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Abstract

Approaches to policy optimization have been mo-
tivated from diverse principles, based on how the
parametric model is interpreted (e.g. value ver-
sus policy representation) or how the learning
objective is formulated, yet they share a common
goal of maximizing expected return. To better
capture the commonalities and identify key differ-
ences between policy optimization methods, we
develop a unified perspective that re-expresses the
underlying updates in terms of a limited choice of
gradient form and scaling function. In particular,
we identify a parameterized space of approximate
gradient updates for policy optimization that is
highly structured, yet covers both classical and
recent examples, including PPO. As a result, we
obtain novel yet well motivated updates that gen-
eralize existing algorithms in a way that can de-
liver benefits both in terms of convergence speed
and final result quality. An experimental inves-
tigation demonstrates that the additional degrees
of freedom provided in the parameterized family
of updates can be leveraged to obtain non-trivial
improvements both in synthetic domains and on
popular deep RL benchmarks.

1. Introduction
Policy optimization in reinforcement learning considers the
problem of learning a parameterized policy that maximizes
some notion of expected return, either via direct interac-
tions with the environment (on-policy) or via learning from
a fixed dataset (off-policy). A direct approach to policy
optimization is based on the policy gradient (PG) theorem
(Sutton et al., 1999), which shows how a parameterized
policy can be locally improved from unbiased Monte Carlo
estimates of the gradient of the expected return. Alternately,
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value-based methods attempt to solve a proxy task of fit-
ting a parameterized action-value function, which explicitly
models returns in the environment.

Even though the learning objectives appear different, they
share a common goal of constructing an agent that maxi-
mizes returns in an unknown environment. Moreover, they
share a low level algorithmic primitive of incrementally up-
dating model parameters based on learning signals derived
from random experience, which suggests a deeper underly-
ing connection. In this paper, we consider learning a single
parametric model while being agnostic about whether it is
a policy or a value model. A key contribution in Section 3
is to derive tight constraints on gradient estimates that cor-
respond to standard action value or policy gradient updates
on a parametric model. These results highlight the shared
sample dependent components of the updates while also
emphasizing key differences, which we use to organize a
form-axis of update variations. This leads us to propose a
novel form of policy gradient (PG) in Theorem 3.1, Policy
Gradient With Policy Baseline, that leverages a specific form
of state-action baseline (Gu et al., 2017; Wu et al., 2018;
Tucker et al., 2018), typically used to provide a control
variate for additional variance reduction beyond state only
baselines (Weaver & Tao, 2001; Greensmith et al., 2001).

In Section 4, an alternate axis of variation among updates is
identified, the scale-axis, which covers gradients for robust
alternatives to the MSE loss, including Huber loss. Notably,
the only difference between updates along this axis lies in
how return estimates are rescaled in the gradient update. In
Section 4.2, we show the Maximum-Likelihood gradient
can also be approximated as a scale variation.

Prior work has shown that accounting for distribution shift
from the behavior policy is valuable (Espeholt et al., 2018;
Schulman et al., 2017) in the case of off-policy learning. In
Section 4.3, we consider off-policy corrections as another
instance of scale-axis variation. A key insight is the central
role of a simple scaling function whose two scalar inputs
are sample-dependent learning signals: (1) the return error
estimate and (2) the log probability ratio of importance
weight. In Section 4.4, we prove that the gradient update
arising from the surrogate objective defined for Proximal
Policy Optimization (PPO) (Schulman et al., 2017) also
corresponds to a particular non-trivial instantiation of this
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scaling function.

Section 5 then summarizes the range of updates we identify
for both discrete and continuous action spaces, and lists
some shared properties of the scaling function that underlie
viable update rules. In Section 5.1, we extrapolate these
shared properties as constraints to guide the design of a
simple class of scaling functions that includes both a nu-
merically stable approximation to the maximum likelihood
scaling function as well as the default scaling function used
in policy gradient and Q-learning.

Section 6 conducts an experimental evaluation of novel up-
date rules in the expanded family, in settings ranging from a
synthetic 2D bandit benchmark (Section 6.1), a tabular envi-
ronment (Section 6.2) and the MuJoCo continuous control
benchmark versus the PPO baseline (Section 6.3). These re-
sults demonstrate that the form-axis and scale-axis simplify
the identification of new updates that are able to improve
policy optimization algorithms in a variety of situations.

2. Background
Consider the standard infinite horizon discounted Markov
Decision Process model with states indexed by s ∈ S,
actions by a ∈ A and a reward r(s, a). A policy is
a conditional distribution over the action space A for a
given state, π(.|s), satisfying the normalization constraint∑

a π(a|s) = 1 for all s ∈ S. Given policy π, let
Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt|s0 = s, a0 = a] denote the ex-
pected return starting from (s, a) and then following the
policy π. The goal of policy optimization, loosely speak-
ing, is to find a policy π that achieves high expected re-
turns. In the general case of a parametric policy, how-
ever, different policies can be optimal for different start-
ing states. To resolve this ambiguity, a fixed but arbitrary
initial state distribution µ(s) over S is typically used to de-
fine a concrete objective as the expected return, Jµ(π) =
Es0∼µ [

∑∞
t=0 γ

trt]. An alternate way to handle Jµ(π) is
by defining a key distribution dπµ(s), the discounted state
visitation distribution when sampling the initial state from µ:
dπµ(s) = (1 − γ)

∑∞
t=0 γ

t Es0∼µ [Pr
π(st = s|s0)], where

Prπ represents the (unknown) transition kernel on the MDP
corresponding to a given policy π. With this definition, it
can be shown that Jµ(π) = E(s,a)∼Dπ

µ
[r(s, a)] (Puterman,

2014), where

Dπ
µ(s, a) = dπµ(s)π(a|s). (1)

When the policy is parameterized by θ as πθ, the
classical policy gradient theorem (Sutton et al., 1999)
shows that ∇θJµ(πθ) can also be expressed as an ex-
pectation of gradient samples over Dπ

µ: ∇θJµ(θ) =
E(s,a)∼Dπ

µ
[Qπ(s, a)∇θ log πθ(a|s)]. In practice, Qπ is gen-

erally not available to compute the gradients so policy-
based methods usually replace it with an estimate, T̂ (s, a),

based on, e.g., discounted Monte Carlo returns. Such an
estimator, however, can perform poorly in practice. To ad-
dress this, a baseline is typically subtracted from the target
estimate T̂ (s, a), i.e., introducing a control variate without
bias:

ĜPG(s, a, θ) = (T̂ (s, a)− b(s))∇θ log πθ(a|s) (2)

On the other hand, value-based methods like Q-learning
rely on temporal differences and perform updates that do
not explicitly follow the gradient of an objective function.
Instead, they are motivated as semi-gradients, defined by up-
dates in a pseudo-objective that ignores certain terms in the
gradient. These are typically considered off-policy methods
and do not explicitly specify the sampling distribution for
(s, a) when estimating an update direction. For instance,
given a parametric model qθ(s, a), the Q-learning update,
denoted by ĜQL can be written as:

ĜQL(s, a, θ) = (T̂ (s, a)− qθ(s, a))∇θqθ(s, a) (3)

where T̂ (s, a) = r(s, a) + γmaxu qθ(s
′, u) and s′ is a

random sample for the transition kernel from (s, a). TD-
learning with SARSA (Sutton & Barto, 2018) on a pol-
icy π uses a slightly different target: T̂ (s, a) = r(s, a) +
γqθ(s

′, u), where u ∼ π(.|s′), which is called the 1-step
bootstrap. This estimate can have a bias when the value
function is an approximation. Therefore, generalizations of
the target definition based on n-step returns can also be con-
sidered, which smoothly interpolate between the unbiased
Monte Carlo rollouts and the bootstrap estimates. However,
such variations on the target are orthogonal to our analysis,
which focuses on the structure of the gradient updates once
an estimation procedure for T̂ (s, a) is fixed.

3. Policy-based versus Value-based Updates
Consider a learnable parametric function approximator,
qθ(s, a) : S × A 7→ R for which the parameters θ are
updated using gradient estimates constructed from stochas-
tic samples of experience data. For value-based methods
(e.g. DQN or TD-learning), qθ(s, a) explicitly models some
notion of an infinite horizon discounted return value starting
from state s and taking action a. For a policy-based method,
qθ(s, a) could instead represent the energy function that
encodes the action conditional distribution for a stochastic
policy πθ. In the case of discrete actions, qθ(s, a) can be in-
terpreted as the action logits or preferences (Sutton & Barto,
2018). Taking this perspective, we begin our analysis by
studying the gradients for a stochastic policy πθ(a|s), that
denotes a properly normalized conditional likelihood for
taking action a at state s. For discrete actions, which we
assume through this section, this is equivalent to the softmax
transformation that links πθ(a|s) with {qθ(s, u)}u∈A:

πθ(a|s) ≜ exp (qθ(s, a))/
∑
u

exp(qθ(s, u)) (4)
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3.1. Policy Gradient with Policy Baseline (PGPB)

In (2), ĜPG can often be impractical for non-trivial prob-
lems due to its high variance, which motivates baselines,
which are generally parameterized functions that can depend
on both the state and the action. The parameters that define
baselines are typically independent of the policy parameters,
however. We now consider a particular form of state-action
baseline that uses the policy logits as the baseline under the
softmax parameterization of (4). The primary motivation
for introducing this is to clarify the relationship between
policy-based and value-based gradients. We begin with a
result that characterizes this form of the policy gradient
estimator, whose relation to value-based gradients would
be evident later in Section 3.2 by contrasting the terms in
their respective gradients. All proofs are provided in the
Appendix.

Theorem 3.1. [Policy Gradient with Policy Baseline] Given
qθ(s, a) : S × A 7→ R, let πθ(a|s) be defined by (4). Con-
sider the sample based gradient estimator for θ:

ĜPGPB(s, a, θ) ≜ (5)(
T̂ (s, a)− qθ(s, a)

)
∇θ log πθ(a|s)−∇θH(πθ(.|s))

where H(πθ(.|s)) = Ea∼πθ(.|s) [− log πθ(a|s)] denotes the
entropy of πθ(.|s). Then, ĜPGPB is an unbiased estimate
of the policy gradient if T̂ is an unbiased estimate of return:

∇θJ
π
µ (θ) = E

(s,a)∼Dπ
µ

[
ĜPGPB(s, a, θ)

]
(6)

Remark 3.2 (Entropy Term). Note that unlike MaxEnt-
RL (Haarnoja et al., 2017), the objective Jπ

µ (θ) does not
include entropy regularization in its formulation, yet an
entropy term intriguingly shows up in (5).

3.2. Connecting Policy-based and Value-based Updates

Consider two gradient estimators that can be viewed as fit-
ting an action-value function by minimizing an objective
w.r.t. a target estimator T̂ (s, a), where the first objective
is the common Mean Squared Error (MSE), while the sec-
ond is the less common Mean Variance Error (MVE) (Flet-
Berliac et al., 2021).

Theorem 3.3. Consider the value-based gradients follow-
ing the MSE and MVE objectives respectively defined as:

GMSE(θ) = −∇θ
1

2
E

(s,a)

[
(T̂ (s, a)− qθ(s, a))

2
]

(7)

GMVE(θ) = −∇θ
1

2
E
s
V
a

[
T̂ (s, a)− qθ(s, a)

]
, (8)

where, Va denotes the variance of the distribution over a,
conditioned on the state s. Then, ĜMSE and ĜMVE below

are unbiased gradient1 estimators for GMSE and GMVE .

ĜMSE(s, a, θ) ≜
(
T̂ (s, a)− qθ(s, a)

)
∇θqθ(s, a) (9)

ĜMVE(s, a, θ) ≜
(
T̂ (s, a)− qθ(s, a)

)
∇θ log πθ(a|s)

(10)

Note that value-based methods typically do not specify the
replay buffer sampling distribution, in contrast to PG, which
comes with a specific on-policy sampling distribution, Dπ

µ

defined in (1). However, this distinction is not relevant when
considering the updates conditioned on a given (s, a) unless
off-policy corrections are considered. We are now ready to
relate the policy gradient ĜPGPB with ĜMSE and ĜMVE .

Corollary 3.4. Given any fixed target return estimator,
T̂ (s, a), the following relations hold between the sample-
based gradient estimators at every sample (s, a) and θ.

ĜMVE − ĜPGPB = ∇θH(πθ(.|s)) (11)

ĜMSE − ĜMVE ∝
∑
u

πθ(u|s)∇θqθ(s, u) (12)

ĜMSE − ĜPGPB−∇θH(πθ(.|s)) (13)

∝
∑
u

πθ(u|s)∇θqθ(s, u)

Proof. Equation (11) follows directly from combining
(5) with (10). Equation (12) follows from relating
∇θ log πθ(a|s) with ∇θqθ(s, a) using Equation (4). Fi-
nally, Equation (13) follows from the previous two observa-
tions.

The significance of Corollary 3.4 is that Equations (11),
(12), (13) express the relationship between the three gradi-
ent forms in terms of quantities that have no dependence
on the action a or the return estimate T̂ (s, a). The main
signal indicating quality of the chosen action a, quantified
by T̂ (s, a), is aggregated identically for all three updates
via:

∆R ≜ T̂ (s, a)− qθ(s, a) (14)

To summarize the three forms of updates above more explic-
itly in terms of the underlying parametric model qθ(s, a),
we now state a helper theorem:

Theorem 3.5. Let q̂θ indicate a stop-gradient operator on
qθ with respect to θ. Given the softmax parameterization of
πθ (Equation (4)), we have:

∇θH(πθ(.|s) +∇θ E
u|s∼πθ

[q̂θ(s, u)] = 0 (15)

1These are technically semi-gradients because any dependence
of D̂π

µ , the assumed on-policy sampling distribution for (s, a) and
T̂ (s, a) on θ are ignored, similar to most TD learning methods.
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Theorem 3.5, Equation (4) and Equation (14), together allow
for a summary of the three updates directly in terms of
qθ(s, a) as:

ĜPGPB = ∆R

(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
+∇θ E

u|s∼πθ

[q̂θ(s, u)] (16)

ĜMVE = ∆R

(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
(17)

ĜMSE = ∆R

(
∇θqθ(s, a)

)
(18)

We refer to the gradients listed in Equations (16), (17),
(18) as update variations along the form-axis since the key
changes required to span these updates have to do with
what are effectively the bias vectors, Eu|s∼π [∇θqθ(s, u)]
and ∇θ Eu|s∼πθ

[q̂θ(s, u)], that can be computed exclusively
from the model qθ without any query to the data sample,
and in particular, ∆R.

4. Update Variations: The Scale-Axis
In the previous section, we discussed update variations along
the form-axis. In this section, an orthogonal variation along
the scale-axis is proposed, which considers how the gradient
terms are scaled based on the return estimate.

4.1. Error Loss Function Updates

Consider value fitting objectives arising from aggregating
individual state action prediction errors via an error loss
function, l which is assumed to be smooth and convex,
l : R 7→ R+ such that l(0) = 0. Under these assumptions,
the derivative of l is given by a non-decreasing function
λ : R 7→ R with λ(0) = 0. Given any such loss criterion l
on the prediction error ∆R, let GE(l)(θ) denote a general-
ization of GMSE(θ) in Equation (7) that generalizes to the
error loss l(.) from the MSE:

GE(l)(θ) = −∇θ E
(s,a)

[
l
(
T̂ (s, a)− qθ(s, a)

)]
(19)

The sample gradient estimator, Ĝλ for the scaling function
λ (or equivalently, its loss l) is:

Ĝλ(s, a, θ) = −∇θ l
(
T̂ (s, a)− qθ(s, a)

)
(20)

= λ(∆R)∇θqθ(s, a) (21)

Unlike the form-axis variations which involve the previously
discussed sample independent bias vectors, we refer to this
type of variation as the scale-axis. The MSE update is
equivalent to l(x) = 1

2x
2 and λ(x) = x. An alternative, the

Huber loss (Huber, 1964), has an l(x) parameterized by a
hyperparameter δ > 0 as:

l(x) =

{
1
2x

2, if |x| < δ

δ(|x| − 1
2δ), otherwise

In this case, λ(x) = clip(x,−δ, δ) is a clipped version
of the identity scaling function that arises from the MSE
loss. Clipping the TD-errors is a common heuristic in deep
RL (Mnih et al., 2015), and corresponds to a simple scale
variation as shown above.

4.2. A Maximum-Likelihood Update

Next, we derive a novel scale-axis update that is in-
spired by a maximum likelihood objective. Given a tar-
get estimator, T̂ , consider an action target distribution
p̂T (a|s) ≜ exp

(
T̂ (s, a)− F (T̂ )(s)

)
, where F (T )(s) ≜

log
∑

a expT (s, a). The gradient of the log-likelihood for
action conditionals given this target distribution is:

GML(θ) ≜ E
s

[
E

a|s∼p̂T

∇θ log πθ(a|s)
]

=E
s

[
E

a|s∼p̂T

[
∇θqθ(s, a)

]
−

∑
u

πθ(u|s)∇θqθ(s, u)

]

=E
s

[
E

a|s∼π

[
p̂T (a|s)
πθ(a|s)

∇θqθ(s, a)

]
− E

u|s∼π

[
∇θqθ(s, u)

]]
= E

(s,a)∼π

[(
p̂T (a|s)
πθ(a|s)

− 1

)
∇θqθ(s, a)

]
(22)

Note that the log-likelihood ratio between p̂T and πθ is:

log p̂T (a|s)− log πθ(a|s)
= T̂ (s, a)− F (T̂ )(s)− qθ(s, a) + F (qθ)(s)

= ∆R + ξ(s), where ξ(s) = F (qθ)(s)− F (T̂ )(s),

which gives an unbiased sample estimator for (22) in the
form (e∆R+ξ(s) − 1)∇θqθ(s, a). However, computing
F (T̂ )(s) explicitly requires defining T̂ (s, a) for all possible
actions and not just the chosen action. To avoid this issue,
we make an approximation that ξ(s) ≊ 0, which may also
be justified as an implicit constraint on the estimated target
values. This motivates an alternate update:

ĜML(s, a, θ) ≜
(
e∆R − 1

)
∇θqθ(s, a) (23)

This update can be recovered by λ(x) = ex − 1, which also
satisfies λ(0) = 0 and is increasing.

In Oh et al. (2018), a surrogate objective derived from modi-
fying the MSE loss for Q-learning by clipping the prediction
error below at 0 is proposed, which is referred to as self imi-
tation learning (SIL). We can write the gradient expression
corresponding to this objective as

ĜSIL(s, a, θ) = max(∆R, 0)∇θqθ(s, a) (24)

which reveals that it could be considered a piece-wise linear
approximation to the Maximum Likelihood gradient ĜML

derived above since λ(x) = ex − 1 ≊ max(x, 0).
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4.3. Off-Policy Corrected Updates

In Section 3, we made an implicit assumption that the sam-
pled actions for each update are chosen from the policy
encoded by the current parameters, which is an on-policy as-
sumption that is typically not satisfied in practice. Account-
ing for a different behavior policy requires re-weighting
the updates with off-policy importance ratio for each sam-
ple, which is an action dependent scalar signals, similar
to ∆R. Let πb denote the behavior policy. Denote the log
probability ratio at a given (s, a) sample as:

∆O ≜ log
πθ(a|s)
πb(a|s)

(25)

For practical reasons, we only consider importance correc-
tion of the action conditional distribution at each state and
implicitly assume that the state marginals match, an as-
sumption which is also common in prior practical methods
which make use of off-policy corrections (Chen et al., 2019a;
Schulman et al., 2017). Note that the two scalar quantities
∆O and ∆R, defined in Equations (25) and (14) summarize
all the action dependent learning signals needed for gradi-
ent estimation on any given (s, a) sample. Accounting for
importance weight correction, the updates in Equations (16),
(17), (18), (23) can be generalized to:

ĜPGPB = e∆O∆R

(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
+∇θ E

u|s∼πθ

[q̂θ(s, u)] (26)

ĜMVE = e∆O∆R

(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
(27)

Ĝλ = e∆Oλ(∆R)
(
∇θqθ(s, a)

)
(28)

Remark 4.1. Equation (28) spans an entire class of updates
by choosing λ : R 7→ R to be any particular non-decreasing
function which vanishes at 0. Setting ∆O = 0 recovers the
on-policy special case that ignores the importance weights.
Remark 4.2. For (26) the term ∇θ Eu|s∼πθ

[q̂θ(s, u)] does
not include an off-policy correction because it can be com-
puted explicitly without estimating the return for the chosen
action sample. This is in contrast to the terms involving
∆R, which are specific to the sampled action and need im-
portance correction whenever the actions are chosen by a
divergent behavior policy.

With off-policy corrections, the scale-axis variation can now
include a joint dependence of the gradient estimates on ∆O

and ∆R in a single expression, f(∆O,∆R). Note that the
form-axis variations considered in Section 3 can be system-
atically generalized by replacing ∆R with f(∆O,∆R) =
e∆O∆R. So far, we have only demonstrated cases of

f(∆O,∆R) that are multiplicatively factored into terms
that depend only on ∆O and ∆R. However, this need not
be a universal assumption, as shown next for PPO.

4.4. The Proximal Policy Optimization (PPO) update

PPO (Schulman et al., 2017) optimizes a surrogate objec-
tive derived from policy gradient to learn a policy param-
eterization directly without an explicit state-action value
function. To relate to our framework, we need to recon-
struct an explicit state-action preference qθ from πθ. While
this can be done using the softmax assumption in the dis-
crete action case, the more general continuous action setting
is not straightforward, as πθ may only support sampling
the conditional actions and estimating the conditional prob-
ability for a given state-action pair (e.g. from a closed
form Gaussian). Nevertheless, if we have an estimate for
V π(s), the state value function, then O’Donoghue et al.
(2017) suggests that we can consider an implied estimate
of the state-action values for some constant α of the form
q̂(s, a) ≊ α(log πθ(a|s) +H(π(.|s)) + V̂ π(s). Using the
notation for the advantage function, Â = T̂ − V π(s), we
define:

∆R = T̂ − q̂ = Â− α
(
log π(a|s) +H(π(.|s))

)
(29)

Given any advantage estimator (e.g., GAE(λ) (Schulman
et al., 2016)), this extends our generalized update rule start-
ing from PGPB using the value notation to a policy param-
eterized update rule that also supports continuous actions
as:

Ĝf,π ≜ f(∆O,∆R)∇θ log πθ(a|s) + β∇θH(πθ(.|s))
(30)

In the above equation, β is an additional entropy hyperpa-
rameter similar to the final term in ĜPGPB for the special
case of discrete actions from Section 3.

Theorem 4.3. The PPO surrogate objective gradient
can be recovered as Ĝf,π in (30) for the gradient scal-
ing function, f(x, y) = exy τϵ(x, y), where τϵ(x, y) =
1y>01x<log(1+ϵ)+1y<01x>log(1−ϵ) while choosing α = 0
in (29). Note that τϵ(x, y) ∈ {0, 1} ∀x, y, ϵ.

5. A Parametrized Class of Updates
In Sections 3 and 4, two separate axes of variation for stan-
dard policy optimization updates were identified. These
were referred to as the form-axis and the scale-axis to high-
light the systematic structure shared between the updates.
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For a given f : R2 7→ R, the form variations include:

UQ(f) ≜ f(∆O,∆R)
(
∇θqθ(s, a)

)
(31)

UV (f) ≜ f(∆O,∆R)
(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
(32)

UP (f) ≜ f(∆O,∆R)
(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
+∇θ E

u|s∼πθ

[q̂θ(s, u)] (33)

Uπ(f) ≜ f(∆O,∆R)∇θ log πθ(a|s) + β∇θH(πθ(.|s))
(34)

In the above equations, the first three rules apply specifi-
cally to discrete action settings where there is an explicit
state-action parameterized model. The final update, Uπ(f),
in contrast, applies to a direct policy parameterization πθ

that is unavoidable in continuous action settings due to the
need for efficient sampling and normalization of the action
distribution.

Section 4 outlined a range of possibilities for the scale-axis
variation of gradient updates. In Assumption 5.1 below,
we consider natural constraints that restrict the possibilities
while investigating the design of new approximate scaling
functions f : R2 7→ R that may not directly correspond to
any prior known principle.

Assumption 5.1. Let f : R2 7→ R denote a function that
captures the dependence of a gradient update on ∆O,∆R.
Then, we consider f to be a valid scaling function for a
gradient update rule only if:

1. f(∆O,∆R) is non-decreasing in ∆R, with
f(∆O, 0) = 0 for any fixed ∆O. This implies
that f(∆O,∆R) has the same sign as ∆R, i.e.
∆Rf(∆O,∆R) ≥ 0.

2. |f(∆O,∆R)| is non-decreasing in ∆O around a neigh-
borhood of 0 for any fixed ∆R.

Constraint 1 ensures that the update direction increases
qθ(s, a) when it underestimates T̂ and decreases qθ(s, a)
when it overestimates T̂ . Constraint 2 ensures that samples
that are more off-policy have a weaker update strength in
comparison to on-policy samples. This is only assumed
around some neighborhood of 0 to allow for the trust region
constraints (Schulman et al., 2015) that inspire the clipping
surrogate optimized by PPO. Both constraints are clearly
satisfied by all of the specific updates derived in Section 4.

5.1. A Parametric Class of Scaling Functions

We now leverage the unified view including the constraints
of Assumption 5.1 to identify a numerically stable approxi-
mation, fMLA to the maximum likelihood scaling function,

which was derived as fML(∆O,∆R) = e∆O (e∆R −1), but
suffers from an exponential dependence on both ∆O and
∆R. This new approximation, derived in the appendix, is:

fMLA(x, y) = (35){
− 1

2 (1 + x)2, if y ≤ −(1 + x) ≤ 0

ymax
(
1 + x+ y

2 , 0
)

otherwise

Remark 5.2 (Qualitative similarity of fML to fMLA). When
highly off-policy (∆O ≪ 0), fMLA(∆O,∆R) = 0 for all
values of ∆R up to some positive threshold that depends on
∆O. This threshold increases as the sample becomes more
off-policy (i.e. ∆O →−∞). For large values of ∆R, the
update strength is quadratic in ∆R. Conversely, it saturates
to a negative value as ∆R→−∞.

We now introduce a class of scaling functions that is de-
rived by further approximations to fMLA. This class spans
a range of behaviors, all satisfying the constraints of As-
sumption 5.1.

fMLA(αo,αr)(x, y) = (36)

ymax

(
1 + αox+ αry,

(1 + αox)+
2

)
In Equation (36), the constants αo, αr denote hyper-
parameters2 that can be used to span a class of update rules
corresponding to a two-dimensional search space of scaling
functions.

Observation 5.3. [Recovery of Specific Scale Functions]
With particular values of αo, αr, fMLA(αo,αr) includes3 the
following important special cases of scaling functions that
were explicitly considered during the unification.

1. αo = 1, αr = 0.5 approximately recovers fMLA, and
therefore fML.

2. αo = 1, αr = 0 approximately recovers the baseline
scaling function for policy gradient with importance
weight corrections.

3. αo = 0, αr = 0 recovers the baseline identity scaling
function for action value methods without importance
weight corrections (e.g. Q-learning).

Justification of Observation 5.3. For claim 1, a visualiza-
tion for the projections of fML and fML(1,0.5) along various
slices of ∆O and ∆R is shown in Figures 4 and 5 in the
Appendix.
To justify claim 2, note that fMLA(1,0)(x, y) = ymax(1 +

x, (1+x)+
2 ) = ymax(1 + x, 0) ≊ yex.

Claim 3 follows trivially as fMLA(0,0)(x, y) = y.
2(x)+ denotes max(x, 0)
3In a non-vanishing neighborhood of (0, 0)
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6. Empirical Evaluation
The goal of the experiments is to investigate the practical
utility of the the parametric approximate gradient updates
proposed. Through a diverse set of evaluations, we find
that structure identified in the updates is narrow enough to
demonstrate the possibility of improvements to the vanilla
versions both in simple settings with few confounding ef-
fects as well as a more complex deep RL benchmark setting.

6.1. A Synthetic 2D Contextual Bandit

The experiments in this Section are designed to enable an
exhaustive study of the dynamics of several update rules
and their convergence to the optimum under the following
constraints: (1) An easily visualizable 2D parameter space
(2) Under-parameterization that makes value fitting non-
trivial (3) A unique and tractable optimum parameter setting
to analyze the gap from the optimum solution (4) Avoid
confounders related to the target estimation procedures.

Setting: State space is two-dimensional corresponding
to a degenerate single step MDP, denoted using x =
(x0, x1) ∈ R2. Action space is discrete with a ∈ {0, . . . , 7}
embedded onto a unit circle with embeddings Ψ(a) ≜
(cos(2πa/8), sin(2πa/8)). Reward is set as r(x, a) =
σ(⟨x,Ψ(a)⟩) ∈ (0, 1), where ⟨a, b⟩ denotes the dot prod-
uct of a, b; and σ is the sigmoid. The dataset consists of
(x, a, r), with x sampled from the 2D standard Gaussian and
a sampled uniformly in each batch. The model considered4

is qθ(x, a) = ⟨(θ0(1 + x0)− 1, θ1(1 + x1)− 1) ,Ψ(a)⟩.
The true reward cannot be fit exactly under the given pa-
rameterization, but the optimal parameters for maximizing
returns of the implied policy are θ∗ = (1, 1). Figure 8 in the
Appendix visualizes the policy return objective landscape
across the two-dimensional search space traversed by the
various gradient update rules.

Results: To compare the various update rules, trajectories
of θ starting from an initialization of (0, 0) are generated
for each of the twelve gradient updates listed in Table 1,
with more details about the setup provided in the Appendix.
Figure 1 shows that the best performing update is the com-
bination of the scaling function fMLA with the PGPB style
update. More detailed learning curves including the dynam-
ics of the Euclidean distance to the optimum parameters are
provided in the Appendix in Figures 6, 7. Within each form
of the gradient update, the maximum likelihood scaling
functions performed better than the other updates in terms
of both the speed of convergence as well as the final objec-
tive value. By contrast, the vanilla squared error objective
saturates at a sub-optimal solution though it gets there much

4The simpler alternative of qθ(x, a) = ⟨(θ0x0, θ1x1) ,Ψ(a)⟩
results in a policy parameterization that is scale invariant wrt θ,
and hence without a proper solution.

MSE MVE PGPB
Gradient update type
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Figure 1: Comparison of update rules on a 2D synthetic
bandit problem: Regret (J(πθ∗) − J(πθ)) for each of the
12 update rules considered (lower is better) at the end of
10k iterations. The updates are grouped by the three forms
(MSE, MVE, PGPB), and across four scaling functions as
listed in Table 1 in the Appendix.

faster compared to policy gradient, while the policy gradient
version converges to a good final solution, but much slower.
These experiments show evidence that the proposed class
of updates demonstrate the potential to improve both speed
and final solution compared to other natural baselines.

6.2. FourRoom Environment

To complement the other experiments, we show that the para-
metric scaling function can deliver benefits even while ablat-
ing the off-policy correction in the FourRoom domain (Pre-
cup, 2000).

Setting: The agent obtains a reward of 10 when they reach
a pre-defined goal cell, and 0 otherwise in an environment
with discount factor 0.9 from a random initial state. We con-
sider a batch/offline setting in which a dataset is collected
from a uniformly random behaviour policy. The dataset
is sufficient to cover the whole state and action space as
exploration is not the focus here. In each gradient update, a
minibatch of 64 transitions is uniformly sampled from the
dataset to compute the gradients. The policy is defined via
the logits qθ(s, a). Additional details are provided in the
Appendix.

Algorithms and Scaling Functions: We investigate the
performance of the fMLA(0,αr) scaled update derived from
two baseline updates corresponding to policy gradient and
Q-learning. For policy gradient, the target T̂ is set to be a
critic learned together with the policy/actor as commonly
done in the literature (Wen et al., 2021). For Q-learning, the
target is bootstrapped as r(s, a) + γmaxu qθ(s

′, u).

Results and Discussions: The results are shown in Fig-
ure 2, with mean and standard deviation over 5 runs. The
number following MLA indicates the value of αr (αo is set
to zero). One can see that MLA consistently improves over
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Figure 2: FourRoom Environment: Return curves for
fMLA(0,α) across α ∈ {0.1, 0.2, 0.5, 1.0} against baseline
for PG and Q-learning updates

the identity scaling for both policy gradient and Q-learning,
which are ubiquitous in the RL literature. As discussed in
Sec. 5.1, MLA corresponds to the identity scaling when
αo = αr = 0. Figure 2 shows that the agent learns faster as
αr deviates from zero. Recall that αr = 0 recovers the base-
line as discussed in Sec. 5.1. The consistent improvements
of MLA for policy gradient and Q-learning with different
targets indicate the significance of the scaling function for
the gradient update.

6.3. Continuous Control Experiments

In this section, benchmarks from the MuJoCo suite are eval-
uated with Proximal Policy Optimization (PPO) as the base-
line algorithm. Using Theorem 4.3, which shows that PPO
can be equivalently implemented as a special case of the
more general update rule, the experiments in this section are
designed to validate the possibility that a systematic search
over the structured scaling function space identified in Sec-
tion 5 can deliver non-trivial gains. Specifically, we consider
the continuous action update rule (30) for PPO and replace
the policy gradient scale component, e∆O∆R, with the pa-
rameterized variant, fMLA(αo,αr)(∆O,∆R) from Equation
(36) that can span more behaviors. The complete expres-
sions for the general parameterized update rule are provided
in Appendix C.2. Under this setting, (α, αo, αr) = (0, 1, 0)
recovers an update approximately equivalent to vanilla PPO.
However, our experiments demonstrate that this is generally
not the best choice as seen by the improvements in Figure
3. These results suggest that proposed update form with a
flexible scaling parameterization can be a significant lever
to improve state of the art algorithms. We used the single
process agent baseline of PPO in the open source ACME
framework (Hoffman et al., 2020) for the experiments.

7. Related Work
Unification of policy and value approaches: (Schulman
et al., 2018; Nachum et al., 2017; O’Donoghue et al., 2017;
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Figure 3: Results on MuJoCo Environments with mean and
standard deviation across 100 seeds comparing fMLA+PPO

with vanilla PPO. The x-axis corresponds to a total of 5
million environment steps.

Ghosh et al., 2020) make several connections between pol-
icy and value based methods, and propose algorithms that
leverage those relationships by interpreting the model as
both a policy and a value parameterization. Traditional
Actor-Critic methods (Peters & Schaal, 2008; Konda & Tsit-
siklis, 2000) use value-based methods to learn a critic during
policy optimization, maintaining two separate models in the
process. Recent progress (Wen et al., 2021) has also led
to an improved understanding of how such Actor-Critic
algorithms are related to pure PG approaches.

Surrogate objectives and gradients: Several prior works
have also considered surrogate objectives in policy opti-
mization (Chen et al., 2019b; Oh et al., 2018; Liang et al.,
2018; Schulman et al., 2017; Kumar et al., 2020; Serrano
et al., 2021). Directly taking the gradient perspective instead
of focusing on objectives has also been a focus in several
prior works including O’Donoghue et al. (2017); Maei et al.
(2009). Kumar et al. (2019) has also proposed and studied
a general class of gradient updates for policy optimization,
instances of which demonstrated empirical improvements
over value-based methods. Vieillard et al. (2020b;a) demon-
strate that applying certain form of momentum/averaging
to the gradient scale can be beneficial. These are orthogo-
nal to our results, which concern novel variations for the
dependence of the scale factor on the sample prediction
errors.

8. Conclusion
In this work, we identify structural similarities among the
gradient updates for policy optimization algorithms moti-
vated using various principles, ranging from classical policy
gradients and value estimation procedures to modern exam-
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ples like PPO. We show that policy based gradients can be
directly contrasted with value based gradients when con-
sidering itself as a state-action baseline. In particular, they
share the same dependence on the sample dependent learn-
ing signals that indicate the quality of a given action, but
differ in terms of how they make use of certain other sample
independent bias terms. We also identify a critical gradient
scaling dependence function on the sample prediction er-
rors and importance weights that can be used as a lever to
span the updates corresponding to a wide variety of policy
optimization procedures. Based on this insight, we design a
simple parametric search space for valid scaling functions
that can deliver reliable wins over strong baselines in a range
of experimental studies from simple synthetic settings to
deep RL benchmarks.

The proposed framework has broad applicability and rele-
vance to various policy optimization techniques. Exploring
connections to adaptive step size methods (Dabney, 2014)
is an interesting direction for further research. Applying
the proposed parametric updates in applied settings where
off policy corrections play an important role in policy opti-
mization (Chen et al., 2019a) is another useful direction for
future work. Another interesting direction is to leverage the
newly discovered structure in the approximate update space
to guide the search space for Auto-RL (Parker-Holder et al.,
2022) techniques.
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Appendix
A. Proofs
Theorem 3.1. [Policy Gradient with Policy Baseline] Given qθ(s, a) : S ×A 7→ R, let πθ(a|s) be defined by (4). Consider
the sample based gradient estimator for θ:

ĜPGPB(s, a, θ) ≜ (5)(
T̂ (s, a)− qθ(s, a)

)
∇θ log πθ(a|s)−∇θH(πθ(.|s))

where H(πθ(.|s)) = Ea∼πθ(.|s) [− log πθ(a|s)] denotes the entropy of πθ(.|s). Then, ĜPGPB is an unbiased estimate of
the policy gradient if T̂ is an unbiased estimate of return:

∇θJ
π
µ (θ) = E

(s,a)∼Dπ
µ

[
ĜPGPB(s, a, θ)

]
(6)

Proof. Under the given assumptions on T̂ (s, a), we have:

∇θJ
π
µ (θ) = E

(s,a)∼Dπ

[
T̂ (s, a)∇θ log πθ(a|s)

]
(37)

= E
s∼dπ

µ

[
E

a|s∼π

[
(T̂ (s, a)− qθ(s, a))∇θ log πθ(a|s)

]
+ E

u|s∼π
[qθ(s, u)∇θ log πθ(u|s)]

]
(38)

= E
s∼dπ

µ

[
E

a|s∼π

[
(T̂ (s, a)− qθ(s, a))∇θ log πθ(a|s)

]
+∇θ E

u|s∼πθ

[q̂θ(s, u)]

]
(39)

= E
(s,a)∼Dπ

[(
T̂ (s, a)− qθ(s, a)

)
∇θ log πθ(u|s) +∇θ E

u|s∼πθ

[q̂θ(s, u)]

]
(40)

= E
(s,a)∼Dπ

[(
T̂ (s, a)− qθ(s, a)

)
∇θ log πθ(u|s)−∇θH(πθ(.|s)

]
using Theorem 3.5 (41)

= E
(s,a)∼Dπ

[
ĜPGPB(s, a, θ)

]
(42)

Theorem 3.5. Let q̂θ indicate a stop-gradient operator on qθ with respect to θ. Given the softmax parameterization of πθ

(Equation (4)), we have:

∇θH(πθ(.|s) +∇θ E
u|s∼πθ

[q̂θ(s, u)] = 0 (15)
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Proof.

∇θ E
u|s∼πθ

[q̂θ(s, u)] =
∑
u

qθ(s, u)∇θπθ(u|s)

=
∑
u

πθ(u|s)qθ(s, u)∇θ log πθ(u|s)

=
∑
u

πθ(u|s)(log πθ(u|s) + F (qθ(s)))∇θ log πθ(u|s)

=
∑
u

πθ(u|s) log πθ(u|s)∇θ log πθ(u|s) + F (qθ(s))
∑
u

πθ(u|s)∇θ log πθ(u|s)

=
∑
u

πθ(u|s) log πθ(u|s)∇θ log πθ(u|s) + F (qθ(s))
∑
u

∇θπθ(u|s)

=
∑
u

πθ(u|s) log πθ(u|s)∇θ log πθ(u|s) + F (qθ(s))∇θ

∑
u

πθ(u|s)

=
∑
u

πθ(u|s) log πθ(u|s)∇θ log πθ(u|s) + F (qθ(s))∇θ1

=
∑
u

πθ(u|s) log πθ(u|s)∇θ log πθ(u|s) +∇θ1

=
∑
u

πθ(u|s) log πθ(u|s)∇θ log πθ(u|s) +
∑
u

πθ(u|s)∇θ log πθ(u|s)

=
∑
u

log πθ(u|s)∇θπθ(u|s) +
∑
u

πθ(u|s)∇θ log πθ(u|s)

=
∑
u

∇θ (πθ(u|s) log πθ(u|s))

= −∇θH(πθ(.|s)

Theorem 3.3. Consider the value-based gradients following the MSE and MVE objectives respectively defined as:

GMSE(θ) = −∇θ
1

2
E

(s,a)

[
(T̂ (s, a)− qθ(s, a))

2
]

(7)

GMVE(θ) = −∇θ
1

2
E
s
V
a

[
T̂ (s, a)− qθ(s, a)

]
, (8)

where, Va denotes the variance of the distribution over a, conditioned on the state s. Then, ĜMSE and ĜMVE below are
unbiased gradient5 estimators for GMSE and GMVE .

ĜMSE(s, a, θ) ≜
(
T̂ (s, a)− qθ(s, a)

)
∇θqθ(s, a) (9)

ĜMVE(s, a, θ) ≜
(
T̂ (s, a)− qθ(s, a)

)
∇θ log πθ(a|s) (10)

Proof.

GMSE(θ) = −1

2
E

(s,a)∼D̂π
µ

∇θ

[
(T̂ (s, a)− qθ(s, a))

2
]

= E
(s,a)∼D̂π

µ

[(
T̂ (s, a)− qθ(s, a)

)
∇θqθ(s, a)

]
= E

(s,a)∼D̂π
µ

[
ĜMSE(s, a, θ)

]
(43)

5These are technically semi-gradients because any dependence of D̂π
µ , the assumed on-policy sampling distribution for (s, a) and

T̂ (s, a) on θ are ignored, similar to most TD learning methods.
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This proves the statement about ĜMSE . For the claim regarding ĜMVE :

GMVE(θ) = −∇θ
1

2
E
s
V
a

[
T̂ (s, a)− qθ(s, a)

]
(44)

= −1

2
E
s
∇θ V

a|s∼π̂

[
T̂ (s, a)− qθ(s, a)

]
(45)

= −1

2
E
s

[
∇θ E

a|s∼π̂

[
(T̂ (s, a)− qθ(s, a))

2
]
−∇θ

(
E

a|s∼π̂

[
T̂ (s, a)− qθ(s, a)

])2
]

(46)

= E
s

[
E

a|s∼π

[(
T̂ (s, a)− qθ(s, a)

)
∇θqθ(s, a)

]
− E

a|s∼π

[
T̂ (s, a)− qθ(s, a)

]
E

u|s∼π

[
∇θqθ(s, u)

]]
(47)

= E
(s,a)

[(
T̂ (s, a)− qθ(s, a)

)(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)]
(48)

= E
(s,a)

[(
T̂ (s, a)− qθ(s, a)

)
∇θ log πθ(a|s)

]
(49)

= E
(s,a)

[
ĜMVE(s, a, θ)

]
(50)

Theorem 4.3. The PPO surrogate objective gradient can be recovered as Ĝf,π in (30) for the gradient scaling function,
f(x, y) = exy τϵ(x, y), where τϵ(x, y) = 1y>01x<log(1+ϵ) + 1y<01x>log(1−ϵ) while choosing α = 0 in (29). Note that
τϵ(x, y) ∈ {0, 1} ∀x, y, ϵ.

Proof. Assume that the batch of sample data is generated from a policy πb with parameters b. Let ĜPPO denote the PPO
surrogate objective sample gradient. This gradient can be simplified as follows to recover the scaling function equivalence.
The PPO surrogate objective is defined for a given clipping parameter ϵ as:

JPPO(s, a, θ) =

(
πθ(a|s)
πb(a|s)

Â, clip
(
πθ(a|s)
πb(a|s)

, 1− ϵ, 1 + ϵ

)
Â

)

We will focus on computing the gradient, ĜPPO(s, a, θ) = ∇θJPPO(s, a, θ) below. Note that ∆O = log πθ(a|s)
πb(a|s) , and

∆R = Â under the specified assumptions. Therefore,

ĜPPO(s, a, θ) = ∇θ

(
min

(
πθ(a|s)
πb(a|s)

∆R, clip
(
πθ(a|s)
πb(a|s)

, 1− ϵ, 1 + ϵ

)
∆R

))
(51)

= ∇θ

(
1∆R>0 min

(
πθ(a|s)
πb(a|s)

, 1 + ϵ

)
∆R + 1∆R<0 max

(
1− ϵ,

πθ(a|s)
πb(a|s)

)
∆R

)
(52)

= ∇θ

( (
1∆R>01∆O<log(1+ϵ) + 1∆R<01∆O>log(1+ϵ)

) πθ(a|s)
πb(a|s)

∆R +

(1 + ϵ)1∆R>01∆O≥log(1+ϵ)∆R + (1− ϵ)1∆R<01∆O≤log(1−ϵ)∆R

)
(53)

=
(
1∆R>01∆O<log(1+ϵ) + 1∆R<01∆O>log(1+ϵ)

)
∇θ

πθ(a|s)
πb(a|s)

∆R + 0 (∵ no gradient from the second term.) (54)

= τϵ(∆O,∆R)
πθ(a|s)
πb(a|s)

∇θ log πθ(a|s)∆R (55)

= τϵ(∆O,∆R)e
∆O∆R∇θ log πθ(a|s) (56)
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A.1. Design for the parametric scaling function approximations

Consider the following lower bound to e∆O (e∆R − 1) which is also exact upto second order around (∆O,∆R) = (0, 0).
Let X ∼ U [∆O,∆O +∆R] be a continuous RV with uniform density. Then:

E[eX ] =

∫ ∆O+∆R

∆O

ex

∆R
dx =

e∆O+∆R − e∆O

∆R
and eE[X] = e∆O+

∆R
2

Jensen’s inequality implies that

0 < e∆O+
∆R
2 ≤ e∆O+∆R − e∆O

∆R
∀ ∆O,∆R ∈ R

Consider the following approximation inspired by the above inequality:

e∆O+
∆R
2 ≈ e∆O+∆R − e∆O

∆R
(57)

We then consider the following sequence of approximations:

e∆O (e∆R − 1) = e∆O+∆R − e∆O (58)

≈ ∆Re
∆O+

∆R
2 Using Eq 57 (59)

≥ ∆R max

(
1 + ∆O +

∆R

2
, 0

)
since ex ≥ max(1 + x, 0) ∀x ∈ R (60)

Unfortunately, f0(∆O,∆R) ≜ ∆R max
(
1 + ∆O + ∆R

2 , 0
)

does not satisfy the monotonicity constraint in ∆R listed in
5.1 in all cases. To check this, we can verify that it is non-decreasing (and also convex) in ∆R if and only if 1 + ∆O ≤ 0.
Equation (35) makes a fix to f0 to ensure that the monotonicity constraints from Assumption 5.1 hold while also remaining
a good second order approximation when ∆O,∆R are small.

Fix for non-monotonicity(fMLA): First notice that the non-monotonicity only happens when 1 + ∆O > 0. In that case,
the minimum of the quadratic in y, q(x, y) = y(1 + x+ y/2) occurs for ymin(x) ≜ −(1 + x) < 0. However, in this case
1 + x+ ymin(x)/2 = (1 + x)/2 > 0. So f(x, y) = q(x, y) in a left neighborhood of ymin(x) = −(1 + x), which means
it must be decreasing in y in that range. To avoid this, we make a fix f(x, y) ≜ q(x, ymin(x)) = −(1 + x)2/2, when
y < ymin(x) = −(1 + x) and 1 + x > 0. The resulting f(x, y) is the definition of fMLA(x, y) in Equation (35).

Derivation of fMLA(α0,αr): In the policy parameterization, we did not include any temperature parameter for simplicity.
However, by considering a generalization of these as free parameters, we may consider scaling functions where the
inputs are replaced with αo∆O and αr∆R respectively. The same sequence of approximations resulting in Equation (60)
now result in the constraint violating function6 f1(x, y) = αry(1 + αox + αry/2)+. Without loss of generality, this is
equivalent to f1(x, y) = y(1 + αox+ αry)+, because (1) the constant αr scaling the outer y has no impact on the overall
update, and (2) we can redefine the remaining αr inside to include the 1/2 for simplicity. We are now left with fixing the
non-monotonicity of f1(x, y) = ymax(1 + α0x+ αry, 0) for certain ranges of y when 1 + α0x < 0. However, we do this
slightly differently compared to how it was done for fMLA above, in order to preserve the linear component in y, as this
allows for a more intuitive understanding as being the component that matches the identity scaling function.

Fix for non-monotonicity: As before, consider the quadratic in y, q(x, y) ≜ y(1 + αox+ αry) and its argmin ymin(x) =
−(1+αox)

2αr
in the problematic case when 1 + αox > 0. Observe that when y = ymin, we have 1 + αox + αry = 1+αox

2 .
Recall that the problem occurs due to the quadratic dependence on y from the second term for y < ymin. Instead of
completely eliminating the dependence on y, we can continue a monotonic linear relationship by simply clipping the second
term below by the value it takes at ymin which is 1 + αox+ αry = 1+αox

2 . However, recall that we should only perform
this clipping of the second term below by 1+αox

2 in the case when 1 + αox > 0. This can be done simply by clipping the
second term by (1+αox)+

2 as this reduces to the original floor of 0 in the case where no fix was needed. This results in the

proposed fMLA(αo,αr)(x, y) = ymax
(
1 + αox+ αry,

(1+αox)+
2

)
.

6(x)+ denotes max(x, 0)
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Figure 4: Visualization for fMLA(∆O,∆R) (Equation 35)
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Figure 5: Visualization for fMLA(1,0.5)(∆O,∆R) (Equation 36 for αo = 1, αr = 0.5.)



A Parametric Class of Approximate Gradient Updates for Policy Optimization

0 2000 4000 6000 8000 10000
SGD Iteration

0.05

0.10

0.15

0.20

0.25

0.30
J(

* )
J(

)
Policy optimality gap

Q(fSQ)
Q(fML)
Q(fSIL)
Q(fMLA)

(a) Learning curves for UQ(f): Col 1, Table 1
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(b) Learning curves for UV (f): Col 2, Table 1
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(c) Learning curves for UP (f): Col 3, Table 1

Figure 6: Gap to the optimal policy reward for the twelve updates listed in Table 1 grouped by the update type in each
column, and compared across scaling functions f ∈ {fSQ, fML, fSIL, fMLA}
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Figure 7: Final Euclidean distance to the optimal parameters, θ∗ = (1, 1)
for the tweleve update rules considered.
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Figure 8: Objective landscape

B. Table of update rule combinations evaluated for the 2D synthetic experiment
The full range of gradients characterized are summarized in Table 1, which considers the form-axis along the columns
for the three types of updates (squared error minimization, variance minimzation and PGPB), in conjunction with several
scaling functions along the row axis.

Table 1: A summary of the various updates evaluated in the synthetic 2D experiment.

UQ(f) ≡ f(∆O,∆R)
(
∇θqθ(s, a)

)
UV (f) ≡ f(∆O,∆R)

(
∇θqθ(s, a)− Eu|s∼π [∇θqθ(s, u)]

)
UP (f) ≡ f(∆O,∆R)

(
∇θqθ(s, a)− Eu|s∼π [∇θqθ(s, u)]

)
+∇θ Eu|s∼πθ

[q̂θ(s, u)]

f UQ(f) UV (f) UP (f)

fSQ(x, y) ≜ exy ĜQ ĜV ĜPGPB

fML(x, y) ≜ ex(ey − 1) ĜML ĜML,V ĜML,PGPB

fSIL(x, y) ≜ ex max (y, 0) ĜSIL ĜSIL,V ĜSIL,PGPB

fMLA(x, y) ≜

{
− 1

2 (1 + x)2, if 1 + x+ y ≤ 0 < 1 + x

ymax
(
1 + x+ y

2 , 0
)
, otherwise

ĜMLA ĜMLA,V ĜMLA,PGPB

C. Experiment Details
C.1. Tabular Experiments

The FourRoom environment is shown in Figure 9. Both policy gradient (PG) and Q-learning (QL) use SGD as the optimizer.
The learning rate for PG is 0.1 for both the actor and the critic, while the learning rate for QL is 0.01. Figure 2 reports the
exponential running average return with exponent discount of 0.01.
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Figure 9: The FourRoom Environment

C.2. Continuous Control Experiments

The full set of update equations used are summarized below:

ĜMLA−PPO(s, a, θ) = fMLA−PPO(∆O,∆R)∇θ log πθ(a|s) + β∇θH(πθ(.|s)), where:
fMLA−PPO(x, y) = fMLA(αo,αr)(x, y)τϵ(x, y), where:

fMLA(αo,αr)(x, y) = ymax

(
1 + αox+ αry,

(1 + αox)+
2

)
τϵ(x, y) = 1y>01x<log(1+ϵ) + 1y<01x>log(1−ϵ)

∆R = Â− α
(
log π(a|s) +H(π(.|s))

)
Table 2: Optimal hyper-parameter configurations for PPO - MLA on the MuJoCo Tasks. Note that the performance reported
for the baseline PPO implementation uses its own independently tuned clipping ϵ.

Environment αr αo α ϵ

Walker2d-v2 0.05 0.1 0.0 0.2

Hopper-v2 1.0 0.1 0.01 0.2

HalfCheetah-v2 0.5 0.1 0.1 0.2

Humanoid-v2 1.0 1.0 0.0 0.3


