
EMaQ: Expected-Max Q-Learning Operator
for Simple Yet Effective Offline and Online RL

Seyed Kamyar Seyed Ghasemipour * 1 2

Abstract

Off-policy reinforcement learning (RL) holds the
promise of sample-efficient learning of decision-
making policies by leveraging past experience.
However, in the offline RL setting – where a fixed
collection of interactions are provided and no fur-
ther interactions are allowed – it has been shown
that standard off-policy RL methods can signifi-
cantly underperform. In this work, we closely in-
vestigate an important simplification of BCQ (Fu-
jimoto et al., 2018a) – a prior approach for offline
RL – removing a heuristic design choice. Impor-
tantly, in contrast to their original theoretical con-
siderations, we derive this simplified algorithm
through the introduction of a novel backup oper-
ator, Expected-Max Q-Learning (EMaQ), which
is more closely related to the resulting practi-
cal algorithm. Specifically, in addition to the
distribution support, EMaQ explicitly considers
the number of samples and the proposal distri-
bution, allowing us to derive new sub-optimality
bounds. In the offline RL setting – the main focus
of this work – EMaQ matches and outperforms
prior state-of-the-art in the D4RL benchmarks (Fu
et al., 2020a). In the online RL setting, we demon-
strate that EMaQ is competitive with Soft Actor
Critic (SAC). The key contributions of our em-
pirical findings are demonstrating the importance
of careful generative model design for estimat-
ing behavior policies, and an intuitive notion of
complexity for offline RL problems. With its sim-
ple interpretation and fewer moving parts, such
as no explicit function approximator representing
the policy, EMaQ serves as a strong yet easy to
implement baseline for future work.

*Author goes by Kamyar. Work done while author was an
intern at Google. 1Department of Computer Science, University
of Toronto, Toronto, Canada 2Vector Institute, Toronto, Canada
3Google Research, Mountain View, CA, USA. Correspondence to:
Seyed Kamyar Seyed Ghasemipour <kamyar@cs.toronto.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Dale Schuurmans 3 Shixiang Shane Gu 3

1. Introduction
Leveraging past interactions in order to improve a decision-
making process is the hallmark goal of off-policy reinforce-
ment learning (RL) (Precup et al., 2001; Degris et al., 2012).
Effectively learning from past experiences can significantly
reduce the amount of online interaction required to learn a
good policy, and is a particularly crucial ingredient in set-
tings where interactions are costly or safety is of great impor-
tance, such as robotics (Gu et al., 2017; Kalashnikov et al.,
2018a), health (Murphy et al., 2001), dialog agents (Jaques
et al., 2019), and education (Mandel et al., 2014). In recent
years, with neural networks taking a more central role in
the RL literature, there have been significant advances in
developing off-policy RL algorithms for the function approx-
imator setting, where policies and value functions are repre-
sented by neural networks (Mnih et al., 2015; Lillicrap et al.,
2015; Gu et al., 2016b;a; Haarnoja et al., 2018; Fujimoto
et al., 2018b). Such algorithms, while off-policy in nature,
are typically trained in an online setting where algorithm
updates are interleaved with additional online interactions.
However, in purely offline RL settings, where a dataset of
interactions are provided ahead of time and no additional in-
teractions are allowed, the performance of these algorithms
degrades drastically (Fujimoto et al., 2018a; Jaques et al.,
2019).

A number of recent methods have been developed to address
this shortcoming of off-policy RL algorithms. A particular
class of algorithms for offline RL that have enjoyed recent
success are those based on dynamic programming and value
estimation (Fujimoto et al., 2018a; Jaques et al., 2019; Ku-
mar et al., 2019; Wu et al., 2019; Levine et al., 2020). Most
proposed algorithms are designed with a key intuition that
it is desirable to prevent policies from deviating too much
from the provided collection of interactions. By moving far
from the actions taken in the offline data, any subsequently
learned policies or value functions may not generalize well
and lead to the belief that certain actions will lead to better
outcomes than they actually would. Furthermore, due to
the dynamics of the MDP, taking out-of-distribution actions
may lead to states not covered in the offline data, creating
a snowball effect (Ross et al., 2011). In order to prevent
learned policies from straying from the offline data, various

mailto:kamyar@cs.toronto.edu

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

methods have been introduced for regularizing the policy
towards a base behavior policy (e.g. through a divergence
penalty (Jaques et al., 2019; Wu et al., 2019; Kumar et al.,
2019) or clipping actions (Fujimoto et al., 2018a)).

Taking the above intuitions into consideration, in this work
we investigate a simplifcation of the BCQ algorithm (Fu-
jimoto et al., 2018a) (a notable prior work in offline RL),
which removes a heuristic design choice In contrast to the
theoretical considerations in the original work, we derive
this simplified algorithm in a theoretical setup that more
closely reflects the resulting algorithm. We introduce the
Expected-Max Q-Learning (EMaQ) operator, which inter-
polates between the standard Q-function evaluation and
Q-learning backup operators. The EMaQ operator makes
explicit the relation between the proposal distribution and
number of samples used, and leads to sub-optimality bounds
which hint at a novel notion of complexity for offline RL
problems. In its practical implementation for the continuous
control and function approximator setting, EMaQ has only
two standard components (an estimate of the base behavior
policy, and Q functions) and does not explicitly represent
a policy, requiring fitting one less function approximator
than prior approaches (Fujimoto et al., 2018a; Kumar et al.,
2019; Wu et al., 2019).

In online RL, EMaQ is competitive with Soft Actor Critic
(SAC) (Haarnoja et al., 2018) and surpasses SAC in the
deployment-efficient setting (Matsushima et al., 2020). In
the offline RL setting – the main focus of this work –
EMaQ matches and outperforms prior state-of-the-art in
the D4RL (Fu et al., 2020a) benchmark tasks. Through our
explorations with EMaQ we make two intriguing findings.
First, the reduction in moving parts brings our focus to the
quality of behavior policy used, and our results demonstrate
the significant impact of careful considerations in model-
ing the behavior policy that generate the offline interaction
datasets. Second, relating to the introduced notion of com-
plexity, in a diverse array of benchmark settings considered
in this work we observe that surprisingly little modification
to a base behavior policy is necessary to obtain a performant
policy. The simplicity, intuitive interpretation, and strong
empirical performance of EMaQ make it a great test-bed for
further examination and theoretical analyses, and an easy to
implement yet strong baseline for future work in offline RL.

2. Background
Throughout this work, we represent Markov Decision Pro-
cess (MDP) as M = hS, A, r, P, γi, with state space S,
action space A, reward function r : S ×A → R, transition
dynamics P , and discount γ. In offline RL, we assume
access to a dataset of interactions with the MDP, which we

0will represent as collection of tuples D = {(s, a, s , r, t)}N ,
where t is an indicator variable that is set to True when s0

is a terminal state. We will use µ to represent the behavior
policy used to collect D, and depending on the context, we
will overload this notation and use µ to represent an estimate
of the true behavior policy. For a given policy π, we will use
the notation dπ(s), dπ (s, a) to represent the state-visitation
and state-action visitation distributions respectively.

As alluded to above, a significant challenge of offline RL
methods is the problem of distribution shift. At training-
time, there is no distribution shift in states as a fixed dataset
D is used for training, and the policy and value functions
are never evaluated on states outside of dµ(s). However,
a very significant challenge is the problem of distribution
shift in actions. Consider the Bellman backup for obtaining
the Q-function of a given policy π, h i

0TπQ(s, a) := r(s, a)+ γ · Es0 Ea0∼π(a0|s0) Q(s , a 0) (1)

The target Q-values on the right hand side depend on action
samples a0 ∼ π(a0|s0). If the sampled actions are outside
the distribution of actions observed in D, the estimated Q-
values can be erroneous leading to incorrect target values.
The effects of action distribution shift are further exacer-
bated in actor-critic algorithms; out of distribution (OOD)
actions may incorrectly be assigned high values, in which
case the policy will be updated to further sample OOD ac-
tions, leading to a hazardous loop.

An important approach – with particular recent interest – to
mitigate the effects of both kinds of distributional shift is to
devise methods for constraining learned policies to remain
close to the behavior policy µ: dπ(s, a) ≈ dµ(s, a). Below,
we set the stage by reviewing a closely related prior work in
offline RL.

Batch Constrained Q-Learning (BCQ) In BCQ (Fuji-
moto et al., 2018a) the aim is to constrain a Q-Learning
based algorithm such that it will be effective in the offline
RL continuous control setting with function approximators.
To do so, the trained policy is parameterized as:

πθ(a|s) = arg max Qψ(s, ai + ξθ(s, ai)) (2)
ai+ξθ (s,ai)

for ai ∼ µ(a|s), i = 1, ..., N � �
0 0 0 y(s, a, s , r, t) = r + (1 − t) · γ max Qψ0 (s , ai) (3)

0ai

0for ai ∼ πθ(a 0|s 0), i = 1, ..., N
20LQ = (y(s, a, s , r, t) − Qψ(s, a)) (4)

where y(s, a) are target Q-values, Qψ is learned with the
objective in equation 4, µ(a|s) is an estimate of the base be-
havior policy (a generative model trained using the dataset
D), and ξθ is an action perturbation model trained to modify
actions towards more optimal ones. Crucially, each com-
ponent of the output of ξθ is bounded to the range [−Φ, Φ].

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

The key intuition is that because ai are sampled from an
estimate of the behavior policy, they should hopefully be
within the distribution observed in D. Thus, since the per-
turbation model is constrained by the hyperparameter Φ,
the perturbed actions should not be too far from actions
in the dataset. This should mitigate errors in value esti-
mates, which should in turn lead to better updates for the
perturbation model.

3. Expected-Max Q-Learning
We make the observation that, in the BCQ algorithm, if
we could obtain a good estimate µ(a|s) and sufficiently
increased the number of samples N , there would be no need
for the perturbation network ξθ – a heuristic design choice
for constraining policies. This simplification would remove
one additional function approximator and the associated
hyperparameter Φ. This is the driving intuition of our work,
which we frame theoretically in a manner that encapsulates
the key components: the behavior policy µ and number
of samples N . Below, we introduce the Expected-Max Q
operator, illustrate its key properties for tabular MDPs, and
obtain sub-optimality bounds which can serve as a novel
measure of complexity of an offline RL problem for future
theoretical work. We then provide an extension to the offline
RL setting with function approximators, and then discuss the
generative model used to approximate the behavior policy.

3.1. Expected-Max Q Operator

Let µ(a|s) be an arbitrary behavior policy, and let {ai}N ∼
µ(a|s) denote sampling N iid actions from µ(a|s). Let
Q : S×A → R be an arbitrary function. For a given choice
of N , we define the Expected-Max Q-Learning operator
(EMaQ) T N Q as follows: µ

EMaQ with µ, N (5)

0TµQ(s, a) := r(s, a) + γ · Es0 Ea0∼µ(·|s0) Q(s , a 0)

Q-Learning (7)h i
0

0T ∗ Q(s, a) := r(s, a) + γ · Es max Q(s , a 0)
a0

This operator provides a natural interpolant between the
on-policy backup for µ (Eq. 6) when N = 1, and the Q-
learning backup (Eq. 7) as N → ∞ (if µ(a|s) has full
support over A). We formalize these observations more
precisely below when we articulate the key properties in the
tabular MDP setting. We discuss how this relates to existing
modified backup operators in the related work.

3.2. Dynamic Programming Properties in the Tabular
MDP Setting

To understand any novel backup operator it is useful to first
characterize its key dynamic programming properties in the
tabular MDP setting. First, we establish that EMaQ retains
essential contraction and fixed-point existence properties,
regardless of the choice of N ∈ N. In the interest of space,
all missing proofs can be found in Appendix A.

Theorem 3.1. In the tabular setting, for any N ∈ N, T N
µ

is a contraction operator in the L∞ norm. Hence, with
repeated applications of the T N , any initial Q functionµ
converges to a unique fixed point.

Theorem 3.2. Let QN denote the unique fixed pointµ

achieved in Theorem 3.1, and let πN (a|s) denote the policy µ

that samples N actions from µ(a|s), {ai}N , and chooses
the action with the maximum QN . Then QN is the Q-value µ µ

function corresponding to πN (a|s).µ

Proof. (Theorem 3.2) Rearranging the terms in equation 5
we have,

0T N QN (s, a) = r(s, a) + γ · Es0 E 0∼π 0|s0)[Q
N (s , a 0)]µ µ a (a µN

µ

µ

Since by definition QN is the unique fixed point of T N , weµ µ
have our result.

From these results we can then rigorously establish the
interpolation properties of the EMaQ family.

Theorem 3.3. Let π∗ denote the optimal policy from theµ
class of policies whose actions are restricted to lie within
the support of the policy µ(a|s). Let Q∗ denote the Q-µ
value function corresponding to π∗ . Furthermore, let Qµµ
denote the Q-value function of the policy µ(a|s). LetR
µ ∗(s) := Support(π∗ (a|s)) µ(a|s) denote the probability

�
of optimal actions under µ(a|s). Under the assumption that �
infs µ ∗(s) > 0 and r(s, a) is bounded, we have that, 0 , a 0)T N Q(s, a) := r(s, a) + γ · Es0 E{aµ 0

i}N ∼µ(·|s0) max Q(s
a0∈{a0 }N

Q1 = Qµ and lim QN = Q ∗
µ µ µ

N→∞

i

Q-Evaluation for µ (6)h i

That is, Theorem 3.3 shows that, given a base behavior
policy µ(a|s), the choice of N makes the EMaQ operator
interpolate between evaluating the Q-value of µ on the one
hand, and learning the optimal Q-value function on the other
(optimal subject to the support constraint discussed in Theo-
rem 3.3). In the special case where µ(a|s) has full support
over the action space A, EMaQ interpolates between the
standard Q-Evaluation and Q-Learning operators in rein-
forcement learning.

Intuitively, as we increase N , the fixed-points QN shouldµ

correspond to increasingly better policies πN (a|s). We µ
show that this is indeed the case.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Theorem 3.4. For all N, M ∈ N, where N > M , we have
that ∀s ∈ S, ∀a ∈ Support(µ(·|s)), QN (s, a) ≥ QM (s, a).µ µ

Hence, πN (a|s) is at least as good of a policy as πM (a|s).µ µ

It is also valuable to obtain a sense of how suboptimal
πN (a|s) may be with respect to the optimal policy sup-µ
ported by the policy µ(a|s).
Theorem 3.5. For s ∈ S let,

Δ(s, N) = max Q ∗ (s, a)µ
a∈Support(µ(·|s))

− E{ai}N ∼µ(·|s)[max Qµ
∗ (s, b)]

b∈{ai }N

The suboptimality of QN can be upperbounded as follows,µ h i
QN
µ − Q ∗

µ ≤
γ

max Es0 Δ(s 0, N) (8)∞ 1 − γ s,a

γ ≤ max Δ(s, N) (9)
1 − γ s

The same also holds when Q∗ is replaced with QN in the µ µ
definition of Δ.

The bounds in (9) capture the main intuitions about the
interplay between µ(a|s) and the choice of N . If for each
state, µ(a|s) places sufficient mass over the optimal actions,
N may not need to be excessively large for πN to be close µ
to π∗ . While we leave further theoretical investigations of µ
this sub-optimality bound for future work, our empirical
results in Section 5 demonstrate that the effective value of
N may be surprisingly small.

3.3. Offline RL Setting with Function Approximators

Typically, we are not provided with the policies that gener-
ated the provided trajectories. Hence, as a first step we fit
a generative model µ(a|s) to the (s, a) pairs in the offline
dataset, representing the mixture of policies that generated
this data (details below). Having obtained µ(a|s), we move
on to the EMaQ training procedure. Similar to prior works
(Fujimoto et al., 2018a; Kumar et al., 2019; Wu et al., 2019),
we train K Q functions (represented by MLPs) and make
use of an ensembling procedure to combat overestimation
bias (Hasselt, 2010; Van Hasselt et al., 2016; Fujimoto et al.,
2018b). Letting D represent the offline dataset, the objective
for the Q functions takes the following form: �� ��2

0L(θi) = E(s,a,s0,r,t)∼D Qθi (s, a) − y(s, a, s , r, t)

(10)� �
0 0 0 y(s, a, s , r, t) = r + (1 − t) · γ max Q0 (s , ai)ens0ai

(11)
0for ai ∼ µ(a 0|s 0), i = 1, ..., N

where t is the indicator variable 1[s0 is terminal], and Q0 ens
represents the ensemble of target Q functions. In short, we
sample N actions from µ(a0|s0) and take the value of the
best action to form the target. The algorithm box describing
the full training loop can be viewed in Algorithm 1.

Notably, we do not train an explicit neural network rep-
resenting the policy. At test-time, given a state s, we sam-
ple N actions from µ(a|s) and choose the action with the
maximum value under the ensemble of Q functions (see
Algorithm 2). While TestEnsemble can differ from the
Ensemble function used to compute target Q values1, in
this work we used the same ensembling procedure with
λ = 1.0 (with the exception of experiments in Section F).

3.4. Modeling Choice for the Base Behavior Policy

With the importance of a good behavior estimates accen-
tuated in our proposed method, we pay closer attention
to the choice of generative model used for representing µ.
Past works (Fujimoto et al., 2018a; Kumar et al., 2019; Wu
et al., 2019) have typically used Variational Auto-Encoders
(VAEs) (Kingma & Welling, 2013; Rezende et al., 2014) to
represent the behavior distribution µ(a|s). Unfortunately,
after training the aggregate posterior qagg(z) := Ex[q(z|x)]
of a VAE does not typically align well with its prior, making
it challenging to sample from in a manner that effectively
covers the distribution it was trained on2. We opt for using
an autoregressive architecture based on MADE (Germain
et al., 2015) as it allows for representing more expressive
distributions and enables more accurate sampling. Inspired
by recent works (Metz et al., 2017; Van de Wiele et al.,
2020), our generative model architecture also makes use of
discretization in each action dimension. Full details can be
found in Appendix B.

3.5. Characterizing Offline EMaQ

In contrast to BCQ which is an actor-critic method, EMaQ
is a Q-learning algorithm. In equation 11 we observe that
target values for the Q functions are computed by sampling
actions from the behavior policy estimate µ, and not a
separately learned policy that may sample out of distribu-
tion actions, as in BCQ. At test-time, our implicit policy is
also formed by choosing amongst actions sampled from µ.
Hence, if µ accurately estimates the behavior policy well,
we will never sample actions outside the support and will
not need to evaluate the value of such actions.

In the practical setting where µ may have inaccuracies, the

1some examples of alternative choices are mean, max, UCB-
style estimates, or simply using just one of the trained Q functions

2past works typically clip the range of the latent variable z and
adjust the weighting of the KL term in the evidence lower-bound
to ameliorate the situation

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

sample-max operation and the hyperparameter N act as
implicit regularizers. In Appendix J we draw the connection
between the EMaQ sample-max backup to softmax backups,
demonstrating that sample-max backups result in looser
regularization towards the base behavior policy than KL
constraints, and that empirically this can be beneficial. In
Appendix K we examine the regularization effect of sample-
max backups from a different perspective in a simplified
setup.

3.6. Online RL

EMaQ is also applicable to online RL setting. Combining
strong offline RL methods with good exploration policies
has the potential for producing highly sample-efficient on-
line RL algorithms. Concretely, we refer to online RL as
the setting where iteratively, a batch of M environment
steps with an exploration policy are interleaved with M RL
updates (Levine et al., 2020; Matsushima et al., 2020).

EMaQ is designed to remain within the support of the pro-
vided training distribution. This however, is problematic for
online RL which requires good exploration interleaved with
RL updates. To this end, to obtain an online/exploration
policy, we modify our autoregressive proposal distribution
µ(a|s) by dividing the logits of all softmaxes by τ > 1.
This has the effect of smoothing the µ(a|s) distribution,
and increasing the probability of sampling actions from the
lower-density regions and the boundaries of the support.
Given this online proposal distribution, a criteria is required
by which to choose amongst sampled actions. While there
exists a rich literature on how to design effective RL ex-
ploration policies (Weng, 2020), in this work we used a
simple UCB-style exploration criterion (Chen et al., 2017)
as follows: � �

explore(s, a) =meanQ {Qi(s, a)}K � �
+ β · std {Qi(s, a)}K (12)

Given N sampled actions from the modified proposal distri-
bution, we take the action with highest Qexplore.

4. Related Work
Offline RL Many recent methods for offline RL (Fuji-
moto et al., 2018a; Kumar et al., 2019; Wu et al., 2019;
Jaques et al., 2019), where no interactive data collection
is allowed during training, mostly rely on constraining the
learned policy to stay close to the data collection distribu-
tion. Fujimoto et al. (2018a) clip the maximum deviation
from actions sampled from a base behavior policy, while
Kumar et al. (2019); Wu et al. (2019); Jaques et al. (2019)
incorporate additional distributional penalties (such as KL
divergence or MMD) for regularizing learned policies to
remain close to the base policy. Our work is an instance of

this family of approaches for offline RL; however, arguably
our method is simpler as it does not involve learning an ad-
ditional proposal-modifying policy (Fujimoto et al., 2018a),
or modifying reward functions (Kumar et al., 2019; Jaques
et al., 2019).

Finding Maximizing Actions Naı̈vely, EMaQ can also
be seen as just performing approximate search for
maxa Q(s, a) in standard Q-learning operator, which has
been studied in various prior works for Q-learning in large
scale spaces (e.g. continuous). NAF (Gu et al., 2016b)
and ICNN (Amos et al., 2017) directly constrain the func-
tion family of Q-functions such that the optimization can
be closed-form or tractable. QT-OPT (Kalashnikov et al.,
2018b) makes use of two iterations of the Cross-Entropy
Method (Rubinstein & Kroese, 2013), while CAQL (Ryu
et al., 2019) uses Mixed-Integer Programming to find the
exact maximizing action while also introducing faster ap-
proximate alternatives. In (Van de Wiele et al., 2020) –
the most similar approach to our proposed method EMaQ –
throughout training a mixture of uniform and learned pro-
posal distributions are used to sample actions. The sampled
actions are then evaluated under the learned Q functions,
and the top K maximizing actions are distilled back into
the proposal distribution. In contrast to our work, these
works assume these are approximate maximization proce-
dures and do not provide extensive analysis for the resulting
TD operators. Our theoretical analysis on the family of TD
operators described by EMaQ can therefore provide new
perspectives on some of these highly successful Q-learning
algorithms (Kalashnikov et al., 2018a; Van de Wiele et al.,
2020).

Modified Backup Operators Many prior works study
modifications to standard backup operators to achieve dif-
ferent convergence properties for action-value functions or
their induced optimal policies. Ψ-learning (Rawlik et al.,
2013) proposes a modified operator that corresponds to pol-
icy iterations with KL-constrained updates (Kakade, 2002;
Peters et al., 2010; Schulman et al., 2015) where the action-
value function converges to negative infinity for all sub-
optimal actions. Similarly but distinctly, Fox et al. (2015);
Jaques et al. (2017); Haarnoja et al. (2018); Nachum et al.
(2017) study smoothed TD operators for a modified entropy-
or KL-regularized RL objective. Bellemare et al. (2016) de-
rives a family of consistent Bellman operators and shows
that they lead to increasing action gaps (Farahmand, 2011)
for more stable learning. However, most of these operators
have not been studied in offline learning. Our work adds a
novel family operators to this rich literature of operators for
RL, and provides strong empirical validation on how simple
modifications of operators can translate to effective offline
RL with function approximations.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Figure 1. Results for evaluating EMaQ on D4RL benchmark’s (Fu et al., 2020b) standard Mujoco domains, with N ∈
{5, 10, 25, 50, 100, 200, 400}. Values above µ(a|s) represent the result of evaluating the base behavior policies. Horizontal green
lines represent the reported performance of BEAR in the D4RL benchmark (apples to apples comparisons in Figure 2). The types of
offline datasets are: random: 1M transitions are collected by a random agent, medium: 1M transitions are collected by a half-trained
SAC (Haarnoja et al., 2018) policy, mixed: the replay buffer of this half-trained policy, and medium-expert: combination of the medium
dataset and 1M additional transitions from a fully trained policy. Refer to main text (Section 5.1) for description of color-coding. For
better legibility, we have included a larger variant of these plots in the Appendix M. Full experimental details in Appendix G.

5. Experiments
For all experiments we make use of the codebase of (Wu
et al., 2019), which presents the BRAC off-policy algorithm
and examines the importance of various factors in BCQ
(Fujimoto et al., 2018a) and BEAR (Kumar et al., 2019)
methods. We implement EMaQ into this codebase. We
make use of the recently proposed D4RL (Fu et al., 2020b)
datasets for bechmarking offline RL.

5.1. Practical Effect of N and the Choice of Generative
Model

We begin by empirically evaluating key aspects of offline
EMaQ, namely the effect of N , and choice of generative
model used for representing the behavior estimate µ. In
prior approaches such as those described in the background
section of this work, care must be taken in choosing the
hyperparameter that dictates the extent to which learned
policies can deviate from the base behavior policies; too
small and we cannot improve upon the base policy, too
large and the value of actions cannot be correctly estimated.
In EMaQ, at least in theory, choosing higher values of
N should result in strictly better policies. Additionally,
there exists a concern that N may need to be impractically
large. Thus, we empirically investigate to what extent the
monotonic trend holds in practice, and seek to understand
what magnitudes of N result in good policies in practical
benchmark domains. Figure 1 presents our results with
N ∈ {5, 10, 25, 50, 100, 200, 400}. In the green plots, we

observe that empirical results follow our intuitions: with
increasing N the resultant policies become better. In the
medium-expert settings (i.e. orange plots), while for smaller
values of N we observe strong performance, there appears
to be a downward trend. As discussed in Section 3.4, smaller
values of N result in an implicit regularization. Hence, the
orange plots may indicate that even with the stronger choice
of generative models in EMaQ, inaccuracies in value esti-
mates may still exist, suggesting the need for future work
that introduces better regularizers for the value functions
than ensembling (Kumar et al., 2020). Lastly, the red plots
indicate settings where behavior is erratic. Closer exami-
nation of training curves and our experiments with other
off-policy methods (Figure 2) suggests that this may be due
to the intrinsic nature of these environment and data settings.

The dashed horizontal lines in Figure 2 represent the per-
formance of BEAR – which uses a VAE for representing
µ – as reported in the D4RL (Fu et al., 2020b) benchmark
paper (apples to apples comparison in Section 5.2). Our
results demonstrate that the combination of a strong gen-
erative model and EMaQ’s simply constrained backup op-
erator can match and in many cases noticeably exceed re-
sults from prior algorithms and design choices. Comparing
Figure 2 to Figure 6 in the Appendix, we observe that
our choice of generative model is crucial to the perfor-
mance of EMaQ. With a VAE architecture as used in prior
work, EMaQ’s performance is significantly reduced, in most
cases worse than prior reported results for BEAR, and never
exhibits a monotonic trend as a function of N . This is de-

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Figure 2. Comparison of EMaQ, BCQ, and BEAR on D4RL (Fu et al., 2020b) benchmark domains when using our proposed autoregressive
µ(a|s). For both BCQ and BEAR, from left to right as the value of the hyperparameter increases, the allowed deviation from µ(a|s)
increases. Horizontal green lines represent the reported performance of BEAR in the D4RL benchmark. Color-coding follows Figure 1.
For better legibility, we have included a larger variant of these plots in the Appendix M. Full experimental details in Appendix G.

spite the fact that when evaluating the performance of the
behavior estimate µ under the two architecture choices re-
sults in almost identical results (the first column of each
sub-plot corresponding to µ(a|s)). We do not believe that
autoregressive models are intrinsically better than VAEs,
but rather our results demonstrate the need for more careful
attention on the choice of µ(a|s). Since EMaQ is closely
tied to the choice of behavior model, it may be more
effective for evaluating how well µ(a|s) represents the
given offline dataset. From a practical perspective, our
results suggest that for a given domain, focusing efforts
on building-in good inductive biases in the generative
models and value functions might be sufficient to obtain
strong offline RL performance in many domains.

5.2. Comparison on D4RL Offline RL Benchmark

To evaluate EMaQ with respect to prior methods, we com-
pare to two popular and closely related prior methods for
offline RL that share close structure to EMaQ, BCQ (Fuji-
moto et al., 2018a) and BEAR (Kumar et al., 2019). For
fairness of comparison, for each domain, the base behavior
policy µ(a|s) is trained ahead of time, and the exact same
checkpoints of µ(a|s) is used by all methods. As with the
previous section, full experimental details can be found in
Appendix G.1. Figure 2 and Table 1 present our empirical
results.

Figure 2 presents results on the subset of D4RL benchmark
using standard Mujoco locomotion domains. We observe
that in these domains EMaQ matches BCQ and BEAR. We
note that with our proposed autoregressive models, the re-
sults for BCQ and BEAR are equal to or improved upon the

values reported in the D4RL benchmark (Fu et al., 2020b)
(green horizontal lines). For easier interpretation, the plots
are colored the same as in Figure 1.

Table 1 presents results for the Kitchen, Antmaze, and
Adroit domains in the D4RL benchmark. In the Kitchen
and smaller Antmaze domains we observe a significant per-
formance gain in EMaQ compared to BCQ and BEAR. The
medium and large Antmaze domains, as well as the Adroit
manipulation domains are effectively unsolved by all ap-
proaches. Comparing the results obtained by EMaQ to the
values reported by the current state-of-the-art, Conservative
Q-Learning (CQL) (Kumar et al., 2020), we observe that 1)
EMaQ outperforms current state-of-the-art on the Kitchen
and small Antmaze domains, 2) CQL outperforms EMaQ
on medium and large Antmaze domains, and 3) while CQL
makes slightly more progress on Adroit domains, to the best
of our knowledge, these domains are currently unsolved by
today’s methodologies. Our key take-away is that despite
its simplistic form, EMaQ is strongly competitive with
current state-of-the-art methods. Additionally, replacing
the Q function ensembles in EMaQ with conservative es-
timates through CQL may be a fruitful avenue for future
work.

A very eye-catching result in above figures is that in almost
all settings of the standard Mujoco environments (Figures 1
and 2), a very small N (just N = 5) significantly improves
upon µ(a|s) and in most settings matches or exceeds signif-
icantly beyond previously reported results. For example, in
the HalfCheetah-Random setting this means that, at each
state we are sampling 5 actions from a random policy and
choosing the best one under the learned Q-value function,

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Table 1. Results on a series of other environments and data settings from the D4RL benchmark (Fu et al., 2020a). Results are normalized
to the range [0, 100], per the D4RL normalization scheme. For each method, for each environment and data setting the results of the best
hyperparameter setting are reported. The last column indicates the best value of N in EMaQ amongst the considered hyperparameters (for
the larger antmaze domains, we do not report this value since no value of N obtains nonzero returns). All the domains below the blue
double-line are effectively unsolved by all methods. We have technical difficulties in evaluating BEAR on the kitchen domains. This
manuscript will be updated upon obtaining these results. Additional details can be found in Appendix G.3.

Setting BC BCQ BEAR EMaQ EMaQ N
kitchen-complete 27.2 ± 3.2 26.5 ± 4.8 — 36.9 ± 3.7 64

kitchen-partial 46.2 ± 2.8 69.3 ± 5.2 — 74.6 ± 0.6 8
kitchen-mixed 52.5 ± 3.8 65.5 ± 1.8 — 70.8 ± 2.3 8

antmaze-umaze 59.0 ± 5.5 25.5 ± 20.0 56.3 ± 28.8 91.0 ± 4.6 100
antmaze-umaze-diverse 58.8 ± 9.5 68.0 ± 19.0 57.5 ± 39.2 94.0 ± 2.4 50
antmaze-medium-play 0.7 ± 1.0 3.5 ± 6.1 0.2 ± 0.4 0.0 ± 0.0 —

antmaze-medium-diverse 0.4 ± 0.8 0.5 ± 0.9 0.2 ± 0.4 0.0 ± 0.0 —
antmaze-large-play 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 —

antmaze-large-diverse 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 —
door-cloned 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 0.2 ± 0.3 64

hammer-cloned 1.2 ± 0.6 1.3 ± 0.5 0.3 ± 0.0 1.0 ± 0.7 64
pen-cloned 24.5 ± 10.2 43.8 ± 6.4 -3.1 ± 0.2 27.9 ± 3.7 128

relocate-cloned -0.2 ± 0.0 -0.2 ± 0.0 0.0 ± 0.0 -0.2 ± 0.2 16

and in doing so, converting a random policy with return 0
to a policy with return 2000. In this way, EMaQ provides
a uniquely intuitive and surprising measure of the com-
plexity for offline RL problems. This empirical obser-
vation also encourages future theoretical investigations
into Δ(s, N).

5.3. Online RL
We refer to online RL as the setting where iteratively, a batch
of M environment steps with an exploration policy are inter-
leaved with M RL updates (Levine et al., 2020; Matsushima
et al., 2020). We compare the online variant of EMaQ with
entropy-constrained Soft Actor Critic (SAC) with automatic
tuning of the temperature parameter (Haarnoja et al., 2018),
a highly sample-efficient and performant online RL algo-
rithm. For EMaQ we swept the temperatures and used a
fixed bin size of 40, 8 Q-function ensembles and N = 200.
For fairness of comparisons, we also ran SAC with similar
sweeps over the number of Q-functions in the ensembles.
Additionally, due to initial experimental observations with
SAC, we performed a small hyperparameter search for the
λ parameter of the Q-ensemble. In the fully online setting
(trajectory batch size 1, Figure 3a), EMaQ is competi-
tive with SAC, and more excitingly, in the deployment-
efficient setting3 (trajectory batch size 50K, Figure 3b),
EMaQ can outperform SAC4 . Figures 4 and 5 present the

3By deployment-efficient we mean that less number of different
policies need to be executed in the environment, which may have
substantial benefits for safety and otherwise constrained domains
(Matsushima et al., 2020).

4We do note that the online variant of EMaQ has more hy-
perparameters to tune than SAC, and the relative performance is

results for all hyperparameter settings, for SAC and EMaQ,
in the batch size 1 and batch size 50K settings respectively.
We would like to emphasize the significance of obtain-
ing strong online RL performance with effectively the
same algorithm as the offline setting should not be over-
looked. Most prior offline RL works have not considered
how their methods might transfer to online or batched online
setting, and recent work (Nair et al., 2020) has demonstrated
the challenges of finetuning from a policy trained offline, in
the online setting.

6. Conclusion
In this work, we investigate a significant simplification of
the BCQ (Fujimoto et al., 2018a) algorithm by removing the
heuristic perturbation network. By introducing the Expect-
Max Q-Learning operator, we present a novel theoretical
setup that takes into account the proposal distribution µ(a|s)
and the number of action samples N , and hence more
closely matches the resulting practical algorithm. With
fewer moving parts and one less function approximator,
EMaQ matches and outperforms prior state-of-the-art in
both online and offline RL. Our investigations with EMaQ
demonstrate the significance of careful considerations in the
design of generative models used. Furthermore, our theoret-
ical and empirical findings bring into light novel notions of
complexity for offline RL problems. Given the simplicity,
tractable theory, and state-of-the-art performance of EMaQ,
we hope our work can serve as a foundation for future works
on understanding and improving offline RL.

dependent on these hyperparameters, but as discussed we have
tried to tune SAC well.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Acknowledgements
SKSG would like to thank Ofir Nachum, Karol Hausman,
Corey Lynch, Abhishek Gupta, Alex Irpan, and Elman Man-
simov for valuable discussions at different points over the
course of this work. We would also like to thank the authors
of (Wu et al., 2019) whose codebase this work built upon,
and the authors of D4RL (Fu et al., 2020a) for building such
a valuable benchmark.

References
Amos, B., Xu, L., and Kolter, J. Z. Input convex neural

networks. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 146–155.
JMLR. org, 2017.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P. S.,
and Munos, R. Increasing the action gap: New operators
for reinforcement learning. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

Chen, R. Y., Sidor, S., Abbeel, P., and Schulman, J.
Ucb exploration via q-ensembles. arXiv preprint
arXiv:1706.01502, 2017.

Degris, T., White, M., and Sutton, R. S. Off-policy actor-
critic. arXiv preprint arXiv:1205.4839, 2012.

Farahmand, A.-m. Action-gap phenomenon in reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems, pp. 172–180, 2011.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. arXiv preprint
arXiv:1512.08562, 2015.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020a.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S.
Datasets for data-driven reinforcement learning. arXiv
preprint arXiv:2004.07219, 2020b.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep re-
inforcement learning without exploration. arXiv preprint
arXiv:1812.02900, 2018a.

Fujimoto, S., Van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018b.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.
Made: Masked autoencoder for distribution estimation.
In International Conference on Machine Learning, pp.
881–889, 2015.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and
Levine, S. Q-prop: Sample-efficient policy gradient with
an off-policy critic. arXiv preprint arXiv:1611.02247,
2016a.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Continu-
ous deep q-learning with model-based acceleration. In
International Conference on Machine Learning, 2016b.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In International Conference
on Robotics and Automation, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Hasselt, H. V. Double q-learning. In Advances in neural
information processing systems, pp. 2613–2621, 2010.

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M.,
Turner, R. E., and Eck, D. Sequence tutor: Conserva-
tive fine-tuning of sequence generation models with kl-
control. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pp. 1645–1654.
JMLR. org, 2017.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson,
C., Lapedriza, A., Jones, N., Gu, S., and Picard, R.
Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint
arXiv:1907.00456, 2019.

Kakade, S. M. A natural policy gradient. In Advances in
neural information processing systems, pp. 1531–1538,
2002.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S. Qt-opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation.
In Conference on Robot Learning, 2018a.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., et al. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018b.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. In Advances in Neural Information Processing
Systems, 2019.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conserva-
tive q-learning for offline reinforcement learning. arXiv
preprint arXiv:2006.04779, 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., and
Popovic, Z. Offline policy evaluation across representa-
tions with applications to educational games. In Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, 2014.

Matsushima, T., Furuta, H., Matsuo, Y., Nachum, O., and
Gu, S. Deployment-efficient reinforcement learning
via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Metz, L., Ibarz, J., Jaitly, N., and Davidson, J. Discrete
sequential prediction of continuous actions for deep rl.
arXiv preprint arXiv:1705.05035, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Murphy, S. A., van der Laan, M. J., Robins, J. M., and
Group, C. P. P. R. Marginal mean models for dynamic
regimes. Journal of the American Statistical Association,
2001.

Nachum, O., Norouzi, M., and Schuurmans, D. Bridging
the gap between value and policy based reinforcement
learning. In Advances in Neural Information Processing
Systems, pp. 2772–2782, 2017.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating
online reinforcement learning with offline datasets. arXiv
preprint arXiv:2006.09359, 2020.

Peters, J., Mulling, K., and Altun, Y. Relative entropy policy
search. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

Precup, D., Sutton, R. S., and Dasgupta, S. Off-policy
temporal-difference learning with function approxima-
tion. In International Conference on Machine Learning,
2001.

Rawlik, K., Toussaint, M., and Vijayakumar, S. On stochas-
tic optimal control and reinforcement learning by ap-
proximate inference. In Twenty-Third International Joint
Conference on Artificial Intelligence, 2013.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. arXiv preprint arXiv:1401.4082, 2014.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635, 2011.

Rubinstein, R. Y. and Kroese, D. P. The cross-entropy
method: a unified approach to combinatorial optimiza-
tion, Monte-Carlo simulation and machine learning.
Springer Science & Business Media, 2013.

Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., and
Boutilier, C. Caql: Continuous action q-learning. arXiv
preprint arXiv:1909.12397, 2019.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897, 2015.

Van de Wiele, T., Warde-Farley, D., Mnih, A., and
Mnih, V. Q-learning in enormous action spaces via
amortized approximate maximization. arXiv preprint
arXiv:2001.08116, 2020.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Thirtieth AAAI
conference on artificial intelligence, 2016.

Weng, L. Exploration strategies in deep reinforcement
learning, Jun 2020. URL https://lilianweng.
github.io/lil-log/2020/06/07/
exploration-strategies-in-deep-reinforcement-learning.
html.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

https://lilianweng.github.io/lil-log/2020/06/07/exploration-strategies-in-deep-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2020/06/07/exploration-strategies-in-deep-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2020/06/07/exploration-strategies-in-deep-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2020/06/07/exploration-strategies-in-deep-reinforcement-learning.html

���� �������� �������� ����

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

A. Proofs
All the provided proofs operate under the setting where µ(a|s) has full support over the action space. When this assumption
is not satisfied, the provided proofs can be transferred by assuming we are operating in a new MDP Mµ as defined below.

Given the MDP M = hS, A, r, P, γi and µ(a|s), let us define the new MDP Mµ = hSµ, Aµ, r, P, γi, where Sµ denotes
the set of reachable states by µ, and Aµ is A restricted to the support of µ(a|s) in each state in Sµ.

A.1. Contraction Mapping

Theorem 3.1. In the tabular setting, for any N ∈ N, T N is a contraction operator in the L∞ norm. Hence, with repeated µ

applications of the T N , any initial Q function converges to a unique fixed point. µ

Proof. Let Q1 and Q2 be two arbitrary Q functions.

T N Q1 − T N
µ µ Q2 �

∞
= � � �

(13)

max
s,a

r(s, a) + γ · Es0 E{ai}N [max
{ai}N h

0Q1(s , a 0)] − r(s, a) + γ · Es0 E{ai}N [max
{ai}N i

0Q2(s , a 0)] = (14)

γ · max
s,a

Es0 E{ai}N max
{ai}N

0Q1(s , a 0) − max
{ai}N

0 0)Q2(s , a ≤ (15)

γ · max Es0 E{ai}N
s,a

max
{ai}N

0Q1(s , a 0) − max
{ai }N

0 0)Q2(s , a ≤ (16)

γ · max Es0 E{ai}N
s,a

kQ1 − Q2k∞ = (17)

γ · kQ1 − Q2k∞ (18)

where line 17 is due to the following: Let â = arg max{ai}N
0Q1(s , ai),

max
{ai}N

0Q1(s , a 0) − max
{ai}N

0 0 0 0)Q2(s , a 0) = Q1(s , ̂a) − max Q2(s , a
{ai}N

0 0≤ Q1(s , ̂a) − Q2(s , ̂a)

(19)

(20)
≤ kQ1 − Q2k∞ (21)

A.2. Limiting Behavior

Theorem 3.3. Let π∗ denote the optimal policy from the class of policies whose actions are restricted to lie within the µ
support of the policy µ(a|s). Let Q∗ denote the Q-value function corresponding to π∗ . Furthermore, let Qµ denote the µ R µ
Q-value function of the policy µ(a|s). Let µ ∗(s) := Support(π∗ (a|s)) µ(a|s) denote the probability of optimal actions under

µ(a|s). Under the assumption that infs µ ∗(s) > 0 and r(s, a),
µ

we have that,

Q1 = Qµ and lim QN = Q ∗
µ µ µ

N→∞ R
Let µ ∗(s) := Support(π∗ (a|s)) µ(a|s) denote the probability of optimal actions under µ(a|s). To show limN→∞ Q

N
µ = Q∗

µ,
µ

we also require the additional assumption that infs µ ∗(s) > 0.

Proof. Given that,
0Tµ

1Q(s, a) := r(s, a) + γ · Es0 E{ai}N ∼µ(·|s0) [Q(s , a 0)] (22)

the unique fixed-point of T 1 is the Q-value function of the policy µ(a|s). Hence Q1 = Qµ.µ µ

The second part of this theorem will be proven as a Corollary to Theorem 3.5

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

A.3. Increasingly Better Policies

Theorem 3.4. For all N, M ∈ N, where N > M , we have that ∀s ∈ S, ∀a ∈ Support(µ(·|s)), QN (s, a) ≥ QM (s, a).µ µ

Hence, πN (a|s) is at least as good of a policy as πM (a|s).µ µ

Proof. It is sufficient to show that ∀s, a, QN +1(s, a) ≥ QN (s, a). We will do so by induction. Let Qi denote the resulting µ µ

function after applying T N+1 , i times, starting from QN .µ µ

Base Case

By definition Q0 := QN . Let s ∈ S, a ∈ A.µ

Q1(s, a) = T N+1Q0(s, a)µ

0 = r(s, a) + γ · Es0 E{ai}N+1 ∼µ(a Q0(s0|s0)[max , a 0)]
{ai}N+1

(23)

(24)

0≥ r(s, a) + γ · Es0 E{ai}N ∼µ(a0|s0)[max Q0(s , a 0)]
{ai}N

(25)

0 = r(s, a) + γ · Es QN
0 E{ai}N ∼µ(a0|s0)[max (s , a 0)]µ{ai}N

(26)

= QN (s, a)µ

= Q0(s, a)

(27)

(28)

Induction Step

Assume ∀s, a, Qi(s, a) ≥ Qi−1(s, a).

Qi+1(s, a) − Qi(s, a) = T N +1Qi(s, a) − T N+1Qi−1(s, a) (29)µ µ

0 0 = γ · Es0 E{ai }N +1∼µ(a0 |s0)[max Qi(s , a 0) − max Qi−1(s , a 0)] (30)
{ai}N +1 {ai }N +1

≥ 0 (31)

= QN+1Hence, by induction we have to ∀i, j, i > j =⇒ ∀s, a, Qi(s, a) ≥ Qj (s, a). Since Q0 = QN and limi→∞ Q
i ,µ µ

we have than ∀s, a, QN +1(s, a) ≥ QN (s, a). Thus πN +1 is a better policy than πN , and by a simple induction argument, µ µ µ µ

πµ
N is a better policy than πµ

M when N > M .

A.4. Bounds

Theorem 3.5. For s ∈ S let,

Δ(s) = max Q ∗ (s, a) − E{ai}N ∼µ(·|s)[max Q ∗ (s, b)]µ µ
a∈Support(µ(·|s)) b∈{ai}N

The suboptimality of QN can be upperbounded as follows,µ h iγ γ
0QN

µ − Q ∗
µ ≤ max Es Δ(s 0) ≤ max Δ(s) (32)∞ 1 − γ s,a 1 − γ s

The same also holds when Q∗ is replaced with QN in the definition of Δ.µ µ

Proof. The two versions where Δ(s) is defined in terms of QN and Q∗ have very similar proofs. µ µ

Version with QN
µ

����� ��������� �������� ����

����� ��������� �������� ����

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Let T QL denote the backup operation in Q-Learning. Let (T QL)m = T QL ◦ T QL ◦ ... ◦ T QL. We know the following | {z }
m times

statements to be true:

0QN = T N QN = r(s, a) + γ · Es0 E{ai}N ∼µ(a0|s0)[max QN (s , a 0)] (33)µ µ µ µ{ai}N

T QLQN 0 = r(s, a) + γ · Es0 max QN (s , a 0) (34)µ µ
a0

(T QL)mQNlim = Q ∗ (35)
m→∞ µ

(T QL)m+2QN − (T QL)m+1QN (T QL)m+1QN − (T QL)mQN≤ γ · (36)µ µ µ µ∞ ∞

(T QL)m+1QN − (T QL)mQN T QLQN≤ γm · − QN (37)µ µ µ µ∞ ∞

Putting these together we have that,

∞X
(T QL)m+1QN − (T QL)mQNQN − Q ∗ ≤ (38)µ µ µ∞ ∞

m=0
∞X

T QLQN≤ γm · − QN (39)µ µ ∞
m=0

T QLQN =
1 − QN (40)µ µ ∞1 − γ � �

0 =
1

max r(s, a) + γ · Es0 max QN (s , a 0) (41)µ01 − γ s,a a � �
0QN− r(s, a) + γ · Es0 E{ai}N ∼µ(a0|s0)[max (s , a 0)] (42)µ{ai}N h iγ 0 0QN = max Es0 max (s , a 0) − E{ai}N ∼µ(a0|s0)[max QN (s , a 0)] (43)µ µ

a01 − γ s,a {ai}N

γ 0 0≤ max max QN (s , a 0) − E{ai}N ∼µ(a0|s0)[max QN (s , a 0)] (44)µ µ
a01 − γ s0 {ai}N

Version with Q ∗
µ

Very similarly we have,

QN − Q ∗
µ

∞X
≤ ∞
m=0

)m+1Q ∗ − (T N(T N)mQ ∗
µ µ ∞

(45)

∞X
≤ γm ·
m=0

T N Q ∗ − Q ∗
µ ∞

(46)

1
=
1 − γ

Q ∗ − T N Q ∗
µ ∞

(47)

1
= max
1 − γ s,a

� �
0 r(s, a) + γ · Es0 max Q ∗ (s , a 0)

a0
(48)

� �
0− r(s, a) + γ · Es Q ∗ (s0 E{ai}N ∼µ(a0|s0)[max , a 0)]

{ai}N
(49)

γ
= max
1 − γ s,a

h i
0 0Es0 max Q ∗ (s , a 0) − E{ai}N ∼µ(a0|s0)[max Q ∗ (s , a 0)]

a0 {ai}N
(50)

γ ≤ max
01 − γ s

0 0 max Q ∗ (s , a 0) − E{ai}N ∼µ(a Q ∗ (s0|s0)[max , a 0)]
a0 {ai}N

(51)

��� ������ ���

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Corollary A.1. Let Vµ, Qµ, Aµ denote the value, Q, and advantage functions of µ respectively. When N = 1 we have that,

γ 0 0kQµ − Q ∗ k ≤ max max Qµ(s , a 0) − Ea0 ∼µ(a0|s0)[Qµ(s , a 0)] (52)∞ 0 01 − γ s a

γ 0 = max max Qµ(s , a 0) − Vµ(s 0) (53)
1 − γ s0 a0

γ 0 = max Aµ(s , a 0) (54)
0 01 − γ s ,a

It is interesting how the sub-optimality can be upper-bounded in terms of a policy’s own advantage function.

Corollary A.2. (Proof for second part of Theorem 3.3)

Proof. We want to show limN→∞ Q
N = Q∗ . More exactly, what we seek to show is the following, µ

lim QN − Q ∗ = 0 (55)µ ∞N→∞

or,

∀� > 0, ∃N, s.t. ∀M ≥ N, QN − Q ∗ < � (56)µ ∞

Let � > 0. Recall,

Δ(s) = max Q ∗ (s, a) − E{ai}N ∼µ(·|s)[max Q ∗ (s, b)] (57)µ µ
a∈Support(µ(·|s)) b∈{ai}N

1 1Let infs µ ∗(s) = p > 0. Let the lower and upper bounds of rewards be ` and L, and let α = ` and β = L. We have 1−γ 1−γ
that,

E{ai}N ∼µ(·|s)[max Qµ
∗ (s, b)] ≥ (1 − p)N · α + (1 − (1 − p)N) · max Qµ

∗ (s, a) (58)
b∈{ai }N a∈Support(µ(·|s))

Hence ∀s,

Δ(s) ≤ (1 − p)N · max Q ∗ (s, a) − (1 − p)N · α (59)µ
a∈Support(µ(·|s))� �

= (1 − p)N · max Q ∗ (s, a) − α (60)µ
a∈Support(µ(·|s))� �

≤ (1 − p)N · β − α (61)

Thus, for large enough N we have that,

QN − Q ∗ ≤
γ

max Δ(s) < � (62)µ µ ∞ 1 − γ s

concluding the proof.

B. Autoregressive Generative Model
The architecture for our autoregressive generative model is inspired by the works of (Metz et al., 2017; Van de Wiele et al.,
2020; Germain et al., 2015). Given a state-action pair from the dataset (s, a), first an MLP produces a d-dimensional
embedding for s, which we will denote by h. Below, we use the notation ai to denote the ith index of a, and a[:i] to represent
a slice from first up to and not including the ith index, where indexing begins at 0. We use a discretization in each action
dimension. Thus, we discretize the range of each action dimension into N uniformly sized bins, and represent a by the
labels of the bins. Let ` i denote the label of the ith action index.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Training We use separate MLPs per action dimension. Each MLP takes in the d-dimensional state embedding and
ground-truth actions before that index, and outputs N logits for the choice over bins. The probability of a given index’s
label is given by, � �

p(` i|s, a[: i]) = SoftMax MLPi(d, a[: i]) [` i] (63)

We use standard maximum-likelihood training (i.e. cross-entropy loss).

Sampling Given a state s, to sample an action we again embed the state, and sample the action indices one-by-one. � �
p(` 0|s) = SoftMax MLPi(d) [` 0] (64)

` 0 ∼ p(` 0|s), a0 ∼ Uniform(Bin corresponding to ` 0) (65)� �
p(` i|s) = SoftMax MLPi(d, a[: i]) [` i] (66)

` i ∼ p(` i|s, a[: i]), ai ∼ Uniform(Bin corresponding to ` i) (67)

C. Algorithm Box

Algorithm 1: Full EMaQ Training Algorithm

Offline dataset D, Pretrain µ(a|s) on D
target Initialize K Q functions with parameters θi, and K target Q functions with parameters θi

Ensemble parameter λ, Exponential moving average parameter α

Function Ensemble(values):
return λ · min(values) + (1 − λ) · max(values)

0Function ytarget(s, a, s , r, t):
0{ai}N ∼ µ(a0|s0)

Qvalues ← []
for k ← 1 to N do

0/* Estimate the value of action a */� k� ��
[Qtarget 0 0Qvalues.append Ensemble (s , a) for all i]i k

return r + (1 − t) · γ max(Qvalues)

while not converged do
0Sample a batch {(sm, am, s , rm, tm)}M ∼ D m

for i = 1, ..., K do� �2P 0L(θi) = m Qi(sm, am) − ytarget(sm, am, sm, rm, tm)� �
θi ← θi − AdamUpdate L(θi), θi

target target θ ← α · θ + (1 − α) · θii i

D. Inconclusive Experiments
D.1. Updating the Proposal Distribution

Akin to the work of (Van de Wiele et al., 2020), we considered maintaining a second proposal distribution µ̃ that is updated
to distill arg max{ai}N Q(s, a), and sampling from the mixture of µ and µ̃. In our experiments however, we did not observe
noticeabel gains. This may potentially be due to the relative simplicity of the Mujoco benchmark domains, and may become
more important in more challenging domains with more uniformly distributed µ(a|s).

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Algorithm 2: Test-Time Policy πtest

Function TestEnsemble(values):
return λ · min(values) + (1 − λ) · max(values)

Function πtest(s):
{ai}N ∼ µ(a|s) � �
return arg max{ai}N TestEnsemble [Qi(s, a) for all i]

E. Laundry List
• Autoregressive models are slow to generate samples from and EMaQ needs to take many samples, so it was slower to

train than the alternative methods. However, this may be addressed by better generative models and engineering effort.

F. Online RL
EMaQ is also applicable to online RL setting. Combining strong offline RL methods with good exploration policies has the
potential for producing highly sample-efficient online RL algorithms. Concretely, we refer to online RL as the setting where
iteratively, a batch of M environment steps with an exploration policy are interleaved with M RL updates (Levine et al.,
2020; Matsushima et al., 2020).

EMaQ is designed to remain within the support of the provided training distribution. This however, is problematic for online
RL which requires good exploration interleaved with RL updates. To this end, first, we modify our autoregressive proposal
distribution µ(a|s) by dividing the logits of all softmaxes by τ > 1. This has the effect of smoothing the µ(a|s) distribution,
and increasing the probability of sampling actions from the low-density regions and the boundaries of the support. Given
this online proposal distribution, a criteria is required by which to choose amongst sampled actions. While there exists a
rich literature on how to design effective RL exploration policies (Weng, 2020), in this work we used a simple UCB-style
exploration criterion (Chen et al., 2017) as follows: � � � �

explore(s, a) = meanQ {Qi(s, a)}K + β · std {Qi(s, a)}K (68)

Given N sampled actions from the modified proposal distribution, we take the action with highest Qexplore.

We compare the online variant of EMaQ with entropy-constrained Soft Actor Critic (SAC) with automatic tuning of the
temperature parameter (Haarnoja et al., 2018). For EMaQ we swept the temperatures and used a fixed bin size of 40, 8
Q-function ensembles and N = 200. For fairness of comparisons, we also ran SAC with similar sweeps over different
collection batch sizes and number of Q-function ensembles. In the fully online setting (trajectory batch size 1, Figure 3a),
EMaQ is already competitive with SAC, and more excitingly, in the deployment-efficient setting5 (trajectory batch size
50K, Figure 3b), EMaQ can outperform SAC6. Figures 4 and 5 present the results for all hyperparameter settings, for SAC
and EMaQ, in the batch size 1 and batch size 50K settings respectively. In the fully online setting, EMaQ is already
competitive with SAC, and more excitingly, in the deployment-efficient setting, EMaQ can outperform SAC.

G. Offline RL Experimental Details
For each environment and data setting, we train an autoregressive model – as described above – on the provided data with 2
random seeds. These generative models are then frozen, and used by the downstream algorithms (EMaQ, BEAR, and BCQ)
as the base behavior policy (µ(a|s) in EMaQ)7.

5By deployment-efficient we mean that less number of different policies need to be executed in the environment, which may have
substantial benefits for safety and otherwise constrained domains (Matsushima et al., 2020).

6It must be noted that the online variant of EMaQ has more hyperparameters to tune, and the relative performance is dependent on
these hyperparameters, while SAC with ensembles has the one extra ensemble mixing parameter λ to tune.

7While in the original presentation of BCQ and BEAR the behvior policy is learned online, there is technically no reason for this to be
the case, and in theory both methods should benefit from this pretraining

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

(a) SAC vs. EMaQ, Trajectory Batch Size 1: For easier visual interpretration we plot a single hyperparameter setting of EMaQ that tended
to perform well across the 4 domains considered. The hyperparameters considered were N = 200, λ = 1.0, β = 1.0, τ ∈ {1, 5, 10, 20}.
SAC performed worse when using 8 Q-functions as in EMaQ. x-axis unit is 1 million environment steps.

(b) SAC vs. EMaQ, Trajectory Batch Size 50K: For easier visual interpretration we plot a single hyperparameter setting of EMaQ
that tended to perform well across the 4 domains considered. The hyperparameters considered were N = 200, λ ∈ {0.75, 1.0},
β ∈ {0.1, 1.0}, τ ∈ {1, 5, 10, 20}. x-axis unit is 1 million environment steps.

Figure 3. Online RL results under different trajectory batch sizes.

G.1. Comparing Offline RL Methods

Following the bechmarking efforts of (Wu et al., 2019), the range of clipping factor considered for BCQ was
Φ ∈ {0.005, 0.015, 0.05, 0.15, 0.5}, and the range of target divergence value considered for BEAR was � ∈
{0.015, 0.05, 0.15, 0.5, 1.5}. For both methods, the larger the value of the hyperparameter is, the more the learned policy is
allowed to deviate from the µ(a|s).

The rest of the hyperparameters use can be found in Table 2. The autoregressive models have the following architecture
sizes (refer to Appendix B for description of the models used). The state embedding MLP consists of 2 hidden layers of
dimension 750 with relu activations, followed by a linear embedding into a 750 dimensional state representation. The
individual MLP for each action dimension consist of 3 hidden layers of dimension 256 with relu activations. Each action
dimension is discretized into 40 equally sized bins.

G.2. EMaQ Ablation Experiment

Hyperparameters are identical to those in Table 2, except batch size is 100 and number of updates is 500K.

G.3. Details for Table 1 Experiments

Generative Model The generative models used are almost identical to the description in Appendix B, with a slight
modification that MLPi(d, a[: i]) is replace with MLPi(d, Lini(a[: i])) where Lini is a linear transformation. This change
was not necessary for good performance; it was as architectural detail that we experimented with and did not revert prior
generating Table ??. The model dimensions for each domain are shown in 3 in the following format (state embedding MLP
hidden size, state embedding MLP number of layers, action MLP hidden size, action MLP number of layers, Ouput size of
Lini, number of bins for action discretization). Increasing the number of discretization bins from 40 (value for standard
Mujoco experiments) to 80 was the most important change. Output dimension of state-embedding MLP is the same as the
hidden size.

Hyperparameters Table 3 shows the hyperparameters used for the experiments in Table 1.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

(a) SAC batch 1 results

(b) EMaQ batch 1 results

Figure 4. All results for batch size 1

H. VAE Results
H.1. Implementation

We also ran experiments with VAE parameterizations for µ(a|s). To be approximately matched in parameter count with our
autoregressive models, the encoder and decoder both have 3 hidden layers of size 1024 with relu activations. The dimension
of the latent space was twice the number of action dimensions. The decoder outputs a vector v which, and the decoder
action distribution is defined to be N (Tanh(v), I). When sampling from the VAE, following prior work, samples from the
VAE prior (spherical normal distribution) were clipped to the range [−0.5, 0.5] and mean of the decoder distibution was
used (i.e. the decoder distribution was not sampled from). The KL divergence loss term was weighted by 0.5. This VAE
implementation was the one used in the benchmarking codebase of (Wu et al., 2019), so we did not modify it.

H.2. Results

As can be seen in Figure 6, EMaQ has a harder time improving upon µ(a|s) when using the VAE architecture described
above. However, as can be seen in Figure 7, BCQ and BEAR do show some variability as well when switching to the VAEs.
Since as an algorithm EMaQ is much more reliant on µ(a|s), our hypothesis is that if it is true that the autoregressive models
better captured the action distribution, letting EMaQ not make poor generalizations to out-of-distribution actions. Figures 8
and 9 show autoregressive and VAE results side-by-side for easier comparison.

I. EMaQ Medium-Expert Setting Results
In HalfCheetah, increasing N significantly slows down the convergence rate of the training curves; while large Ns continue
to improve, we were unable to train them long enough for convergence. In Walker, for EMaQ, BCQ, and most hyperparameter
settings of BEAR, training curves have a prototypical shape of a hump, where performance improves up to a certain high
value, and then continues to fall very low. In Hopper, for higher values of N in EMaQ we observed that increasing batch
size from 100 to 256 largely resolved the poor performance, but for consistency we did not alter Figure 1 with these values.

J. Comparison with Softmax Backup Operators
For clarity of writing, we will write the forms for deterministic dynamics and remove the expectations over the next state.

An interesting connection to our proposed backup operators would be the following Softmax backup operator with similarities

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

(a) SAC batch 50K results

(b) EMaQ batch 50K results

Figure 5. All results for batch size 50K

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Shared Hyperparameters
λ

Batch Size
Num Updates

Num Q Functions
Q Architecture

µ lr
α

1.0
256
1e6
8

MLP, 3 layers, 750 hid dim, relu
5e-4
0.995

EMaQ Hyperparameters
Q lr 1e-4

BEAR Hyperparameters
π Architecture

Q lr
π lr

MLP, 3 layers, 750 hid dim, relu
1e-3
3e-5

BCQ Hyperparameters
π Architecture

Q lr
π lr

MLP, 3 layers, 750 hid dim, relu
1e-4
5e-4

Table 2. Hyperparameters for Mujoco Experiments

to EMaQ,

0TµαQ(s, a) := r(s, a) + Esoft(a0|s0)[Q(s , a 0)] (69)

soft(a|s) ∝ µ(a|s) · exp(α · Q(s, a)) (70)

The policy corresponding to soft(a|s) is a policy that aims to maximize Q-values, subject to a KL-constraint between itself
and the policy µ(a|s). The looser the constraint, the larger the effective α and the farther the policy will be from µ. One
approach to Monte Carlo estimation of the expectation on the right hand side could be to take samples using methods from
the energy-based generative modelling literature.

An alternative approach which will more closely resembles EMaQ is to use self-normalized importance sampling,

0T αQ(s, a) := r(s, a) + Esoft(a0|s0)[Q(s , a 0)] (71)µ X
0 = r(s, a) + wi · Q(s , a 0) (72)

{ai }N ∼µ(a0 |s0)

0 0 0µ(ai|s0) · exp(α · Q(s , ai)) w̃i = (73)0µ(a |s0)i Pw̃i wi = (74)
w̃i

0 0 = softmax(α · Q(s , ai))[i] (75)

In this form, the soft backup is similar to EMaQ, where instead of taking ths max Q-value over the N samples, we take an
average over the N Q-values, weighted by the softmax probabilities in equation 75. For a given N, the α = 0 would be
equivalent to Q-evaluation of the policy µ(a|s), and as α →∞, the soft backups approach EMaQ backups.

In Figure 10 we present empirical results with the soft backup operators, under a large range α ∈
{1, 4, 8, 16, 32, 64, 128, 256, 512, 1024}, in the Halfcheetah settings. The EMaQ and soft-EMaQ were run with the same
architectures, but were smaller than the ones used for the results in the main text. We used the same checkpoints of the
generative models as for the results in the main text. The test-time policy for both approaches is the same, sampling N
actions and taking the argmax action under the ensemble Q-value. The only difference between the EMaQ and soft-EMaQ
implementations was a one-line change to replace max with a softmax average of the Q-values.

Some interesting observations are the following: As anticipated, the soft EMaQ backups approach EMaQ as the value of α is
increased. However, the necessary value of α to match the performance of EMaQ can be quite large. In the medium-expert

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Shared Hyperparameters
λ 1.0

Batch Size 128
Num Updates 1e6

Num Q Functions 16
Q Architecture MLP, 4 layers, 256 hid dim, relu

α 0.995
µ lr 5e-4

Kitchen µ Arch Params (256, 4, 128, 1, 128, 80)
Antmaze µ Arch Params (256, 4, 128, 1, 128, 80)
Adroit µ Arch Params (256, 4, 128, 1, 128, 80)

EMaQ Hyperparameters
Q lr

Kitchen N’s Searched
Antmaze N’s Searched
Adroit N’s Searched

1e-4
{4, 8, 16, 32, 64}
{50, 100, 150, 200}
{16, 32, 64, 128}

BEAR Hyperparameters
π Architecture

Q lr
π lr

MLP, 4 layers, 256 hid dim, relu
1e-4
5e-4

BCQ Hyperparameters
π Architecture

Q lr
π lr

MLP, 4 layers, 256 hid dim, relu
1e-4
5e-4

Table 3. Hyperparameters for Table 1 Experiments

setting, where figure 1 suggests challenges arising from the combination of large Ns and function-approximators, we did not
gain much advantage from soft backups, and only α ∈ {8, 16, 32} seem to have provided some mitigation of the problem
for N = 25. Since the soft backup introduces an additional hyperparameter that cannot be determined ahead of time, and
does not seem to provide an advantage (at least in the limited Halfcheetah settings considered), from a practical perspective,
we would prefer to use the regular EMaQ backup.

K. Examining Sample-Max Regularization in a Simplified Setting
K.1. Exact TD Backups, Infinite Batch Data, Inexact Behavior Estimate

For simplification of notation and equations, in this section we assume that dynamics are deterministic.

Let πβ denote the true behavior policy. Let dβ (s, a) denote the state-action distribution of πβ . Let µ denote our estimate of
the behavior policy which may have inaccuracies, namely, it can sample actions outside the support of πβ , and hence reach
unobserved states. Assuming that we can perform exact backups in each iteration (no function approximation assumption),
but taking into account that πβ 6= µ, as each iteration we have the following EMaQ backup:

� �
0 0)0∀s, a ∈ Support(dβ (s, a)), T N Q(s, a) := r(s, a) + γ · E{a }N ∼µ(·|s0) max Q(s , a (76)µ i 0a0∈{a }N

i

The main difference between this and Equation 5 is that in 5, due to the assumption that µ was the behavior policy πβ ,
we implicitly had ∀s, a ∈ Support(dµ(s, a)). Now that πβ 6= µ, in this scenario of exact backups without function
approximation, the Q-values for s, a ∈/ Support(dβ (s, a)) will never be updated from their original values at initialization.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Figure 6. Results for evaluating EMaQ on D4RL (Fu et al., 2020b) benchmark domains when using the described VAE implementation,
with N ∈ {5, 10, 25, 50, 100, 200, 400}. Values above µ(a|s) represent the result of evaluating the base behavior policies. Horizontal
green lines represent the reported performance of BEAR in the D4RL benchmark (apples to apples comparisons in Figure 7).

For s ∈ Support(dβ (s, a)), let p(s) denote the probability that µ(a|s) is inside the support of πβ (a|s). We now have: � �

T N
µ Q(s, a) := r(s, a) + p(s 0)N · γ · E{a0 i }N ∈ support �

0 , a 0)Q(smax
0
i}Na0∈{a �

+ (1 − p(s 0)N) · γ · Eelse
0 , a 0) (77)Q(smax

0∈{a0 i }Na

The interaction between the out-of-distribution Q-values and the backups is a very complex one, which depends on the
Q-values for in vs. out of distribution actions, at any given iteration during training. We can however try to consider
hypothetical adversarial scenarios to gain a better sense of the behavior of the backups.

As discussed above, the Q-values for out-of-distribution (OOD) actions do not change from their initialization value – in the
current setting of exact backups without function approximation. Let us imagine a particularly unfortunate scenario, where

1for all OOD actions we have initialized Q(s, a) = while in “reality”, all such actions end in a terminal state with 1−γ Rmax
1return Rmin. Hence:1−γ � �

T N
µ Q(s, a) := r(s, a) + p(s 0)N 0 , a 0)· γ · E{a0 i }N ∈ support Q(smax

0∈{a0 i}Na

0)N) · γ
(78)+ (1 − p(s Rmax

1 − γ

0)N 0) is very unbalanced This results in a state-dependent bonus reward and a state-dependent discount p(s · γ. If p(s
across states, some states with higher likelihood of OOD actions would receive a larger bonus than others which would
be problematic. On the other hand, if p(s0) is relatively constant across states, the bonus reward would be relatively
similar across states; however the discount would still be p(s0)N · γ which is more myopic than γ. This suggests for the
existence of a myopic bias, and the experimentally one should increase the value of γ used. We have not done experiments
with this adjustment, however investigating the effect of this matter on the Antmaze medium and large domains – which
explicitly test for extremely long-range sparse rewards (reward of 1 at goal position and 0 everywhere else) – may lead to
non-trivial gains in performance.

K.2. Moving Closer to Function Approximation Setting

To move closer to the function approximation setup, we can continue to make the assumptions from the previous section,
except that the Q-values for out-of-distribution (OOD) actions are somehow related to the values for actions inside the

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Figure 7. Comparison of EMaQ, BCQ, and BEAR on D4RL (Fu et al., 2020b) benchmark domains when using when using the described
VAE implementation for µ(a|s). For both BCQ and BEAR, from left to right the allowed deviation from µ(a|s) increases. Horizontal
green lines represent the reported performance of BEAR in the D4RL benchmark.

support, and not fixed at the initialization value. To try to study this setup in a more pessimistic setting, assume that for
a given state, the values of all OOD actions is the maximum Q-value inside the πβ support, Q(s)max, plus a positive
state-dependent term f(s). Similar to above, after rearranging, we have: � �

0
0
i 0

TµN Q(s, a) := [r(s, a) + (1 − p(s 0)N) · γ · f(s 0)] + p(s 0)N · γ · E{a }N ∈ support max Q(s , a 0)
a0∈{a }N

i

+ (1 − p(s 0)N) · γ · Q(s 0)max (79)

K.3. Qualitative Difference in Training Curves

In Appendix section L we present a short discussion on qualitative observations comparing the training curves of EMaQ vs.
BCQ, demonstrating stability in EMaQ training.

L. Qualitative Differences in Training Curves
We have sometimes observed that the curves representing agent performance throughout training can be significantly more
stable under EMaQ in comparison to BEAR and BCQ. A domain where the differences are particularly striking are the
antmaze-umaze and antmaze-umaze-diverse domains. In Figure 4 we have included plots of agent performance
during training under the variety of considered hyperparameters and random seeds. It can be seen that in these two domains,
initially the BCQ agents improves in performance close to the performance of EMaQ, and the drastically degrades with
more training. In constrast, EMaQ agents remain stable even after twice as many training iterations as BCQ, which may
indicate the downside of the heuristic perturbation model for constraining actions.

M. Larger Plots for Visibility
Due to larger size of plots, each plot is shown on a separate page below. For ablation results, see Figure 11. For MuJoCo
results, see Figure 12.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

EMaQ BCQ

antmaze-umaze

antmaze-umaze-diverse

Table 4. Comparison of agent returns throughout training, under the variety of hyperparameters and and random seeds, in the small ant
domains. We observe that EMaQ is significantly more stable than BCQ in these domains, even though the values of N in EMaQ were
fairly large for these plots N ∈ {50, 100, 150, 200}.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Fi
gu

re
 8

. R
es

ul
ts

 w
ith

 b
ot

h
au

to
re

gr
es

si
ve

 a
nd

 V
A

E
 m

od
el

s
in

 o
ne

 p
lo

t f
or

 e
as

ie
r c

om
pa

ri
so

n.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Fi
gu

re
 9

. R
es

ul
ts

 w
ith

 b
ot

h
au

to
re

gr
es

si
ve

 a
nd

 V
A

E
 m

od
el

s
in

 o
ne

 p
lo

t f
or

 e
as

ie
r c

om
pa

ri
so

n.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Fi
gu

re
 1

0.
 C

om
pa

ri
so

n
of

 S
of

t-
E

M
aQ

 w
ith

 E
M

aQ
 u

nd
er

 a
 la

rg
e

ra
ng

e
of

 h
yp

er
pa

ra
m

et
er

s
in

 th
e

H
al

fc
he

et
ah

 d
om

ai
n.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Fi
gu

re
 1

1.
 R

es
ul

ts
 f

or
 e

va
lu

at
in

g
E

M
aQ

 o
n

D
4R

L
 (

Fu
 e

t a
l.,

 2
02

0b
)

be
nc

hm
ar

k
do

m
ai

ns
, w

ith
 N

 ∈
{5

, 1
0
, 2
5
, 5
0
, 1
0
0
, 2
0
0
, 4
0
0
}.

 V
al

ue
s

ab
ov

e
µ
(a
|s
)

re
pr

es
en

t t
he

 r
es

ul
t o

f
ev

al
ua

tin
g

th
e

ba
se

 b
eh

av
io

r p
ol

ic
ie

s.
 H

or
iz

on
ta

l g
re

en
 li

ne
s

re
pr

es
en

t t
he

 re
po

rte
d

pe
rf

or
m

an
ce

 o
f B

EA
R

 in
 th

e
D

4R
L

be
nc

hm
ar

k
(a

pp
le

s
to

 a
pp

le
s

co
m

pa
ris

on
s

in
 F

ig
ur

e
2)

. R
ef

er
 to

m

ai
n

te
xt

 (S
ec

tio
n

5.
1)

 fo
r d

es
cr

ip
tio

n
of

 c
ol

or
-c

od
in

g.

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

Fi
gu

re
 1

2.
 C

om
pa

ri
so

n
of

 E
M

aQ
, B

C
Q

, a
nd

 B
E

A
R

 o
n

D
4R

L
 (F

u
et

 a
l.,

 2
02

0b
) b

en
ch

m
ar

k
do

m
ai

ns
 w

he
n

us
in

g
ou

r p
ro

po
se

d
au

to
re

gr
es

si
ve

 µ
(a
|s
).

 F
or

 b
ot

h
B

C
Q

 a
nd

 B
E

A
R

, f
ro

m

le
ft

to
 ri

gh
t t

he
 a

llo
w

ed
 d

ev
ia

tio
n

fr
om

 µ
(a
|s
)

in
cr

ea
se

s.
 H

or
iz

on
ta

l g
re

en
 li

ne
s

re
pr

es
en

t t
he

 re
po

rte
d

pe
rf

or
m

an
ce

 o
f B

EA
R

 in
 th

e
D

4R
L

be
nc

hm
ar

k.
 C

ol
or

-c
od

in
g

fo
llo

w
s

Fi
gu

re
 1

.

