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Abstract
Distributions over discrete sets capture the es-
sential statistics including the high-order corre-
lation among elements. Such information pro-
vides powerful insight for decision making across
various application domains, e.g. product assort-
ment based on product distribution in shopping
carts. While deep generative models trained on
pre-collected data can capture existing distribu-
tions, such pre-trained models are usually not ca-
pable of aligning with a target domain in the pres-
ence of distribution shift due to reasons such as
temporal shift or the change in the population
mix. We develop a general framework to adapt
a generative model subject to a (possibly coun-
terfactual) target data distribution with both sam-
pling and computation efficiency. Concretely, in-
stead of re-training a full model from scratch, we
reuse the learned modules to preserve the correla-
tions between set elements, while only adjusting
corresponding components to align with target
marginal constraints. We instantiate the approach
for three commonly used forms of discrete set
distribution—latent variable, autoregressive, and
energy based models—and provide efficient so-
lutions for marginal-constrained optimization in
either primal or dual forms. Experiments on both
synthetic and real-world e-commerce and EHR
datasets show that the proposed framework is able
to practically align a generative model to match
marginal constraints under distribution shift.

1. Introduction
Discrete sets are a common datatype in real world applica-
tions, typically encountered, for example, in carts of prod-
ucts in online shopping, sets of diagnosis codes for individ-
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ual patients in their electronic health records (EHR), or even
bag-of-word representations of documents. Understand-
ing correlations between set elements provides essential
insight in these domains, and has been a major topic in ma-
chine learning and data mining research (Han et al., 2011).
Deep generative models, including deep latent variable mod-
els (Kingma & Welling, 2014), autoregressive models (Uria
et al., 2016), and deep energy-based models (LeCun et al.,
2006), have recently provided powerful new tools for captur-
ing high-order correlations between elements co-occurring
in a set. Generated samples of discrete sets from such mod-
els, such as synthetic online orders, are often used for evalu-
ating downstream decisions in applications like supply chain
fulfillment and product assortment decisions.

Generative models have demonstrated success in discrete set
modeling for domains such as document (Blei et al., 2003)
and language (Vaswani et al., 2017) modeling, but these
successes have generally relied on a basic assumption: that
the target distribution matches the distribution that generated
the training data (Vapnik, 1999). However, distribution shift
is prevalent in real-world scenarios, which can cause poor
alignment between previously sampled training data and
a current target distribution. One typical reason for such
drift is seasonality, for example sales in summer differ from
those in winter. Another reason is the need to perform
counterfactual simulation for purposes like debiasing EHR
data or stress-testing logistic systems. Both cases require
the generative model to be adapted to satisfy a (possibly
counterfactual) target data distribution.

For discrete sets, the most natural statistics of interest are
element marginals, i.e., the occurrence frequency of a par-
ticular element in the generated sets. In practice, it is also
relatively easy to obtain estimates of such marginals, like
sales for a certain product or prevalence of a certain disease,
compared to obtaining joint occurrence statistics. In this
paper, we therefore focus on developing a practical answer
to the following question:

How can we efficiently align an existing generative model
to match target marginal specifications, while preserving

previously learned correlations between elements?

The most straightforward idea would be to retrain an en-
tire generative model from scratch on data that respects
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Figure 1. Motivating example and overview of MODEM, the training distribution Dsrc describes customer orders on a regular day (more
fruits than electronics). A store would like to simulate orders around the time of a new iPhone release, while preserving item correlations
in the training data (i.e., apples and bananas co-occur, iPhones and watches co-occur). 2/3 of the general population buys new iPhones
around the time of release according to some poll (marginal constraint). LVM adapts to the constraint by controlling the latent variable
representing the electronics category. Autoregressive model increases the probability that the first generated item is an iPhone. EBM
adapts the energy to generate more iPhones. Red denotes modules fixed and reused after training and blue denotes adapted components.

a new marginal specification. However, such a naive ap-
proach is maximally inefficient in terms of sample, memory
and computational resource use. Fine-tuning a pretrained
model (Devlin et al., 2018) is another widely used approach,
but this merely uses an existing model as a warm-start, and
otherwise retrains a full model on new data reflecting the
target distribution. It is not obvious how to bypass such inef-
ficiencies, however, given that all parameters in a model are
updated during gradient-based training, and there is no sim-
ple mechanism for preserving previous correlations without
accessing the original training data. This reveals a delicate
trade-off between training efficiency and model reuse.

Our contribution. In this paper, we propose a solution to
the question posed, and show how a pre-trained generative
model can be adapted, efficiently, to match target marginals
while preserving previous correlations. In particular, we
maintain previous correlations by explicitly reusing exist-
ing modules from the pre-trained model, while to adapt
the model to new marginals, we recompose the fixed mod-
ules using a simple optimization. This leads to our pro-
posed framework, Module-Oriented DivErgence Minimiza-
tion (MODEM). More specifically,

• We first introduce the primary contribution, the MO-
DEM framework, from the perspective of constrained
divergence minimization in Section 2;

• We instantiate the general framework for specific forms
of generative model—latent variable, autoregressive, and
energy-based models—in Section 3.1, 3.2, and 3.3, re-
spectively, showing how marginal matching can be effi-
ciently achieved in each case;

• We verify the proposed MODEM framework on the
different types of generative model for discrete set mod-
eling, considering both synthetic and four real-world
datasets from e-commerce and EHR domains in Sec-
tion 5. The empirical results demonstrate the effective-
ness of MODEM.

We emphasize that although we consider marginal distribu-
tion adaptation as the primary motivation, the proposed MO-
DEM framework is far more general and can be easily ap-
plied to other distribution alignment problems, which we
leave as future work.

2. MODEM Framework
In this section, we first formally introduce the problem
setting, then reformulate distribution adaptation as a con-
strained divergence minimization problem. Key to the ap-
proach is to explicitly reuse modules from a pretrained
generative model to preserve previously learned correla-
tions. By integrating these two components, we obtain a
general framework, Module-Oriented Divergence Minimiza-
tion (MODEM), that strikes an effective balance between
efficiency and model reuse.

Problem Formulation. A discrete set S is defined as a
collection of unique elements from a finite domain X ={
x1, x2, . . . , x|X|

}
. We have S ∈P(X) where P(X) is

the powerset of X . Given a dataset sampled from some un-
known source distributionDsrc ∼ p̂ (S), the standard gener-
ative modeling task is to learn a model p from a parametrized
distribution familyH to approximate the distribution p̂(S).
A vast diversity of objectives and methods have been devel-
oped for this general problem (Goodfellow et al., 2016).

We will focus on generative model adaption under marginal
distribution specification. Concretely, given a learned model
p ∈ H, we would like to find another model q ∈ H that
satisfies the marginal distribution specification, while the
original correlation in p is still preserved in q.

By “marginal distribution specification” we mean

|ES∼q [I (ei ∈ S)]− ti| = 0,∀ (ei, ti) ∈ C, (1)

where C = {ci = (ei, ti)}|C|i=1 specifies that a certain ele-
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ment ci ∈ X would in expectation appear in a 0 6 ti 6 1
fraction of all the generated discrete sets.

By “correlation preservation”, we mean the high-order mo-
ments should be approximately maintained, i.e.,

|Ep [I (A ∈ S)]− Eq [I (A ∈ S)]| 6 ξ,∀A ∈P (X) and |A| > 1, (2)

with ξ > 0 and Ak denotes the subset of S with cardinality
equals to k.

Divergence Minimization. The most comprehensive way
to approximate a target distribution p with another distribu-
tion q would be to approximate all higher order moments.
However, such a naive approach can be computationally
intractable, given that the number of constraints is more
than exponential w.r.t. |X|. One can reduce the correla-
tion preservation conditions by only considering the largest
differences between high-order moments,

max
|A|>1

Ep [I (A ∈ S)]− Eq [I (A ∈ S)] 6 ξ. (3)

But this condition is still with exponential complexity due
to the construction of {A| |A| > 1}. However, it establishes
the connection to total variation distance, which paves the
way for a tractable optimization.

Recall that we can rewrite the total variation distance in a
variational form (Gibbs & Su, 2002):

dTV (p, q) = max
h∈F∞

Ep [h (S)]− Eq [h (S)] , (4)

where F = {h| ‖h‖∞ 6 1} denotes the set of functions
whose infinity norm is bounded by 1. Therefore, if we re-
lax the requirement that the test set A must be |A| > 1
in correlation preservation condition (3), we directly have
dTV (p, q) 6 ξ will be a sufficient condition. Thus, follow-
ing the above derivation, we reformulate the model adaption
problem as a constrained optimization:

min
q∈H

dTV (p, q) (5)

s.t. |ES∼q [I (ei ∈ S)]− ti| 6 ε,∀ (ei, ti) ∈ C,

where ε is a constant for relaxing the constraints, which can
be zero if all the marginals must be exactly satisfied.

Eq (5) provides a generic framework for generative adapta-
tion of distributions, where the marginal constraints serve
as the hints for target domain. However, it is still difficult to
optimize in practice due to the definition of total variation
distance over discrete random variables. Therefore, we ap-

ply Pinsker’s inequality, dTV (p, q) 6
√

1
2KL (q||p), and

obtain a more practical surrogate objective

min
q∈H

KL (q||p) (6)

s.t. |ES∼q [I (ei ∈ S)]− ti| 6 ε,∀ (ei, ti) ∈ C.

This optimization view provides a practical way to exploit
the pretrained model p to preserve the previously learned
correlations as much as possible in q while adapting to the
target marginals.

Module Reusable Parametrization. With the proposed
divergence minimization view in Eq.(6), one could attempt
to apply arbitrary deep probabilistic density models for
parametrizing q. However, even though this would be valid
in principle, it is suboptimal in terms of sample and compu-
tational complexity. Although we do not need to retrain q
on previous data Dsrc, which reduces memory complexity
by avoiding the revisitation of datasets, the optimization
still requires learning a brand new model from random ini-
tialization, which we have already argued is too inefficient.
Instead, we will exploit the structure of specific but still
flexible model classes, preserving existing modules in a
pretrained model and only incrementally modifying how ex-
isting modules are combined, which can dramatically save
computational and sample complexity.

For different generative model classes, effective techniques
for composing a new model from pretrained modules will
be different. In Section 3, we instantiate the proposed MO-
DEM framework on three of the most popular and powerful
model classes; namely latent variable models (Section 3.1),
autoregressive models (Section 3.2) and energy-based mod-
els (Section 3.3) for discrete set modeling. In each case, we
derive the efficient algorithms for solving Eq (6), in either
the primal or dual forms.

3. Instantiations of MODEM
In this section, we show how the MODEM framework can
be concretely and practically instantiated with different
classes of generative model. Below we will use blue to
highlight a new component that will be learned, and red
to highlight the fixed modules that will be frozen from an
existing model.

3.1. Latent variable models

Latent variable models (LVMs) have been commonly used
for generative modeling of documents (Gu & Kong, 2020)
and images (Kingma & Welling, 2014), and conveniently
it is also natural to use them for unordered sets. For ease
of representation, we use a binary vector B to equivalently
represent a set S. That is to say, B ∈ {0, 1}|X| indicates
the presence or absence of certain values, such that Bi =
I(xi ∈ S). Then, according to the De Finetti’s Theorem,
any joint distribution can be represented as follows:

p(B) =
∫
θ
p(θ)

∏|X|
i=1 p(Bi|θ) (7)

When θ is discrete and the summation is tractable, one can
calculate p(B) in a closed form to support efficient maxi-
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mum likelihood estimation on a given datasetDsrc. When θ
is in a continuous domain, techniques like VAE (Kingma &
Welling, 2014) are needed to optimize the evidence lower-
bound. We do not focus on the learning of (p(θ), p (B|θ)),
which can be done by standard techniques; rather, we focus
on the adaptation of q from p under the target constraints by
implementing MODEM.

Marginal estimation: We first need to consider calcula-
tion of the marginal in an LVM model for the constraints
in Eq (6). Note that by the conditional independence struc-
ture in (7), we have

p(Bi) =
∑

B̃∈{0,1}|X|,B̃i=Bi

∫
θ

p(θ)

|X|∏
j=1

p(B̃j |θ)

=

∫
θ

p(θ)p(Bi|θ)
(∑

B̃

∏
j 6=i

p(B̃j |θ)
)

=

∫
θ

p(θ)p(Bi|θ) (8)

In above equations, the change from first to second line
is based on the interchangeability of summation and in-
tegration, while the last step is based on the fact that∑
{B̃j ,j 6=i}

∏
j 6=i p(B̃j |θ) =

∏
j 6=i
(∑

{B̃j} p(B̃j |θ)
)

by

independence of each factor and
∑
{B̃j} p(B̃j |θ) = 1,

∀j 6= i, due to the fact that the summation of probabil-
ities over all events equals to 1. Thus, the marginal for
element xi only involves a subset of components in the
overall model (7), which can be efficiently calculated.

Adaptation: To adapt the distribution p to a target do-
main, we propose to reuse the conditional probability mod-
ule p(B|θ), since intuitively we can control the generation
process via the control over the latent variable θ. Thus we
propose to define q(B) in the following form

q(B) =

∫
θ

q(θ)

|X|∏
i=1

p(Bi|θ) (9)

That is to say, we freeze the conditional components from p
while adjusting the prior over θ only.

Plug the module-reused parametrization of q (B) into Eq (6),
we obtain the instantiation of MODEM for LVMs as

min
q(θ)

KL (q(θ)||p(θ)) (10)

s.t.
∥∥Eθ∼q(θ) [p(Bei |θ)]− ti∥∥2 6 ε,∀(ei, ti) ∈ C.

Note that minimizingKL(q(B)||p(B)) between joint distri-
butions is equivalent to minimizing KL (q(θ)||p(θ)), where
the latter form has a closed form solution when p(θ) and
q(θ) are from exponential families, such as the multinomial
or Gaussian distributions. Therefore, we can simply solve
Eq (10) in its primal form via penalty methods.

Parametrization: When θ is categorical and the integra-
tion in Eq. (7) is tractable, we simply use a uniform distribu-
tion for p(θ). When θ is continuous and VAE is employed,
we use set type encoders like a Transformer (Vaswani et al.,
2017; Ren et al., 2021) or simply an MLP on a binary repre-
sentation to parameterize the variational posterior.

3.2. Autoregressive models

Since any joint distribution can be factorized in an au-
toregressive manner, autoregressive models have become
quite popular, especially for modeling sequences. Despite
the presence of a total ordering, which is not desirable
for unordered set modeling, autoregressive models have
still proved to be quite powerful for discrete set model-
ing (Vinyals et al., 2015; Gao et al., 2019). In particular,
for this model, one can treat a set S with cardinality L as
a sequence of L elements: S = [s1, s2, . . . , sL]. Then an
autoregressive model defines the distribution as:

p(S|L) =
∏L
i=1 p(si|s<i, L) (11)

However it is generally hard to compute the marginals for
autoregressive models, due to the exponential growth of
marginalization cost with respect to the sequence length. So
for our purposes, we need to introduce some special struc-
ture to support efficient marginal computation. For discrete
sets, one reasonable assumption would be to enforce per-
mutation invariance, which is also used in several existing
works (Zhang et al., 2019; Kosiorek et al., 2020; Locatello
et al., 2020; Carion et al., 2020). Suppose we shuffle the
sequence S into Sπ with a permutation π, we hope to that
the following equation still holds,

p(Sπ|L) =
∏L
i=1 p(sπi

|s<πi
, L) = p(Sπ

′ |L) (12)

for any two permutations π and π′.

Introducing permutation invariance into autoregressive mod-
els can be difficult, but one reasonably effective strategy is
to use the following surrogate objective for p:

p = argmax
p

ES∼Dsrc
[Eπ∼Uniform [p(Sπ)]] (13)

It is also possible to leverage robust learning to further
reduce sample complexity, but this is out of scope of this
paper, and we leave such refinements as a future extension.

Marginal estimation: With the permutation invariance
assumption, the marginals can be calculated efficiently. Spe-
cially, for a particular element x ∈ X , we have

p(x) =

|X|∑
L=1

p(L)
∑

S:|S|=L

p(x ∈ S|L)

=

|X|∑
L=1

p(L)
∑

S:|S|=L

p(s1 = x|L)× L (14)
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In other words, one can obtain the marginal p(x) simply by
accessing the probability of generating x in the first position.
We do however have to consider that exact permutation
invariance might not have been achieved in p, meaning that
the marginal could be improved via additional computation.
Note that one can actually unroll Eq (14) further to obtain
the marginal via the probability of generating x in either the
first or the second positions:

p(x) =

|X|∑
L=1

p(L)
(
p1(x|L) +

(L− 1)×
∑
x′ 6=x

p1(x
′|L)p2(x|x′, L)

)
(15)

Here we overload the notation a bit to use p1(x|L) to denote
the probability of generating x in the first position in a
set of cardinality L, and similarly p2(x|x′, L) is for x at
second position given L and first element x′. Unrolling one
step increases the computational cost by a factor of O(|X|),
which is generally acceptable. Unrolling further quickly
becomes impractical, but we found that the second order
estimator is sufficient in practice to balance between the
estimation quality and computational cost.

Adaptation: From Eq. (15) we can see under the assump-
tion of permutation invariance, we can control the marginal
p(x) via the probability of generating x in the first position.
This naturally suggests the following adaptation:

q(S) = p(|S|)q1(s1||S|)
|S|∏
i=2

p(si|s<i, |S|) (16)

Thus the marginal estimator for q becomes

q(x) =

|X|∑
L=1

p(L)
(
q1(x|L) +

(L− 1)×
∑
x′ 6=x

q1(x
′|L)p2(x|x′, L)

)
(17)

Again, in this case the modules in p are preserved and we
only need to learn an additional q1(·|·), which is much eas-
ier than learning a full autoregressive model. Note that
optimizing Eq (6) can be done effectively as

min
q1

EL∼p(L)KL (q1(·|L)||p1(·|L))

s.t. ‖q(ei)− ti‖2 6 ε,∀(ei, ti) ∈ C (18)

where the KL term is defined over multinomial distributions
making it simple to solve. By plugging Eq (17) into Eq (18),
we can again solve the above optimization directly in its
primal form via penalty methods.

Parametrization: One major property of discrete set
modeling is permutation invariance. As Transformers (with-
out positional encoding) are naturally used for modeling per-
mutation invariant data (Kosiorek et al., 2020; Carion et al.,
2020), we use these model for parameterization. Note that al-
though this only guarantees permutation invariance for each
of the conditional marginals (i.e., p(si|sπ<i

<i ) = p(si|s
π′
<i

<i )),
we have found it empirically very useful in achieving Eq (12)
and obtaining good results.

3.3. Energy-based models

Energy-Based Models (EBMs) are highly expressive for
modeling distributions. One only needs to specify an unnor-
malized score function over the domain, which brings sig-
nificant flexibility but also incurs significant computational
challenges for training and inference in general. In fact,
EBMs are particularly convenient for discrete set modeling,
as there have been many provably expressive set encoder
parameterizations (Zaheer et al., 2017; Yang et al., 2020)
proposed in the literature. Similar to LVMs discussed in
Section 3.1, here we use a binary vector B to equivalently
represent a set S in the same manner. A set distribution can
then be simply defined through f (B) as

pf (B) =
exp(f(B))

Zp
, Zf =

∑
B∈{0,1}|X|

exp(f(B)) (19)

where f is the negative energy or score function, which can
be a neural network like DeepSets (Zaheer et al., 2017).

Marginal Adaptation: Different from the LVMs and au-
toregressive models, where the models can be factorized and
the module can be extracted explicitly, module factorization
can be difficult in EBM from the score function f (B), and
thus, making the module reuse becomes non-trivial. How-
ever, the module reuse can be naturally derived from the
dual form of Eq. 6 with EBMs.

Specifically, given the constraints set C and denote φ(B) =
[Be1 , Be2 , . . . , Be|C| ] and c = [t1, t2, . . . , t|C|], plug this
into the optimization (6), we obtain

min
q∈P

KL (q||pf ) s.t. ‖Eq [φ (B)]− c‖2 6 ε, (20)

The dual form of (20) can be directly obtained via (Altun &
Smola, 2006, Theorem 7) as below (with constants omitted),

max
w

w>c− log
∑
B

exp(w>φ(B) + f(B))− ε ‖w‖2 , (21)

which is equivalent to the MLE for pf (B) p(c|B) with
p(c|B) ∝ exp(w>φ(B)) with a single data point c. Com-
paring to the primal form (20), which conducts optimization
over all valid distributions, the dual form (21) is much easier
to optimize.
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Moreover, we can clearly see from (21) that the whole
model f (B) will be frozen and reused during adaptation,
while a new component w>φ (B) with w is the only learn-
able parameter, which has the size equals to the number of
constraints. We emphasize due to the equivalence of pri-
mal (20) and dual (21), the optimal solution to (20) will be
q(B) ∝ exp(w>φ(B) + f(B)), which means the module-
reuse parametrization does not lose any flexibility.

Parametrization: Although in principle one can use any
f to parameterize p, in our experiments we simply use an
MLP on the binary representationB without worrying about
enforcing permutation invariance explicitly. As learning the
discrete set generation for EBMs requires the sampling in
discrete space, we leverage the recent advances in sampling
from EBMs (Grathwohl et al., 2021) in discrete space for
training both p and q, and use the same samplers for gener-
ating new samples from the learned models for simulation.

4. Related work
Generative modeling for sets. There has been a grow-
ing interest in modeling sets. Most work has focused on
learning generative models of sets in continuous domains
like point clouds, adapting recent advances in energy based
models (Yang et al., 2020), normalizing flows (Rasul et al.,
2019) or ODEs (Li et al., 2020). Here the key challenge is
to ensure exchangeability. Zhang et al. (2019) leverages a
set encoder and gradient to generate the set for permutation
invariance, which can be sped up by implicit differentia-
tion (Zhang et al., 2021); Transformers are also permutation
invariant by design, which has made them popular as set
decoders (Kosiorek et al., 2020; Locatello et al., 2020; Car-
ion et al., 2020) to replace the gradient calculation. From
a modeling perspective, these can be seen as EBMs in a
continuous domain. However these approaches can not be
directly applied to discrete sets. In a discrete domain, (or-
dered) sets are typically generated in either an autoregressive
way (Vinyals et al., 2015; Gao et al., 2019; Emelianenko
et al., 2019) or a non-autoregressive manner with LVMs (Gu
& Kong, 2020), or under suitable conditional independence
assumptions (Rezatofighi et al., 2018; 2017; 2021). Above,
we have revisited these three prominent classes of models
for discrete set modeling, where we have shown that our
proposed marginal adaptation framework can be applied to
all of these existing model classes.

Controllable generation. There have been several works
in controllable generation for objects like text (Hu et al.,
2017) or images (Li et al., 2019). Most such work has fo-
cused on controllable generation at the instance level, which
considers attributes like facial attributes for a human, or
sentiments for sentences. In this paper we focus instead on
the population level control, a more coarse-grained speci-

fication than the individual-level control. Population level
control is also easier to be specified for the purposes of
distribution adaptation. One direct approach to achieving
distribution level requirements is via instance control, how-
ever due to the interaction between multiple requirements, it
is nontrivial to specify such constraints at an instance level.

Posterior Regularization. The posterior regulariza-
tion (Ganchev et al., 2010; Mann & McCallum, 2010; Zhu
et al., 2014) is also introducing constraints on distributions
for optimization over densities, which is similar to the pro-
posed MODEM in terms of the objective. However, there
are several major differences: i), we are adapting the learned
model to align with distribution shift; while the posterior
regularization are designed for posterior calculation in vari-
ational Bayesian inference; more importantly, ii), we intro-
duce module reusable parametrization for accelerating the
adapting in terms of both sample and computational com-
plexity, which was not explored in posterior regularization.

5. Experiment
In this section, we will first validate the correctness of our
marginal adaptation framework on synthetic datasets for all
the three models in Section 5.1. Then in Section 5.2 we
study the effectiveness of the framework in adapting the
learned distribution to the target distribution via marginal
alignment using real-world datasets. We present the exper-
iment configurations for model architectures, training and
evaluation methods used in both sections.

Model configuration: We present the default model con-
figurations here unless later specified.

• LVM: for synthetic data, we evaluate both continuous
LVMs and discrete LVMs given that the number of latent
components is known. For continuous LVMs, we use
multilayer perceptron (MLP) with 2 hidden layers of 512
ReLU activated neurons to parameterize both encoders
and decoders using VAE objective, where the adaptor
q(θ) is also a Gaussian distribution. For discrete LVMs,
the prior p(θ) is a uniform distribution while q(θ) is a
multinomial distribution in Eq (9).

• Autoregressive: We use Transformers (Vaswani et al.,
2017) without positional encoding for parameterization
of p(·|L) and a learnable logit vector for set size p(L).
We use 4 layers with 8 heads in each layer, where the
dimensions for embedding and feed-forward layers are
256 and 512, respectively. The adaptor learns q1 which is
in tabular form of size MaxSetSize ×|X|.

• EBM: We use an MLP with 2 hidden layers of 512 ReLU
activated neurons for f used in p. The adaptor consists of
an additional parameter w that has the same size as the
number of marginal constraints.

Training configuration: By default we train all the base
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Figure 2. Marginal RMSE on synthetic datasets.
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Figure 3. Pairwise-F1 on synthetic datasets.

models p and adapted models q on a single Nvidia V100
GPU with batch size 128, using Adam optimizer. For EBMs
training we leverage the PCD framework (Tieleman, 2008)
that employs a replay buffer inspired by Du & Mordatch
(2019). We use GWG-sampler (Grathwohl et al., 2021) for
MCMC sampling. The number of MCMC steps per gradient
update varies within {50, 100, 200}.

Evaluation metrics: Given a set of generated sets Dgen
and the sets from Dtgt, we use the following two metrics to
evaluate the quality:

• Pairwise-F1 To verify whether the learned adaptation
still preserves the learned correlations among elements
in a set, we consider the co-occurrence between pairs of
elements. Higher-order statistics would be more accurate
but would be infeasible to calculate due to the exponential
growth of the correlation calculation. Let c2(x, y;D) be
the number of sets in D that contains both x and y, and
c2(D) =

∑
x,y c2(x, y;D) be the total counts, then we

define the precision as

Precision =

∑
x,ymin {c2(x, y;Dgen), c2(x, y;Dtgt)}

c2(Dgen)

and the recall as:

Recall =

∑
x,ymin {c2(x, y;Dgen), c2(x, y;Dtgt)}

c2(Dtgt)

and the pairwise F1 as 2∗Precision∗Recall
Precision+Recall .

• Marginal RMSE Given the marginal specifications C =
{(ei, ti)}, the RMSE(D, C) is computed as√√√√ 1

|C|
∑

(ei,ti)∈C

(
ti −

∑
S∈D I(ei ∈ S)
|D|

)
(22)

which measures how faithful the generated set is to the
marginal constraints. For better visualization purpose we
report log-RMSE (i.e., log of Eq (22)) in the figures.

Remark: Pairwise-F1 is a surrogate to Eq (2) when |A| = 2
(F1 = 1 means 0 error in Eq (2)) while Marginal RMSE
measures |A| = 1. As the computation grows exponentially
with |A|, it is not practical to evaluate |A| > 3.

5.1. Synthetic experiments

We use the synthetic data to verify the correctness of the
proposed adaptation algorithms. In this setup, we construct
the domain X = {1, . . . , N} where N is an even number.
Each set in this dataset contains only a single pair of digits.
There are totallyN/2 unique sets, where the i-th set contains
the pair of digits (i, i + N/2). In this way, we can easily
identify whether the model preserves this specific pattern of
pairwise correlations or not.

As there are only N/2 possible sets in the dataset, we have
|Dsrc| = N/2. In other words, each set gets equal probabil-
ity of being generated in the source data. To construct
the counterfactual target set, we randomly generate the
marginal distribution c =

[
t1, t2, . . . , tN/2

]
for elements

1, . . . , N/2, where
∑N/2
i=1 ti = 1. We vary the dimension

N ∈ {4, 8, 16, 32, 64, 128, 256} to see how different mod-
els perform when the dimension grows. For each setting of
N , we repeat the experiment 10 times with different gener-
ated marginal constraints and report the average results.

From Figure 2 we can see that in all the cases, the learned
adaptation q would achieve much lower marginal RMSE
or better alignment with respect to the target marginal dis-
tributions, compared to directly using model p trained on
source dataset. We can also see from Figure 3 that when
N = 4, all the adaptations are able to achieve almost perfect
pairwise F1 score. This indicates that our proposed marginal
adaptation framework is indeed able to reshape the marginal
distribution p while preserving the learned pairwise relation-
ships between elements. When the dimension gets higher,
some models like categorical LVM or EBM would suffer
from the difficulty of optimization. Improving the efficiency
of learning these discrete models is a long standing research
problem and is beyond the scope of the paper. Despite of it,
we can still see the relative improvements after adaptation
in all these settings.

5.2. Real-world experiments

We collect several datasets from both e-commerce and EHR
where the discrete sets are core for representation, and the
marginal estimations like product sales or disease popula-
tions are commonly used. We provide introductions to these
datasets below, and the statistics in Table 1.
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Figure 4. Marginal log-RMSE for models before and after marginal adaptations on real-world datasets.
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Figure 5. Pairwise-F1 scores for for models before and after marginal adaptations on real-world datasets.

Table 1. Real-world dataset statistics.
Dataset |Dsrc| |Dtgt| |X| MaxSetSize

Groceries 8,851 984 169 32
Market-Basket 13,466 1,497 167 10

MIMIC3 53,030 5,893 1,070 39
MIMIC3-sec 53,030 5,893 19 16

Instacart 2,963,177 119,533 1,000 79

• Groceries: This dataset consists of transactions from gro-
cery shopping. Each set object in this case represents
items like milk, sausage, etc.in an order.

• Market-Basket: This one is similar to the Groceries
dataset, except that all the transactions are timestamped.

• MIMIC3: We curate this dataset based on the encounter
ICD9 diagnosis codes from MIMIC-III (Johnson et al.,
2016), an open source EHR dataset. Each record consists
of a set of diagnosis code for a patient visit.

• MIMIC3-sec: This dataset is similar to MIMIC3, except
that the diagnosis codes are encoded using the 3-digit
prefix (chapter level codes) of the ICD9 code.

• Instacart (ins): This dataset comes from the Kaggle In-
stacart Market Basket Analysis competition. Each online
order from a customer is represented as a set of products.
We select the top 1,000 popular products for generation
and control experiments.

Without timing information, we randomly split the Gro-

ceries dataset into Dsrc and Dtgt with ratio 9:1. For In-
stacart, we use its own prior set as Dsrc and train as
Dtgt. For all the others with timing information, we sort the
datasets according to the timestamp and then use the first
90% as Dsrc and rest 10% as Dtgt. As such, we expect all
the datasets except the Groceries to have distribution shift
issues, a situation where MODEM would help.

5.2.1. DISTRIBUTION SHIFT

To show how the distributions of Dsrc and Dtgt differ, we
visualize the marginal distribution shifts in Figure 6. We
compute empirical marginals p(xi) on source/target sets
respectively, and report ptgt(xi) − psrc(xi) (top row) and
ptgt(xi)−psrc(xi)

psrc(xi)
(bottom row) with top-20 largest absolute

values. The largest difference can be 12.5% or relatively
2, 500%, as the dataset is split before/after a given date,
following what is commonly done in practice.

5.2.2. MAIN RESULTS

The marginal adaptation results with 4 marginal constraints
are displayed in Figure 4, where similar results are observed
with more constraints (see Appendix A). We can see that in
all the datasets, all three generative models have achieved
lower marginal RMSE after performing the adaptation, es-
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Figure 6. Marginal distribution shifts between training and test.

Table 2. # parameters updated with different methods.
LVM-continuous Autoregressive EBM

(re)training 1,091,239 2,196,657 611,841
MODEM(ours) 512 1,670 167

pecially for models like LVMs and EBMs where the error
reduction gets several magnitudes at the best. This in general
aligns with our expectation that the constrained optimization
would eventually tune the model towards the marginal guid-
ance. Besides the marginal statistics, we are also interested
in whether the adaptation preserves the learned correlations
between elements or not. We summarize the corresponding
results in Figure 5. We can see that the adapted distribution
q maintains or even improves the correlation metric. One ex-
ception is the EBM on groceries dataset, as this dataset split
is not expected to have the distribution shift due to the ran-
dom data partition, additional adaptation training for EBMs
using PCD would not be able to help. Nevertheless, we can
see the LVMs and autoregressive models can consistently
maintain or improve the distribution alignment regardless
of the target data distribution characteristics.

5.2.3. EFFICIENCY

One main advantage of MODEM framework is the effi-
ciency of adaptation. Compared to retraining the entire
model, the potential efficiency gain comes from the facts
that (a) fewer parameters being updated; (b) fewer number
of updates needed.

To validate (a) we report the number of parameters updated
for Market-Basket dataset (and other datasets show similar
ratios) in Table 2, where MODEM updates fewer than 0.1%
of original parameters.

To validate (b), we report the number of steps needed until
convergence as this metric determines the number of large
model evaluations. In many cases, it only requires 10%
steps compared to (re)training from scratch.

5.2.4. ALTERNATIVE ADAPTATION METHODS

The problem setting focused in the paper is different from
the typical domain adaptation for supervised learning, where
one usually has access to unlabeled data of target distribu-

Table 3. # train/adapt steps until convergence.
(train/adapt) Groceries Market-Basket MIMIC3 MIMIC3-sec Instacart

LVM 18k/1k 10k/1k 32k/1k 24k/1k 23k/1k
Autoregressive 43k/3k 30k/21k 45k/40k 40k/36k 45k/35k

EBM 99k/14k 60k/10k 62k/12k 95k/5k 105k/12k

Table 4. log-RMSE of marginals (averaged over different models).
Methods Groceries Market-Basket MIMIC3 MIMIC3-sec Instacart
No adapt -3.95 -3.50 -2.63 -2.53 -4.57

Reweighting -4.04 -3.33 -2.89 -3.73 -4.82
MODEM(ours) -4.80 -4.91 -4.43 -4.32 -5.41

tion. Thus most of the domain adaptation methods are not
directly applicable. One potentially feasible but inefficient
way of doing generative model adaptation with marginal
constraints is to re-weight the training samples to match
the marginal specification, and retrain the underlying model
with re-weighting. Specifically, one needs to first solve

minw∈R|Dsrc|,w>0,|w|=1H(w)

s.t.
∑

(S∈Dsrc)
I(ei ∈ S)wS = ti,∀(ei, ti) ∈ C

to obtain the weights of training samples w, and re-train the
model p with samples weighted by w. The objective H(w)
is the entropy that guarantees the uniqueness of solution.
This baseline is expensive since 1) the above optimization
can be expensive; 2) the entire model needs to be re-trained.
While this alternative method indeed shows benefits in Ta-
ble 4, it is less effective than our proposed MODEM.

6. Conclusion
In this paper, we proposed MODEM that is able to adapt a
trained generative model according to given marginal con-
straints, in the scenario of discrete set generation. This
adaptation framework alleviates the distribution shift issue
when applying the generative model for target distribution
simulation. Experiments on both synthetic and real-world
e-commerce and EHR datasets show that our approach is
able to improve the marginal distribution alignment while
maintaining the learned co-occurence relationships among
elements in a set. Our framework is also generic where the
optimization can be potentially applied to domains beyond
discrete sets, or handling constraints that are more compli-
cated than single-dimensional marginal distributions. We
will explore these extensions in our future work.
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A. More experimental results
A.1. Effect on the number of marginal constraints

In the main paper we presented the real-world experimental results with 4 marginal constraints (i.e., placing marginal
constraints on 4 most popular elements). Here we place more constraints and see how the alignment would change when
more hints are added.

Figure 8 and Figure 7 show the results with 8 marginal constraints. Figure 10 and Figure 9 show the results with 16 marginal
constraints. We can see overall the adapted model still achieve much lower marginal RMSE compared to the original model
before adaptation. The change to the F1 score when more constraints are added is not very significant. One possible reason
is that as we select the most popular several elements for the constraints, the effect of the constraints diminishes when
the popularity of newly added items decreases. Nevertheless, in all these settings we can still see the effectiveness of the
adaptation framework in improving the alignment of different generative models to the target distribution.
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Figure 7. Marginal log-RMSE for models before and after marginal adaptations with 8 marginal constraints.
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Figure 8. Pairwise-F1 scores for for models before and after marginal adaptations with 8 marginal constraints.
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Figure 9. Marginal log-RMSE for models before and after marginal adaptations with 16 marginal constraints.
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Figure 10. Pairwise-F1 scores for for models before and after marginal adaptations with 16 marginal constraints.


