R V) =V (). (©72)

06

Proof. Denote A*(s,a) = Q*(s,a*(s)) — Q*(s,a), and A*(s) = ming .+ (s) A*(s,a). We have,

V() = V™ () = i d;? (s) Z (7*(a|s) — mo(als)) - Q" (s, a) (Lemma 20) (673)
1 :
=y 2 [ 2 mlels) @) = D mlals) - (s (674)
= 1% die(s)- | Y mlals) Q" (s,a%(s)) = Y mlals) - Q"(s,a) (675)
T a#a*(s) ata*(s)
1
=R )| 3 mlels)-a7(0) (676)
1 -
%ﬂsﬁ@-;fmgﬁw. 677)
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Since Q™ (s,a) € [0,1/(1 —~)], and V™ (s) € [0,1/(1 — ~)], we have |A™ (s, a)| € [0,1/(1 — ~)]. Also,

|A™ (s,0% ()| = |Q" (s,a"(s)) = Y _ mo(als) - Q™ (s, a) (678)
=| > molals) - [Q7 (5,0 (5)) - Q" (5,0) (679)
aFa*(s)
< Z mo(als) - |Q™ (s,a*(s)) — Q™ (s,a)| (triangle inequality) (680)
a#a*(s)
<175 3wl (@€ 01/ -] (681)

Therefore the /5 norm of gradient can be upper bounded as

[N

Ve 1
H ae(u) =15 |2 X mlals)? - A7 (s,0)° (682)
2 s a
=7 i 5 Zdzs(s)Q | mo(a*(s)]s)? - A™ (s, a*(s))? + Z mo(als)? - A™ (s, a)? 683)
L ® aFa*(s)
2 :
1 - 1 1
Sm. gdu W LW. a;e;(s)M(aS) +a¢§s)we(as)2. (1—7)? (689
27z
1
Saoe Yo dp(s)* -2 | Y molals) (lzll2 < llzll) (685)
7 S aFa*(s)
1
ST=p 2y dir(s) - | Y meals)|- (e < Jlalh) (686)
s aFa*(s)

Combining the results, we have

Hav;;(u) 2 < (1_17)2 .\@.Zsjdge(s). ag;(s)m(am (687)
- 7 X? = Y ;dfﬁ(s) ' :#;(s)ﬂe(als)_ A (688)
<7 i 5 X? 1 i 5 ZS:dZ?(s) : :a;(s)m(ab)_ SA*(s) (AT < A*(s), Vs) (689)
<1i7'g-[V*(u)—V”(u)1. 0

C. Sub-optimality Guarantees for Other Entropy-Based RL Methods

Some interesting insight worth mentioning in the proof of Lemma 16 is that the intermediate results provides sub-optimality
guarantees for existing entropy regularized RL methods. In particular, Eqs. (486) and (496) provides policy improvement
guarantee for Soft Actor-Critic (Haarnoja et al., 2018, SAC), and Eqs. (497) and (502) provide sub-optimality guarantees for
Patch Consistency Learning (Nachum et al., 2017, PCL).
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Remark 6 (Soft policy improvement inequality). In Haarnoja et al. (2018, Eq. (4) and Lemma 2), the policy is updated by
T{'Qt .
o exp{Q™ (s,a)}

which is exactly the KL divergence in Eq. (496), with 7o (+|s) defined in Eq. (486). The soft policy improvement inequality of
Eq. (496) guarantees that if the soft policy improvement is small, then the sub-optimality is small.

o

Tg, ., = argmin Dk, (TF@(-|S)

Remark 7 (Path inconsistency inequality). In Nachum et al. (2017, Theorems 1 and 3), it is shown that

e (i) soft optimal policy T} satisfies the consistency conditions Eqs. (26) and (27);

e (ii) for any policy T that satisfies the consistency conditions, i.e., if Vs, a,
m(als) :exp{(()”(s,a) —f/”(s))/T} (691)
V7(s) = rlog Y exp { Q" (s,0)/7 (692)

then m = 7}, and VT =V,

However, Nachum et al. (2017) does not show if the consistency is violated during learning, how the violation is related to
the sub-optimality. To see why Lemma 16 provides insight, define the following “path inconsistency”,

r(s,a) + 7279(5’|s, a)V™(s') = V™(s) — Tlogm(als) = Q" (s,a) — V™(s) — T log m(als), (693)

which captures the violation of consistency conditions during learning. Note that for softmax policy my(-|s) =
softmax(0(s, -)), the rh.s. of Eq. (693) can be written in vector form as

Q™ (s,) = V™(s) - 1 —rlogm(-|s) = Q(s,-) = V™(s) - 1 — 70(s,-) + Tlog Y _ exp{f(s,a)} - 1. (694)

Denote cy(s) = w —log >, exp{0(s,a)}, and using Lemma 25 in the proof of Lemma 16, in particular, Eq. (497),
1@ 2
g s,
Dxr(mo(¢]9)|170(:]8)) < 3 HT —0(s,) —co(s)-1 (695)
- | = 2
0 (s, - T (g) .1 — . .
272 HQ — V7 (s) 7 log 7o ( |$)HOo (696)
Using the above results in Eq. (502),
- - 3 1 1 ~
T _ e’ < . T 7T9 . ] . _ .
7 ) = 7™ ()] < o= == d;:e Z VAT (s) - [ @705 ) = V() - 1= TlogmaCls)]|_ 69)
= L L Z dp? (s - max r(s,a) —&—727’ (8|, aV’”’( )—Tlogm)(a|s)—f/”9(s)
= 7= |7 X |

(698)

where (square of) )r(s, a) +v3, P(s'|s,a)V™ (s") — 7log mg(als) — V™ (s)’ is exactly the (one-step) path inconsis-
tency objective used in PCL (Nachum et al., 2017, Eq. (14)). Therefore, minimizing path inconsistency guarantees small
sub-optimality. The path inconsistency inequality of Eq. (697) implies path consistency of Nachum et al. (2017).

D. Simulation Results

To verify the convergence rates in the main paper, we conducted experiments on one-state MDPs, which have K actions,
with randomly generated reward r € [0, 1]%, and randomly initialized policy 7, .



On the Global Convergence Rates of Softmax Policy Gradient Methods

D.1. Softmax Policy Gradient

K =20, r € [0,1]¥ is randomly generated, and 7y, is randomly initialized. Softmax policy gradient, i.e., Update 1 is used
with learning rate ) = 2/5 and T' = 3 x 10°. As shown in Fig. 2(a), the sub-optimality &; := (7* — m)t)—r r approaches 0.
Subfigures (b) and (c) show log d; as a function of logt. As logt increases, the slope is approaching —1, indicating that
log §; = —logt + C, which is equivalent with 6, = C’/t. Subfigure (d) shows 7y, (a*) as a function of ¢.
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Figure 2. Softmax policy gradient, Update 1.

D.2. Entropy Regularized Softmax Policy Gradient

= 20, r € [0,1]¥ and 7y, are the same as above. Entropy regularized softmax policy gradient, i.e., Update 2 is
used with temperature 7 = 0.2, learning rate n = 2/5 and T' = 5 x 10*. As shown in Fig. 3(a), the soft sub-optimality
oy =mx" (r—rlogm) — ’/TgtT (r — 7 log 7y, ) approaches 0. Subfigure (b) shows log d; as a function of ¢. As ¢ increases,
the curve approaches a straight line, indicating that log 6; = —C} - t + C, which is equivalent with 6, = C}/ exp{C/ - t}.
Subfigure (c) shows (; as defined in Lemma 12 as a function of ¢, which verifies Lemma 13. Subfigure (d) shows min, 7y, (a)
as a function of ¢. As ¢ increases, min, 7y, (a) approaches constant values, which verifies Lemma 14.
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Figure 3. Entropy regularized softmax policy gradient, Update 2.

D.3. “Bad” Initializations for Softmax Policy Gradient (PG)

As illustrated in Fig. 1, “bad” initializations lead to attraction toward sub-optimal corners and slowly escaping for softmax
policy gradient. Fig. 4 shows one example with K = 5. Softmax policy gradient takes about 8 x 106 iterations around a
sub-optimal corner. While with entropy regularization (7 = 0.2), the convergence is significantly faster.
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(a) Softmax policy gradient. (b) Softmax policy gradient. (¢) Entropy regularized softmax PG. (d) Entropy regularized softmax PG.

Figure 4. Bad initialization for softmax policy gradient.



