
Go Wide, Then Narrow: Efficient Training of Deep Thin Networks

Denny Zhou 1 Mao Ye 2 Chen Chen* 1 Tianjian Meng* 1 Mingxing Tan* 1 Xiaodan Song 1 Quoc Le 1

Qiang Liu 2 Dale Schuurmans 1

Abstract

For deploying a deep learning model into produc-
tion, it needs to be both accurate and compact to
meet the latency and memory constraints. This
usually results in a network that is deep (to ensure
performance) and yet thin (to improve compu-
tational efficiency). In this paper, we propose
an efficient method to train a deep thin network
with a theoretic guarantee. Our method is moti-
vated by model compression. It consists of three
stages. First, we sufficiently widen the deep thin
network and train it until convergence. Then, we
use this well-trained deep wide network to warm
up (or initialize) the original deep thin network.
This is achieved by layerwise imitation, that is,
forcing the thin network to mimic the interme-
diate outputs of the wide network from layer to
layer. Finally, we further fine tune this already
well-initialized deep thin network. The theoreti-
cal guarantee is established by using the neural
mean field analysis. It demonstrates the advantage
of our layerwise imitation approach over back-
propagation. We also conduct large-scale empiri-
cal experiments to validate the proposed method.
By training with our method, ResNet50 can out-
perform ResNet101, and BERTBASE can be com-
parable with BERTLARGE, when ResNet101 and
BERTLARGE are trained under the standard train-
ing procedures as in the literature.

1. Introduction
In many machine learning applications, in particular, lan-
guage modeling and image classification, it is becoming
common to dramatically increase the model size to achieve
significant performance improvement (e.g., He et al., 2016;
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Wu et al., 2016; Devlin et al., 2019; Brock et al., 2019; Raf-
fel et al., 2019; Brown et al., 2020). To enlarge a model,
we can make it either much deeper or wider. A big deep
learning model may involve millions or even billions of
parameters, and be trained over a big computation cluster
containing hundreds or thousands of computational nodes.

Despite their impressive performance, however, it is almost
impossible to directly deploy these big deep learning models
into production because of the low latency and memory con-
straints. To remedy this issue, there has been an increasing
interest in developing compact versions of good performing
big models to meet the practical constraints while without
much drop of accuracy (e.g., Iandola et al., 2016; Sandler
et al., 2018; Howard et al., 2019; Tan & V. Le, 2019; Worts-
man et al., 2019; Sun et al., 2020).

In general, compact modeling results in networks which
are both deep and thin. This is because a compact model
must be sufficiently deep in order to extract hierarchical
high-level representations that are impossible for shallow
models to accomplish (e.g., Lee et al., 2009; Le et al., 2012;
Allen-Zhu & Li, 2020), but each layer of the model does not
have to be very wide since many neurons are redundant and
can be pruned without hurting the performance (e.g., Han
et al., 2015; Li et al., 2017; Frankle & Carbin, 2019; Liu
et al., 2019; Ye et al., 2020).

Nevertheless, training deep thin networks are much more
difficult than training deep wide networks. The loss sur-
face of a deep thin network tends to be highly irregular
and nonconvex (e.g., Li et al., 2018). Moreover, during
the backpropagation through a deep thin network, gradients
may vanish or explode (e.g., Bengio et al., 1994; Pascanu
et al., 2013). On the other hand, it has been observed that in-
creasing the width of, or “overparameterizing” the network
makes it much easier to train since its loss surface becomes
smoother and nearly convex (e.g., Li et al., 2018; Du et al.,
2019; Allen-Zhu et al., 2019).

In this paper, we propose a generic algorithm to train deep
thin networks with a theoretical guarantee. Our method
is motivated by model compression. It consists of three
stages (Figure 1 and Algorithm 1). In the first stage, we
significantly widen the deep thin network to obtain a deep
wide network, for example, twice wider, and then train it
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until convergence. In the second stage, we use this well
trained deep wide network to warm up (or initialize) the
original deep thin network. In the last stage, we further fine
tune this already well-initialized deep thin network. Since a
deep thin network is highly nonconvex, a good initialization
is almost all we need to obtain a good training result.

The key component of our method lies in its second stage.
In this stage, the deep thin network is gradually warmed up
by layer-to-layer imitating the intermediate outputs of the
well trained deep wide network obtained in the first stage
in a bottom-to-top fashion. This is analogous to curriculum
learning, where a teacher breaks down an advanced learning
topic to a sequence of small learning tasks, and then stu-
dents learn these small tasks one by one under the teacher’s
stepwise guidance.

The readers may have noticed a technical issue to conduct
layerwise imitation learning: the thin network and its wide
version differs in the output dimension in every layer. This
causes the difficulty to measure how well the thin network
mimics the wide one. Obviously, such a problem does not
exist in knowledge distillation since the final output dimen-
sion stays the same for either network. For example, the
final outputs could be one-dimensional labels. To fix this di-
mension mismatch issue in our layerwise imitation learning,
we insert a pair of linear transformations between any two
adjacent layers in the thin network (see Figure 1): one is
used to increase the dimension of its layer output to match
the dimension of the corresponding layer output of the wide
network, and the other to reduce the dimension back to its
original size. Thus, the dimension expanded output from
the thin network can be compared with the output from the
wide network from layer to layer using elementwise metrics
like the mean squared loss and Kullback-Leibler (KL) diver-
gence. Since a sequence of linear layers is mathematically
equivalent to a single linear layer, at the end of our algo-
rithm, we can merge all adjacent linear layers in the thin
network, including the linear transformations inside the orig-
inal network modules. Thus, the thin network architecture
is eventually restored to its original design.

We develop theoretical analysis for our method using the
mean field analysis of neural networks (Song et al., 2018;
Araújo et al., 2019; Nguyen & Pham, 2020). We show
that, compared with direct gradient descent training of a
deep thin network, our method allows for much simpler and
tighter error bounds (see Proposition 3.3 vs. Theorem 3.5).
The intuition underlying the theoretical analysis is that our
layerwise imitation scheme avoids backpropagation through
the deep network and consequently prevents an explosive
growth of the error bound on the network depth. Similar
theoretical results do not hold for the commonly used knowl-
edge distillation and its variants (e.g., Ba & Caruana, 2014;
Hinton et al., 2015), because they only modify the train-

ing target to include a distillation loss but still depend on
backpropagation through the entire deep thin network.

In additional to theoretic analysis, we also conduct large
scale empirical experiments to validate our approach. we
train the ResNet (He et al., 2016) and BERT (Devlin et al.,
2019) models using our method and the baseline methods
which include training deep thin networks from scratch via
backpropagation and training with knowledge distillation.
Experimental results show that our method significantly
outperforms the baseline methods. In particular, by training
with our method, ResNet50 can outperform ResNet101,
and BERTBASE can be comparable with BERTLARGE, when
ResNet101 and BERTLARGE are trained under the standard
training procedures as in the literature.

We organize this paper as follows. In Section 2, we present
our algorithm for training deep thin networks. In Section 3,
we develop theoretic results around our method using the
mean field analysis for neural networks. The proof details
are provided in Appendix. The work related to our algorithm
and theoretic analysis are discussed in Section 3. In Section
5, we present the experimental results of training the ResNet
and BERT models using different methods. Finally, we
conclude this paper with discussions in Section 6.

2. Algorithm
Let us denote by S = {S1, S2, . . . , Sn} a deep thin net-
work that we want to train, where Si denotes the building
block at the i-th layer of S. For an input x, the output of
network S is given as S(x) = (Sn ◦ Sn−1 ◦ · · · ◦ S1)(x) =
Sn(Sn−1(· · ·S2(S1(x)) · · · )).

In a feed forward network, a building block can be a hidden
layer or a group of hidden layers. However, in many other
neural architectures, the structure of a building block can
be much more complex. Here are two typical examples. In
a model for image classification, a building block usually
contains convolution, pooling, and batch normalization (He
et al., 2016); in a model for language modeling, a build-
ing block may include multi-head attention, feed forward
network, and layer normalization (Vaswani et al., 2017).

Stage 1: Wide learning. In this stage, we first construct
a deep wide network B = {B1, . . . , Bn}, where building
block Bi is obtained by significantly widening building
block Si in the deep thin network S. We then train this deep
wide network B until convergence. In general, the wider the
network, the easier to train it. How to make a network wider
may not be that straightforward as it looks like. It is actually
fairly case dependent. For a feed forward network, we can
widen it by introducing more neurons in its hidden layers;
for a convolution network, we can widen it by introducing
more filters; for a transformer like model, we can widen it
from multiple dimensions, including increasing its hidden
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Figure 1. Illustrating “go wide, then narrow”. Left panel: wide network B with building blocks Bi obtained by widening Si in the thin
network S. Middle panel: network S̄ obtained by inserting appropriately sized linear transformation pairs between any two adjacent
building blocks Si−1 and Si in S. Right panel: merge all adjacent linear transformations in S̄ to restore its architecture to S.

dimension, using more self-attention heads, or adding more
hidden neurons in its feed forward network module.

Stage 2: Narrow learning. In this stage, we first con-
struct a new network S̄ by inserting a pair of appropri-
ately sized linear transformations {Mi,1,Mi,2} between
two adjacent building blocks Si and Si+1 in the thin net-
work S (see the middle column of Figure 1 for an illustra-
tion of S̄). The first linear transformation Mi,1 increases
the output dimension of Si to match the output dimen-
sion of Bi in the wide network B, and the second linear
transformation Mi,2 reduces the dimension to its original
size. Formally, the new network S̄ can be written as S̄ =
{S1,M1,1,M1,2, S2, . . . , Sn−1,Mn−1,1,Mn−1,2, Sn}.

We group the modules in S̄ as follows: S̄1 = {S1,M1,1},
S̄i = {Mi−1,2, Si,Mi,1} for i = 2, . . . , n − 1, and S̄n =
{Mn−1,2, Sn}. Thus, S̄ = {S̄1, S̄2, . . . , S̄n}. Next, for
i = 1, . . . , n− 1, we sequentially train a set of subnetworks
S̄(i) = {S̄1, . . . , S̄i} by minimizing the output discrepancy
between S̄(i) and subnetwork B(i) = {B1, . . . , Bi} in the
wide network B. The instances in the training data are used
as the inputs. Note that the weights of B(i) are fixed since
the entire network B has been trained in the first stage. In
addition, during this sequential training, the trained S̄(i) is
naturally served as initialization when proceeding to train-
ing S̄(i+1). There are many ways to measure the output
discrepancy between S̄(i) and B(i). Typical choices include
the mean squared error and KL divergence.

To achieve a better performance, when each training subnet-
work S̄(i), we may restart multiple times. In each restart,
the most recently added building block Si is randomly reini-
tialized. Finally, we choose the trained network which best
mimics B(i) before proceeding to training S̄(i+1).

Stage 3: Fine-tuning and merging. This is the final stage
of our method. After layerwise imitation in the second
stage, the network S̄(n) = S̄ has been well initialized. We
can further fine tune this network using the training labels.
Afterwards, we merge all adjacent linear transformations in
S̄, including the native linear layers residing in its building
blocks, Consequently, S̄ is restored to the architecture of the
original deep thin network S (see the illustration in Figure
1). Until then our algorithm is done. Optionally, one may
restart fine-tuning several times, and then choose the model
which has the minimum training error. Such a greedy choice
usually works well since a thin model is supposed to have a
strong regularization effect on its own.

We summarize our method in Algorithm 1. Here are sev-
eral additional remarks. First, our method does not have to
be more expensive than the normal knowledge distillation
method since the imitation training in our method is quite
light in each layer. In addition, we often can use an exist-
ing trained big model as the wide network in our method.
Consequently, the wide learning stage of our method can be
skipped. Moreover, the layers in our method do not have to
exactly align to the layers of the trained neural models. For
example, the wide network may be a 24-layer BERTLARGE
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Algorithm 1 go WIde, then Narrow (WIN)
Input: thin network S = {S1, . . . , Sn}; training data

Stage 1: Wide learning. Construct a wide networkB =
{B1, · · · , Bn}, where each Bi is obtained by widening
Si in network S, and train B until convergence.

Stage 2: Narrow learning. Construct another network
S̄ = {S̄1, . . . , S̄n}, where each S̄i is obtained from wrap-
ping up Si by two appropriately sized linear transforma-
tions to match the output dimension of Bi.

for i = 1 to n− 1 do
Train subnetwork S̄(i) = {S̄1, . . . , S̄i} by minimizing
the output discrepancy between S̄(i) and subnetwork
B(i) = {B1, . . . , Bi} from the wide network B.

end for

Stage 3: Fine-tuning and merging. Use the training
labels to fine tune network S̄(n) = S̄, and then merge all
adjacent linear layers in S̄ to restore its architecture to S.

model, and the narrow network a 12-layer BERTBASE model.
Then, during the imitation training, each layer in BERTBASE
is mapped to two adjacent layers in BERTLARGE.

3. Theoretical Analysis
In this section, we present a theoretical comparison between
a layerwise imitation based scheme and the standard gra-
dient descent training. The basic intuition underlying our
analysis is that layerwise imitation breaks the learning of a
deep thin network into a sequence of shallow subnetworks
training, and hence avoids backpropagation through the en-
tire deep thin network from top to bottom. This makes our
method more suitable for training very deep networks, and
also enables simpler theoretical analysis. Our theoretic re-
sults show that layerwise imitation yields a much tighter
error bound compared with gradient descent.

3.1. Assumptions and Theoretical Results

Our analysis is built on the theory of mean field analysis of
neural network (e.g., Song et al., 2018; Araújo et al., 2019;
Nguyen & Pham, 2020). We start with the formulation of
deep mean field network formulated by Araújo et al. (2019).

For notational conventions, let Sm = {Sm
1 , S

m
2 , · · · , Sm

n }
and BM =

{
BM

1 , BM
2 , · · · , BM

n

}
be the thin and wide

networks of interest, where we add the superscribes m and
M to denote the number of neurons in each layer of the thin
and wide networks, respectively. We assume the i-th layer

of Sm and BM are

Sm
i (z) =

1

m

m∑
j=1

σ
(

z,θS
i,j

)
, BM

i (z) =
1

M

M∑
j=1

σ
(

z,θB
i,j

)
,

where θS
i,j and θB

i,j are the weights of the thin and wide
models, respectively. Here we also define

σ(z,θ) = θ>1 σ+(z>θ0), θ = [θ0,θ1],

where σ+(·) is some commonly used nonlinear element-
wise mapping such as sigmoid.

In order to match the dimensions of the thin and wide mod-
els, we assume the input and output of both Sm

i (z) and
BM

i (z) of all the layers (except the output) have the same
dimension d, so that z ∈ Rd and θS

i,j ,θ
B
i,j ∈ R(d+1)×d for

all the neurons and layers. In practice, this can be ensured
by inserting linear transform pairs as we have described in
our practical algorithm (so that the Sm

i corresponds to the
S̄i in Figure1). In addition, for the sake of simplicity, the
dimension of the final output is assumed to be one.

Giving a dataset D = {xi, y}i, we consider the regression
problem of minimizing the mean squared error:

L(F ) = E(x,y)∼D

[
(F (x)− y)

2
]
, (1)

via gradient descent with step size η and a proper random
initialization. We define the output discrepancy between
two models S and B to be

D[S,B] =

√
Ex∼D

[
(S(x)−B(x))

2
]
.

Assumption 3.1. Denote by Bm
GD and SM

GD the result of
running stochastic gradient descent on dataset D with a
constant step size η > 0, for a fixed T steps.

For both models, we initialize the parameters {θS
i,j}j∈[m]

and {θB
i,j}j∈[M ] in the i-th layer by drawing i.i.d. samples

from a distribution ρi. We suppose ρi is absolute continuous
and has bounded domain for i ∈ [n].

Bounds of Deep Thin Networks Trained from Scratch
Analyzing deep neural networks trained with gradient de-
scent remains a ground challenge in theoretical deep learn-
ing. The few existing bounds (Araújo et al., 2019; Nguyen &
Pham, 2020) depend rather poorly on the depth of networks,
due to the difficulty of controlling the errors propagated
through the layers during gradient descent. Here we lever-
age the mean field analysis from Araújo et al. (2019) to give
an estimation of the discrepancy between the thin and wide
models Sm

GD and BM
GD.

Assumption 3.2. Suppose the data and labels in D are
bounded, i.e. ‖x‖ ≤ c and |y| ≤ c for some c < ∞. And
suppose the activation function σ+ and its first and second
derivatives are bounded.
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The boundedness assumptions are typical and (almost) al-
ways required in the theoretical literature on deep learning
(e.g., Song et al., 2018; Araújo et al., 2019). Relaxing the
boundedness assumptions could be possible but it brings
more technical issues while without bringing additional in-
sights. In practice, given that the size of observed data is
finite, we can always assume that the data and weights are
properly truncated and thus bounded. Actually, for image
data, they are already bounded, and the trainable weights
are usually initialized from a truncated distribution.

Proposition 3.3. (Discrepancy between the wide and thin
networks trained by stochastic gradient descent) Under as-
sumption 3.2 and 3.1, we have

D[Sm
GD, B

M
GD]

= Op

(
n exp c1(exp(c2n))

(
1√
m

+
1√
M

+
√
η

))
,

where c1, c2 > 0 are some positive constant, Op(·) denotes
the big O notation in probability, and the randomness is
w.r.t. the random initialization of gradient descent, and the
random mini-batches of stochastic gradient descent.

The proof of this bound is based on the proof of Theorem 5.5
in Araújo et al. (2019); see Appendix for details. Because
the m is small and n is large for deep thin networks, the
bound above is dominated by n exp(c1 exp(c2n))m−1/2,
which decreases with the width m, but grows double expo-
nentially with the depth n. The poor dependency on n is
both due to the critical gradient vanish/exploding problem
when backpropagating through deep networks and the math-
ematical challenge for analyzing deep networks under the
mean field framework.

Breaking the Curse of Depth with Layerwise Imitation
Now we show how our layerwise imitation algorithm can
help training deep thin networks.

Assumption 3.4. Denote by Sm
WIN the result of mimick-

ing BM
GD following Algorithm 1. When training Sm

WIN,
we assume the parameters of Sm

WIN in each layer are ini-
tialized by randomly sampling m neurons from the the
corresponding layer of the wide network BM

GD. Define
BM

GD,[i:n] = BM
n ◦ · · ·BM

i .

Theorem 3.5. (Main Result) Assume all the layers ofBM
GD

are Lipschitz maps and all its parameters are bounded by
some constant. Under Assumption 3.1, 3.2, 3.4, we have

D[Sm
WIN, B

M
GD] = Op

(
`Bn√
m

)
,

where `B = maxi∈[n]

∥∥∥BM
GD,[i+1:n]

∥∥∥
Lip

and Op(·) denotes

the big O notation in probability, and the randomness is

w.r.t. the random initialization of gradient descent, and the
random mini-batches of stochastic gradient descent.

The bound above depends on linearly on n and the maxi-
mum Lipschitz constant `B . Because it is expected that the
wide network BM

GD is easy to train and can closely approxi-
mate the underlying true map, the Lipschitz constant `B can
be mostly depended on the true map in practice (rather than
how deep BM

GD is) and does not explode rapidly with n like
the bound on D[Sm

GD, B
M
GD]. An important future work is to

develop rigours bounds for `B .

4. Related Work
Our method is deeply inspired by MobileBERT (Sun et al.,
2020), which is a highly compact BERT variant designed
for mobile applications with extreme memory and latency
constraints. In its architecture design, the original BERT
building block is replaced with a thin bottleneck structure.
To train it, MobileBERT is first initialized by imitating the
outputs of a well trained large BERT from layer to layer and
then fine tuned. The main difference between MobileBERT
and the proposed method is that in MobileBERT linear trans-
formations are introduced with the bottleneck structures so
they are part of the model and cannot be cancelled out by
merging as in our method. In addition, the method here is
generic and can be applied to any model training.

FitNets (Romero et al., 2014) also aim at training deep thin
networks. In this work, a deep student network is first par-
tially initialized by matching the output from its some cho-
sen layer (guided layer) to the output from another chosen
layer (hint layer) of a shallow teacher network. The chosen
guided and hint layers do not have to be at the same depth
since the teacher network is chosen to be much shallower
than the student network. After the partial initialization, the
whole student network is trained via knowledge distillation.
The matching is implemented by minimizing a parameter-
ized mean squared loss in which a parameterized regressor
is applied to project the student’s output such that the size
of its output can match the size of the teacher’s output. The
major difference between FitNets and our method is that
the introduced regressor in FitNets is not part of the student
network architecture. It is discarded after training.

This kind of teacher-student paradigm can be traced back
to knowledge distillation and its variants (Ba & Caruana,
2014; Hinton et al., 2015). The basic idea in knowledge
distillation is to use both true labels and the outputs from a
cumbersome model to train a small model. In the literature,
the cumbersome model is usually referred to as teacher, and
the small model student. The loss based on the teacher’s
outputs, that is, the so-called distillation loss, is linearly
combined with the true labels based training loss as the fi-
nal objective to train the student model. In the variants of
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knowledge distillation, the intermediate outputs from the
teacher model are further used to construct the distillation
loss which is parameterized as in FitNets. Unlike knowledge
distillation, our method uses a teacher model to initialize a
student model rather than constructing a new training objec-
tive. After the initialization, the student model is trained as
usual. Based on such a special initialization manner, we are
able to establish a theoretic guarantee for our approach.

Our theory is built upon the mean field analysis for neural
networks, which is firstly proposed by Song et al. (2018)
to study two-layer neural networks and then generalized to
deep networks by Araújo et al. (2019). The general idea of
mean field analysis is to think of the network as an inter-
acting particle system, and then study how the behavior of
the network converges to its limiting case (as the number of
neurons increases). It is shown by Araújo et al. (2019) that
as the depth of a network increases, the stochasticity of the
system increases at a double exponential scale with respect
to its depth. This characterizes the problem of gradient ex-
plosion or vanish. On the other hand, they also establish
the results which suggest that increasing the width of the
network helps the propagation of gradient, as it reduces the
stochasticity of the system. In our method, we first train a
wide network that helps the propagation of gradients, and
then force the thin network to mimic the wide network from
layer to layer. Consequently, the negative influence of depth
decreases from double exponential to linear.

5. Experiments
We conduct empirical evaluations by training state of the arts
neural network models for image classification and natural
language modeling. Our baselines include vanilla training
methods for these models as shown in the literature as well
as knowledge distillation. In addition, in what follows,
following the convention in the literature and for the sake of
convenience, we refer to the wide model in our method as
teacher, and the thin model as student.

5.1. Image Classification

We train the widely used ResNet models (He et al., 2016)
on the ImageNet dataset (Russakovsky et al., 2015) using
our apporach and baseline methods.

5.1.1. SETUP

Models. ResNet is build on a list of bottleneck layers (He
et al., 2016). Each bottleneck layer consists of three mod-
ules: a projection 1x1 convolution to reduce the channel size
to 1/4 of the input channels, a regular 3x3 convolution, and a
final expansion 1x1 convolution to recover the channel size.
The wide teacher model used in our method is constructed
by increasing the channel size of the 3x3 convolution as in

Table 1. Model complexity comparison between the teacher and
student models.

Teacher Student
FLOPs Params FLOPs Params

ResNet50 11B 68M 4.1B 26M
ResNet50-1/2 2.9B 18M 1.1B 6.9M
ResNet50-1/4 0.75B 4.7M 0.29B 2.0M

ResNet101 23B 127M 7.9B 45M
ResNet101-1/2 5.8B 32M 2.0B 12M
ResNet101-1/4 1.5B 8.3M 0.53B 3.2M

(Zagoruyko & Komodakis, 2016), and the remaining two
1x1 convolutions simply keep the increased channel size
without projection or expansion.

The models that we evaluate include ResNet50, ResNet101
and their reduced versions: ResNet50-1/2, ResNet50-1/4,
ResNet101-1/2 and ResNet101-1/4. For each model’s re-
duced version, we apply the same reducing factor to all
layers in that model. For example, ResNet50-1/2 means
that the channel size of every layer in this model is half the
channel size of the corresponding layer in ResNet50. The
complexity numbers including FLOPs and parameter sizes
for different models are collected in Table 1 for reference.

Vanilla training setting. We follow the training settings
in (He et al., 2016). Each ResNet variant is trained with 90
epochs using SGD with momentum 0.9, batch norm decay
0.9, weight decay 1e-4, and batch size 256. The learning
rate is linearly increased from 0 to 0.1 in the first 5 epochs,
and then reduced by 10x at epoch 30, 60 and 80.

WIN setting. We naturally split ResNet into four big
chunks or building blocks with respect to the resolu-
tion change, that is, with separations at conv2 x, con3 x,
conv4 x, and con5 x. In the first stage of our method, the
teacher network is constructed as 4x larger (in terms of the
channel size of the 3x3 convolutions) than the corresponding
student network, and trained with the vanilla setting. In the
second stage, for training each building block in the student
network, we run 10 epochs by minimizing the mean squared
error between the output of the teacher and student network.
The optimizer is SGD with momentum 0.9. The learning
rate decayed from 0.1 to 0 under the cosine decay rule. After
that, we fine tune the student network for 50 epochs by min-
imizing the Kullback-Leibler divergence from the teacher
logits to student logits, with the learning rate decayed from
0.01 to 0 under the cosine decay rule. Note that the total
number of training epochs here is 90, which is the same as
in the vanilla training. We do not apply weight decay in
the last two stages since the compact architecture of a thin
network has already implied a strong regularization.
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Table 2. ImageNet top-1 accuracy (%) by the models trained by
the vanilla setting, knowledge distillation (KD), and our method.

Model Vanilla KD WIN

ResNet50 76.2 76.8 78.4
ResNet50-1/2 72.2 72.9 74.6
ResNet50-1/4 64.2 65.1 66.4

ResNet101 77.5 78.0 79.1
ResNet101-1/2 74.6 75.5 76.8
ResNet101-1/4 68.1 69.1 69.7

Table 3. ImageNet top-1 accuracy (%) by different size teachers
and their students trained with our method.

2x 4x
Teacher Student Teacher Student

ResNet50 78.4 78.4 78.6 78.2
ResNet50-1/2 76.0 74.6 77.6 75.0
ResNet50-1/4 70.5 66.4 74.4 67.5

5.1.2. RESULTS

The evaluation results are collected in Table 2. The numbers
listed in the table cells are the top-1 accuracy on the Ima-
geNet dataset from the models trained by different methods:
our method, the vanilla training, and knowledge distillation.
The results show that our method significantly outperforms
the baseline methods. Moreover, we would like to point out
that ResNet50 trained by our method achieves an accuracy
of 78.4% which is even higher than the accuracy of 77.5%
from ResNet101 trained by the vanilla approach.

We conduct an ablation study to demonstrate the effect of
the teacher model size. The results are shown in Table 3.
For ResNet50, the 2x teacher performs almost equally well
as the 4x teacher. The same observation holds for their
students. However, for the thinner models ResNet50-1/2
and ResNet50-1/4, the models trained by the 2x teacher are
worse than the models trained by the 4x teacher. We do not
try an even larger teacher such as the 6x one because of the
computational cost.

5.2. Language Modeling

In this task, we train BERT (Devlin et al., 2019), the state-
of-the-art pre-training language model, using our method as
well as the baseline methods as in the image classification
tasks. Following Devlin et al. (2019), we firstly pre-train the
BERT model using BooksCorpus (Zhu et al., 2015) and the
Wikipedia corpus. Then we fine-tune this pre-trained model
and evaluate on the Stanford Question Answering Dataset
(SQuAD) 1.1 and 2.0 (Rajpurkar et al., 2016).
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Figure 2. Adding linear transformation pairs into a thin BERT
model. Left panel: a pair of linear transformation are inserted
between any two adjacent transformer blocks. Right Panel: the
linear transformation right next to the multi-head attention module
(see the dashed box in the left panel) is merged before the training
in the second stage, i.e., the stage of narrow learning, while the
remaining linear transformation will be merged after fine-tuning
when the whole training procedure is done. Thus, finally, the
trained model has the exact same network architecture and number
of parameters as the original thin model.

5.2.1. SETUP

Models. The model that we are going to train here is
BERTBASE. It takes token embeddings as its inputs and
contains 12 transformer blocks (Vaswani et al., 2017). Each
transformer block consists of one multi-head self-attention
module and one feed forward network module, which are
followed by layer normalization and connected by skip con-
nections respectively. On top of the transformer blocks,
there is a classifier layer to make task-specific predictions.

The teacher model for our method is constructed by simply
doubling the hidden size of every transformer block and also
the width of every feed forward module in BERTBASE. We
keep the size of the teacher model’s embedding the same
as BERTBASE’s and add a linear transformation right after
teacher model’s embedding to match its hidden size. Thus,
the student model described below and the wider teacher
model can share the same token embeddings as their inputs.

The way to construct the student model is illustrated in Fig-
ure 2. Specifically, taking the canonical BERTBASE model,
we insert a pair of linear transformations between any two
adjacent transformer blocks. We also put one extra linear
layer over the last transformer block of BERTBASE. The
output size of the lower linear transformation is designed
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Table 4. The results on the SQuAD dev datasets from the BERT models trained by our method, vanilla training and knowledge distillation
(KD). †marks our runs with the official code.

SQuAD 1.1 SQuAD 2.0
Model Exact Match F1 Exact Match F1

BERTBASE (Devlin et al., 2019) 80.8 88.5 74.2† 77.1†
BERTLARGE (Devlin et al., 2019) 84.1 90.9 78.7 81.9

Teacher 85.5 91.9 80.3 83.2

BERTBASE (Vanilla) 83.6 90.5 77.9 80.4
BERTBASE (KD) 84.2 90.8 78.9 81.4
BERTBASE (WIN) 85.5 91.8 79.6 82.5

to be the same as the output size of teacher model’s trans-
former block, i.e., the teacher model’s hidden size. To
more efficiently train this student model, before the training,
we merge the upper linear transformation into the fully-
connected layers inside the multi-head attention module.
After training, we can further merge the remaining lower
linear transformation into the multi-head attention module.
Similarly, we can also merge the extra linear transformation
over the last transformer block into the final classifier layer.
Hence, the final student model has the exact same network
architecture and number of parameters as BERTBASE.

Vanilla training setting. There are two training phrases
for the BERT models: pre-training and fine-tuning. In the
pre-training phrase, we train the model on the masked lan-
guage modeling (MLM) and next sentence prediction (NSP)
tasks using BookCorpus and Wikipedia corpus for 1 million
steps with batch size of 512 and sequence length of 512. We
use the Adam optimizer with the learning rate of 1e-4, β1
= 0.9, β2 = 0.999, weight decay of 0.01. The learning rate
is linearly warmed up in the first 10,000 steps, and then lin-
early decayed. After pre-training, we enter the fine-tuning
phrase. In this phrase, we fine tune all the parameters using
the labeled data for a specific downstream task.

WIN setting. In the first stage of our method, we train
the 2x wider teacher model using the vanilla method. In
the second stage, we first copy the teacher model’s token
embeddings to the student model, and then progressively
warm up the student’s transformer blocks from layer to
layer. In each step of this stage, we minimize the mean
squared error between the output of the linear transformation
after the student’s transformer block, and the output of the
teacher’s corresponding transformer block. We train the first
transformer block for 10k steps, the second for 20k steps
until the 12th for 120K steps. Note that BERTBASE has 12
transformer block layers in total. Now we enter the fine-
tuning stage. We follow the same vanilla training setting to
pre-train this warmed-up model on MLM and NSP tasks.
Finally, we fine tune the model for downstream tasks (no

Table 5. The results on the SQuAD 1.1 dev dataset from the
BERTBASE-1/2 models trained by our method and baselines.

Model Exact Match F1

BERTBASE-1/2 (Vanilla) 78.9 86.3
BERTBASE-1/2 (KD) 80.1 87.4
BERTBASE-1/2 (WIN) 81.4 88.6

knowledge distillation is employed here).

5.2.2. RESULTS

We evaluate the models using the SQuAD 1.1 and 2.0
datasets. Results are shown in Table 4. Note that BERTBASE
trained using our vanilla setting here outperforms BERTBASE
(Devlin et al., 2019) by a large margin. The reason for the
improvement is that we pre-train the model with sequence
length of 512 for all steps, while Devlin et al. (2019) pre-
train the model with sequence length of 128 for 90% of the
steps and sequence of 512 for the rest 10% steps. The better
training result establishes a stronger baseline. BERTBASE
trained by our method further beats this stronger baseline
by 1.9 exact match score and 1.3 F1 score on SQuAD 1.1,
and 1.7 exact match score and 2.1 F1 score on SQuAD 2.0.
Actually, BERTBASE trained by our method is comparable
with BERTLARGE by vanilla training.

We also run experiments with a thinner student model called
BERTBASE-1/2 which halves the hidden size and width of
the feed-forward network of BERTBASE in every layer. As
shown in Table 5, BERTBASE-1/2 trained by our method
significantly surpasses the same model trained by the vanilla
method and knowledge distillation.

In addition, we conduct an ablation study to demonstrate the
effect of the timing for merging linear transformations. In
our approach, we suggest to merge all adjacent linear layers
after the fine-tuning stage when the whole training proce-
dure is done. One may notice that, alternatively, we can
merge the linear layers right after the narrow learning stage.
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Table 6. The results on the SQuAD 1.1 dev dataset, comparing
whether to merge linear transformations after the fine-tuning phrase
(MAF) or pre-training phrase (MAP) in our method.

Model Exact Match F1

BERTBASE (MAF) 85.5 91.8
BERTBASE (MAP) 85.1 91.5

BERTBASE-1/2 (MAF) 81.4 88.6
BERTBASE-1/2 (MAP) 81.4 88.5

So this will be before the fine-tuning stage. By using either
of these two merging methods, the network structure and
model size are the same. We compare these two merging
methods and present results in Table 6. From the compari-
son, merging after fine-tuning seems to have slightly better
results. The improvement are minor but consistent.

6. Conclusion
We proposed a general method for efficiently training deep
thin networks. Our method can be simply described as “go
wide, then narrow”. A theoretic guarantee is developed for
our method by using mean field analysis for neural networks.
Empirical results on training image classification and lan-
guage processing models demonstrate the advantage of our
method over these two baseline methods: training deep thin
networks from scratch using backpropagation as in the liter-
ature, and training with the state of the art knowledge dis-
tillation method. Our method is complimentary to existing
model compression techniques including quantization and
knowledge distillation. One can combine our method with
these techniques to obtain an even better compact model.
For the future work, we are interested at searching for a
different initialization or optimization method which is not
teacher based while still enjoying a similar theoretic guar-
antee. If we can make it, we will be able to save the cost of
training a large teacher model.
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A. Proof of Proposition 3.3
This result directly follows Theorem 5.5 in Araújo et al. (2019). Let B∞GD denote the infinitely wide network trained by
gradient descent in the limit of M →∞. By the results in Theorem 5.5 of Araújo et al. (2019), we have

D[Sm
GD, B

∞
GD] = Op

(
n exp(c1 exp(c2n))

(
1√
m

+
√
η

))
,

where we explicitly give the dependency of constant C5.5 in Araújo et al. (2019) on the depth n, because C5.5 =
O(exp(c1 × CB.16)), where CB.16 = O(exp(c2n)) and c1 is some positive constant. See Lemma 12.2 in Araújo et al.
(2019) for details.

Similarly,

D[Sm
GD, B

∞
GD] = Op

(
n exp(c1 exp(c2n))

(
1√
M

+
√
η

))
.

Combining this, we have

D[BM
GD, B

M
GD] ≤ D[Sm

GD, B
∞
GD] + D[BM

GD, B
∞
GD]

= Op

(
n exp(c1 exp(c2n))

(
1√
m

+
1√
M

+
√
η

))
.

B. Proof of Theorem 3.5
Assumption 3.4 Denote by Sm

WIN the result of mimicking BM
GD following Algorithm 1. When training Sm

WIN, we assume
the parameters of Sm

WIN in each layer are initialized by randomly sampling m neurons from the the corresponding layer of
the wide network BM

GD. Define BM
GD,[i:n] = BM

n ◦ · · ·BM
i .

Theorem 3.5 Assume all the layers of BM
GD are Lipschitz maps and all its parameters are bounded by some constant.

Under the assumptions 3.1, 3.2, 3.4, we have

D[Sm
WIN, B

M
GD] = Op

(
`Bn√
m

)
,

where `B = maxi∈[n]

∥∥∥BM
GD,[i+1:n]

∥∥∥
Lip

and Op(·) denotes the big O notation in probability, and the randomness is w.r.t.

the random initialization of gradient descent, and the random mini-batches of stochastic gradient descent.

Proof. To simply the notation, we denote BM
GD by BM and Sm

WIN by Sm in the proof. We have

BM (x) = (BM
n ◦BM

n−1 ◦ ... ◦BM
1 )(x)

Sm(x) =
(
Sm
n ◦ Sm

n−1 ◦ ... ◦ Sm
1

)
(x).

We define
BM

[k1:k2]
(z) = (BM

k2
◦BM

k2−1 ◦ ... ◦B
M
k1

)(z),

where z is the input of BM
[k1:k2]

. Define

F0(x) =
(
BM

n ◦ ... ◦BM
3 ◦BM

2 ◦BM
1

)
(x)

F1(x) =
(
BM

n ◦ ... ◦BM
3 ◦BM

2 ◦ Sm
1

)
(x)

F2(x) =
(
BM

n ◦ ... ◦BM
3 ◦ Sm

2 ◦ Sm
1

)
(x)

· · ·
Fn(x) = (Sm

n ◦ ... ◦ Sm
3 ◦ Sm

2 ◦ Sm
1 ) (x),

following which we have F0 = BM and Fn = Sm, and hence

D[Sm, BM ] = D[Fn, F0] ≤
n∑

k=1

D[Fk, Fk−1].
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Define `i−1 :=
∥∥∥BM

[i:n]

∥∥∥
Lip

for i ∈ [n] and `n = 1. Note that

D[F1, F0] =

√
Ex∼D

[(
BM

[2:n] ◦B
M
1 (x)−BM

[2:n] ◦ S
m
1 (x)

)2]
≤ `1

√
Ex∼D

[(
BM

1 (x)− Sm
1 (x)

)2]

By the assumption that we initialize Sm
1 (x) by randomly sampling neurons from BM

1 (x), we have, with high probability,√
Ex∼D

[(
BM

1 (x)− Sm
1 (x)

)2] ≤ c√
m
,

where c is constant depending on the bounds of the parameters of BM . Therefore,

D[F1, F0] = Op

(
`1√
m

)
.

Similarly, we have

D[Fk, Fk−1] = O
(
`k√
m

)
, ∀k = 2, . . . , n.

Combine all the results, we have

D[BM , Sm] = O
(
nmaxk∈[n] `k√

m

)
.

Remark Since the wide network BM
GD is observed to be easy to train, it is expected that it can closely approximate the

underlying true function and behaves nicely, hence yielding a small `B . An important future direction is to develop rigorous
theoretical bounds for controlling `B .


