
Logistic Markov Decision Processes
Martin Mladenov∗

TU-Dortmund
martin.mladenov@cs.tu-dortmund.de

Craig Boutilier
Google Research
cboutilier@google.com

Dale Schuurmans†
University of Alberta

daes@ualberta.ca

Ofer Meshi
Google Research

meshi@google.com

Gal Elidan
Google Research

elidan@google.com

Tyler Lu
Google Research
tylerlu@google.com

Abstract
User modeling in advertising and recommendation has
typically focused on myopic predictors of user responses.
In this work, we consider the long-term decision problem
associated with user interaction. We propose a concise
specification of long-term interaction dynamics by com-
bining factored dynamic Bayesian networks with logis-
tic predictors of user responses, allowing state-of-the-art
prediction models to be seamlessly extended. We show
how to solve such models at scale by providing a con-
straint generation approach for approximate linear pro-
gramming that overcomes the variable coupling and non-
linearity induced by the logistic regression predictor. The
efficacy of the approach is demonstrated on advertising
domains with up to 254 states and 239 actions.

1 Introduction
Online and mobile interaction with users has been trans-
formed by the use of machine learning (ML) to predict user
intent, preferences and responses. However, current methods
largely focus on myopic prediction—predicting a user’s im-
mediate response to the system’s action—without explicitly
modeling long-term impact nor addressing the ultimate need
to plan sequences of interactions with a user. For example,
ad systems typically determine which ads to show based on
a current prediction of a user’s click probability. Evidence
is mounting that myopic predictors compromise user satis-
faction and system performance by ignoring long-term value
[Hohnhold et al., 2015]. While sequential models of user
interaction using Markov decision processes (MDPs) and re-
inforcement learning (RL) have received increasing attention
[Charikar et al., 1999; Li et al., 2009; Archak et al., 2010;
2012; Amin et al., 2012; Silver et al., 2013; Theocharous et
al., 2015], they have yet to find widespread adoption due to
challenges with modeling and computational scalability.

In this work, we develop a practical approach to optimiz-
ing long-term interactions with users by introducing the lo-
gistic MDP, a novel form of MDP that incorporates a logistic
predictor of a user response variable (such as click probabil-
ity) into an MDP. Two key insights motivate the development
∗Work performed while author was a visiting intern at Google.
†Work performed while author was a visiting scholar at Google.

of logistic MDPs. First, the features used in (myopic) lo-
gistic predictors of user responses typically provide a suffi-
cient statistic of user history well suited to (some forms of)
long-term modeling. Second, the evolution of the features
used in such models often exhibits considerable conditional
independence, allowing for compact expression of a transi-
tion function as a dynamic Bayesian network (DBN) [Dean
and Kanazawa, 1989; Boutilier et al., 1999] that incorporates
the predictor into the dynamics.

Once logistic MDPs are motivated and defined, we turn
our attention to effectively solving such MDPs in a scalable
fashion. Two key obstacles are created by the logistic user re-
sponse model: when devising algorithms that exploit the con-
ditional independence in the dynamics: (i) variable coupling,
and (ii) non-linearity introduced. We develop an approxi-
mate linear programming (ALP) solution method [Guestrin
et al., 2003; de Farias and Van Roy, 2003] that overcomes
these obstacles: We do so by developing constraint genera-
tion strategies [Schuurmans and Patrascu, 2001] that search
for violated constraints using a set of Boolean optimization
problems (BOPs) defined over approximations of the logistic
function. We provide exact and approximate ALP algorithms
for logistic MDPs, and derive error bounds for the approx-
imate algorithms. We demonstrate the effectiveness of the
approach on large models, derived from in-app display ad-
vertising data, with up to 254 states and 239 actions.

2 Background
The prediction of user responses to recommendations, ads,
or other interventions, are routinely tackled using ML. Such
predictions are often binary (e.g., will an ad be clicked or
an app downloaded) with the predicted probability of re-
sponse, used to score potential actions (e.g., which ad to
show), often combined with other factors, such as an adver-
tiser’s bid. Many models have been used for such prediction,
ranging from logistic regression [Richardson et al., 2007;
Graepel et al., 2010; McMahan et al., 2013] to deep models
[Covington et al., 2016; Cheng et al., 2016].

Since linear logistic regression is the current workhorse for
predicting user responses to online ads, we focus on these
models in this work.1 We assume a finite set of variables

1We briefly discuss extensions of our approach to deep neural
network models (DNNs) in the concluding section.

X = {X1, . . . , Xn} describing properties of the interaction
(e.g., geolocation, age, purchase activity, device), ad (e.g.,
advertiser, product type), context (e.g., site, app), and user
history (e.g., count of past ad impressions, clicks). As is typi-
cal in practice, we also assume eachXi has a discrete domain
Dom(Xi) and that a “one-hot” encoding is used to transform
elements of Dom(X) into a sparse binarized feature vector
of length

∑
i |Dom(Xi)|. Let ϕ be a binary user response

variable (e.g., user click on an ad). Given a learned weight
vector u, a linear logistic predictor models the probability of
a positive user response to a given feature vector x as:

P (ϕ = >|x) = σ(uTx) =
1

1 + e−uTx
. (1)

In ad settings, we refer to this as a pCTR model.
Sequential models of user behavior in advertising have

been studied [Charikar et al., 1999; Archak et al., 2010;
Li et al., 2009], though not extensively in practice. Recently,
MDP models for optimizing ad serving and promotions have
been proposed [Archak et al., 2012; Silver et al., 2013;
Theocharous et al., 2015], and temporal models for recom-
mender systems have also received some attention [Shani
et al., 2005; Taghipour et al., 2007; Rendle et al., 2010;
He and McAuley, 2016; Sahoo et al., 2012; Tan et al., 2016;
Wu et al., 2017]. Unfortunately, these methods have yet to
find their way into practical recommender and ad serving sys-
tems, since realistic models of user dynamics are difficult to
learn or specify in practice, and computing optimal behaviour
policies in such models is computationally complex, whether
by explicitly solving an MDP or via reinforcement learning

3 Logistic MDPs
To overcome the challenges described above, we introduce a
new MDP model, logistic MDPs, that extends standard MDPs
by introducing a logistic user response variable.

3.1 Non-myopic Models of User Interactions
As noted above, most systems for ad serving or con-
tent/product recommendations are myopic in two distinct
senses. First, they predict a user’s response to a system ac-
tion (e.g., ad served) without considering the action’s impact
on subsequent interactions. Second, the prediction is often for
some immediate user response (e.g., pCTR) rather than long-
term behavior (cumulative click rate, user satisfaction, etc.).
This is problematic for several reasons. Intuitively, system
actions at a given time will also influence user responses to
future actions; e.g. display ad exposure may increase a user’s
propensity to click on the related ads by increasing aware-
ness through exposure, or may decrease this propensity by
creating a “blindness” effect [Hohnhold et al., 2015]. Addi-
tionally, an action and user response usually changes the user
feature vector used for the next prediction, hence influences
the predicted effectiveness of all subsequent actions.

Since the aim is not to optimize a single user interaction,
but to do so over (say) a session, week, or lifetime, it is
natural to model this engagement with an MDP. One can
then construct an optimal policy by directly solving the MDP
[Archak et al., 2012; Amin et al., 2012; Boutilier and Lu,
2016], or applying RL to interaction data [Silver et al., 2013;
Theocharous et al., 2015].

In this work, we focus on solving an MDP model directly.
One reason is that long-term optimization often induce trade-
offs among different objectives that should be encoded in the
reward function.2 Quantifying these tradeoffs precisely in a
reward function can be difficult a priori. Model-based meth-
ods allow decision makers to efficiently explore the tradeoffs
arising from different reward functions. In addition to being
used directly, model-bsaed solutions computed offline can be
used to accelerate (online or offline) RL.

However, such an approach requires a transition model that
captures the dynamics of user behavior (expected user ac-
tions, evolution of user state, user responses to actions, etc.).
A key challenge is specifying the state space; i.e., defining an
appropriate set of features, observable from logged interac-
tions, that adequately summarizes user history in a way that
is both predictive of future behavior and renders the implied
dynamics Markovian.

Constructing a Model of Interaction Dynamics Fortu-
nately, one does not need to start from scratch. Instead, we
leverage the existing myopic predictors of user response as
follows. Focusing on logistic regression, a typical model is
illustrated in Fig. 1(a), where the response variable ϕ (e.g.,
representing a positive ad click) depends on the variables Xi

representing the user state, user history and relevant context
(e.g., web site visited, query issued, app being used, etc.), and
variablesAi reflecting various properties of the system action
(e.g., ad being shown, app or video being recommended). If
we seek to optimize the clicks accumulated during a user ses-
sion, we must predict not only how actions influence the im-
mediate response, but how they change the variable values
we expect to encounter subsequently. Fig. 1(b) illustrates how
the myopic response model can be extended to accommodate
such dynamics, where we view the variables Xi as state vari-
ables and the variables Ai as action variables. The model
shows how the state variables at time t+1 depend (probabilis-
tically) on the state at time t, the action taken at time t, and
the user’s response to that action.

This provides a natural, practical way to construct the re-
quired MDP model of user dynamics, which exploits two key
characteristics of typical (myopic) response models. First,
the features in the myopic model provide a suitable summary
of history (i.e., form a sufficient statistic) for predicting re-
sponse variable ϕ. Second, the features themselves must be
(roughly) “self-predictive;” i.e., the features at time t (to-
gether with ϕ) must be sufficient to predict each state vari-
able Xi. In many practical models, this is in fact the case
(e.g., some variables reflect static user properties, others cap-
ture summary statistics of past user behavior, while still oth-
ers model the natural evolution of user actions). As a result,
one can readily develop models reflecting the evolution of
these variables from historical interaction data (assuming suf-
ficient “explicit” exploration or other induced randomness)—
indeed, the same logged data used to construct myopic re-
sponse models can be used directly for this purpose. Finally,
the prediction of (the distribution of) state variables Xi at

2For instance, in app recommendations, install rate, user app en-
gagement (post-install), revenue generation potential for the devel-
oper, and many other factors may play a role.

(a) (b)

X1

X2

Xn

A1

Am

ϕ

X1

X2

Xn

t t+1

X1

X2

Xn

A1

Am

ϕ

Figure 1: An illustration of (a) a (myopic) logistic regression re-
sponse model, and (b) the dependence structure of a logistic MDP
that extends the myopic response model.

time t+1 often depends on only a small number of preceding
state/action features and (sometimes) the response variable.

3.2 Logistic MDPs: Formal Model
We formalize these intuitions in the logistic MDP model, a
form of factored MDP using a typical DBN representation
[Boutilier et al., 1999] in which the DBN is augmented with
the response variable ϕ.

Markov Decision Processes A (finite) MDP [Puterman,
1994] is given by: a finite state space S and action space A;
a stochastic transition model P , with P (s, a, s′) = pass′ de-
noting the probability of a transition from state s to s′ when
action a is taken; and a bounded, real-valued reward function
R(s, a) = ras denoting the immediate (expected) reward of
taking action a at state s. A (stationary, deterministic) policy
π specifies an action π(s) ∈ A to be taken in any state s. We
seek an optimal policy that maximizes the expected sum of
discounted rewards (with discount factor 0 ≤ γ < 1). The
(unique) optimal value function V ∗ : S → R satisfies the
Bellman equation (2), and induces the optimal policy (3), for
all s ∈ S:

V ∗(s) = max
a∈A

ras + γ
∑
s′∈S p

a
ss′V

∗(s′), (2)

π∗(s) = argmax
a∈A

ras + γ
∑
s′∈S p

a
ss′V

∗(s′). (3)

Given an arbitrary (not necessarily optimal) value function
(VF) V : S → R, the action-value backup is:

QV (s, a) = ras + γ
∑
s′∈S p

a
ss′V (s′). (4)

In this work we use linear programming (LP) to solve
MDPs [Puterman, 1994]. For a finite MDP, the primal LP
formulation is:

min
vs:s∈S

∑
s∈S αsvs (5)

s.t. vs ≥ Qv(s, a), ∀s ∈ S, a ∈ A, (6)

where variables vs reflect the optimal VF at each state s,
Qv(·, a) is the action-value backup (treating variable vector
v as a VF), and state weighting function α is usually inter-
preted as the initial state distribution.3

Factored MDPs In realistic settings, MDPs are speci-
fied using finite sets of state and action variables, X =

3Any strictly positive vector α suffices. The role of the state
weighting is less straightforward in approximate linear program-
ming (next section) [de Farias and Van Roy, 2003].

{X1, . . . , Xn} and A = {A1, . . . , Am}, respectively. Each
state variable Xi has finite domain Dom(Xi) (similarly for
action variables). Since the induced state and action spaces,
S = Dom(X) and A = Dom(A), have exponential size,
DBNs are often used to compactly represent system dy-
namics [Dean and Kanazawa, 1989; Boutilier et al., 1995;
1999]. Two assumptions allow for the compact representa-
tion of the successor state distributions Pr(x(t+1)|x(t),a(t))
using a standard DBN (ignoring ϕ for now): (i) they are prod-
ucts of marginals over the individual state variables;4 and (ii)
each variable Xi’s local distribution is dependent on a small
parent set Par i ⊂ X ∪A. This means the local distributions
themselves can be specified compactly.

Logistic MDPs We augment the standard DBN representa-
tion with the binary response variable as follows.5 We as-
sume the state-action pair (x(t),a(t)) at time t determines
Pr(ϕ(t+1)), and the triple (x(t),a(t), ϕ(t+1)) dictates the next
state distribution Pr(x(t+1)). Hence the dynamics factor as:

Pr(x(t+1)|x(t),a(t)) =
∑
ϕ∈{>,⊥} Pr(x

(t+1)|x(t),a(t), ϕ(t+1))

Pr(ϕ(t+1)|x(t),a(t)). (7)

We assume Pr(x(t+1)|x(t),a(t), ϕ(t+1)) is a prod-
uct distribution over the t + 1 state variables, with
Pr(X

(t+1)
j |Par (t)j , ϕ(t+1)) depending on a small set of

parents.6 Pr(ϕ(t+1)|x(t),a(t)) is given by the logistic model
in (1). Fig. 1(b) illustrates the dependence structure.

The reward function is also assumed to be factored, decom-
posing as the sum of r reward factors ρi:

R(x,a, ϕ) =
∑
i≤r ρi(x[Ri],a[Ri], ϕ), (8)

where each Ri ⊂ X ∪ A is small set of state/action vari-
ables, such that x[U] (resp., a[U]) denotes the restriction of a
variable instantiation to the subset U ⊆ X ∪A. Unlike tradi-
tional factored MDPs, reward factors may also depend on ϕ.
In many ad and recommendation domains,

This transition model is very compact, with the local
distribution for each Xi having O(|Dom(Par i)||Dom(Xi)|
parameters, while ϕ requires O(

∑
iDom(Xi)) parameters.

However, as shown in Fig. 1(b), unlike a typical DBN, ϕ cor-
relates all of the t + 1 variables to which it is connected—
destroying the structure that is normally exploited in DBN
MDP algorithms. We address this issue next.

4 ALP for Logistic MDPs
The reward and transitions structure of the usual DBN rep-
resentation of an MDP can be exploited by various solu-
tion algorithms [Boutilier et al., 1995; Hoey et al., 1999;
St-Aubin et al., 2000; Boutilier et al., 1999]. In this work,

4Our approaches also allow correlations among post-action vari-
ables, but to simplify notation, we assume full independence (con-
ditional on the prior state and action).

5Technically, the resulting model remains a DBN, but since the
response variable destroys much of the structure typically assumed
in a DBN, we treat it differently from other variables.

6Any specific Xj may be independent of ϕ, but if not, we some-
times refer to ϕ as a parent of Xj .

we focus on approximate linear programming (ALP) for fac-
tored MDPs [Guestrin et al., 2003; Schuurmans and Pa-
trascu, 2001], where the value function is approximated us-
ing a linear combination of of basis functions or “features”
B = {β1, . . . , βk} over X . Here, each βi is a function of
some small set Bi ⊂ X , where we assume a bias factor
βbias = 1 ∈ B. The resulting value function (VF) is pa-
rameterized by a weight vector w:

V (x;w) =
∑
i≤k wiβi(x[Bi]) = Bxw, (9)

where B = [β1, . . . , βk] is the basis matrix, and Bx denotes
the row of B corresponding to state x. When the weighting
function α is factored similarly, the LP becomes:7

min
w

∑
i≤k
∑

bi∈Dom(Bi)
α[bi]wiβi(bi) (10)

s.t. 0 ≥ h(x,a;w), ∀x,a, (11)

where h(x,a;w) = QV (x,a;w) − V (x;w). Note that the
constraint for each state-action pair has a compact represen-
tation, since V (x;w) is given by (9), and QV (x,a;w) is a
reward term plus an expectation of a linear combination of
basis functions. For each βi, denote its backprojection by:

gi(x,a) = gi(x[ParBi],a[ParBi])

=
∑

y∈Dom(Bi)
Pr(y|x[ParBi],a[ParBi])βi(y). (12)

Hence βi depends only on variables in ParBi =
∪Xj∈Bi

Par j [Boutilier et al., 1995; Guestrin et al., 2003].
V and QV can be combined to yield

h(x,a;w) =
∑
i≤k wi

(
γ · gi(x[ParBi],a[ParBi])− βi(x[Bi])

)
+
∑
j≤r ρj(x[Rj],a[Rj]), (13)

so the LP has a concise objective and constraints.
To handle the exponential number of constraints, we use

ALP with constraint generation (ALPCG) [Schuurmans and
Patrascu, 2001], where a relaxed LP (the master) is repeat-
edly solved using a subset of the constraints C ⊆ (X ,A). In
particular, given the solution w to the master LP, detecting
the maximally violated constraint (MVC) is a Boolean opti-
mization problem (BOP):

max
x,a

∑
i≤k wi

(
gi(x[ParBi],a[ParBi])− βi(x[Bi])

)
+
∑
j≤r ρj(x[Rj],a[Rj]). (14)

The subproblem uses Boolean (indicator) variables to express
the assignment of state and action variables in x and a, as well
as the selection of terms in the sub-functions gi, βi, ρj , with
constraints enforcing the consistency of the assignments. The
BOP can be solved using a standard Boolean or mixed integer
solver. At each iteration the MVC is added to C, tightening
the relaxation, and the master LP is re-solved. If no violated
constraint exists, the current solution is optimal.

This approach can be very effective for MDPs with com-
pact DBN representations [Schuurmans and Patrascu, 2001],
and by terminating ALPCG early, one can further approxi-
mate the solution of the MDP.

7Any compact factorization of the weighting function suffices—
we assume this specific form for ease of exposition.

ALPCG for Logistic MDPs To extend ALPCG to logistic
MDPs we need to overcome two complications in the con-
straint generation subproblem: the loss of conditional inde-
pendence among state variables, and the non-linearity of the
response model in the state-action space.

Using the VF representation (9), the action-value backup
now has the form:

QV (x,a;w) =
∑
ϕ∈{>,⊥} Pr(ϕ|x,a)

[∑
j≤r ρj(x[Rj],a[Rj], ϕ)

+ γ
∑
i≤k wigi(x[ParBi],a[ParBi], ϕ)

]
, (15)

where the backprojection gi for basis function βi is defined as
in (12), but where we fix ϕ and then take an expectation w.r.t.
its realizations (> or ⊥). The same conditioning applies to
the reward component ρj of the action-value backup. Thus,
the constraint function h can be re-expressed as

h(x,a, ϕ;w) =
∑
j≤r ρj(x[Rj],a[Rj], ϕ)

+
∑
i≤k wi

(
γgi(x[ParBi],a[ParBi], ϕ)− βi(x[Bi])

)
. (16)

An ALP for the logistic MDP can therefore be expressed with
the same objective (10) as before, but with the constraint:

0 ≥ C(x,a;w) ∀x,a, where (17)
C(x,a;w) =

∑
ϕ∈{>,⊥} Pr(ϕ|x,a)h(x,a, ϕ;w). (18)

This LP has the same desirable features as the ALP formu-
lation for standard DBNs: a compact objective and compact
constraints. As with standard ALPCG, we handle the expo-
nential number of constraints using constraint generation.

Search for Maximally Violated Constraints We now turn
to the constraint generation problem. Assuming the ALP
above has been solved using only a subset of the con-
straints (17), we wish to find an MVC at the current solution:

max
x,a

∑
ϕ∈{>,⊥} Pr(ϕ|x,a) · h(x,a, ϕ;w). (19)

Let f(x,a) denote the linear function of state-action fea-
tures that is passed through the sigmoid in the logistic re-
gression response model (1); that is, Pr(ϕ = >|x,a) =
σ(f(x,a)). For any interval [f`, fu] of the input space to
the sigmoid, we (ab)use the same notation to denote the set
of states: [f`, fu] = {(x,a) : f` ≤ f(x,a) ≤ fu}.

We now define a search procedure to solve (19). Our search
for an MVC proceeds by recursively searching in intervals
[f`, fu] for an MVC among pairs (x,a) ∈ [f`, fu]. We call
the ALP procedure using this search ALP-SEARCH.

The search for an MVC in interval [f`, fu] is complicated
by the non-linearity of the constraint function C(x,a;w) in
(18). However, if we replace Pr(ϕ|x,a) by some constant σ∗
for all (x,a) ∈ [f`, fu], then the optimization (19) to find an
MVC over the interval becomes linear:

max
x,a

σ∗h(x,a,>;w) + (1− σ∗)h(x,a,⊥;w) (20)

s.t. f` ≤ f(x,a) ≤ fu. (21)

Since σ(z) is monotonically increasing in z, the quantity
σu = σ(fu) provides an upper bound on Pr(ϕ|x,a) for any
(x,a) ∈ [f`, fu] (see Fig. 2 for an illustration).

σ
σu

CV

σℓ

C(x1,a1,σ)

C(x2,a2,σ)

σ(f(x1,a1;w))σ(f(x2,a2;w))

U*u

Figure 2: MVC search example: Both pairs (x1,a1), (x2,a2) ∈
H+

w lie in interval [f`, fu] (in probability space, [σ`, σu]). When
σ = σu, (x1,a1) induces upper bound U∗u on constraint violation
among all pairs in H+

w ∩ [f`, fu]. Since (x1,a1)’s true probabil-
ity σ(f(x1,a1;w)) is less than σu, the bound is not tight; but the
gap with its true violation C(x1,a1;w) is small, so the search in
this interval may terminate. Note (x1,a1) is indeed the MVC; but
had σ(f(x1,a1;w)) been to the left of the intersection point, then
(x2,a2) would have been the MVC despite the upper bound sug-
gesting otherwise. In that case, the gap U∗u − C(x1,a1;w) would
be larger, inducing a split of the interval.

The search for the MVC within [f`, fu], as embodied in
Eqs. (20–21), can be decomposed into a search over two dis-
joint classes of state-action pairs:

H+
w = {(x,a) : h(x,a,>;w) ≥ h(x,a,⊥;w)} (22)

H−w = {(x,a) : h(x,a,>;w) < h(x,a,⊥;w)}. (23)

By restricting the search toH+
w , and setting the constant prob-

ability term to σu, we obtain the BOP:

max
x,a

σu · h(x,a,>;w) + (1− σu) · h(x,a,⊥;w) (24)

s.t. (x,a) ∈ H+
w ∩ [f`, fu]. (25)

A solution of this problem provides a maximizer (x∗u,a
∗
u)

with objective value U∗u . Similarly, the optimization using
H−w and the lower bound probability σ` = σ(f`) provides an
analogous solution (x∗` ,a

∗
`) with objective value U∗` .

Using the monotonicity of the objective w.r.t. σ, it can
be shown that U∗ = max(U∗` , U

∗
u) is an upper bound on

the maximal constraint violation in [f`, fu] (we denote by
MCV (I) the maximum degree of constraint violation in in-
terval I). If the corresponding solution is (x∗,a∗), the true
violation C(x∗,a∗;w) is a lower bound on MCV ([f`, fu]).
The gap U∗ −C(x∗,a∗;w) indicates how close it is to prov-
ably being the MVC within [f`, fu].

This allows us to define conditions under which we can
terminate the search: (i) if U∗ ≤ ε, for some small toler-
ance ε, there is no violation larger than ε in this interval;
(ii) if U∗ ≤ MCV (I), for some other interval I , the MVC
(for the full subproblem) does not lie in this interval; (iii)
if U∗ ≤ C(x∗,a∗;w) + ε, then (x∗,a∗) is (within ε of)
the MVC in this interval. Should none of these conditions
hold, we split the interval and recursively search in the two
subintervals [f`, f`+fu2] and [f`+fu2 , fu]. When the subprob-
lem search terminates with an MVC (x∗,a∗), we add the true
constraint to the master, i.e., 0 ≥ C(x∗,a∗;w), not the ap-
proximate constraint using the approximated probability.

ALP-SEARCH will terminate with the identification of a
violated constraint if one exists with degree at least ε. Thus,

Figure 3: Sigmoid: a piecewise-constant approximation.

the final master LP may not include all violated constraints;
but any unexpressed constraint is within ε of being satisfied.
We analyze the error of this relaxation below. Furthermore,
it will never generate a constraint that is not violated, so the
master LP will never be overconstrained.

ALP-SEARCH can be modified easily to produce an exact
solution to the subproblem using a simple identical witness
test. When searching in interval [f`, fu], the following test
ensures the identified constraint is the true MVC in the in-
terval: if the same state-action pair maximizes the degree of
constraint violation using both constant probabilities σu and
σ`, we can terminate with that constraint. This test can be
implemented by solving two BOPs, over all (x,a) ∈ [f`, fu],
with constant probabilities σu and σ`, respectively.
Observation 1. ALP-SEARCH with the identical witness test
constructs an exact solution to the ALP optimization problem.

As a result, an exact solution to for ALP-SEARCH is vi-
able. However, we expect small approximation tolerances to
encourage much faster convergence in practice.

A Piecewise Constant Approximation The CG procedure
above provides an “exact” solution (modulo termination tol-
erance ε) to the subproblem by solving a sequence of BOPs—
the formulation of one BOP depends on the results of a pre-
vious BOP. The same linearization, using a constant approx-
imation for the (sigmoid) response probability over intervals
I = [f`, fu], can be applied non-adaptively. We can fix a set
of intervals in f -space, and approximate the sigmoid in each
interval with a constant σI . Such a piecewise-constant (PWC)
approximation allows us to compute the MVC within each in-
terval using a single BOP; and since the interval subproblems
are independent, they can be solved in parallel. We call ALP
using this means of constraint generation ALP-APPROX.

More precisely, we partition f -space into m intervals
[δi−1, δi], 1 ≤ i ≤ m, and associate a constant response
probability σi with [δi−1, δi], where σi = σ(fi) for some
fi ∈ [δi−1, δi]. We require only that δ0 ≤ minx,a f(x,a) and
δm ≥ maxx,a f(x,a) (see Fig. 3). As above, the search for
the MVC in [δi−1, δi] is now linear:

max
x,a

σih(x,a,>;w) + (1− σi)h(x,a,⊥;w) (26)

s.t. δi−1 ≤ f(x,a) ≤ δi. (27)

Unlike ALP-SEARCH, we do not refine these intervals, but
use a suitably chosen partitioning and fixed σi for each in-
terval. We solve the subproblem for each interval I indepen-
dently to obtain an approximate MVC (xI ,aI), compute the
true degree of violation C(xI ,aI ;w) for each candidate, and

return to the master the (true) constraint whose true violation
is maximal. If the maximum is non-positive, we report no
violated constraint and terminate the master.

This CG procedure generally incurs some error, since it
may fail to detect a violated constraint for two reasons. First,
the PWC approximation for some I may find no violations in
I even though a violation exists whose degree has been un-
derestimated. Second, while it may detect a violating state-
action pair using the approximation, if the true violation value
for this pair is non-positive, the procedure will claim no vio-
lation exists; yet a different state-action pair might exhibit a
true violation in I . If this occurs in all intervals, no violated
constraint will be added and the master will terminate.8 We
bound the error induced by such a failed detection below.

A key advantage of ALP-APPROX is that the subproblems
for distinct intervals are independent and can be solved in
parallel. This stands in contrast with exact ALP-SEARCH,
where refined subproblems must be solved in sequence.

Approximation Error We first analyze the impact of ALP-
APPROX (and by the same argument, ALP-SEARCH with
tolerance ε) failing to detect a violated constraint by compar-
ing solution quality with that of exact ALP. All proofs are
provided in an extended version of the paper.9

Suppose ALP-APPROX terminates s.t. any missing con-
straint has violation of at most ε. We can show that: (a) the
approximate VF produced by ALP-APPROX is no more than
ε

1−γ away (in max-norm) from a feasible solution to (exact)
ALP, i.e., it provides an upper bound on the ALP solution; and
(b) the difference in our VF approximation (w.r.t. weighted
1-norm [de Farias and Van Roy, 2003]) is no more than ε

1−γ .
This holds since any infeasible ALP solution can be made fea-
sible by increasing the bias weight. A bound on value loss of
the induced policy is obtainable using methods of [de Farias
and Van Roy, 2003].

We can determine how well the MDP induced by PWC dis-
cretization matches the true logistic MDP; i.e., how different
the optimal VFs for the MDPs are when using the true and
approximated dynamics, respectively. To obtain meaningful
bounds, we assume that for any given policy π, the Markov
process induced by applying π mixes with rate µ.10 The max-
imum difference in VFs obeys:

|Vπ − V̂π|∞ ≤

√
(2 ln 2)

µ
LRE(σ̂)

1

1− γ max
x

R(x, π(x)),

where LRE, the log relative error, is defined as LRE(σ̂) =

ln supf max
[
σ̂(f)
σ(f) ,

1−σ̂(f)
1−σ(f)

]
, and σ̂ is the PWC sigmoid

approximation. Finally, we note that given a fixed dis-
cretization [δ0, . . . , δk] of f -space, the optimal choice of
constants minimizing LRE within an interval is σ̂(f) =

8If a constraint is missed in I during a round of CG, a violated
constraint may still be found in I later (if CG continues), since the
subproblem changes with each master iteration.

9Available at research.google.com/pubs/CraigBoutilier.html.
10See [Boyen and Koller, 1998] for the mixing concept used here;

it has the desirable property that it can be bounded using the struc-
ture of the DBN.

ln exp(δi+δi+1)+exp(δi+1)
1+exp(δi)

, for δi ≤ f ≤ δi+1. Moreover,
a PWC approximation to the sigmoid achieving LRE of at
most ε can be constructed with O(1ε ||u||1) intervals (see the
extended paper for further details and proofs).

5 Empirical Results
We test the logistic MDP framework and the ALP-APPROX
algorithm using models of various sizes derived from a tar-
geted advertising domain. We generate logistic pCTR models
that predict the probability of a user response ϕ, representing
a click on a displayed (in-app) ad. pCTR models of several
sizes are learned from test data drawn over a period of one
day with roughly 300M training examples. Each example has
roughly 50 input random variables (with highly variable do-
main sizes), reflecting static user features, summaries of past
behavior, ad characteristics, etc.

From these models, we construct a logistic MDP with a
single binary response variable ϕ at the core of the logistic
transition model. The transition functions are derived from
the semantics of the features themselves. The reward function
is 1 for a click, and our sequential objective is to maximize
the expected discounted cumulative click-through rate.11

We produce four models:
• TINY has two (natural) state variables (with domain

sizes 6 and 42) and one action variable (domain size 7),
giving rise to a one-hot encoding with 55 sparse bina-
rized features (sbfs), of which 48 are state and 7 are ac-
tion features. The induced state and action spaces have
size 252 and 7, respectively.
• SMALL has: 6 state variables, 4 action variables; 86 sbfs

(71 state, 15 action); 158,760 states, 126 actions.
• MEDIUM has: 11 state variables, 8 action variables; 421

sbfs (251 state, 170 action); approximately 243 states,
220M actions.
• LARGE has: 12 state variables, 11 action variables; 2854

sbfs (2630 state, 224 action); approximately 254 states,
239 actions.

We run ALP-APPROX using one basis function per sbf (e.g.,
LARGE uses 2854 basis functions). We use GLOP12 to solve
the master LP, and SCIP13 for the Boolean subproblems. We
solve the subproblems using various numbers of subintervals,
or bands, to assess the impact of coarse vs. fine discretization.

Fig. 4 shows, for TINY, SMALL and MEDIUM, how ob-
jective value improves (for both 25 and 100 bands) and max-
imum constraint violation (MVC) decreases (both estimated
and true constraints at 100 bands) with CG iteration. In each
case, ALP-APPROX converges very quickly given the num-
ber of potential constraints. We see little difference in ob-
jective performance between 25 and 100 bands: 100 con-
verges to slightly higher values. Other results (not shown)
provide no appreciable improvement with up to 400 bands
(w.r.t. 100), and 50 bands seems to be the “sweet spot” for

11Including bid predictions in the model to optimize for social
welfare or revenue is straightforward, as would be including other
reward factors of interest, if contained within the features.

12See https://developers.google.com/optimization/.
13See http://scip.zib.de/.

0 20 40 60 80 100

Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
b

je
c
ti

v
e
 v

a
lu

e

(Obj) 25 Bands

(Obj) 100 Bands

(CV) True, 100B

(CV) Approx., 100B

0.000

0.005

0.010

0.015

0.020

0.025

C
o
n

s
tr

a
in

t
v
io

la
ti

o
n

0 50 100 150 200

Iteration

0.0

0.1

0.2

0.3

0.4

0.5

O
b

je
c
ti

v
e
 v

a
lu

e

(Obj) 25 Bands

(Obj) 100 Bands

(CV) True, 100B

(CV) Approx., 100B

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
o
n

s
tr

a
in

t
v
io

la
ti

o
n

0 50 100 150 200 250 300 350 400

Iteration

0

1

2

3

4

5

6

O
b

je
c
ti

v
e
 v

a
lu

e

(Obj) 25 Bands

(Obj) 100 Bands

(CV) True, 100B

(CV) Approx., 100B

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
o
n

s
tr

a
in

t
v
io

la
ti

o
n

Figure 4: Objective value and max constraint violation progress as a function of the ALP constraint generation iteration for three MDP
domains: TINY (left), SMALL (middle), MEDIUM (right).

this domain. For TINY we computed the exact ALP solu-
tion (no sigmoid approximation) using CG: our approxima-
tion was within 99.96% of the exact solution with 100 bands
(and 97.3% with 25 bands). For SMALL, exact CG was not
feasible, but we used early termination to obtain a loose upper
bound on the exact solution: our approximation (100 bands)
was within 94.3% of the “exact” upper bound. (Exact solu-
tions are not feasible for larger instances.)

Fig. 5 shows (non-distributed) computation time per itera-
tion for MEDIUM (trends are similar in the other instances).
Total time for 400 iterations with 25 bands is roughly 600s.:
a distributed implementation would take roughly 24s. (since
solution time is dominated by the subproblem BOPs).

Fig. 6 shows the metrics above for LARGE, using 50 bands
and 3000 CG iterations. It has a similar anytime profile w.r.t.
objective value as the smaller problems. Despite the tremen-
dous size of this discrete MDP, a distributed implementation
would complete 3000 iterations in an estimated 19 minutes.

Finally, we perform a simple empirical comparison of the
cumulative reward generated by the MDP-optimized policy to
that obtained using myopic optimization. Using the MEDIUM
domain, we generate trials by sampling 50 random ads from
the data set as the eligible action set,14, a random initial state
from the data set, and then measure reward accrued over tra-
jectories of length 60 by the myopic and ALP policies. We
sample 40 eligible sets and 2500 initial states for each set,
giving 100K trials. The ALP policy shows a small improve-
ment of about 0.52in value over the myopic policy.15

6 Conclusion and Future Work
We have proposed logistic MDPs as a model for sequential
user interaction and developed approximate solution tech-
niques based on ALP that handle the complexity introduced
by logistic response variables. An attractive feature of Logis-
tic MDPs is their exploitation of existing myopic response
models and their features (the same applies to model-free

14This reflects the fact that for any impression only a small set
of ads are considered eligible for various reasons (e.g., targeting,
budget throttling, campaign expiration, etc.).

15The feature subset used in this synthetic model gives a model
with low pCTR and very limited user state, hence a small influence
of actions on user state. Mean reward (std. dev.) per trajectory:
myopic: 0.75325 (1.0690); ALP: 0.75718 (1.0713); difference is
significant at p = 0.042.

0 50 100 150 200 250 300 350 400

Iteration

0

2

4

6

8

10

12

It
e
ra

ti
o
n

 t
im

e
 (

s
e
c
)

25 Bands

100 Bands

Figure 5: Computation time per CG iteration: MEDIUM.

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350
It

e
ra

ti
o
n

 t
im

e
 (

s
e
c
)

Time

Objective

True violation

Approx. violation

0

1

2

3

4

5

6

7

8

9

O
b

je
c
ti

v
e
 /

 C
V

Figure 6: Objective value, max constraint violation, and computa-
tion time per CG iteration on the LARGE domain.

RL), and our ALP method handles large problems but seems
to approximate exact ALP very well.

We are exploring several extensions of our model (several
of these extensions are described in the full paper). Multi-
ple response variables are easily modeled in logistic MDPs,
though they complicate the ALP method. Crosses of fea-
tures are often used in logistic regression to handle non-
linearities, and are easily incorporated into ALP). More com-
plex response models like deep neural networks can also
be incorporated into logistic MDPs, and certain DNNs can
be linearized to allow our ALP methods to be used.16 We
are also exploring the adaptation of these methods to non-
linear VF approximators. Finally, the idea of compiling
LP constraints into a compact form [Guestrin et al., 2003;
Robbel et al., 2016] rather than relying on constraint genera-
tion is an intriguing prospect.

16Thanks to Ross Anderson for conversations on this topic.

References
[Amin et al., 2012] K. Amin, M. Kearns, P. Key, A.

Schwaighofer. Budget optimization for sponsored search:
Censored learning in MDPs. UAI-12, 543–553, 2012.

[Archak et al., 2010] N. Archak, V. Mirrokni, and
S. Muthukrishnan. Mining advertiser-specific user
behavior using adfactors. WWW-10, 31–40, 2010.

[Archak et al., 2012] N. Archak, V. Mirrokni, and
S. Muthukrishnan. Budget optimization for online
campaigns with positive carryover effects. WINE-12,
86–99, 2012.

[Boutilier and Lu, 2016] C. Boutilier and T. Lu. Budget allo-
cation using weakly coupled, constrained Markov decision
processes. UAI-16, 52–61, 2016.

[Boutilier et al., 1995] C. Boutilier, R. Dearden, and
M. Goldszmidt. Exploiting structure in policy construc-
tion. IJCAI-95, 1104–1111, 1995.

[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks.
Decision theoretic planning: Structural assumptions and
computational leverage. JAIR, 11:1–94, 1999.

[Boyen and Koller, 1998] X. Boyen and D. Koller. Tractable
inference for complex stochastic processes. UAI-98, 33–
42, 1998.

[Charikar et al., 1999] M. Charikar, R. Kumar, P. Raghavan,
S. Rajagopalan, and A. Tomkins. On targeting Markov
segments. STOC-99, 99–108, 1999.

[Cheng et al., 2016] H. Cheng, L. Koc, J. Harmsen, T.
Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Cor-
rado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong,
V. Jain, X. Liu, H. Shah. Wide & deep learning for rec-
ommender systems. Deep Learning for Rec. Sys., 7–10,
2016.

[Covington et al., 2016] P. Covington, J. Adams, and E. Sar-
gin. Deep neural networks for YouTube recommendations.
RecSys-16, 191–198, 2016.

[Dean and Kanazawa, 1989] T. Dean and K. Kanazawa. A
model for reasoning about persistence and causation.
Comput. Intell., 5(3):142–150, 1989.

[Graepel et al., 2010] T. Graepel, J. Candela, T. Borchert,
and R. Herbrich. Web-scale Bayesian click-through rate
prediction for sponsored search advertising in Microsoft’s
Bing search engine. ICML-10, 13–20, 2010.

[Guestrin et al., 2003] C. Guestrin, D. Koller, R. Parr, and
S. Venkataraman. Efficient solution algorithms for fac-
tored MDPs. JAIR, 19:399–468, 2003.

[He and McAuley, 2016] R. He and J. McAuley. Fusing sim-
ilarity models with Markov chains for sparse sequential
recommendation. ICDM-16, 2016.

[Hoey et al., 1999] J. Hoey, R. St-Aubin, A. Hu, and
C. Boutilier. SPUDD: Stochastic planning using decision
diagrams. UAI-99, 279–288, 1999.

[Hohnhold et al., 2015] H. Hohnhold, D. O’Brien, and
D. Tang. Focusing on the long-term: It’s good for users
and business. KDD-15, 1849–1858, 2015.

[Li et al., 2009] T. Li, N. Liu, J. Yan, G. Wang, F. Bai, and
Z. Chen. A Markov chain model for integrating behav-
ioral targeting into contextual advertising. Data Mining
and Audience Intel. for Advert., 1–9, 2009.

[McMahan et al., 2013] H. McMahan, G. Holt, D. Sculley,
M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davy-
dov, D. Golovin, S. Chikkerur, D. Liu, A. Wattenberg,
M. Hrafnkelsson, T. Boulos, J. Kubica. Ad click predic-
tion: A view from the trenches. KDD, 1222–1230, 2013.

[de Farias and Van Roy, 2003] D. P. de Farias, B. Van Roy.
The linear programming approach to approximate dy-
namic programming. Oper. Res., 51(6):850–865, 2003.

[Puterman, 1994] M. Puterman. Markov Decision Pro-
cesses: Discrete Stochastic Dyn. Prog. Wiley, 1994.

[Rendle et al., 2010] S. Rendle, C. Freudenthaler, and
L. Schmidt-Thieme. Factorizing personalized Markov
chains for next-basket recommendation. WWW-10, 811–
820, 2010.

[Richardson et al., 2007] M. Richardson, E. Dominowska,
and R. Ragno. Predicting clicks: Estimating the click-
through rate for new ads. WWW-07, 521–530, 2007.

[Robbel et al., 2016] P. Robbel, F. Oliehoek, and
M. Kochenderfer. Exploiting anonymity in approxi-
mate linear programming: Scaling to large multiagent
mdps. AAAI-16, 2537–2543, 2016.

[Sahoo et al., 2012] N. Sahoo, P. Singh, and T. Mukhopad-
hyay. A hidden Markov model for collaborative filtering.
Mgmt. Info. Sys. Qrtly., 36(4), 2012.

[Schuurmans and Patrascu, 2001] D. Schuurmans and R. Pa-
trascu. Direct value approximation for factored MDPs.
NIPS-01, 1579–1586, 2001.

[Shani et al., 2005] G. Shani, D. Heckerman, and R. Braf-
man. An MDP-based recommender system. JMLR,
6:1265–1295, 2005.

[Silver et al., 2013] D. Silver, L. Newnham, D. Barker,
S. Weller, and J. McFall. Concurrent reinforcement learn-
ing from customer interactions. ICML-13, 924–932, 2013.

[St-Aubin et al., 2000] R. St-Aubin, J. Hoey, C. Boutilier.
APRICODD: Approximate policy construction using de-
cision diagrams. NIPS-00, 1089–1095, 2000.

[Taghipour et al., 2007] N. Taghipour, A. Kardan, and
S. Ghidary. Usage-based web recommendations: A rein-
forcement learning approach. RecSys-07, 113–120, 2007.

[Tan et al., 2016] Y. Tan, X. Xu, and Y. Liu. Improved recur-
rent neural networks for session-based recommendations.
Deep Learning for Rec. Sys., 17–22, 2016.

[Theocharous et al., 2015] G. Theocharous, P. Thomas, and
M. Ghavamzadeh. Personalized ad recommendation sys-
tems for life-time value optimization with guarantees.
IJCAI-15, 1806–1812, 2015.

[Wu et al., 2017] C. Wu, A. Ahmed, A. Beutel, A. Smola,
and H. Jing. Recurrent recommender networks. WSDM-
17, 2017.

