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Abstract
In many practical uses of reinforcement learning
(RL) the set of actions available at a given state is a
random variable, with realizations governed by an
exogenous stochastic process. Somewhat surpris-
ingly, the foundations for such sequential decision
processes have been unaddressed. In this work,
we formalize and investigate MDPs with stochas-
tic action sets (SAS-MDPs) to provide these foun-
dations. We show that optimal policies and value
functions in this model have a structure that admits
a compact representation. From an RL perspec-
tive, we show that Q-learning with sampled action
sets is sound. In model-based settings, we consider
two important special cases: when individual ac-
tions are available with independent probabilities,
and a sampling-based model for unknown distribu-
tions. We develop polynomial-time value and pol-
icy iteration methods for both cases, and provide
a polynomial-time linear programming solution for
the first case.

1 Introduction
Markov decision processes (MDPs) are the standard model
for sequential decision making under uncertainty, and pro-
vide the foundations for reinforcement learning (RL). With
the recent emergence of RL as a practical AI technology in
combination with deep learning [Mnih et al., 2013; 2015],
new use cases are arising that challenge basic MDP mod-
eling assumptions. One such challenge is that many prac-
tical MDP and RL problems have stochastic sets of feasi-
ble actions; that is, the set As of feasible actions at state s
varies stochastically with each visit to s. For instance, in
online advertising, the set of available ads differs at distinct
occurrences of the same state (e.g., same query, user, contex-
tual features), due to exogenous factors like campaign expira-
tion or budget throttling. In recommender systems with large
item spaces, often a set of candidate recommendations is first
generated, from which top scoring items are chosen; exoge-
nous factors often induce non-trivial changes in the candi-
date set. With the recent application of MDP and RL mod-
els in ad serving and recommendation [Charikar et al., 1999;
Li et al., 2009; Archak et al., 2010; 2012; Amin et al., 2012;

Silver et al., 2013; Theocharous et al., 2015; Mladenov et al.,
2017], understanding how to capture the stochastic nature of
available action sets is critical.

Somewhat surprisingly, this problem seems to have been
largely unaddressed in the literature. Standard MDP formula-
tions [Puterman, 1994] allow each state s to have its own fea-
sible action setAs, and it is not uncommon to allow the setAs

to be non-stationary or time-dependent. However, they do not
support the treatment of As as a stochastic random variable.
In this work, we: (a) introduce the stochastic action set MDP
(SAS-MDP) and provide its theoretical foundations; (b) de-
scribe how to account for stochastic action sets in model-free
RL (e.g., Q-learning); and (c) develop tractable algorithms
for solving SAS-MDPs in important special cases.

An obvious way to treat this problem is to embed the set of
available actions into the state itself. This provides a useful
analytical tool, but it does not immediately provide tractable
algorithms for learning and optimization, since each state is
augmented with all possible subsets of actions, incurring an
exponential blow up in state space size. To address this issue,
we show that SAS-MDPs possess an important property: the
Q-value of an available action a at a state s is independent of
the availability of other actions. This allows us to prove that
optimal policies can be represented compactly using (state-
specific) decision lists (or orderings) over the action set.

This special structure allows one to solve the SAS RL prob-
lem effectively using, for example, Q-learning. We also de-
vise model-based algorithms that exploit this policy struc-
ture. We develop value and policy iteration schemes, show-
ing they converge in a polynomial number of iterations (w.r.t.
the size of the underlying “base” MDP). We also show that
per-iteration complexity is polynomial time for two impor-
tant special forms of action availability distribution: (a) when
action availabilities are independent, both methods are exact;
(b) when the distribution over sets As is sampleable, we ob-
tain approximation algorithms with polynomial sample com-
plexity. In fact, policy iteration is strongly polynomial un-
der additional assumptions (for a fixed discount factor). We
show that a linear program for SAS-MDPs can be solved in
polynomial time as well. Finally, we offer a simple empirical
demonstration of the importance of accounting for stochastic
action availability when computing an MDP policy.

Additional discussion and full proofs of all results can be
found in a longer version of this paper [Boutilier et al., 2018].
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2 MDPs with Stochastic Action Sets
We first introduce SAS-MDPs and provide a simple example
illustrating how action availability impacts optimal decisions.
See [Puterman, 1994] for more background on MDPs.

2.1 The SAS-MDP Model
Our formulation of MDPs with Stochastic Action Sets (SAS-
MDPs) derives from a standard, finite-state, finite-action
MDP (the base MDP) M, with n states S, base actions Bs

for s ∈ S, and transition and reward functions, P : S ×B →
∆(S) and r : S × B → R. We use pks,s′ and rks to denote
the probability of transition to s′ and the accrued reward, re-
spectively, when action k is taken at state s. For notational
ease, we assume that feasible action sets for each s ∈ S are
identical, so Bs = B (allowing distinct base sets at differ-
ent states has no impact on what follows). Let |B| = m and
M = |S × B| = nm. We assume an infinite-horizon, dis-
counted objective with fixed discount rate γ, 0 ≤ γ < 1.

In a SAS-MDP, the set of actions available at state s at any
stage t is a random subset A(t)

s ⊆ B. We assume a family
of action availability distributions Ps ∈ ∆(2B) defined over
the powerset of B. These can depend on s ∈ S but are oth-
erwise history-independent, hence Pr(A(t)

s |s(1), . . . , s(t)) =

Pr(A(t)
s |s(t)). Only actions k ∈ A(t)

s in the realized available
action set can be executed at stage t. Apart from this, the dy-
namics of the MDP is unchanged: when an (available) action
is taken, state transitions and rewards are prescribed as in the
base MDP. In what follows, we assume that some action is
always available, i.e., Pr(A(t)

s = ∅) = 0 for all s, t.1 Note
that a SAS-MDP does not conform to the usual definition of
an MDP.

2.2 Example
The following simple MDP shows the importance of account-
ing for stochastic action availability when making decisions.
The MDP below has two states. Assume the agent starts at
state s1, where two actions (indicated by directed edges for
their transitions) are always available: one (Stay) stays at s1,
and the other (Go) transitions to state s2, both with reward
1/2. At s2, the action Down returns to s1, is always avail-
able and has reward 0. A second action Up also returns to
s1, but is available with only probability p and has reward 1.

A naive solution that ignores action availability is as fol-
lows: we first compute the optimal Q-function assuming all
actions are available (this can be derived from the optimal
value function, computed using standard techniques). Then
at each stage, we use the best action available at the current
state where actions are ranked by Q-value. Unfortunately,

1Models that trigger process termination when A(t)
s = ∅ are

well-defined, but we set aside this model variant here.

this leads to a suboptimal policy when the Up action has low
availability, specifically if p < 0.5.

The best naive policy always chooses to move to s2 from
s1; at s2, it picks the best action available. This yields a re-
ward of 1/2 at even stages, and an expected reward of p at
odd stages. However, by anticipating the possibility that ac-
tion Up is unavailable at s2, the optimal (SAS) policy always
stays at s1, obtaining reward 1/2 at all stages. For p < 1/2,
the latter policy dominates the former: the plot on the right
shows the fraction of the optimal (SAS) value lost by the
naive policy (Std) as a function of the availability probabil-
ity p. This example also illustrates that as action availability
probabilities approach 1, the optimal policy for the base MDP
is also optimal for the SAS-MDP.

2.3 Related Work
While a general formulation of MDPs with stochastic ac-
tion availability does not appear in the literature, there are
two strands of closely related work. In the bandits litera-
ture, sleeping bandits are bandit problems in which the arms
available at each stage are determined randomly or adversar-
ially (sleeping experts are similar, with complete feedback
than bandit feedback) [Kleinberg et al., 2010; Kanade et al.,
2009]. Best action orderings (analogous to our decision list
policies for SAS-MDPs) are often used to define regret in
these models. The goal is to develop exploration policies
to minimize regret. Since these models have no state, if the
action reward distributions are known, the optimal policy is
trivial: always take the best available action. By contrast, a
SAS-MDP, even a known model, induces a difficult optimiza-
tion problem, since the quality of an action depends not just
on its immediate reward, but also on the availability of actions
at reachable (future) states. This is our focus.

The second closely related branch of research comes from
the field of stochastic routing. The “Canadian Traveller
Problem”—the problem of minimizing travel time in a graph
with unavailable edges—was introduced by Papadimitriou
and Yannakakis [1991], who give intractability results (under
weaker assumptions about edge availability, e.g. adversarial).
Poliyhondrous and Tsitsiklis [1996] consider a stochastic ver-
sion of the problem, where edge availabilities are random but
static (and any edge unavailable remains so throughout the
scenario). Most similar to our setting is the work of Nikolova
and Karger [2008], who discuss the case of resampling edge
costs at each node visit; however, the proposed solution is
well-defined only when the edge costs are finite and does not
easily extend to unavailable actions/infinite edge costs. Due
to the specificity of their modeling assumptions, none of the
solutions found in this line of research can be adapted in a
straightforward way to SAS-MDPs.

3 Two Reformulations of SAS-MDPs
The randomness of feasible actions means that SAS-MDPs
do not conform to the usual definition of an MDP. In this
section, we develop two reformulations of SAS-MDPs that
transform them into MDPs. We discuss the relative advan-
tages of each, outline key properties and relationships be-
tween these models, and describe important special cases of
the SAS-MDP model itself.
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3.1 The Embedded MDP
We first consider a reformulation of the SAS-MDP in which
we embed the (realized) available action set into the state
space itself. This is a straightforward way to recover a stan-
dard MDP. The embedded MDP Me for a SAS-MDP has
state space Se = {s ◦ A : s ∈ S,A ⊆ B}, with s ◦ A
having feasible action set A.2 The history independence of
Ps allows transitions to be defined as:
pks◦A,s′◦A′ = P (s′ ◦A′|s ◦A, k) = pks,s′Ps′(A

′), ∀k ∈ A.

Rewards are defined similarly: rk(s ◦A) = rk(s) for k ∈ A.
In our earlier example, the embedded MDP has three

states: s1◦{Stay ,Go}, s2◦{Up,Down}, s2◦{Down} (other
action subsets have probability 0 hence their corresponding
embedded states are unreachable). The feasible actions at
each state are given by the embedded action set, and the only
stochastic transition occurs when Go is taken at s1: it moves
to s2 ◦{Up,Down} with probability p and s2 ◦{Down} with
probability 1− p.

Clearly, the induced reward process and dynamics are
Markovian, henceMe is in fact an MDP under the usual def-
inition. Given the natural translation afforded by the embed-
ded MDP, we view this as providing the basic “semantic” un-
derpinnings of the SAS-MDP model. This translation affords
the use of standard MDP analytical tools and methods.

A (stationary, deterministic, Markovian) policy π : Se →
B for Me is restricted so that π(s ◦ A) ∈ A. The policy
backup operator Tπ

e and Bellman operator T ∗
e for Me de-

compose naturally as follows:

Tπ
e Ve(s ◦As) = rπ(s◦As)

s +

γ
∑

s′

pπ(s◦As)
s,s′

∑

As′⊆B

Ps′(As′)Ve(s
′ ◦As′), (1)

T ∗
e Ve(s ◦As) = max

k∈As

rks+

γ
∑

s′

pks,s′
∑

As′⊆B

Ps′(As′)Ve(s
′ ◦As′) (2)

Their fixed points, V π
e and V ∗

e respectively, can be expressed
similarly.

Obtaining an MDP from an SAS-MDP via action-set em-
bedding comes at the expense of a (generally) exponential
blow-up in the size of the state space, which can increase by
a factor of 2|B|.

3.2 The Compressed MDP
The embedded MDP provides a natural semantics for SAS-
MDPs, but is problematic from an algorithmic and learning
perspective given the state space blow-up. Fortunately, the
history independence of the availability distributions gives
rise to an effective, compressed representation. The com-
pressed MDP Mc recasts the embedded MDP in terms of
the original state space, using expectations to express value
functions, policies, and backups over S rather than over the
(exponentially larger) Se. As we will see below, the com-
pressed MDP induces a blow-up in action space rather than
state space, but offers significant computational benefits.

2Embedded states whose embedded action subsets have zero
probability are unreachable and can be ignored.

Formally, the state space for Mc is S. To capture action
availability, the feasible action set for s ∈ S is the set of state
policies, or mappings µs : 2B → B satisfying µs(As) ∈ As.
In other words, once we reach s, µs dictates what action to
take for any realized action set As. A policy for Mc is a
family µc = {µs : s ∈ S} of such state policies. Transitions
and rewards use expectations over As:

pµs
s,s′ =

∑

As⊆B

Ps(As)p
µs(As)
s,s′ and rµs

s =
∑

As⊆B

Ps(As)r
µs(As)
s .

In our earlier example, the compressed MDP has only
two states, s1 and s2. Focusing on s2, its “actions” in the
compressed MDP are the set of state policies, or mappings
from the realizable available sets {{Up,Down}, {Down}}
into action choices (as above, we ignore unrealizable ac-
tion subsets). In this case, there are two such state policies:
the first selects Up for {Up,Down} and (obviously) Down
for {Down}; the second selects Down for {Up,Down} and
Down for {Down}.

It is not hard to show that the dynamics and reward process
defined above over this compressed state space and expanded
action set (i.e., the set of state policies) are Markovian. Hence
we can define policies, value functions, optimality conditions,
and policy and Bellman backup operators in the usual fashion.
For instance, the Bellman and policy backup operators, T ⋆

c
and T c

µ, on compressed value functions are:

T ∗
c Vc(s) = E

As⊆B
max
k∈As

rks + γ
∑

s′

pks,s′Vc(s
′), (3)

Tµ
c Vc(s) = E

As⊆B
rµs(As)
s + γ

∑

s′

pµs(As)
s,s′ Vc(s

′). (4)

It is easy to see that any state policy µ induces a Markov
chain over base states, hence we can define a standard n× n
transition matrix Pµ for such a policy in the compressed
MDP, where pµs,s′ = EA⊆B pµ(s)(A)

s,s′ . When additional in-
dependence assumptions hold, this expectation over subsets
can be computed efficiently (see Section 3.4).

Critically, we can show that there is a direct “equivalence”
between policies and their value functions (including opti-
mal policies and values) in Mc and Me. Define the action-
expectation operator E : Rn2m → Rn to be a mapping that
compresses a value function Ve for Me into a value function
V e
c forMc:

V e
c (s) = EVe(s) = E

As⊆B
Ve(s ◦As) =

∑

As⊆B

Ps(As)Ve(s ◦As).

We emphasize thatE transforms an (arbitrary) value function
Ve in embedded space into a new value function V e

c defined
in compressed space (hence, V e

c is not defined w.r.t.Mc).

Lemma 1 ET ∗
e Ve = T ∗

c EVe. Hence, T ∗
c has a unique fixed

point V ∗
c = EV ∗

e .
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Proof:

ET eVe(s) = E
A⊆B

T eVe(s ◦A)

= E
A⊆B

max
k∈A

rks + γ
∑

s′◦A′

pks◦A,s′◦A′Ve(s
′ ◦A′)

= E
A⊆B

max
k∈A

rks + γ
∑

s′

pks,s′ E
A′⊆B

Ve(s
′ ◦A′)

= E
A⊆B

max
k∈A

rks + γ
∑

s′

pks,s′EV e(s′)

= T cEV e(s′).

Lemma 2 Given the optimal value function V ∗
c for Mc, the

optimal policy π∗
e forMe can be constructed directly. Specif-

ically, for any s◦A, the optimal policy π∗
e(s◦A) and optimal

value V ∗
e (s ◦ A) at that embedded state can be computed in

polynomial time.

Proof Sketch: Given s ◦A, the expected value of each action
in k ∈ A can be computed using a one-step backup of V ∗

c .
Then π∗

e(s◦A) is the action with maximum value, and V ∗
e (s◦

A) is its backed-up expected value.

Therefore, it suffices to work directly with the compressed
MDP, which allows one to use value functions (and Q-
functions) over the original state space. The price is that one
needs to use state policies, since the best action at s depends
on the available set As. In other words, while the embedded
MDP causes an exponential blow-up in state space, the com-
pressed MDP causes an exponential blow-up in action space.
We now turn to assumptions that allow us to effectively man-
age this action space blow-up.

3.3 Decision List Policies
The embedded and compressed MDPs do not, prima fa-
cie, offer much computational or representational advantage,
since they rely on an exponential increase in the size of the
state space (embedded MDP) or decision space (compressed
MDP). Fortunately, SAS-MDPs have optimal policies with
a useful, concise form. We first focus on the policy repre-
sentation itself, then describe the considerable computational
leverage it provides.

A decision list (DL) policy µ is a type of policy for Me

that can be expressed compactly using O(nm logm) space
and executed efficiently. Let ΣB be the set of permutations
over base action set B. A DL policy µ : S → ΣB associates
a permutation µ(s) ∈ ΣB with each state, and is executed at
embedded state s ◦ A by executing min{i ∈ {1, . . . ,m} :
µ(s)(i) ∈ A}. In other words, whenever base state s is en-
countered and A is the available set, the first action k ∈ A in
the order dictated by DL µ(s) is executed. Equivalently, we
can view µ(s) as a state policy µs for s in Mc. In our earlier
example, one DL µ(s2) is [Up,Down], which requires taking
(base) action Up if it is available, otherwise taking Down .

For any SAS-MDP, we have optimal DL policies:

Theorem 1 Me has an optimal policy that can be repre-
sented using a decision list. The same policy is optimal for
the correspondingMc.

Proof Sketch: Let V ∗ be the (unique) optimal value function
for Me and Q∗ its corresponding Q-function (see Sec. 5.1
for a definition). A simple inductive argument shows that no
DL policy is optimal only if there is some state s, action sets
A ̸= A′, and (base) actions j ̸= k, s.t. (i) j, k ∈ A,A′; (ii) for
some optimal policy π∗(s ◦ A) = j and π∗(s ◦ A′) = k; and
(iii) eitherQ∗(s ◦A, j) > Q∗(s ◦A, k) or orQ∗(s ◦A′, k) >
Q∗(s ◦ A′, j). However, the fact that the optimal Q-value of
any action k ∈ A at state s ◦ A is independent of the other
actions in A (i.e., it depends only on the base state) implies
that these conditions are mutually contradictory.

3.4 The Product Distribution Assumption
The DL form ensures that optimal policies and value func-
tions for SAS-MDPs can be expressed polynomially in the
size of the base MDP M. However, their computation still
requires the computation of expectations over action subsets,
e.g., in Bellman or policy backups (Eqs. 3, 4). This will gen-
erally be infeasible without some assumptions on the form
the action availability distributions Ps.

One natural assumption is the product distribution assump-
tion (PDA). PDA holds when Ps(A) is a product distribution
where each action k ∈ B is available with probability ρks , and
subset A ⊆ B has probability ρAs =

∏
k∈A ρks

∏
k∈B\A(1 −

ρks). This assumption is a reasonable approximation in the
settings discussed above, where state-independent exogenous
processes determine the availability of actions (e.g., the prob-
ability that one advertiser’s campaign has budget remaining
is roughly independent of another advertiser’s). For ease of
notation, we assume that ρks is identical for all states s (al-
lowing different availability probabilities across states has no
impact on what follows). To ensure the MDP is well-founded,
we assume some default action (e.g., no-op) is always avail-
able.3 Our earlier running example trivially satisifes PDA:
at s2, Up’s availability probability (p) is independent of the
availability of Down (1).

When the PDA holds, the DL form of policies allows the
expectations in policy and Bellman backups to be computed
efficiently without enumeration of subsets A ⊆ B. For ex-
ample, given a fixed DL policy µ, we have

Tµ
c Vc(s) =

m∑

i=1

[
i−1∏

j=1

(1− ρµ(s)(j)s )

]
ρµ(s)(i)s

(
rµ(s)(i)
s

+ γ
∑

s′

pµ(s)(i)s,s′ Vc(s
′)

)
. (5)

The Bellman operator has a similar form. We exploit this
below to develop tractable value iteration and policy iteration
algorithms, as well as a practical LP formulation.

3.5 Arbitrary Distributions with Sampling (ADS)
We can also handle the case where, at each state, the availabil-
ity distribution is unknown, but is sampleable. Using sam-

3We omit the default action from analysis for ease of exposition.
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ples to approximate expectations w.r.t. available action sub-
sets provides a means to estimate values and approximate op-
timal policies. Critically, the required sample size is polyno-
mial in |B|, and not in the size of the support of the distri-
bution (see below). Of course, this approach does not allow
us to compute the optimal policy exactly. However, it has
important implications for the sample complexity of learning
algorithms like Q-learning.

We note that the ability to sample available action subsets
is quite natural in many domains. For instance, in ad domains,
it may not be possible to model the process by which eligi-
ble ads are generated (e.g., specific and evolving advertiser
targeting criteria, budgets, frequency capping, etc.). But the
eligible subset of ads considered for each impression oppor-
tunity is an action subset sampled from this process.

Under ADS, we compute approximate backup operators as
follows. Let As = {A(1)

s , . . . , A(T )
s } be an i.i.d. sample of

size T of action subsets in state s. For a subset of actions
A, an index i and a decision list µ, define I[i,A,µ] to be 1
if µ(i) ∈ A and for each j < i we have µ(j) ̸∈ A, or 0
otherwise. Similar to Eq. (5), we define:

Tµ
c Vc(s)=

1
T

T∑

t=1

m∑

i=1

I[
i,A

(t)
s ,µ(s)

]
(
rµ(s)(i)
s +γ

∑

s′

pµ(s)(i)s,s′ Vc(s
′)
)
.

We now consider the quality of of the policies generated
using this approximation (see the longer paper [Boutilier et
al., 2018] for proofs and more details). The following lemma
is a direct application of Hoeffding’s concentration inequality
along with a union bound (for any 0 < δ < 1 and error
tolerance ϵ):

Lemma 3 Given samples A(1)
s , . . . , A(T )

s for each s ∈ S, if

T = Ω

(
m+ log(n/δ)
(1− γ)2ϵ2

)
,

then with probability 1− δ, for each DL policy µ we have:
∣∣∣∣∣ E
A⊆B

Qµ(s, µs(A))− 1
T

T∑

t=1

Qµ(s, µs(A
(t)
s ))

∣∣∣∣∣ ≤
ϵ(1− γ)

2γ
.

The action-set samples induce an approximate SAS-MDP,
defined using the empirical distributions above. Under the
conditions stated, Lemma 3 leads to bounds on the quality of
the optimal policy in the approximate SAS-MDP:

Theorem 2 Let µ̂ be the optimal policy for the approximate
SAS-MDP and Q∗ the optimal Q-function for the true SAS-
MDP. With probability 1− δ we have, for each s ∈ S, k ∈ B,
Qµ̂(s, k) ≥ Q⋆(s, k)− ϵ.

In the sequel, we focus largely on PDA; in most cases
equivalent results can be derived in the ADS model.

4 Q-Learning in the Compressed MDP
Suppose we are faced with learning the optimal value func-
tion or policy for an SAS-MDP from a collection of trajec-
tories. The (implicit) learning of the transition dynamics and
rewards can proceed as usual; the novel aspect of the SAS

model is that the action availability distribution must also
be considered. Remarkably, Q-learning can be readily aug-
mented to incorporate stochastic action sets: we require only
that our training trajectories are augmented with the set of
actions that were available at each state,

. . . s(t), A(t), k(t), r(t), s(t+1), A(t+1), k(t+1), r(t+1), . . . ,

where: s(t) is the realized state at time t (drawn from distribu-
tion P (·|s(t−1), k(t−1))); A(t) is the realized available set at
time t, drawn from Ps(t) ; k(t) ∈ A(t) is the action taken; and
r(t) is the realized reward. Such augmented trajectory data
is typically available. In particular, the required sampling of
available action sets is usually feasible (e.g., in ad serving as
discussed above).

SAS-Q-learning can be applied directly to the compressed
MDP Mc, requiring only a minor modification of the stan-
dard Q-learning update for the base MDP. We simply require
that each Q-update maximize over the realized available ac-
tions A(t+1):

Qnew(s(t), k(t))← (1− αt)Q
old(s(t), k(t))

+ αt[r
(t) + γ max

k∈A(t+1)
Qold(s(t+1), k)] .

HereQold is the previousQ-function estimate andQnew is the
updated estimate, thus it encompasses both online and batch
Q-learning, experience replay, etc.; and 0 ≤ αt < 1 is our
(adaptive) learning rate.

It is straightforward to show that, under the usual explo-
ration conditions, SAS-Q-learning will converge to the opti-
mal Q-function for the compressed MDP, since the expected
maximum over sampled action sets at any particular state will
converge to the expected maximum at that state.

Theorem 3 The SAS-Q-learning algorithm will converge
w.p. 1 to the optimal Q-function for the (discounted, infinite-
horizon) compressed MDP Mc if the usual stochastic ap-
proximation requirements are satisfied. That is, if (a) rewards
are bounded and (b) the subsequence of learning rates αt(s,k)

applied to (s, k) satisfies
∑

αt(s,k) = ∞ and
∑

α2
t(s,k) <

∞ for all state-action pairs (s, k) (see, e.g., [Watkins and
Dayan, 1992]).

Moreover, function approximation techniques, such as DQN
[Mnih et al., 2015], can be directly applied with the same
action set-sample maximization. Implementing an optimal
policy is also straightforward: given a state s and the re-
alization As of the available actions, one simply executes
argmaxk∈As Q(s, k).

We note that extracting the optimal value function Vc(s)
for the compressed MDP from the learned Q-function is not
viable without some information about the action availability
distribution. Fortunately, one need not know the expected
value at a state to implement the optimal policy.4

4It is, of course, straightforward to learn an optimal value func-
tion if desired.
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5 Value Iteration in the Compressed MDP
Computing a value function for Mc, with its “small” state
space S, suffices to execute an optimal policy. We develop an
efficient value iteration (VI) method to do this.

5.1 Value Iteration
Solving an SAS-MDP using VI is challenging in general due
to the required expectations over action sets. However, under
PDA, we can derive an efficient VI algorithm whose com-
plexity depends only polynomially on the base set size |B|.

Assume a current iterate V t, where V t(s) =
EAs [maxk∈As Q

t(s, k)]. We compute V t+1 as follows:
• For each s ∈ S, k ∈ B, compute its (t + 1)-stage-to-go
Q-value: Qt+1(s, k) = rks + γ

∑
s′ p

k
s,s′V

t(s′).
• Sort these Q-values in descending order. For conve-
nience, we re-index each action by its Q-value rank (i.e.,
k(1) is the action with largest Q-value, and ρ(1) is its
probability, k(2) the second-largest, etc.).

• For each s ∈ S, compute its (t+ 1)-stage-to-go value:

V t+1(s) = EAs

[
max
k∈As

Qt+1(s, k)

]

=
m−1∑

i=1

(
i−1∏

j=1

(1− ρ(j))

)
ρ(i)Q

t+1(s, k(i)).

Under ADS, we use the approximate Bellman operator:

V̂ t+1(s) = EAs

[
max
k∈As

Q̂t+1(s, k)

]

=
1
T

T∑

t=1

m∑

i=1

I[
i,A

(t)
s ,µ(s)

]Q̂t+1(s, µ(s)(i)) ,

where µ(s) is the DL resulting from sorting Q̂t+1-values.
The Bellman operator under PDA is tractable:

Observation 1 The compressed Bellman operator T ∗
c can be

computed in O(nm logm) time.

Therefore the per-iteration time complexity of VI for Mc

compares favorably to the O(nm) time of VI in the base
MDP. The added complexity arises from the need to sort Q-
values.5 Conveniently, this sorting process immediately pro-
vides the desired DL state policy for s.

Using standard arguments, we obtain the following results,
which immediately yield a polytime approximation method.

Lemma 4 T ∗
c is a contraction with modulus γ i.e., ||T ∗

c vc −
T ∗
c v

′
c|| ≤ γ||vc − v′c||.

Corollary 1 For any precision ε < 1, the compressed value
iteration algorithm converges to an ε-approximation of the
optimal value function in O(log(L/ε)) iterations, where L ≤
[maxs,k rks ]/(1− γ) is an upper bound on ||V ∗

e ||.

We provide an even stronger result next: VI, in fact, con-
verges to an optimal solution in polynomial time.

5The products of the action availability probabilities can be com-
puted in linear time via caching.

5.2 The Complexity of Value Iteration
Given its polytime per-iteration complexity, to ensure VI is
polytime, we must show that it converges to a value function
that induces an optimal policy in polynomially many itera-
tions. To do so, we exploit the compressed representation
and adapt the technique of [Tseng, 1990].

Assume, w.r.t. the base MDP M, that the discount factor
γ, rewards rks , and transition probabilities pks,s′ , are rational
numbers represented with a precision of 1/δ (δ is an integer).
Tseng shows that VI for a standard MDP is strongly polyno-
mial, assuming constant γ and δ, by proving that: (a) if the
t’th value function produced by VI satisfies

||V t − V ∗|| < 1/(2δ2n+2nn),

then the policy induced by V t is optimal; and (b) VI achieves
this bound in polynomially many iterations.

We derive a similar bound on the number of VI iterations
needed for convergence in an SAS-MDP, using the same in-
put parameters as in the base MDP, and applying the same
precision δ to the action availability probabilities. We ap-
ply Tseng’s result by exploiting the fact that: (a) the optimal
policy for the embedded MDP Me can be represented as a
DL; (b) the transition function for any DL policy can be ex-
pressed using an n× n matrix (we simply take expectations,
see above); and (c) the corresponding linear system can be ex-
pressed over the compressed rather than the embedded state
space to determine V ∗

c (rather than V ∗
e ).

Tseng’s argument requires some adaptation to apply to the
compressed VI algorithm. We extend his precision assump-
tion to account for our action availability probabilities as well,
ensuring ρks is also represented up to precision of 1/δ.

SinceMc is anMDP, Tseng’s result applies; but notice that
each entry of the transition matrix for any state’s DL µ, which
serves as an action inMc, is a product ofm+1 probabilities,
each with precision 1/δ. We have that pµs,s′ has precision of
1/δm+1. Thus the required precision parameter for our MDP
is at most δm+1. Plugging this into Tseng’s bound, VI applied
to Mc must induce an optimal policy at the t’th iteration if

||V t − v∗|| < 1/(2(δ(m+1))2nnn) = 1/(2δ(m+1)2nnn) .

This in turn gives us a bound on the number of iterations of
VI needed to reach an optimal policy:

Theorem 4 VI applied to Mc converges to a value function
whose greedy policy is optimal in t∗ iterations, where

t∗ ≤ log(2δ2n(m+1)nnM)/ log(1/γ)

Combined with Obs. 1, we have:

Corollary 2 VI yields an optimal policy for the SAS-MDP
corresponding toMc in polynomial time.

Under ADS, VI merely approximates the optimal policy.
In fact, one cannot compute an exact optimal policy without
observing the entire support of the availability distributions
(requiring exponential sample size).

6 Policy Iteration in the Compressed MDP
We now outline a policy iteration (PI) algorithm.
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6.1 Policy Iteration
The concise DL form of optimal policies can be exploited in
PI as well. Indeed, the greedy policy πV with respect to any
value function V in the compressed space is representable as
a DL. Thus the policy improvement step of PI can be executed
using the same independent evaluation of action Q-values and
sorting as used in VI above:

QV (s, k) = r(s, k) + γ
∑

s′

pks,s′V (s′),

QV (s,As)=max
k∈As

QV (s, k) , and πV (s,As)=arg max
k∈As

QV (s, k).

The DL policy form can also be exploited in the policy
evaluation phase of PI. The tractability of policy evaluation
requires a tractable representation of the action availability
probabilities, which PDA provides, leading to the following
PI method that exploits PDA:
1. Initialize an arbitrary policy π in decision list form.
2. Evaluate π by solving the following linear system over

variables V π(s), ∀s ∈ S: (Note: We use Qπ(s, k) to
represent the relevant linear expression over V π .)

V π(s) =
n∑

i=1

[
i−1∏

j=1

(1− ρ(j))] ρ(i)Q
π(s, k(i))

3. Let π′ denote the greedy policy w.r.t. V π , which can be
expressed in DL form for each s by sorting Q-values
Qπ(s, k) as above (with standard tie-breaking rules). If
π′(s) = π(s), terminate; otherwise replace π with π′

and repeat (Steps 2 and 3).
Under ADS, PI can use the approximate Bellman operator,

giving an approximately optimal policy.

6.2 The Complexity of Policy Iteration
The per-iteration complexity of PI inMc is polynomial: as in
standard PI, policy evaluation solves an n × n linear system
(naively,O(n3)) plus the additional overhead (linear inM ) to
compute the compounded availability probabilities; and pol-
icy improvement requires O(mn2) computation of action Q-
values, plus O(nm logm) overhead for sorting Q-values (to
produce improving DLs for all states).

An optimal policy is reached in a number of iterations no
greater than that required by VI, since: (a) the sequence of
value functions for the policies generated by PI contracts at
least as quickly as the value functions generated by VI (see,
e.g., [Meister and Holzbaur, 1986; Hansen et al., 2013]); (b)
our precision argument for VI ensures that the greedy policy
extracted at that point will be optimal; and (c) once PI finds
an optimal policy, it will terminate (with one extra iteration).
Hence, PI is polytime (assuming a fixed discount γ < 1).

Theorem 5 PI yields an optimal policy for the SAS-MDP
corresponding toMc in polynomial time.

In the longer version of the paper [Boutilier et al., 2018], we
adapt more direct proof techniques [Ye, 2011; Hansen et al.,
2013] to derive polynomial-time convergence of PI for SAS-
MDPs under additional assumptions. Concretely, for a policy

µ and actions k1, k2, let ηµ(s, k1, k2) be the probability, over
action sets, that at state s, the optimal µ⋆ selects k1 and µ
selects k2. Let q > 0 be such that ηµ(s, k1, k2) ≥ q whenever
ηµ(s, k1, k2) > 0. We show:

Theorem 6 The number of iterations it takes policy iteration
to converge is no more than

O

(
nm2

1− γ
log

m
1− γ

log
e
q

)
.

Under PDA, the theorem implies strongly-polynomial con-
vergence of PI if each action is available with constant prob-
ability. In this case, for any µ, ki, kj , and s, we have
ηµ(s, ki, kj) ≥ ρki

s · ρkj
s = Ω(1), which in turn implies that

we can take q = Ω(1) in the bound above.

7 Linear Programming in the Compressed
MDP

An alternative model-based approach is linear programming
(LP). The primal formulation for the embedded MDP Me

is straightforward (since it is a standard MDP), but requires
exponentially many variables (one per embedded state) and
constraints (one per embedded state, base action pair).

A (nonlinear) primal formulation for the compressed MDP
Mc reduces the number of variables to |S|:

min
v

∑
s∈S

αsvs, s.t. vs ≥ EAs max
k∈As

Q(s, k) ∀s. (6)

Here α is an arbitrary, positive state-weighting, over the em-
bedded states corresponding to each base state and

Q(s, k) = rks +
∑

s′∈S

pks,s′vs′

abbreviates the linear expression of the action-value backup
at the state and action in question w.r.t. the value variables
vs. This program is valid given the definition of Mc and the
fact that a weighting over embedded states corresponds to a
weighting over base states by taking expectations. Unfortu-
nately, this formulation is non-linear, due to the max term in
each constraint. And while it has only |S| variables, it has
factorially many constraints; moreover, the constraints them-
selves are not compact due to the presence of the expectation
in each constraint.

PDA can be used to render this formulation tractable. Let
σ denote an arbitrary (inverse) permutation of the action set
(so σ(i) = j means that action j is ranked in position i). As
above, the optimal policy at base state s w.r.t. a Q-function
is expressible as a DL ( with actions sorted by Q-values)
and its expected value given by the expression derived be-
low. Specifically, if σ reflects the relative ranking of the
(optimal) Q-values of the actions at some fixed state s, then
V (s) = Q(s,σ(1)) with probability ρσ(1), i.e., the probabil-
ity that σ(1) occurs in As. Similarly, V (s) = Q(s,σ(2))
with probability (1 − ρσ(1))ρσ(2), and so on. We define the
Q-value of a DL σ as follows:

QV
s (σ) =

n∑

i=1

[
i−1∏

j=1

(1− ρσ(j))] ρσ(i)Q
V (s,σ(i)). (7)
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Thus, for any fixed action permutation σ, the constraint that
vs at least matches the expectation of the maximum action’s
Q-value is linear. Hence, the program can be recast as an
LP by enumerating action permutations for each base state,
replacing the constraints in Eq. (6) as follows:

vs ≥ QV
s (σ) ∀s ∈ S, ∀σ ∈ Σ. (8)

The constraints in this LP are now each compactly repre-
sented, but it still has factorially many constraints. Despite
this, it can be solved in polynomial time. First, we observe
that the LP is well-suited to constraint generation. Given a
relaxed LP with a subset of constraints, a greedy algorithm
that simply sorts actions by Q-value to form a permutation
can be used to find the maximally violated constraint at any
state. Thus we have a practical constraint generation algo-
rithm for this LP since (maximally) violated constraints can
be found in polynomial time.

More importantly from a theoretical standpoint, the con-
straint generation algorithm can be used as a separation or-
acle within an ellipsoid method for this LP. This directly
yields an exact, (weakly) polynomial time algorithm for this
LP [Grötschel et al., 1988].

8 Empirical Illustration
We now provide a somewhat more substantial empirical
demonstration of the effects of stochastic action availability.
Consider an MDP that corresponds to a routing problem on
a real-world road network (Fig. 1) in the San Francisco Bay
Area. The shortest path between the source and destination
locations is sought. The dashed edge in Fig. 1 represents
a bridge, available only with probability p, while all other
edges correspond to action choices available with probability
0.5. At each node, a no-op action (waiting) is available at con-
stant cost; otherwise the edge costs are the geodesic lengths of
the corresponding roads on the map. The optimal policies for
different choices p = 0.1, 0.2 and 0.4 are depicted in Fig. 1,
where line thickness and color indicate traversal probabilities
under the corresponding optimal policies. We see that lower
values of p lead to policies with more redundancy (i.e., more
alternate routes).

Fig. 2 shows the effect of solving the routing problemwhen
ignoring stochastic action availability (i.e., assuming actions
are always available). The SAS-optimal policy allows grace-
ful scaling of the expected travel time from source to destina-
tion as bridge availability decreases. The effects of violating
the PDA assumption are also investigated in the longer ver-
sion of this paper [Boutilier et al., 2018].
9 Concluding Remarks
We have developed a new MDP model, SAS-MDPs, that ex-
tends the usual finite-action MDP model by allowing the set
of available actions to vary stochastically. This captures an
important use case that arises in many practical applications
(e.g., online advertising, recommender systems). We have
shown that embedding action sets in the state gives a standard
MDP, supporting tractable analysis at the cost of an exponen-
tial blow-up in state space size. Despite this, we demonstrated
that (optimal and greedy) policies have a useful decision list

Figure 1: Stochastic action MDPs applied to routing.

Figure 2: Expected trip time from source to destination under the
SAS-optimal policy vs. under the oblivious optimal policy (the MDP
solved as if actions are fully available) as a function of bridge avail-
ability.

structure. We showed how this DL format can be exploited to
construct tractable Q-learning, value and policy iteration, and
linear programming algorithms.

While our work offers firm foundations for stochastic ac-
tion sets, most practical applications will not use the algo-
rithms described here explicitly. For example, in RL, we
generally use function approximators for generalization and
scalability in large state/action problems. We have success-
fully applied Q-learning using DNN function approximators
(i.e., DQN) using sampled/logged available actions in ads and
recommendations domains as described in Sec. 4. This has
allowed us to apply SAS-Q-learning to problems of signifi-
cant, commercially viable scale. Model-based methods such
as VI, PI, and LP also require suitable (e.g., factored) rep-
resentations of MDPs and structured implementations of our
algorithms that exploit these representations. For instance,
extensions of approximate linear programming or structured
dynamic programming to incorporate stochastic action sets
would be extremely valuable.

Other important questions include developing a
polynomial-sized direct LP formulation; and deriving
sample-complexity results for RL algorithms like Q-learning
is also of particular interest, especially as it pertains to the
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sampling of the action distribution. Finally, we are quite
interested in relaxing the strong assumptions embodied in
the PDA model—of particular interest is the extension of
our algorithms to less extreme forms of action availability
independence, for example, as represented using concise
graphical models (e.g., Bayes nets).
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Abstract

In many practical uses of reinforcement learning (RL) the set of actions avail-
able at a given state is a random variable, with realizations governed by an ex-
ogenous stochastic process. Somewhat surprisingly, the foundations for such se-
quential decision processes have been unaddressed. In this work, we formalize and
investigate MDPs with stochastic action sets (SAS-MDPs) to provide these foun-
dations. We show that optimal policies and value functions in this model have a
structure that admits a compact representation. From an RL perspective, we show
that Q-learning with sampled action sets is sound. In model-based settings, we
consider two important special cases: when individual actions are available with
independent probabilities; and a sampling-based model for unknown distributions.
We develop poly-time value and policy iteration methods for both cases; and in the
first, we offer a poly-time linear programming solution.

1 Introduction

Markov decision processes (MDPs) are the standard model for sequential decision
making under uncertainty, and provide the foundations for reinforcement learning (RL).
With the recent emergence of RL as a practical AI technology in combination with
deep learning [14, 15], new use cases are arising that challenge basic MDP modeling
assumptions. One such challenge is that many practical MDP and RL problems have
stochastic sets of feasible actions; that is, the set As of feasible actions at state s varies
stochastically with each visit to s. For instance, in online advertising, the set of avail-
able ads differs at distinct occurrences of the same state (e.g., same query, user, contex-
tual features), due to exogenous factors like campaign expiration or budget throttling.
In recommender systems with large item spaces, often a set of candidate recommen-
dations is first generated, from which top scoring items are chosen; exogenous factors
often induce non-trivial changes in the candidate set. With the recent application of
MDP and RL models in ad serving and recommendation [6, 11, 4, 3, 2, 19, 20, 13],
understanding how to capture the stochastic nature of available action sets is critical.
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Somewhat surprisingly, this problem seems to have been largely unaddressed in the
literature. Standard MDP formulations [18] allow each state s to have its own feasible
action set As, and it is not uncommon to allow the set As to be non-stationary or time-
dependent. However, they do not support the treatment of As as a stochastic random
variable. In this work, we: (a) introduce the stochastic action set MDP (SAS-MDP)
and provide its theoretical foundations; (b) describe how to account for stochastic ac-
tion sets in model-free RL (e.g., Q-learning); and (c) develop tractable algorithms for
solving SAS-MDPs in important special cases.

An obvious way to treat this problem is to embed the set of available actions into the
state itself. This provides a useful analytical tool, but it does not immediately provide
tractable algorithms for learning and optimization, since each state is augmented with
all possible subsets of actions, incurring an exponential blow up in state space size. To
address this issue, we show that SAS-MDPs possess an important property: the Q-value
of an available action a is independent of the availability of other actions. This allows
us to prove that optimal policies can be represented compactly using (state-specific)
decision lists (or orderings) over the action set.

This special structure allows one to solve the SAS RL problem effectively using, for
example, Q-learning. We also devise model-based algorithms that exploit this policy
structure. We develop value and policy iteration schemes, showing they converge in
a polynomial number of iterations (w.r.t. the size of the underlying “base” MDP). We
also show that per-iteration complexity is polynomial time for two important special
forms of action availability distribution: (a) when action availabilities are independent,
both methods are exact; (b) when the distribution over sets As is sampleable, we obtain
approximation algorithms with polynomial sample complexity. In fact, policy iteration
is strongly polynomial under additional assumptions (for a fixed discount factor). We
show that a linear program for SAS-MDPs can be solved in polynomial time as well.
Finally, we offer a simple empirical demonstration of the importance of accounting for
stochastic action availability when computing an MDP policy.

Additional discussion and full proofs of all results can be found in a longer version
of this paper [5].

2 MDPs with Stochastic Action Sets

We first introduce SAS-MDPs and provide a simple example illustrating how action
availability impacts optimal decisions. See [18] for more background on MDPs.

2.1 The SAS-MDP Model

Our formulation of MDPs with Stochastic Action Sets (SAS-MDPs) derives from a
standard, finite-state, finite-action MDP (the base MDP) M, with n states S, base
actions Bs for s 2 S, and transition and reward functions, P : S ⇥ B ! �(S) and
r : S ⇥ B ! R. We use p

k
s,s0 and r

k
s to denote the probability of transition to s

0 and
the accrued reward, respectively, when action k is taken at state s. For notational ease,
we assume that feasible action sets for each s 2 S are identical, so Bs = B (allowing
distinct base sets at different states has no impact on what follows). Let |B| = m and

2



M = |S ⇥ B| = nm. We assume an infinite-horizon, discounted objective with fixed
discount rate �, 0  � < 1.

In a SAS-MDP, the set of actions available at state s at any stage t is a random
subset A(t)

s ✓ B. We assume a family of action availability distributions Ps 2 �(2B)
defined over the powerset of B. These can depend on s 2 S but are otherwise history-
independent, hence Pr(A(t)

s |s(1), . . . , s(t)) = Pr(A(t)
s |s(t)). Only actions k 2 A

(t)
s in

the realized available action set can be executed at stage t. Apart from this, the dy-
namics of the MDP is unchanged: when an (available) action is taken, state transitions
and rewards are prescribed as in the base MDP. In what follows, we assume that some
action is always available, i.e., Pr(A(t)

s = ;) = 0 for all s, t.1 Note that a SAS-MDP
does not conform to the usual definition of an MDP.

2.2 Example

The following simple MDP shows the importance of accounting for stochastic action
availability when making decisions. The MDP below has two states. Assume the agent
starts at state s1, where two actions (indicated by directed edges for their transitions)
are always available: one (Stay) stays at s1, and the other (Go) transitions to state s2,
both with reward 1/2. At s2, the action Down returns to s1, is always available and has
reward 0. A second action Up also returns to s1, but is available with only probability

p and has reward 1.
A naive solution that ignores action availability is as follows: we first compute

the optimal Q-function assuming all actions are available (this can be derived from
the optimal value function, computed using standard techniques). Then at each stage,
we use the best action available at the current state where actions are ranked by Q-
value. Unfortunately, this leads to a suboptimal policy when the Up action has low
availability, specifically if p < 0.5.

The best naive policy always chooses to move to s2 from s1; at s2, it picks the best
action available. This yields a reward of 1/2 at even stages, and an expected reward of
p at odd stages. However, by anticipating the possibility that action Up is unavailable
at s2, the optimal (SAS) policy always stays at s1, obtaining reward 1/2 at all stages.
For p < 1/2, the latter policy dominates the former: the plot on the right shows the
fraction of the optimal (SAS) value lost by the naive policy (Std) as a function of
the availability probability p. This example also illustrates that as action availability
probabilities approach 1, the optimal policy for the base MDP is also optimal for the
SAS-MDP.

1Models that trigger process termination when A
(t)
s = ; are well-defined, but we set aside this model

variant here.
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2.3 Related Work

While a general formulation of MDPs with stochastic action availability does not ap-
pear in the literature, there are two strands of closely related work. In the bandits
literature, sleeping bandits are defined as bandit problems in which the arms available
at each stage are determined randomly or adversarially (sleeping experts are similar,
with complete feedback being provided rather than bandit feedback) [10, 9]. Best ac-
tion orderings (analogous to our decision list policies for SAS-MDPs) are often used to
define regret in these models. The goal is to develop exploration policies to minimize
regret. Since these models have no state, if the action reward distributions are known,
the optimal policy is trivial: always take the best available action. By contrast, a SAS-
MDP, even a known model, induces a difficult optimization problem, since the quality
of an action depends not just on its immediate reward, but also on the availability of
actions at reachable (future) states. This is our focus.

The second closely related branch of research comes from the field of stochastic
routing. The “Canadian Traveller Problem”—the problem of minimizing travel time in
a graph with unavailable edges—was introduced by Papadimitriou and Yannakakis [1],
who gave intractability results (under much weaker assumptions about edge availabil-
ity, e.g. adversarial). Poliyhondrous and Tsitsiklis [17] consider a stochastic version
of the problem, where edge availabilities are random but static (and any edge observed
to be unavailable remains so throughout the scenario). Most similar to our setting is
the work of Nikolova and Karger [16], who discuss the case of resampling edge costs
at each node visit; however, the proposed solution is well-defined only when the edge
costs are finite and does not easily extend to unavailable actions/infinite edge costs.
Due to the specificity of their modeling assumptions, none of the solutions found in
this line of research can be adapted in a straightforward way to SAS-MDPs.

3 Two Reformulations of SAS-MDPs

The randomness of feasible actions means that SAS-MDPs do not conform to the usual
definition of an MDP. In this section, we develop two reformulations of SAS-MDPs
that transform them into MDPs. We discuss the relative advantages of each, outline
key properties and relationships between these models, and describe important special
cases of the SAS-MDP model itself.

3.1 The Embedded MDP

We first consider a reformulation of the SAS-MDP in which we embed the (realized)
available action set into the state space itself. This is a straightforward way to recover a
standard MDP. The embedded MDP Me for a SAS-MDP has state space Se = {s�A :
s 2 S,A ✓ B}, with s �A having feasible action set A.2 The history independence of
Ps allows transitions to be defined as:

p
k
s�A,s0�A0 = P (s0 �A0|s �A, k) = p

k
s,s0Ps0(A

0), 8k 2 A.

2Embedded states whose embedded action subsets have zero probability are unreachable and can be
ignored.
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Rewards are defined similarly: rk(s �A) = r
k(s) for k 2 A.

In our earlier example, the embedded MDP has three states: s1 � {Stay ,Go}, s2 �
{Up,Down}, s2 � {Down} (other action subsets have probability 0 hence their cor-
responding embedded states are unreachable). The feasible actions at each state are
given by the embedded action set, and the only stochastic transition occurs when Go
is taken at s1: it moves to s2 � {Up,Down} with probability p and s2 � {Down} with
probability 1� p.

Clearly, the induced reward process and dynamics are Markovian, hence Me is in
fact an MDP under the usual definition. Given the natural translation afforded by the
embedded MDP, we view this as providing the basic “semantic” underpinnings of the
SAS-MDP model. This translation affords the use of standard MDP analytical tools
and methods.

A (stationary, determinstic, Markovian) policy ⇡ : Se ! B for Me is restricted so
that ⇡(s � A) 2 A. The policy backup operator T⇡

e and Bellman operator T ⇤
e for Me

decompose naturally as follows:

T
⇡
e Ve(s �As) = r

⇡(s�As)
s +

�

X

s0

p
⇡(s�As)
s,s0

X

As0✓B

Ps0(As0)Ve(s
0 �As0), (1)

T
⇤
e Ve(s �As) = max

k2As

r
k
s+

�

X

s0

p
k
s,s0

X

As0✓B

Ps0(As0)Ve(s
0 �As0) (2)

Their fixed points, V ⇡
e and V

⇤
e respectively, can be expressed similarly.

Obtaining an MDP from an SAS-MDP via action-set embedding comes at the ex-
pense of a (generally) exponential blow-up in the size of the state space, which can
increase by a factor of 2|B|.

3.2 The Compressed MDP

The embedded MDP provides a natural semantics for SAS-MDPs, but is problematic
from an algorithmic and learning perspective given the state space blow-up. Fortu-
nately, the history independence of the availability distributions gives rise to an ef-
fective, compressed representation. The compressed MDP Mc recasts the embedded
MDP in terms of the original state space, using expectations to express value functions,
policies, and backups over S rather than over the (exponentially larger) Se. As we will
see below, the compressed MDP induces a blow-up in action space rather than state
space, but offers significant computational benefits.

Formally, the state space for Mc is S. To capture action availability, the feasible
action set for s 2 S is the set of state policies, or mappings µs : 2B ! B satisfying
µs(As) 2 As. In other words, once we reach s, µs dictates what action to take for any
realized action set As. A policy for Mc is a family µc = {µs : s 2 S} of such state
policies. Transitions and rewards use expectations over As:

p
µs
s,s0 =

X

As✓B

Ps(As)p
µs(As)
s,s0 and r

µs
s =

X

As✓B

Ps(As)r
µs(As)
s .
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In our earlier example, the compressed MDP has only two states, s1 and s2. Fo-
cusing on s2, its “actions” in the compressed MDP are the set of state policies, or map-
pings from the realizable available sets {{Up,Down}, {Down}} into action choices
(as above, we ignore unrealizable action subsets): in this case, there are two such state
policies: the first selects Up for {Up,Down} and (obviously) Down for {Down}; the
second selects Down for {Up,Down} and Down for {Down}.

It is not hard to show that the dynamics and reward process defined above over
this compressed state space and expanded action set (i.e., the set of state policies) are
Markovian. Hence we can define policies, value functions, optimality conditions, and
policy and Bellman backup operators in the usual fashion. For instance, the Bellman
and policy backup operators, T ?

c and T
c
µ, on compressed value functions are:

T
⇤
c Vc(s) = E

As✓B
max
k2As

r
k
s + �

X

s0

p
k
s,s0Vc(s

0), (3)

T
µ
c Vc(s) = E

As✓B
r
µs(As)
s + �

X

s0

p
µs(As)
s,s0 Vc(s

0). (4)

It is easy to see that any state policy µ induces a Markov chain over base states,
hence we can define a standard n ⇥ n transition matrix P

µ for such a policy in the
compressed MDP, where p

µ
s,s0 = EA✓B p

µ(s)(A)
s,s0 . When additional independence as-

sumptions hold, this expectation over subsets can be computed efficiently (see Sec-
tion 3.4).

Critically, we can show that there is a direct “equivalence” between policies and
their value functions (including optimal policies and values) in Mc and Me. Define
the action-expectation operator E : Rn2m ! Rn to be a mapping that compresses a
value function Ve for Me into a value function V

e
c for Mc:

V
e
c (s) = EVe(s) = E

As✓B
Ve(s �As) =

X

As✓B

Ps(As)Ve(s �As).

We emphasize that E transforms an (arbitrary) value function Ve in embedded space
into a new value function V

e
c defined in compressed space (hence, V e

c is not defined
w.r.t. Mc).

Lemma 1 ET
⇤
e Ve = T

⇤
c EVe. Hence, T ⇤

c has a unique fixed point V ⇤
c = EV

⇤
e .

Proof:

ET
e
Ve(s) = E

A✓B
T

e
Ve(s �A)

= E
A✓B

max
k2A

r
k
s + �

X

s0�A0

p
k
s�A,s0�A0Ve(s

0 �A0)

= E
A✓B

max
k2A

r
k
s + �

X

s0

p
k
s,s0 E

A0✓B
Ve(s

0 �A0)

= E
A✓B

max
k2A

r
k
s + �

X

s0

p
k
s,s0EV

e(s0)

= T
c
EV

e(s0).
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Lemma 2 Given the optimal value function V
⇤
c for Mc, the optimal policy ⇡⇤

e for Me

can be constructed directly. Specifically, for any s � A, the optimal policy ⇡
⇤
e(s � A)

and optimal value V
⇤
e (s � A) at that embedded state can be computed in polynomial

time.

Proof Sketch: Given s�A, the expected value of each action in k 2 A can be computed
using a one-step backup of V ⇤

c . Then ⇡
⇤
e(s �A) is the action with maximum value, and

V
⇤
e (s �A) is its backed-up expected value.

Therefore, it suffices to work directly with the compressed MDP, which allows one
to use value functions (and Q-functions) over the original state space. The price is that
one needs to use state policies, since the best action at s depends on the available set
As. In other words, while the embedded MDP causes an exponential blow-up in state
space, the compressed MDP causes an exponential blow-up in action space. We now
turn to assumptions that allow us to effectively manage this action space blow-up.

3.3 Decision List Policies

The embedded and compressed MDPs do not, prima facie, offer much computational
or representational advantage, since they rely on an exponential increase in the size of
the state space (embedded MDP) or decision space (compressed MDP). Fortunately,
SAS-MDPs have optimal policies with a useful, concise form. We first focus on the
policy representation itself, then describe the considerable computational leverage it
provides.

A decision list (DL) policy µ is a type of policy for Me that can be expressed
compactly using O(nm logm) space and executed efficiently. Let ⌃B be the set of
permutations over base action set B. A DL policy µ : S ! ⌃B associates a permuta-
tion µ(s) 2 ⌃B with each state, and is executed at embedded state s � A by executing
min{i 2 {1, . . . ,m} : µ(s)(i) 2 A}. In other words, whenever base state s is encoun-
tered and A is the available set, the first action k 2 A in the order dictated by DL µ(s)
is executed. Equivalently, we can view µ(s) as a state policy µs for s in Mc. In our
earlier example, one DL µ(s2) is [Up,Down], which requires taking (base) action Up
if it is available, otherwise taking Down .

For any SAS-MDP, we have optimal DL policies:

Theorem 1 Me has an optimal policy that can be represented using a decision list.
The same policy is optimal for the corresponding Mc.

Proof Sketch: Let V ⇤ be the (unique) optimal value function for Me and Q
⇤ its

corresponding Q-function (see Sec. 5.1 for a definition). A simple inductive argu-
ment shows that no DL policy is optimal only if there is some state s, action sets
A 6= A

0, and (base) actions j 6= k, s.t. (i) j, k 2 A,A
0; (ii) for some optimal policy

⇡
⇤(s � A) = j and ⇡

⇤(s � A0) = k; and (iii) either Q⇤(s � A, j) > Q
⇤(s � A, k) or or

Q
⇤(s�A0

, k) > Q
⇤(s�A0

, j). However, the fact that the optimal Q-value of any action
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k 2 A at state s � A is independent of the other actions in A (i.e., it depends only on
the base state) implies that these conditions are mutually contradictory.

3.4 The Product Distribution Assumption

The DL form ensures that optimal policies and value functions for SAS-MDPs can be
expressed polynomially in the size of the base MDP M. However, their computation
still requires the computation of expectations over action subsets, e.g., in Bellman or
policy backups (Eqs. 3, 4). This will generally be infeasible without some assumptions
on the form the action availability distributions Ps.

One natural assumption is the product distribution assumption (PDA). PDA holds
when Ps(A) is a product distribution where each action k 2 B is available with prob-
ability ⇢

k
s , and subset A ✓ B has probability ⇢

A
s =

Q
k2A ⇢

k
s

Q
k2B\A(1 � ⇢

k
s). This

assumption is a reasonable approximation in the settings discussed above, where state-
independent exogenous processes determine the availability of actions (e.g., the prob-
ability that one advertiser’s campaign has budget remaining is roughly independent of
another advertiser’s). For ease of notation, we assume that ⇢ks is identical for all states
s (allowing different availability probabilities across states has no impact on what fol-
lows). To ensure the MDP is well-founded, we assume some default action (e.g., no-op)
is always available.3 Our earlier running example trivially satisifes PDA: at s2, Up’s
availability probability (p) is independent of the availability of Down (1).

When the PDA holds, the DL form of policies allows the expectations in policy and
Bellman backups to be computed efficiently without enumeration of subsets A ✓ B.
For example, given a fixed DL policy µ, we have

T
µ
c Vc(s) =

mX

i=1

"
i�1Y

j=1

(1� ⇢
µ(s)(j)
s )

#
⇢
µ(s)(i)
s

 
r
µ(s)(i)
s

+ �

X

s0

p
µ(s)(i)
s,s0 Vc(s

0)

!
. (5)

The Bellman operator has a similar form. We exploit this below to develop tractable
value iteration and policy iteration algorithms, as well as a practical LP formulation.

3.5 Arbitrary Distributions with Sampling (ADS)

We can also handle the case where, at each state, the availability distribution is un-
known, but is sampleable. In the longer version of the paper [5], we show that samples
can be used to approximate expectations w.r.t. available action subsets, and that the
required sample size is polynomial in |B|, and not in the size of the support of the
distribution.

Of course, when we discuss algorithms for policy computation, this approach does
not allow us to compute the optimal policy exactly. However, it has important impli-
cations for sample complexity of learning algorithms like Q-learning. We note that
the ability to sample available action subsets is quite natural in many domains. For

3We omit the default action from analysis for ease of exposition.
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instance, in ad domains, it may not be possible to model the process by which eligi-
ble ads are generated (e.g., involving specific and evolving advertiser targeting criteria,
budgets, frequency capping, etc.). But the eligible subset of ads considered for each
impression opportunity is an action-subset sampled from this process.

Under ADS, we compute approximate backup operators as follows. Let As =

{A(1)
s , . . . , A

(T )
s } be an i.i.d. sample of size T of action subsets in state s. For a subset

of actions A, an index i and a decision list µ, define I[i,A,µ] to be 1 if µ(i) 2 A and for
each j < i we have µ(j) 62 A, or 0 otherwise. Similar to Eq. (5), we define:

T
µ
c Vc(s)=

1
T

TX

t=1

mX

i=1

Ih
i,A

(t)
s ,µ(s)

i
⇣
r
µ(s)(i)
s +�

X

s0

p
µ(s)(i)
s,s0 Vc(s

0)
⌘
.

In the sequel, we focus largely on PDA; in most cases equivalent results can be derived
in the ADS model.

4 Q-Learning with the Compressed MDP

Suppose we are faced with learning the optimal value function or policy for an SAS-
MDP from a collection of trajectories. The (implicit) learning of the transition dynam-
ics and rewards can proceed as usual; the novel aspect of the SAS model is that the
action availability distribution must also be considered. Remarkably, Q-learning can
be readily augmented to incorporate stochastic action sets: we require only that our
training trajectories are augmented with the set of actions that were available at each
state,

. . . s
(t)
, A

(t)
, k

(t)
, r

(t)
, s

(t+1)
, A

(t+1)
, k

(t+1)
, r

(t+1)
, . . . ,

where: s(t) is the realized state at time t (drawn from distribution P (·|s(t�1)
, k

(t�1)));
A

(t) is the realized available set at time t, drawn from Ps(t) ; k(t) 2 A
(t) is the action

taken; and r
(t) is the realized reward. Such augmented trajectory data is typically

available. In particular, the required sampling of available action sets is usually feasible
(e.g., in ad serving as discussed above).

SAS-Q-learning can be applied directly to the compressed MDP Mc, requiring
only a minor modification of the standard Q-learning update for the base MDP. We sim-
ply require that each Q-update maximize over the realized available actions A(t+1):

Q
new(s(t), k(t)) (1� ↵t)Q

old(s(t), k(t))

+ ↵t[r
(t) + � max

k2A(t+1)
Q

old(s(t+1)
, k)] .

Here Q
old is the previous Q-function estimate and Q

new is the updated estimate, thus it
encompasses both online and batch Q-learning, experience replay, etc.; and 0  ↵t < 1
is our (adaptive) learning rate.

It is straightforward to show that, under the usual exploration conditions, SAS-Q-
learning will converge to the optimal Q-function for the compressed MDP, since the
expected maximum over sampled action sets at any particular state will converge to the
expected maximum at that state.
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Theorem 2 The SAS-Q-learning algorithm will converge w.p. 1 to the optimal Q-
function for the (discounted, infinite-horizon) compressed MDP Mc if the usual stochas-
tic approximation requirements are satisfied. That is, if (a) rewards are bounded and
(b) the subsequence of learning rates ↵t(s,k) applied to (s, k) satisfies

P
↵t(s,k) = 1

and
P

↵
2
t(s,k) < 1 for all state-action pairs (s, k) (see, e.g., [22]).

Moreover, function approximation techniques, such as DQN [15], can be directly ap-
plied with the same action set-sample maximization. Implementing an optimal policy
is also straightforward: given a state s and the realization As of the available actions,
one simply executes argmaxk2As Q(s, k).

We note that extracting the optimal value function Vc(s) for the compressed MDP
from the learned Q-function is not viable without some information about the action
availability distribution. Fortunately, one need not know the expected value at a state
to implement the optimal policy.4

5 Value Iteration in the Compressed MDP

Computing a value function for Mc, with its “small” state space S, suffices to execute
an optimal policy. We develop an efficient value iteration (VI) method to do this.

5.1 Value Iteration

Solving an SAS-MDP using VI is challenging in general due to the required expecta-
tions over action sets. However, under PDA, we can derive an efficient VI algorithm
whose complexity depends only polynomially on the base set size |B|.

Assume a current iterate V t, where V t(s) = EAs [maxk2As Q
t(s, k)]. We compute

V
t+1 as follows:

• For each s 2 S, k 2 B, compute its (t + 1)-stage-to-go Q-value: Qt+1(s, k) =
r
k
s + �

P
s0 p

k
s,s0V

t(s0).

• Sort these Q-values in descending order. For convenience, we re-index each
action by its Q-value rank (i.e., k(1) is the action with largest Q-value, and ⇢(1)

is its probability, k(2) the second-largest, etc.).

• For each s 2 S, compute its (t+ 1)-stage-to-go value:

V
t+1(s) = EAs


max
k2As

Q
t+1(s, k)

�

=
m�1X

i=1

 
i�1Y

j=1

(1� ⇢(j))

!
⇢(i)Q

t+1(s, k(i)).

4It is, of course, straightforward to learn an optimal value function if desired.
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Under ADS, we use the approximate Bellman operator:

bV t+1(s) = EAs


max
k2As

bQt+1(s, k)

�

=
1
T

TX

t=1

mX

i=1

Ih
i,A

(t)
s ,µ(s)

i bQt+1(s, µ(s)(i)) ,

where µ(s) is the DL resulting from sorting bQt+1-values.
The Bellman operator under PDA is tractable:

Observation 1 The compressed Bellman operator T ⇤
c can be computed in O(nm logm)

time.

Therefore the per-iteration time complexity of VI for Mc compares favorably to the
O(nm) time of VI in the base MDP. The added complexity arises from the need to
sort Q-values.5 Conveniently, this sorting process immediately provides the desired
DL state policy for s.

Using standard arguments, we obtain the following results, which immediately
yield a polytime approximation method.

Lemma 3 T
⇤
c is a contraction with modulus � i.e., ||T ⇤

c vc � T
⇤
c v

0
c||  �||vc � v

0
c||.

Corollary 1 For any precision " < 1, the compressed value iteration algorithm con-
verges to an "-approximation of the optimal value function in O(log(L/")) iterations,
where L  [maxs,k rks ]/(1� �) is an upper bound on ||V ⇤

e ||.

We provide an even stronger result next: VI, in fact, converges to an optimal solution
in polynomial time.

5.2 The Complexity of Value Iteration

Given its polytime per-iteration complexity, to ensure VI is polytime, we must show
that it converges to a value function that induces an optimal policy in polynomially
many iterations. To do so, we exploit the compressed representation and adapt the
technique of [21].

Assume, w.r.t. the base MDP M, that the discount factor �, rewards rks , and tran-
sition probabilities pks,s0 , are rational numbers represented with a precision of 1/� (� is
an integer). Tseng shows that VI for a standard MDP is strongly polynomial, assuming
constant � and �, by proving that: (a) if the t’th value function produced by VI satisfies

||V t � V
⇤|| < 1/(2�2n+2

n
n),

then the policy induced by V
t is optimal; and (b) VI achieves this bound in polynomi-

ally many iterations.
We derive a similar bound on the number of VI iterations needed for convergence

in an SAS-MDP, using the same input parameters as in the base MDP, and applying
5The products of the action availability probabilities can be computed in linear time via caching.
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the same precision � to the action availability probabilities. We apply Tseng’s result by
exploiting the fact that: (a) the optimal policy for the embedded MDP Me can be rep-
resented as a DL; (b) the transition function for any DL policy can be expressed using
an n ⇥ n matrix (we simply take expectations, see above); and (c) the corresponding
linear system can be expressed over the compressed rather than the embedded state
space to determine V

⇤
c (rather than V

⇤
e ).

Tseng’s argument requires some adaptation to apply to the compressed VI algo-
rithm. We extend his precision assumption to account for our action availability prob-
abilities as well, ensuring ⇢

k
s is also represented up to precision of 1/�.

Since Mc is an MDP, Tseng’s result applies; but notice that each entry of the
transition matrix for any state’s DL µ, which serves as an action in Mc, is a product
of m + 1 probabilities, each with precision 1/�. We have that pµs,s0 has precision
of 1/�m+1. Thus the required precision parameter for our MDP is at most �m+1.
Plugging this into Tseng’s bound, VI applied to Mc must induce an optimal policy at
the t’th iteration if

||V t � v
⇤|| < 1/(2(�(m+1))2nnn) = 1/(2�(m+1)2n

n
n) .

This in turn gives us a bound on the number of iterations of VI needed to reach an
optimal policy:

Theorem 3 VI applied to Mc converges to a value function whose greedy policy is
optimal in t

⇤ iterations, where

t
⇤  log(2�2n(m+1)

n
n
M)/ log(1/�)

Combined with Obs. 1, we have:

Corollary 2 VI yields an optimal policy for the SAS-MDP corresponding to Mc in
polynomial time.

Under ADS, VI merely approximates the optimal policy. In fact, one cannot com-
pute an exact optimal policy without observing the entire support of the availability
distributions (requiring exponential sample size).

6 Policy Iteration in the Compressed MDP

We now outline a policy iteration (PI) algorithm.

6.1 Policy Iteration

The concise DL form of optimal policies can be exploited in PI as well. Indeed, the
greedy policy ⇡

V with respect to any value function V in the compressed space is
representable as a DL. Thus the policy improvement step of PI can be executed using
the same independent evaluation of action Q-values and sorting as used in VI above:

Q
V (s, k) = r(s, k) + �

X

s0

p
k
s,s0V (s0),

Q
V (s,As)=max

k2As

Q
V (s, k) , and ⇡

V (s,As)=arg max
k2As

Q
V (s, k).
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The DL policy form can also be exploited in the policy evaluation phase of PI.
The tractability of policy evaluation requires a tractable representation of the action
availability probabilities, which PDA provides, leading to the following PI method that
exploits PDA:

1. Initialize an arbitrary policy ⇡ in decision list form.
2. Evaluate ⇡ by solving the following linear system over variables V ⇡(s), 8s 2 S:

(Note: We use Q
⇡(s, k) to represent the relevant linear expression over V ⇡ .)

V
⇡(s) =

nX

i=1

[
i�1Y

j=1

(1� ⇢(j))] ⇢(i)Q
⇡(s, k(i))

3. Let ⇡0 denote the greedy policy w.r.t. V ⇡ , which can be expressed in DL form for
each s by sorting Q-values Q⇡(s, k) as above (with standard tie-breaking rules).
If ⇡0(s) = ⇡(s), terminate; otherwise replace ⇡ with ⇡

0 and repeat (Steps 2 and
3).

Under ADS, PI can use the approximate Bellman operator, giving an approximately
optimal policy.

6.2 The Complexity of Policy Iteration

The per-iteration complexity of PI in Mc is polynomial: as in standard PI, policy
evaluation solves an n ⇥ n linear system (naively, O(n3)) plus the additional over-
head (linear in M ) to compute the compounded availability probabilities; and policy
improvement requires O(mn

2) computation of action Q-values, plus O(nm logm)
overhead for sorting Q-values (to produce improving DLs for all states).

An optimal policy is reached in a number of iterations no greater than that required
by VI, since: (a) the sequence of value functions for the policies generated by PI con-
tracts at least as quickly as the value functions generated by VI (see, e.g., [12, 8]); (b)
our precision argument for VI ensures that the greedy policy extracted at that point will
be optimal; and (c) once PI finds an optimal policy, it will terminate (with one extra
iteration). Hence, PI is polytime (assuming a fixed discount � < 1).

Theorem 4 PI yields an optimal policy for the SAS-MDP corresponding to Mc in
polynomial time.

In the longer version of the paper [5], we adapt more direct proof techniques [23, 8]
to derive polynomial-time convergence of PI for SAS-MDPs under additional assump-
tions. Concretely, for a policy µ and actions k1, k2, let ⌘µ(s, k1, k2) be the probability,
over action sets, that at state s, the optimal µ? selects k1 and µ selects k2. Let q > 0 be
such that ⌘µ(s, k1, k2) � q whenever ⌘µ(s, k1, k2) > 0. We show:

Theorem 5 The number of iterations it takes policy iteration to converge is no more
than

O

✓
nm

2

1� �
log

m

1� �
log

e

q

◆
.
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Under PDA, the theorem implies strongly-polynomial convergence of PI if each action
is available with constant probability. In this case, for any µ, ki, kj , and s, we have
⌘µ(s, ki, kj) � ⇢

ki
s · ⇢kj

s = ⌦(1), which in turn implies that we can take q = ⌦(1) in
the bound above.

7 Linear Programming in the Compressed MDP

An alternative model-based approach is linear programming (LP). The primal formu-
lation for the embedded MDP Me is straightforward (since it is a standard MDP), but
requires exponentially many variables (one per embedded state) and constraints (one
per embedded state, base action pair).

A (nonlinear) primal formulation for the compressed MDP Mc reduces the number
of variables to |S|:

min
v

X
s2S

↵svs, s.t. vs � EAs max
k2As

Q(s, k) 8s. (6)

Here ↵ is an arbitrary, positive state-weighting, over the embedded states correspond-
ing to each base state and

Q(s, k) = r
k
s +

X

s02S

p
k
s,s0vs0

abbreviates the linear expression of the action-value backup at the state and action in
question w.r.t. the value variables vs. This program is valid given the definition of Mc

and the fact that a weighting over embedded states corresponds to a weighting over base
states by taking expectations. Unfortunately, this formulation is non-linear, due to the
max term in each constraint. And while it has only |S| variables, it has factorially many
constraints; moreover, the constraints themselves are not compact due to the presence
of the expectation in each constraint.

PDA can be used to render this formulation tractable. Let � denote an arbitrary
(inverse) permutation of the action set (so �(i) = j means that action j is ranked in po-
sition i). As above, the optimal policy at base state s w.r.t. a Q-function is expressible
as a DL ( with actions sorted by Q-values) and its expected value given by the ex-
pression derived below. Specifically, if � reflects the relative ranking of the (optimal)
Q-values of the actions at some fixed state s, then V (s) = Q(s,�(1)) with probability
⇢�(1), i.e., the probability that �(1) occurs in As. Similarly, V (s) = Q(s,�(2)) with
probability (1� ⇢�(1))⇢�(2), and so on. We define the Q-value of a DL � as follows:

Q
V
s (�) =

nX

i=1

[
i�1Y

j=1

(1� ⇢�(j))] ⇢�(i)Q
V (s,�(i)). (7)

Thus, for any fixed action permutation �, the constraint that vs at least matches the
expectation of the maximum action’s Q-value is linear. Hence, the program can be
recast as an LP by enumerating action permutations for each base state, replacing the
constraints in Eq. (6) as follows:

vs � Q
V
s (�) 8s 2 S, 8� 2 ⌃. (8)
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Figure 1: Stochastic action MDPs applied to routing.

The constraints in this LP are now each compactly represented, but it still has fac-
torially many constraints. Despite this, it can be solved in polynomial time. First, we
observe that the LP is well-suited to constraint generation. Given a relaxed LP with a
subset of constraints, a greedy algorithm that simply sorts actions by Q-value to form a
permutation can be used to find the maximally violated constraint at any state. Thus we
have a practical constraint generation algorithm for this LP since (maximally) violated
constraints can be found in polynomial time.

More importantly from a theoretical standpoint, the constraint generation algorithm
can be used as a separation oracle within an ellipsoid method for this LP. This directly
yields an exact, (weakly) polynomial time algorithm for this LP [7].

8 Empirical Illustration

We now provide a somewhat more elaborate empirical demonstration of the effects of
stochastic action availability. Consider an MDP that corresponds to a routing problem
on a real-world road network (Fig. 1) in the San Francisco Bay Area. The shortest path
between the source and destination locations is sought. The dashed edge in Fig. 1 rep-
resents a bridge, available only with probability p, while all other edges correspond to
action choices available with probability 0.5. At each node, a no-op action (waiting) is
available at constant cost; otherwise the edge costs are the geodesic lengths of the cor-
responding roads on the map. The optimal policies for different choices p = 0.1, 0.2
and 0.4 are depicted in Fig. 1, where line thickness and color indicate traversal proba-
bilities under the corresponding optimal policies. It can be observed that lower values
of p lead to policies with more redundancy. Fig. 2 investigates the effect of solving the
routing problem obliviously to the stochastic action availability (assuming actions are
fully available). The SAS-optimal policy allows graceful scaling of the expected travel
time from source to destination as bridge availability decreases. Finalluy, the effects of
violating the PDA assumption are investigated in the long version of this work [?].
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Figure 2: Expected trip time from source to destination
under the SAS-optimal policy vs. under the oblivious op-
timal policy (the MDP solved as if actions are fully avail-
able) as a function of bridge availability.

9 Concluding Remarks

We have developed a new MDP model, SAS-MDPs, that extends the usual finite-action
MDP model by allowing the set of available actions to vary stochastically. This cap-
tures an important use case that arises in many practical applications (e.g., online adver-
tising, recommender systems). We have shown that embedding action sets in the state
gives a standard MDP, supporting tractable analysis at the cost of an exponential blow-
up in state space size. Despite this, we demonstrated that (optimal and greedy) policies
have a useful decision list structure. We showed how this DL format can be exploited
to construct tractable Q-learning, value and policy iteration, and linear programming
algorithms.

While our work offers firm foundations for stochastic action sets, most practical
applications will not use the algorithms described here explicitly. For example, in
RL, we generally use function approximators for generalization and scalability in large
state/action problems. We have successfully applied Q-learning using DNN function
approximators (i.e., DQN) using sampled/logged available actions in ads and recom-
mendations domains as described in Sec. 4. This has allowed us to apply SAS-Q-
learning to problems of significant, commercially viable scale. Model-based methods
such as VI, PI, and LP also require suitable (e.g., factored) representations of MDPs
and structured implementations of our algorithms that exploit these representations.
For instance, extensions of approximate linear programming or structured dynamic
programming to incorporate stochastic action sets would be extremely valuable.

Other important questions include developing a polynomial-sized direct LP formu-
lation; and deriving sample-complexity results for RL algorithms like Q-learning is
also of particular interest, especially as it pertains to the sampling of the action distri-
bution. Finally, we are quite interested in relaxing the strong assumptions embodied
in the PDA model—of particular interest is the extension of our algorithms to less
extreme forms of action availability independence, for example, as represented using
consise graphical models (e.g., Bayes nets).

Acknowledgments: Thanks to the reviewers for their helpful suggestions.
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A Proofs

A.1 Proof of Lemma 1

ET
e
Ve(s) = E

A✓B
T

e
Ve(s �A)

= E
A✓B

max
k2A

r
k
s + �

X

s0�A0

p
k
s�A,s0�A0Ve(s

0 �A0)

= E
A✓B

max
k2A

r
k
s + �

X

s0

p
k
s,s0 E

A0✓B
Ve(s

0 �A0)

= E
A✓B

max
k2A

r
k
s + �

X

s0

p
k
s,s0EV

e(s0)

= T
c
EV

e(s0).

A.2 Proof of Lemma 2

It is easy to compute the expected value of each action in k 2 A using a one-step
backup of V ⇤

c . The action with maximum value is ⇡⇤
e(s�A) and its backed-up expected

value is V ⇤
e (s �A).

A.3 Proof of Lemma 3

Since Me is a standard MDP, we know Me is a contraction with modulus �. Let
vc = Eve and v

0
c = Ev

0
e be compressed value functions that each correspond to some

(arbitrary) embedded value function. Then for any s we have:

|T c
vc(s)� T

c
v
0
c(s)| = | E

A✓B
T

e
ve(s �A)� E

A✓B
T

e
v
0
e(s �A)|

= | E
A✓B

(T e
ve(s �A)� T

e
v
0
e(s �A)|

 | E
A✓B

�(ve(s �A)� v
0
e(s �A)|

= �| E
A✓B

ve(s �A)� E
A✓B

v
0
e(s �A)|

= �|vc(s)� v
0
c(s)|.

B Guarantees on the ADS Assumption

Let µ(s)(A) be the top action according to the DL µ(s). We have the following theo-
rem, which is a direct application of Hoeffding’s concentration inequality along with a
union bound.

Lemma 4 Let Q? be optimal for the MDP. Suppose that for each state s we sample
A

(1)
s , . . . , A

(t)
s . If

m = ⌦

 ✓
�

1� �

◆2 |A|+ log(|S|/�)
✏2

!
,
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then with probability 1� �, for each DL policy µ we have
����� E
A✓B

Q
µ(s, µ(s)(A))� 1

T

TX

t=1

Q
µ(s, µ(s)(A(t)

s ))

����� 
✏(1� �)

2�
.

We can use the lemma above to approximate the Q function by the one correspond-
ing to an approximate-MDP, resulted by the sub-sampling of the action subsets.

Lemma 5 Let bQµ be the Q function corresponding to policy µ for the approximate-
MDP. Then, for any policy µ, state s and action a,

���Qµ(s, a)� bQµ(s, a)
��� 

✏

2
.

Proof: We will show one direction of the proof, and the other will follow by a sym-
metric argument. Let us unfold the Q function by successive applications of Lemma 4,

Q
µ(s, a) = E

s0|s,a


r(s, a) + � E

A✓B
Q

µ(s0, µ(s0)(A))

�

 E
s0|s,a

"
r(s, a) + � · 1

T

TX

t=1

✓
Q

µ(s0, µ(s0)(A(t)
s0 )) +

✏(1� �)

2�

◆#

= E
s0|s,a

"
r(s, a) +

�

T

TX

t=1

Q
µ(s0, µ(s0)(A(t)

s0 ))

#
+

✏(1� �)

2
.

Repeating the argument above with respect to Q
µ(s0, µ(s0)(A(t)

s0 )) and continuing so
recursively, we obtain

Q
µ(s, a)  bQµ(s, a) +

1X

t=0

�
t ✏(1� �)

2
= bQµ(s, a) +

✏

2
.

We can now state our theorem.

Theorem 6 Let µ̂ be the optimal policy for the approximate-MDP. For each state s

and action a, Qµ̂(s, a) � Q
?(s, a)� ✏.

Proof: We have,

Q
?(s, a)  bQµ?

(s, a) +
✏

2
(Lemma 5)

 bQµ̂(s, a) +
✏

2
(µ̂ optimal for bQ)

 Q
µ̂(s, a) + ✏ . (Lemma 5)
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C Non-stochastic Action Availability

Suppose that the action subsets are chosen by an adversarial process, yet are known in
advance. In this case the optimal policy might neither be stationary nor a decision list.
This is shown in the following example.

1 2 3
a b

c

Consider the MDP drawn above, which has three states. When the agent is at state
1, she has the choice of playing actions a, b or c. Actions b and c are always available,
and b generates a slightly higher reward than c

6. Action a is available once in a while,
and its reward is much higher than both b and c.

When the agent visits state 1 and action a is unavailable, she will usually prefer
playing action b. However, should the agent know that action a will become available
in the next turn, she will play action c. This is even though in both cases the set of
available actions is the same!

D The Complexity of Value Iteration

Given its polytime per-iteration complexity, to ensure VI is polytime, we must show
that it converges to a value function that induces an optimal policy in a polynomially
many iterations. To do so, we exploit the compressed representation and adapt the
technique of [21].

First we need some assumptions and definitions w.r.t. the base MDP M:

• Assume (w.l.o.g.) that all rewards/costs are integers.
• Let � be the smallest integer s.t. �� and �p

k
s,s0 (for all actions, states) are integer

and � > r
k
s for all states, actions. This is the precision needed to represent the

base: each parameter requires log � bits.

Tseng shows that VI for a standard MDP is weakly polynomial (assuming a con-
stant discount factor �), by proving that: (a) if the tth value function produced by VI
satisfies

||V t � V
⇤|| < 1/(2�2n+2

n
n),

then the policy induced by V
t is optimal; and (b) VI achieves this bound in polynomi-

ally many iterations.
Tseng’s proof involves several steps:

6Compared to the discounting factor.
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• A simple argument based on the precision of the parameters shows that for all
s, V ⇤(s) = ws/(�2nnn) for some integer ws: Let µ be any policy. Then the
induced transition matrix P

µ and the immediate reward vector Rµ are such that
Z = �

2(I � �P
µ) and �

2
R

µ are integral (and the entries of Z are less than
�
2). Then for the optimal policy µ, by Cramer’s rule we have that V ⇤(s) =
detZs/ detZ (where Zs is Z with R

µ replacing column s). By Hadamard’s in-
equality, the determinant of Z is bounded by �

2n
n
n/2, and since the determinant

of Zs must also be integral, the stated fact follows.

• An action elimination argument based on the precision of the solution shows that
the action backup of any nonoptimal action w.r.t. V ⇤ must differ from that of the
optimal action by at least 1/(�2n+2

n
n): Suppose action k is not optimal at s,

hence Q
⇤(s, k) = T

k
V

⇤(s) < T
µ
V

⇤(s) (where µ is the optimal policy). Then

T
k
V

⇤(s) = �

X

s0

p
k
ss0V

⇤(s) + r
k
s

= �

X

s0

p
k
ss0ws/(�

2n
n
n) + r

k
s

=
�
2
�
P

s0 p
k
ss0ws + �

2n+2
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n/2

r
k
s

�2n+2nn
.

Since the numerator is integral (and so is ws), T k
V

⇤(s) and T
µ
c V

⇤(s) must differ
by at least 1/(�2nnn). Thus if ||V t�v

⇤|| < 1/(2�2nnn) (where V t is tth iterate
of VI), some simple substitutions show that the policy induced by V

t must be
optimal.

• For any target precision ", Tseng uses standard arguments to show that after t
iterations, the error ||V t�v

⇤|| < ", where t = dlog(||V ⇤||/(1��)")/ log(1/�)e.
We can plug in the usual upper bound U on V

⇤, which is U = rmax/(1� �) =
O(rmax) for a fixed �.

• Substituting the precision 1/(2�2nnn) for " gives a polytime bound on required
iterations:

t
⇤  log(2�2nnn

U)/ log(1/�).

We derive a similar bound on the number of VI iterations needed for convergence
in an SAS-MDP, using the same input parameters as in the base MDP, and applying the
the same precision � to the action availability probabilities. We apply Tseng’s result by
exploiting the fact that: (a) the optimal policy for the embedded MDP Me can be rep-
resented as a DL; (b) the transition function for any DL policy can be expressed using
an n ⇥ n matrix (we simply take expectations, see above); and (c) the corresponding
linear system can be expressed over the compressed rather than the embedded state
space to determine V

⇤
c (rather than V

⇤
e ).

Tseng’s argument requires some adaptation to apply to the compressed VI algo-
rithm. His definition of � ensures that the terms in the linear system when multiplied
by �

2 are integers, which in turn ensures the solution for V
⇤ has precision limited

to �
2n
n
n. We extend his precision assumption to account for our action availability

probabilities as well, ensuring �⇢
k
s is integral for all s 2 S, k 2 B.
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Since Mc is an MDP, Tseng’s result applies; but notice that the transition matrix
for any state’s DL µ, which serves as an action in Mc, has entries of the form:

p
µ
s,s0 =

mX

i=1

[
i�1Y

j=1

(1� ⇢
µ(s)(j)
s )] ⇢µ(s)(i)s p

µ(s)(i)
s,s0 .

Since this is the product of m + 1 probabilities, each with precision �, we have that
�
m+1

p
µ
s,s0 must also be integer. Thus the required precision parameter for our MDP

is at most �m+1. Plugging this into Tseng’s bound, VI applied to Mc must induce an
optimal policy at the tth iteration if

||V t � v
⇤|| < 1/(2�(m+1)2n

n
n) = 1/(2�(m+1)2n

n
n).

This in turn gives us a bound on the number of iterations of VI needed to reach an
optimal policy:

Theorem 7 VI applied to Mc converges to a value function whose greedy policy is
optimal in t⇤ iterations, where

t
⇤  log(2�2n(m+1)

n
n
M)/ log(1/�).

Combined with Obs. 1, we have:

Corollary 3 VI yields an optimal policy for the SAS-MDP corresponding to Mc in
polynomial time.

We remark that in the ADS model, we only obtain an approximation to the optimal
policy. In fact, one cannot compute an exact optimal policy without observing the
entire support of the availability distributions, which requires an exponential sample
size.

Under the product distribution assumption, the theorem particularly implies that
the convergence of policy iteration in strongly-polynomial time as long as each of the
actions is available with constant probability. In this case, for any ⇡, ai, aj , s we have
⌘⇡(s, ai, aj) � pipj = ⌦(1), which in turn implies that we can take q to be ⌦(1) in
the bound above.

E The Complexity of Policy Iteration

This is an adaptation of the Hansen, Miltersen, Zwick paper.

E.1 Policy Iteration

Let µ(A|s) be the probability of having available actions A in state s. Denote � to be
a permutation of the actions, and �(A) is the first available action in A according to �.
Also denote ⌘⇡(s, a1, a2) = µ{A : ⇡?(s)(A) = a1,⇡(s)(A) = a2|s}, the probability
that ⇡? plays a1 and simultaneously ⇡ plays a2.

Theorem 8 kV ⇡t+1 � V
?k  �kV ⇡t � V

?k.
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Algorithm 1 Policy Iteration
Initialize: ⇡1

for t = 1, 2, . . . do

Compute: V ⇡t = EA|s
⇥
r(s,⇡t(s)(A)) + � Es0|s,⇡t(s)(A) V

⇡t(s0)
⇤

Update: ⇡t+1(s) = argmax� EA|s
⇥
r(s,�(A)) + � Es0|s,�(A) V

⇡t(s0)
⇤

end for

Proof: For any s,

V
?(s)� V

⇡t+1(s)  �max
�

E
A|s

E
s|s0,�(A)

(V ?(s0)� V
⇡t(s0))

 �kV ⇡t � V
?k .

E.2 Polynomial bound

In this section we will prove the following theorem.

Theorem 9 Assume there exists q > 0 such that for any policy ⇡, state s and actions
a1, a2, ⌘⇡(s, a1, a2) > 0 implies ⌘⇡(s, a1, a2) � q. Then policy iteration converges
after

O

✓
|S||A|2

1� �
log

|A|
1� �

✓
1 + log

1

q

◆◆

iterations.

Under the product distribution assumption, the theorem particularly implies that
the convergence of policy iteration in strongly-polynomial time as long as each of the
actions is available with constant probability. In this case, for any ⇡, ai, aj , s we have
⌘⇡(s, ai, aj) � pipj = ⌦(1), which in turn implies that we can take q to be ⌦(1) in
the bound above.

E.3 Proof Theorem 9

Lemma 6 For any policy ⇡, actions a1, a2, state s:

V
?(s)� V

⇡(s) � ⌘⇡(s, a1, a2)(Q
?(s, a1)�Q

?(s, a2)) .
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Proof:

V
?(s)� V

⇡(s) = V
?(s)� E

A|s


r(s,⇡(s)(A)) + � E

s0|s,⇡(s)(A)
V

⇡(s0)

�
(9)

� V
?(s)� E

A|s


r(s,⇡(s)(A)) + � E

s0|s,⇡(s)(A)
V

?(s0)

�
(10)

= V
?(s)� E

A|s
Q

?(s,⇡(s)(A)) (11)

= E
A|s

[Q?(s,⇡?(s)(A))�Q
?(s,⇡(s)(A))] (12)

=
X

A

µ{A|s} (Q?(s,⇡?(s)(A))�Q
?(s,⇡(s)(A))) (13)

=
X

A

µ{A|s}
X

a0
1,a

0
2

1[a0
1=⇡?(s)(A),a0

2=⇡(s)(A)] (Q
?(s, a01)�Q

?(s, a02))

(14)

=
X

a0
1,a

0
2

X

A

µ{A|s}1[a0
1=⇡?(s)(A),a0

2=⇡(s)(A)] (Q
?(s, a01)�Q

?(s, a02))

(15)

=
X

a0
1,a

0
2

µ{A : a01 = ⇡
?(s)(A), a02 = ⇡(s)(A)|s}| {z }
⌘⇡(s,a0

1,a
0
2)

(Q?(s, a01)�Q
?(s, a02))

(16)

=
X

a0
1,a

0
2

⌘⇡(s, a
0
1, a

0
2) (Q

?(s, a01)�Q
?(s, a02)) (17)

� ⌘⇡(s, a1, a2) (Q
?(s, a1)�Q

?(s, a2)) , (18)

where the last inequality is due to the fact that ⇡? maximizes Q? at any state, and for
any given available action set A.

Lemma 7 Let ⇡ be any policy, and let V̄ = V
? � V

⇡ . Then V̄ is the value function of
following ⇡ with respect to the rewards r̄(s, a) = V

?(s)�Q
?(s, a).
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Proof:

V̄ (s) = V
?(s)� V

⇡(s) (19)

= V
?(s)� E

A|s


r(s,⇡(s)(A)) + � E

s0|s,⇡(s)(A)
V

⇡(s0)

�
(20)

= V
?(s)� E

A|s


Q

?(s,⇡(s)(A))� � E
s0|s,⇡(s)(A)

V
?(s0) + � E

s0|s,⇡(s)(A)
V

⇡(s0)

�

(21)

= E
A|s


V

?(s)�Q
?(s,⇡(s)(A)) + � E

s0|s,⇡(s)(A)
(V ?(s0)� V

⇡(s0))

�
(22)

= E
A|s


r̄(s,⇡(s)(A)) + � E

s0|s,⇡(s)(A)
V̄ (s0)

�
. (23)

Corollary 10 For any state s,

V
?(s)� V

⇡(s)  |A|2

1� �
max

s0,a0
1,a

0
2

⌘⇡(s
0
, a

0
1, a

0
2) (Q

?(s0, a01)�Q
?(s0, a02)) .

Proof: Following the previous lemma,

V
?(s)� V

⇡(s) = E⇡

" 1X

t=0

�
t
r̄(st, at)

�����s0 = s

#
(24)

= E⇡

" 1X

t=0

�
t E
A|st

r̄(st,⇡(st)(A))

�����s0 = s

#
(25)


1X

t=0

�
t max

s0

⇢
E

A|s0
r̄(s0,⇡(s0)(A))

�
(26)

=
1

1� �
max
s0

X

a0
1,a

0
2

⌘⇡(s
0
, a

0
1, a

0
2) (Q

?(s0, a01)�Q
?(s0, a02)) (27)

 1

1� �

X

a0
1,a

0
2

max
s0

⌘⇡(s
0
, a

0
1, a

0
2) (Q

?(s0, a01)�Q
?(s0, a02)) (28)

 |A|2

1� �
max

s0,a0
1,a

0
2

⌘⇡(s
0
, a

0
1, a

0
2) (Q

?(s0, a01)�Q
?(s0, a02)) . (29)

Lemma 8 Let ⇡,⇡0 be two policies. Let (s0, a01, a02) = argmaxs,a1,a2
⌘⇡(s, a1, a2)(Q?(s, a1)�

Q
?(s, a2)). Assume that ⌘⇡(s0, a01, a02)  2⌘⇡0(s0, a01, a

0
2), then

kV ? � V
⇡0
k � 1� �

2|A|2 kV
? � V

⇡k .
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Proof: Combining Lemma 6 and Theorem 10,

kV ? � V
⇡k  |A|2

1� �
⌘⇡(s

0
, a

0
1, a

0
2) (Q

?(s0, a01)�Q
?(s0, a02))

 2|A|2

1� �
⌘⇡0(s0, a01, a

0
2) (Q

?(s0, a01)�Q
?(s0, a02))

 2|A|2

1� �
kV ? � V

⇡0
k .

We are now ready to prove the theorem.
Proof:[Proof of Theorem 9] Let ⇡1, . . . ,⇡T be the policies generated by policy itera-
tion in T iterations. Let t < t

0 be some rounds, and denote (s0, a01, a02) = argmaxs,a1,a2
⌘⇡t(Q

?(s, a1)�
Q

?(s, a2)). If ⌘⇡t(s
0
, a

0
1, a

0
2)  2⌘⇡t0 (s

0
, a

0
1, a

0
2), then by Lemma 8:

kV ? � V
⇡t0 k � 1� �

2|A|2 kV
? � V

⇡tk .

On the other hand, by Theorem 8:

kV ? � V
⇡t0 k  �

t0�tkV ? � V
⇡tk ,

which means that t0 � t  L, where L = 1/(1� �) log(2|A|2/(1� �)). Namely, after
bLc+ 1 iterations, we will have ⌘⇡t0 (s

0
, a

0
1, a

0
2) < (1/2)⌘⇡t(s

0
, a

0
1, a

0
2).

The above argument holds for a01, a02 at most b1 + log2(1/q)c times, and thus for
all states and actions at most |S||A|2b1 + log2(1/q)c times. Thus, the total number
of iterations for policy iteration to converge is at most 4|S||A|2(1 + log2(1/q))L as
required.
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