
1

Real-time Discriminative Background

Subtraction
Li Cheng, Member, Minglun Gong Member, Dale Schuurmans, Terry Caelli Fellow

Abstract

We examine the problem of segmenting foreground objects in live video when background scene

textures change over time. In particular, we formulate background subtraction as minimizing a penalized

instantaneous risk functional—yielding a local on-line discriminative algorithm that can quickly adapt

to temporal changes. We analyze the algorithm’s convergence, discuss its robustness to non-stationarity,

and provide an efficient non-linear extension via sparse kernels. To accommodate interactions among

neighboring pixels, a global algorithm is then derived that explicitly distinguishes objects versus back-

ground using maximum a posteriori inference in a Markov random field (implemented via graph-cuts).

By exploiting the parallel nature of the proposed algorithms, we develop an implementation that can run

efficiently on the highly parallel Graphics Processing Unit (GPU). Empirical studies on a wide variety

of datasets demonstrate that the proposed approach achieves quality that is comparable to state-of-the-art

off-line methods, while still being suitable for real-time video analysis (≥ 75 fps on a mid-range GPU).

Index Terms

Real time foreground object segmentation from video, graphics processing units (GPUs), background

subtraction, large-margin methods, one class SVM, on-line learning with kernels

I. INTRODUCTION

A fundamental problem in real-time video understanding is to distinguish foreground objects from

background scenes. Such an analysis provides low-level visual cues that enable further processing such

as object tracking [1, 2], pose estimation [3, 4], motion analysis [5–7], activity analysis and understanding

Copyright c©2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Li Cheng is with Bioinformatics Institute, A*STAR, Singapore, Minglun Gong is with Memorial University, Canada, Dale

Schuurmans is with University of Alberta, Canada, Terry Caelli is with NICTA, Australia.

October 5, 2010 DRAFT

2

[8]. In this way, background subtraction is crucial to many applications including surveillance, human

computer interaction, animation and video event analysis [9].

In this paper, we focus on segmenting foreground objects from video sequences when background

scene textures change over time. To illustrate the problem, Figure 1 presents three typical scenarios that

are characterized by these non-stationary background distributions: drifting, jumping and multi-modal

switching. Here, the three panels on the bottom show the temporal dynamics of selected pixels from the

corresponding scenarios: Left presents the time series of a foreground pixel (denoted by a triangle) on

the chute and a background pixel outside the chute (denoted by a circle in the image), where both exhibit

a drifting temporal dynamics; Middle shows a foreground pixel on the hallway area that possesses a

clearly jumping dynamics, as well as a background pixel on the way area that are relatively stationary;

Right displays an on-the-road foreground pixel and an off-the-road background pixel, where both has a

multi-modal switching temporal dynamics.

In general, we aim for a principled algorithm that (1) is computationally efficient for real-time video

analysis, (2) rapidly adapts to dynamic backgrounds (due to camera motion or the background textures

change with time) and (3) is capable of utilizing the spatial-temporal characteristics of video stream data.

A. Our Contribution

Our approach 1 incorporates three main contributions. First, we explicitly connect the problem of

background subtraction to work in on-line learning and novelty detection, which possess a rich literature

(e.g. [11–13]) and well-studied theoretical principles. Second, we present a series of discriminative on-

line learning algorithms based on kernels (ILK, SILK and SILK-GC) that provide a principled method

for modeling the spatial-temporal characteristics of the background subtraction problem. Third, unlike

previous approaches using CPUs that often run off-line or quasi-real-time, our algorithm is designed to

work with GPUs, yielding a processing speed of 170 (75) frames per second (FPS) for SILK (SILK-GC)—

sufficiently fast for follow-up real-time analysis. Although a number of methods have been developed to

cater to real-time processes (such as [14, 15]), they usually perform less competitively in complex scenes

compared to state-of-the-art off-line methods [16–19], particularly when there are dynamic backgrounds

[16, 18, 19]. By contrast, experiments on a variety of datasets used in [18, 20–22] show that our proposed

approach performs comparably to the state-of-the-art algorithms while retaining real-time efficiency.

1The project webpage is http://ttic.uchicago.edu/˜licheng/BkgSbt.htm. Part of this work appears in [10].

October 5, 2010 DRAFT

3

0 50 100 150 200
110

120

130

140

150

160

170

180

time

va
lu

e

a background pixel
a chute pixel

0 200 400 600 800 1000
80

100

120

140

160

180

200

220

240

260

time

va
lu

e

a background pixel
a road pixel

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

160

180

time

va
lu

e

a background pixel
a foreground pixel

Fig. 1: Video sequences that covers three typical situations (drifting, jumping and multi-modal switching)

that characterized by non-stationary, multi-modal background distributions. For each video sequence, three

key frames are presented in the upper panels: Left displays the Rock sequence where rocks of ore are

falling through a rejection chute, with drifting fog in the background; Middle displays the Lights sequence

which is an indoor sequence where background lights are switched on and off; The right sequence is

the Traffic sequence of a road traffic scene taking by a shaking camera. The three panels on the bottom

show the temporal dynamics of selected pixels from the corresponding scenarios (see text for details).

For demonstration purpose only one (the red) channel is used for color images.

B. Related Work

Although assuming various forms, current background subtraction algorithms (also referred to as fore-

ground object segmentation algorithms) generally follow a common approach: one maintains a model of a

relatively static background scene while foreground objects are detected as outliers from the background

distribution. This scheme is inspired by an observation from the motion picture industry that a background

scene can be recovered by exposing a film sufficiently long to wash out the moving objects. This

observation, together with the normally assumed static camera constraint, motivate the pixel process

October 5, 2010 DRAFT

4

approach where pixels are assumed to be statistically independent and the task is to properly estimate

the background distribution of each pixel.

Most existing methods for modeling pixel distributions can be categorized as either generative (para-

metric) or non-parametric.

The simple but often effective generative approaches are the single Gaussian and the mixture of

Gaussians (MoG) models proposed by Wren et al. [23] and Friedman et al. [24] respectively. An

important but rather difficult challenge to these techniques, e.g. as pointed out by [20], is to maintain

robustness against changes in background scene textures both spatially and over time. A naive pixel

process approach encounters difficulties in many real-life situations such as those presented in Figure 1.

In cases like these, background pixels are drawn from non-stationary, multi-modal distributions. Accurate

background subtraction usually requires accounting for spatial correlations among neighboring pixels in

these situations, since temporally corresponding pixels in consecutive frames are not necessarily constant,

e.g. due to a dynamic background, or a non-stationary camera. To adapt to temporal changes, recursive

updating schemes [25, 26] have been considered for the MoG [27] parameters {w, µ, σ} in an attempt to

maintain a currently relevant model, while Monnet et al. [28] incorporate principal component analysis

(PCA) in MoG models. Alternatively [19, 21] use autoregressive models, and [19] resorts to a biologically

motivated center-surround method. Attempts have also been made to incorporate the usage of spatial

interactions in existing MoG schemes [16, 18], which unfortunately is computationally expensive thus

not suitable for real-time video analysis.

Non-parametric methods maintain a background distribution for each pixel based on a list of past

examples [20]. In particular, various kernel density estimates (KDEs) have been used for this purpose

[29], including Parzen windows [30], and KDEs with variable bandwidth [31]. A major drawback of these

approaches, however, is that they ignore the time-series nature of the problem. Moreover, KDE requires

training data from a sequence of examples that have a relatively ‘clean’ background. These shortcomings

can be partially remedied by using a sequential approach [32] that uses an iterative algorithm to predict

the modes of the KDEs in an on-line fashion. To incorporate spatial coherency of objects, Sheikh and

Shah [22] introduce a post-processing step that uses maximum a posteriori inference in a Markov random

field (or MAP-MRF), where a simple Ising model is used as prior of the foreground/background label

field. An off-line algorithm is considered in [17] to track the position of corresponding pixels over time

using particle filters where KDE is used for the likelihood model.

An alternative approach to these aforementioned methods is based on a ’supervised learning’ frame-

work. In certain situations there might exist training images where foreground objects (or segments

October 5, 2010 DRAFT

5

thereof) have been manually labeled. This allows supervised learning-based binary scene labeling ap-

proaches to be deployed, as described in e.g. [14, 33–37]. Such an approach is beyond the scope of

this paper, since these algorithms require off-line training on large amount of manually-labeled images.

For example, one experiment in [37] is conducted in an office setting with 500 training images and 90

test images, as well as synthesized training images to increase the foreground sample size. A second

drawback is that supervised learning approaches usually assume a fixed number of foreground categories

(for example, [14] deals with three types of foregrounds: human, animal and vehicle). Our focus in this

paper is on situations where no a priori annotations are assumed for the incoming video stream.

The remainder of this paper is organized as follows. Section II examines statistical learning techniques

that are relevant to our framework: 1-SVMs, on-line learning, and kernels. In section III, the background

subtraction problem is formulated as minimizing a regularized risk functional under constraints. To deal

with dynamic backgrounds, we further consider an on-line learning framework based on [11, 38], which

leads to a feasible closed-form solution (section III-C) as a central component of our first proposed

algorithm. We subsequently analyze its convergence (III-E) and address issues such as sparse approxima-

tion (III-D) and induced truncation error (III-E). Next, to incorporate spatial correlation, the framework

is extended to incorporated graph-cuts in section IV. Section V provides more details on the GPU

implementation of our algorithms. This is followed by experiments in section VI and the conclusion and

discussion in section VII.

II. PREPARATION

For completeness, we briefly examine the relevant statistical learning techniques we use in our approach:

1-SVMs, on-line learning and kernels.

A. 1-SVMs

The proposed discriminative approach is motivated by the large-margin principle [39], and in particular

the 1-SVM approach [12] for detecting anomalies from stationary distributions. Here we are interested

in predicting the optimal separating hyperplane f(·) in some high-dimensional feature space that incurs

a convex loss

L(xt, f) =
(
γ − f(xt)

)
+
. (1)

where (·)+ , max{·, 0}. In this case f(x) can be viewed as a score function [40] that assigns larger

values to values that are more confidently from the background distribution, while smaller values indicate

October 5, 2010 DRAFT

6

γ
)(⋅f

Fig. 2: An illustration of 1-SVM on a sample of examples that motivates the proposed approach. See

text for details.

anomalies. The parameter γ is the ’margin value’, which measures the distance of the separating hyper-

plane from the origin (Figure 2), and is set to one during the experiments. Let x denote the observed value

of a pixel, (xt)Tt=1 the observation sequence of this pixel over a period of time T . Figure 2 presents a

simple illustrative example, where a set of past examples are scattered in input space as a mixture of two

Gaussians (right panel) and re-represented in a corresponding feature space (left panel). Regardless of the

shape of the background distribution, in a proper feature space representation, a separating hyperplane f

will be estimated that encloses as many background examples as possible in the input space. Examples

are then partitioned into background versus outliers (i.e., foreground examples) accordingly.

In this approach f(·) is a linear operator in a reproducing kernel Hilbert space (RKHS) corresponding

to straight lines in the left panel. Due to an implicit mapping from the original representation to the

feature representation, the pre-image of a high confidence region, f(x) ≥ c, will generally be determined

by a non-linear region in the input space (curved lines in the right panel). One nice aspect of a large

margin approach is sparsity: the function f(·) is determined solely from a weighted average of so called

support vectors, shown as circular points in Figure 2. Unfortunately, the presence of noise in practice

would make it almost impossible to find such a well-separated hyperplane f(·) for every point.

B. Three Learning Paradigms: Batch, Incremental, and On-line

The standard risk minimization principle, suggested in the 1-SVM case above, can be deployed in

different ways in practice.

To begin, assume we have access to labeled examples drawn from a distribution P . Let L(x, y, f)

denote the incurred loss of a prediction function f on an example (or (instance, label) pair) (x, y). We

are interested in minimizing the expected risk functional

Rexp(f) , EP (X×Y)[L(x, y, f)]. (2)

October 5, 2010 DRAFT

7

x1 xt

1α

x1 xTx2

1α 2α Tα tα

t

xt

tα

t

x1 xt

1α tα1−tα

xt-1

t

ft

ft+1

ft+1ft

ft+1

f

Fig. 3: Comparison of batch, incremental and on-line learning paradigms (in both feature space and input

space). In each panel, shaded nodes represent observed examples, while white nodes denote the estimated

weights associated with examples. The rectangular box and the arrow thats point to f together refer to

the fact that f is determined by a collection of the components being held inside the box. For online

learning, ft+1 is estimated using only the current example xt and the previous estimate ft. There is no

need to revisit the previous examples.

as the qualitative measure of function f . In practice, since only a finite sample S , (xt, yt)
T
t=1 can be

observed, one instead minimizes the empirical risk functional over S

Remp(f) ,
1

T

T∑
t=1

L(xt, yt, f). (3)

The theory of Vapnik and Chervonenkis [39] has led to the so-called structured risk minimization principle,

where one minimizes a regularized risk that upper-bounds the empirical risk

Rbth(f) = Rcap(f) + ηRemp(f). (4)

Here η > 0 is a tuning parameter and Rcap(f) denotes a measure of complexity of the function f , which

we will explicity measure by its 2-norm in the RKHS (feature representation) being used

Rcap(f) ,
1

2
||f ||2H. (5)

October 5, 2010 DRAFT

8

z1

…

…

Sparse online
(Input space)

ft+1

tα

xt

zN

1β Nβ

t

Fig. 4: The proposed sparse on-line learning diagram (SILK). See text for details.

This general approach of minimizing regularized empirical risk can be deployed in three different

learning schemes—batch, incremental and on-line—as shown in Figure 3. In batch learning, as depicted

in Figure 3(a), f is determined solely on the empirical sample (xt)
T
t=1. In this case, the set of weighted

examples with weights {αt}Tt=1 determines f uniquely (referred to as the kernel expansion in Schölkopf

et al. [41]). Alternatively, Figure 3(b) depicts incremental learning, where a learner is gradually exposed

to larger set of examples as t increases, and thus the function f is determined by kernel expansions with

increased number of terms. Thus, when t→ T , ft+1 approaches f of the batch learning scenario.

However, for the problem of segmenting foreground objects from a video sequence, each of these two

learning paradigms has drawbacks. First, batch learning requires all previous examples to be gathered

(and stored in memory) prior to training, which essentially requires buffer of unlimited size as T →∞.

This is indeed not desirable for real-time analysis, since both storage and computational resources will be

quickly exhausted when processing video streams. Second, both paradigms require re-training when new

examples arrive. This can be implemented by off-line training (e.g. SVM learning) but at the expense

of considerably more training time (e.g. re-solving a quadratic program), which makes it impractical

for real time efficiency. Third, a fundamental assumption for batch (and incremental) learning is that

the example distribution is stationary. Unfortunately, this almost never holds in video sequences, where

object distributions most often change over time.

On-line learning, by constrast, is particularly well-suited to video background subtraction. First, only

a current example xt and the previous estimate ft are required to estimate ft+1, since one example

(xt, yt) is processed at time t and ft summarizes all previous examples (xi, yi)
t−1
i=1; as illustrated in

Figure 3(c). Second, we are able to obtain an efficient closed-form update (see below) that completely

avoids the issue of solving difficult optimization problems as each new example (frame) arrives. Third,

October 5, 2010 DRAFT

9

by processing examples one at a time, it is possible for the on-line learning algorithm to closely track

the dynamics of the sample distributions over the time, as we will show.

In our on-line learning approach we will follow a simple training principle developed by Kivinen,

Warmuth and others [11, 42]. Let ηt > 0, and let Rinst(f) denote the instantaneous risk for current

example (xt, yt). Furthermore let Rdiv(f) denote a measure of the divergence of any new estimate f to

the current estimate ft, which we will assume is given by the squared Euclidean distance in the RKHS

Rdiv(f) ,
1

2
||f − ft||2H. (6)

Now, we would like to minimize the regularized risk

Ronl(f) = Rdiv(f) + ηtRinst(xt, yt, f). (7)

Henceforth we will use R(f) to refer to Ronl(f).

III. OUR APPROACH

A. Problem Formulation

Let x ∈ X denote an observed image consisting of n pixels, and let Y be the set of feasible labels.

A label y ∈ Y is defined over an image as {yi}ni=1, where i indexes a local pixel. For the ith pixel let

y = yi ∈ {−1,+1} indicate whether this pixel belongs to the foreground (−1) or background (+1).

When processing an input video stream T = (x1, . . . ,xT), the goal is to assign labels (y1, . . . ,yT) on

the fly that correctly identify foreground versus background pixels.

B. Batch Learning

Let L(x,y, f) ,
∑

i L(xi, yi, f) denote a desired loss function. The problem can then be abstractly

cast as learning a model that incurs least cumulative loss on T . Let us start by considering a batch

scenario where the entire set of images T is available and the learning procedure seeks to minimize a

total regularized risk functional

min
f

1

2
‖f‖2H +

η

T

∑
i,t

L(xi,t, yi,t, f), (8)

Here xi,t and yi,t can also be simplified as xt and yt when without confusion. Generally, we will focus

on using an SVM type loss function, as for example introduced in section II.A. As an immediate result of

the well known Representer theorem (Theorem 4.2 of Schölkopf et al. [41]), the optimal function f ∈ F

for the regularized risk of (8) in the RKHS H admits a representation of the form f(·) =
∑T

t=1 αtk(xt, ·).

October 5, 2010 DRAFT

10

Thus the problem amounts to learning a mapping f ∈ F that minimizes R(f), where the function space

admits

F =

{
f ′ ∈ H

∣∣∣∣ f ′(·) = T∑
i=1

αik(xi, ·), αi ∈ R

}
. (9)

C. On-line Learning with Kernels

In our context, for each pixel x, a sequence of pixel observations S is collected during the time course,

where xt is observed at time t. For this pixel process at time t+1, we would like to predict a (possibly

non-stationary) function f . This calls for the aforementioned on-line learning paradigm where, at time t,

an instance xt is presented to a learner, which uses its parameter vector ft to predict a label. This predicted

label is then compared to the true label yt via a non-negative, convex risk function Rinst(xt, yt, ft). The

learner then updates its parameter vector to minimize a convex risk function R(f), and the process

repeats. More precisely, we have

R(f) =
1

2
‖f − ft‖2H︸ ︷︷ ︸
Rdiv(f)

+ηt

(
λ

2
‖f‖2H + CL(xt, f)

)
︸ ︷︷ ︸

Rinst(f)

, (10)

where the divergence risk Rdiv(f) measures the distance of predicted f from previous prediction ft;

the instantaneous risk consists of a capacity term ‖f‖H that controls the complexity of the prediction

f , and a 1-SVM type loss term (1) is used to evaluate current example. At each time t, our goal is to

learn a mapping f ∈ F that minimizes R(f). Note that in our setting the step size ηt can be computed

using sophisticated algorithms [43], but for ease of exposition we assume a fixed step size (learning rate)

ηt = 1.

As R(f) is convex, (10) would be solved by setting the gradient (or a subgradient when necessary) to

0. This gives

ft+1 = ft − ∂fRinst(xt, yt, ft+1). (11)

Note the dependency on ft+1 on both the left as well as the right hand sides of the above equation.

Therefore it is difficult to determine ∂fRinst(xt, yt, ft+1) in closed form. An explicit update, as opposed

to the above implicit update, uses the approximation ∂fRinst(xt, yt, ft+1) ≈ ∂fRinst(xt, yt, ft) to arrive

at the more easily computable expression [44], results in the familiar stochastic gradient descent update

ft+1 = ft − ∂fRinst(xt, yt, ft). (12)

October 5, 2010 DRAFT

11

In both cases, there must exist coefficients αi fully specifying ft+1 by

ft+1 =

t∑
i=1

αik(xi, ·)

=

t−1∑
i=1

αik(xi, ·) + αtk(xt, ·) (13)

Lifting this into the RKHS, the 1-SVM loss of (1) can be re-written

L(xt, f) = (γ − f(xt))+ = (γ − 〈f, k(xt, ·)〉H)+,

where k(x, ·) , φ(x). [42] shows that the subgradient of this loss can be written as ∂fL = βtk(xt, ·),

which in our context reduces to one of three cases:

f(xt) > γ =⇒ βt = 0; (14a)

f(xt) = γ =⇒ βt ∈ [−1, 0]; (14b)

f(xt) < γ =⇒ βt = −1. (14c)

As before, let α̂t denote the optimal estimate of αt, which leads to γ − ft+1(xt) = 0.

We introduce an auxiliary variable τ = λ
1+λ . Using (11) we obtain

γ − ((1− τ)ft(xt) + α̂tk(xt, xt)) = 0,

which yields

α̂t =
γ − (1− τ)ft(xt)

k(xt, xt)
. (15)

On the other hand, α̂t has bounded influence due to the piecewise linear nature of the 1-SVM loss

function (refer to (11), (13) and (14))

α̂t ∈ [0, (1− τ)C]. (16)

Combining the two scenarios gives the update

αt ∈


α̂t if α̂t ∈ [0, (1− τ)C];

0 if α̂t < 0;

(1− τ)C if α̂t > (1− τ)C.

(17)

It follows from (11), (13), (14), and (17) that

αi ← (1− τ)αi for i = 1, . . . , t− 1, (18)

αt ← −(1− τ)Cβt. (19)

October 5, 2010 DRAFT

12

The above closed-form expressions give rise to an on-line 1-SVM algorithm (Alg. 1) that performs

implicit updates, and is termed as ILK for “implicit on-line learning with kernels”. The update equations

of ILK enjoy certain advantages. For example, using (18) it is easy to see that an exponential decay term

can be naturally incorporated to down-weight past observations:

ft+1 =

t∑
i=1

(1− τ)t−iαik(xi, ·). (20)

Intuitively, the decay rate τ ∈ (0, 1) trades off between the regularizer and the loss on the current sample.

In particular, the weight |αi| is always upper bounded by (1−τ)C, which ensures limited influence from

outliers (cf. (17)). In addition to dealing with stationary background distributions, when the examples

are drawn from a time-varying distribution P (t), the algorithm can still predict a reasonable separating

hyperplane f , as long as the decay rate τ matches the drifting speed of P (t).

Algorithm 1 The (ILK) Algorithm
Input: Margin γ, cut-off value C, threshold ε (0 < ε < γ), decay rate τ .

Output: Weight sequence (αt), and prediction sequence (yt).

f1 ⇐ 0

for t = 1 to T do

Receive an example xt

Assign label as
yt =

 +1, ft(xt) ≥ ε;

−1, otherwise.
(21)

Update (αi)
t
i=1 according to (18) and (17)

end for

D. ILK and SILK Algorithms

One fact that is not obvious from the illustration of Figure 3(c) in the feature space is the complexity of

kernel expansions: When lifting φ(·) to map x to some infinite dimensional RKHS feature representation

k(x, ·), it has to be represented as a weighted combination of examples in the input space, a well-known

issue for the kernel methods [41]. This is better revealed in Figure 3(d) where in the input space, the

past estimate ft still requires a set of kernel expansions {αik(xi, ·)}t−1i=1, which grows linearly as t→∞.

To address this limitation, Kivinen et al. [42] propose an algorithm that assigns equal weights to

examples (explicit update), then truncates older examples to maintain a memory of fixed size, which is

essentially a kernel perceptron algorithm with truncations in kernel expansion. We have already presented

the (implicit update or ILK) algorithm that is able to assign different weights to examples according to

October 5, 2010 DRAFT

13

the incurred losses. This is contrast to the algorithm of [42] where all support vectors are assigned

a same weight value. To lessen the memory and computational burdens, we further propose a sparse

variant (SILK), where a buffer of size ω is maintained, and each new point xt is inserted into the buffer

with coefficient αt. Once the buffer limit ω is exceeded, the point with the lowest coefficient value is

discarded to maintain an upper bound on memory usage. Empirical study [38] shows that this scheme is

more effective than the straightforward least recently used (LRU) strategy utilized in [42, 45]. In practice,

the value of ω is fixed to 20 in CPU implementation and 50 in GPU implementation. Meanwhile, other

buffer (or budget) maintenance schemes have also been adopted in literature: [46] instead proposes to

remove the inactive (or looser) support vectors. As this is not robust against noise, Weston et al. [47]

use a modified scheme that at each round remove one example that incurs the least cumulative risk

on all currently seen examples. This is shown to improve the performance, at the expense of being

computationally very intensive. Both schemes however rely on the assumption of a stationary target that

does not hold in our context. In addition, [48] (Figure 2) proposes a randomized algorithm that removes

a random support vector from the existing buffer at a time.

In term of complexity, SILK is both computationally more efficient and less memory demanding than

ILK. Given a sequence of T samples, the space complexity of ILK grows as O(T) while that of SILK

is fixed at O(ω) with a constant ω << T . Furthermore, the computational complexity of the algorithm

is mainly dictated by the time required to compute f(xt) which in turn depends on the number of kernel

expansions. Therefore, assuming constant time per kernel computation, the computational complexity per

of ILK is again O(T) per new example while that of SILK is O(ω).

E. Truncation Error of SILK

In addition, it is important to understand to what extent the SILK will deviate from ILK. Let α(t)
i (i ≤ t)

denote the weight of kernel expansion k(xi, ·) at time t. Let the mapping of the index of observation in

buffer Ŝ of size ω to the set of observations S of size T (ω << T) be denoted as N̂ : Ŝ → S : j 7→ i,

where |Ŝ| = ω, |S| = T . The following theorem shows that the difference between the true predictor

and its truncated version obtained by storing only ω expansion coefficients decreases exponentially as

the buffer size ω increases.

Theorem 1: Assume k(xi, xi) ≤ X2 for any i. Let the non-truncated representation of the RKHS

predictor be

f(·) =
t∑
i=1

α
(t)
i k(xi, ·), (22)

October 5, 2010 DRAFT

14

and the truncated approximation be

f̃(·) =
ω∑

j=1,i∈N̂(j)

αik(xi, ·). (23)

Then the truncation error is upper bounded by∥∥∥f − f̃∥∥∥
H
≤ (1− τ)ω+1

τ
CX2, (24)

which decreases exponentially as the size of buffer ω increases.

The detailed proof appears in the Appendix.

F. Convergence Analysis

So far we argue that our online learning algorithm (S)ILK is more efficient when comparing to the batch

learning counterparts, as succinctly depicted in Figure 3. One might wonder that whether the performance

of (S)ILK is still comparable to the batch learning algorithms in, for example, a stationary scenario where

the batch learning methods are most suitable. We show in Theorem 2 in the Appendix that under some

mild assumptions, the cumulative risk
∑T

t=1R(xt, yt, ft) of the hypothesis sequence produced by (S)ILK

converges to the minimum risk of the batch learning counterpart g∗ , argming∈HRbth(g) at a rate of

O(T−1/2), where Rbth is the regularized risk of batch learning defined in (4).

IV. INCORPORATING SPATIAL CORRELATIONS

To accommodate temporal changes of each pixel, we have the proposed discriminative algorithms

(S)ILK at our disposal, meanwhile it is also necessary to enforce spatial coherence between neighbor

pixels. In this section, we address this issue by explicitly enforcing the smoothness constraints under a

MAP-MRF framework (e.g. [49]), which leads to a revised algorithm (referred to as SILK-GC). More

precisely, this MAP-MRF is defined over a 2-D lattice graph as maximizing the conditional probability

p(y|x), where x and y denote the observed image and the label over the image field, respectively. This

can be realized as

− log p(y|x) ∝
∑
i

Ev(xi, yi) +
∑
i∼j

Ee(xi, xj , yi, yj). (25)

Here xi (yi) refers to the local observation (foreground/background label) at pixel i, i ∼ j denotes a

pair of neighbor pixels, and Ev (Ee) is the energy function of this pixel (pair of pixels). Clearly the

MAP-MRF problem can be equivalently formulated as finding a globally optimal assignment y∗ that

minimizes the sum of energy functions in RHS.

October 5, 2010 DRAFT

15

Moreover, a graph-cuts method [50, 51] is adopted here to solved this induced inference problem of

(25). Since graph-cuts is known to be able to solve this binary optimization problem exactly, in practice

SILK-GC is able to infer a globally optimal (or near-optimal) solution. To utilize graph-cuts, let the

source s represents the foreground object label, and the sink node t for the background label. Each pixel

xi has two edges ∈ E connecting to s and t respectively. The energies (capacities) of these two edges

are defined as
Ev(xi, yi = s) = (0, εh − ft(xi))+
Ev(xi, yi = t) = (0, ft(xi)− εl)+

(26)

where εh and εl are the upper and lower bounds of the score ft(xi), respectively. As a consequence,

the more likely pixel xi belongs to the foreground, the higher the value ft(xi) is, and the lower the

energy of Ev(xi, s). At the same time, the value of Ev(xi, t) will be higher since xi is unlikely to be

the background.

Meanwhile, given a pair of neighboring pixels xi and xj , its edge energy (or capacity), Ee(xi, xj , yi, yj),

follows the Ising model as:

Ee = δ(yi 6= yj)
[
λh −min(λh − λl, |xi − xj |)

]
, (27)

where δ(·) is the indicator function, and | · | is the L1-norm. Parameters λh = 0.2 and λl = 0.15 set the

upper and lower bounds of the discontinuity cost to encourage the boundary of the foreground masks along

object boundaries. This allows the edge energy of the pixels across boundary to be determined adaptively

by their color difference. In other words, the smaller the color difference is between neighboring pixels,

the higher the cost is for neighboring pixels taking different labels, and hence the higher the capacity

this corresponding edge should possess.

V. GPU IMPLEMENTATIONS

To ensure real-time analysis, both the SILK and SILK-GC approaches are designed to work with

programmable graphics hardware. Graphics Processing Units (GPUs) on modern graphics cards allow

developers to write their own computational kernels that are executed on multiple data chunks (vertices or

pixels) in parallel. Traditionally GPUs are dedicated to 3D graphics applications where the computational

kernels are used to calculate the transformation and lighting of each vertex (called vertex shaders), or to

compute the shading of each rasterized pixel (called pixel shaders). For general purpose applications, the

computation process is normally cast as a rendering process that involves one or more rendering passes.

Within each rendering pass, the following operations are sequentially performed: (1) represent the input

October 5, 2010 DRAFT

16

data as 2D or 3D arrays and load them into the video memory as textures; (2) load the algorithm into the

GPU as a pixel shader; (3) set either the screen or a pixel buffer in video memory as the rendering target;

and (4) execute the shader by rendering a image-sized rectangle. To be able to process video sequences

in real time, we carefully exploit the inherently concurrent structure of the proposed algorithms to work

efficiently with GPU processors.

A. Implementation of SILK on GPU

In our GPU implementation of the SILK algorithm, the support vectors and the corresponding coef-

ficients for different pixels are stored in a single 2D color texture, referred as the buffer texture. The

buffer texture is divided into ω tiles and each tile keeps one observation-coefficient pair for each pixel

in the image. To retain the most important support vectors, all observation-coefficient pairs are sorted

in descending order according to the absolute values of the coefficients. When the number of support

vectors is larger than ω, only the ones with higher coefficients are kept in the buffer texture.

Now, as a new frame t is presented, three major steps are preformed: score calculation, foreground

object segmentation, and buffer update. In the score calculation step, a pixel shader takes the new

observation and the existing buffer as two input textures, computes the function score ft(xt) for each of

the pixels, and stores the result into a new score texture. The score texture is then used as input of the

second pixel shader in the object segmentation step, which segments foreground objects through local

thresholding. Finally in the buffer update step, the coefficient αt for each pixel is evaluated using (17)

and is used to update the buffer texture.

B. Implementation of SILK-GC on GPU

The implementation of SILK-GC uses the same score calculation and buffer update steps as of the

SILK algorithm. To incorporate spatial correlations, a graph-cuts based optimization process is performed

instead during the second step. Here the graph-cuts is adapted from the parallel push-relabel algorithm [51,

52]. To summarize, it starts by initializing the excess of each node defined as the difference between

the total amount flowing in and out of this node. The local flow excess is then pushed toward the sink

and the residual graph is updated until all paths to the sink are saturated. Finally, excess that cannot be

moved to the sink is pushed backward to the source. After all nodes have zero excess, the residual graph

delivers the assignment as the minimum cuts.

In theory it takes O(|V |) push-relabel steps to compute the minimum cuts [50], while we empirically

find that a few push-relabel steps toward the sink together with a few backward steps toward the source

October 5, 2010 DRAFT

17

Drifting Jumping
0

0.05

0.1

0.15

0.2

0.25 MF

FD

KDE

MoG

SILK

ILK

Fig. 5: Comparisons of six background subtraction algorithms (a) on sequences of examples drawn from

stationary distributions of mixture of two Gaussians, where y-axis presents the cumulative mistakes, and

(b) on the drifting (left) and the jumping (right) scenarios, respectively, where y-axis gives the average

mistakes.

already produce near optimal assignments, by effectively removing false positives in background areas,

as well as eliminating false negatives in object areas. During the experiments, both forward and backward

push-relabel steps are fixed to 10.

In our graph-cuts implementation, the graph G is represented using two color textures. At pixel node

x, the first texture keeps the residual capacities from x to its four neighboring nodes in its four color

channels. The residual capacities from x to source s and sink t are kept in the red and green channels

of the second texture, while the blue and alpha channels of the second texture store the excess and

the label of node x, respectively. The graph is initialized using a pixel shader, which sets the initial

residual capacities to the capacities of the corresponding edges (calculated by (26) and (27)). Then each

push-relabel step is implemented using two rendering passes: the first pass computes the amount can be

pushed away from the current node, whereas the second pass updates the excess and the label of each

node. Once all push-relabel steps are completed, the final rendering pass yields a globally near-optimal

assignment.

October 5, 2010 DRAFT

18

VI. EXPERIMENTS

We conduct experiments on a variety of video sequence datasets. The results of the proposed algorithms

are compared to standard background subtraction methods including Adjacent Frame Difference (FD) [20],

Mean-Filter (MF) [20], as well as to the recent variant of mixture of Gaussians (MoG) using recursive

updates [25–27] 2 , KDE [29], and the method of Sheikh et al. [22] (referred to as Sheikh et al.)3.

Throughout the experiments, Gaussian kernels are used for the proposed approach, The buffer size ω is

set to 20 for the CPU implementation, and a larger buffer size of 50 is used for the GPU implementation,

since it does not change much of the runtime of our GPU implementation and at the same time gives

slightly better performance. The margin γ and the value of C are fixed to 1. A fixed parameter set is

adopted during the experiments for both (S)ILK and SILK-GC algorithms, including σ = 8 for the RBF

kernel, the decay factor τ = 0.95. Meanwhile, MF uses 30 past frames, while MoG utilizes a mixture

of two Gaussians (k = 2), and as suggested by the authors [25, 53], uses α = 1/T (T is the number of

frames) for controlling the speed of online update. The bandwidth of KDE method is set to 20. Following

the choice of Sheikh et al. [22], a fixed set of (hr, hd)=(16, 25) is used for its parameterized bandwidth

matrix H .

A. (S)ILK on Synthetic Sequences

We conduct controlled experiments to evaluate the performance of (S)ILK in three types of scenarios,

where two-dimensional synthetic sequences are constructed using a large quantity of background examples

and a relative small amount of foreground examples. In all of the three cases, a mixture of two Gaussians

is employed to generate the background examples, and similarly for foreground.

In the first scenario (presented in Figure 5 top panel), we focus on stationary background and foreground

distributions, and evaluate the robustness of (S)ILK as the separability decreases. The vertical axis shows

the number of mistakes occurred (averaged over 20 trials). Each position along the horizontal axis presents

one case of stationary distributions, consisting of 2000 two-dimensional sampled instances. Along the axis

a set of stationary distributions are arranged from left to right according to the decrease of separability

that ranges from separable cases to inseparable cases, achieved by relocating the means of the Gaussians.

Note that to maintain a separable case, all examples that would be misclassified by the Bayes optimal

classifier are dropped off. Here as the stationary background model is a mixture of Gaussians, algorithms

2We use the implementation of [25, 53], down-loadable from http://staff.science.uva.nl/˜zivkovic/Publications/CvBSLibGMM.zip.
3Downloaded from http://www.cs.cmu.edu/˜yaser/Background.zip

October 5, 2010 DRAFT

19

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

Tr
ue

 P
os

iti
ve

SILK
MoG (k=2)
KDE
MF
FD

FDMF

SILK

Frame 173

MoG (k=2)

Ground Truth KDE

FDMF

SILKFrame 1101

KDEMoG (k=2)

(a) (b) (c)

Fig. 6: (a) A comparison of five algorithms on one frame of the Rock sequence. FD fails for this task

due to the fast sliding speed of the rocks. Notice KDE and MoG miss the rocks in the red curve while

SILK still detects them. (b) ROC curve of five algorithms on rock video. (c) A comparison on one frame

of the Lights sequence when the lights are just switched off. The result of SILK and FD are shown to

adapt to this jumping situation faster than other algorithms.

such as MF and FD perform poorly by making frequent mistakes, MoG makes comparably less mistakes.

On the other hand, the three non-parametric algorithms – KDE, ILK and SILK – are able to capture the

mixture distribution and make least average cumulative mistakes.

Next we consider the scenarios of changing background distributions, where the examples are sampled

in a similar manner, only now they are drawn sequentially from a temporally drifting (and jumping)

distributions: In drifting scenario, the distribution drifts after a short time span (duration = 5 frames),

while in jumping scenario, the distribution jumps after a relative longer time span (duration = 50 frames).

We focus on the separable case. As clearly revealed from Figure 5 bottom panels, ILK and SILK are

good at dealing with these changing distribution scenarios, where SILK makes slightly more mistakes

than ILK, but both are superior to the remaining algorithms. We note that KDE empirically perform on

par with MoG on both situations.

October 5, 2010 DRAFT

20

B. SILK on Real Sequences

We further evaluate SILK on the three real scenarios presented in Figure 1. We show that SILK

works competitively against these widely used background subtraction methods. Here a same set of fixed

parameter values from the previous experiments are also employed.

Fig. 7: This figure presents, in each row, the (image, result) pair of applying the SILK algorithm on key

frames of the Traffic sequence.

The Rock video of Figure 1 (left) is taken from an ore mining site, where the ore rocks are falling

through a rejection chute. A grey-scale surveillance camera is mounted on top of the chute to monitor

the real-time processing, where statistical information is to be collected about the number and sizes of

the ore rocks passed by. As presented in the bottom-left panel, both the background pixel the foreground

(chute) pixel exhibit drifting behaviors, mostly due to the spread of the dust fog. Even for a human

observer, some ore rocks are very difficult to be distinguished from the background scene due to similar

appearance. Figure 6a displays the obtained results on the 173th frame, where SILK detects the ore

October 5, 2010 DRAFT

21

rocks (especially in the red curve area) as promptly as MF, with much less false positives. Obviously,

both KDE and MoG miss the several rocks on the top-right corner. FD does the worst, mostly due to the

fast sliding speed of the ore rocks passing through the chute. Figure 6b presents the ROC curves, where

overall SILK outperforms other methods.

The middle panels of Figure 1 presents the Lights video, an indoor video sequence where the lights

are switched off and back on, that exhibits a jumping distribution. In particular, SILK is shown to be

more adaptive to this jumping situation than most of the rest algorithms, as presented in Figure 6c for

frame 1101, where FPs are fixed to be close to 0.01. MF perform worst due to its slow adaption to the

switch of lights. MoG is also awkward to adapt to changes when comparing to SILK. This is because

the update formula of recursive MoG uses a pre-fixed weight parameter for new Gaussians, which might

align well with the temporal dynamics at certain situations but fail at others. In contrast, as shown in

(20), the weight parameter αi of our algorithms is made adaptive to a new example, using (17) — a

closed-form solution to the optimization problem of (11).

The right panels of Figure 1 present the Traffic sequence taken by a camera that shakes irregularly.

This results in a switched multi-modal distributions as demonstrated in the bottom-right panel. However,

since the shaking motion is neither periodical nor with a constant strength, the sequence turns out to be

very challenging for any background subtraction algorithm. As visually presented in Figure 7, SILK still

manages to obtain satisfactory results on these key frames.

C. SILK/SILK-GC on Real Sequences

We further evaluate the proposed SILK and SILK-GC on five standard video sequences (displayed in

Figure 8) below:

Beach:4 Multiple foreground people walk through a background beach of moving waves.

Trees:5 This widely used sequence contains a person walking in front of a waving tree [20].

Lights:6 This is part of the indoor video sequence of Figure 1 where the lights are turned off and back

on during the capture.

Jug:7 The background of this scene is rippling water and the foreground is a floating jug [21].

4Downloaded from http://www.wisdom.weizmann.ac.il/˜vision/Behavior Correlation.html
5Downloaded from http://research.microsoft.com/˜jckrumm/wallf lower/testimages.htm
6Downloaded from http://http://ttic.uchicago.edu/˜licheng/data/lights data.avi
7Downloaded from http://www.cs.bu.edu/groups/ivc/data.php

October 5, 2010 DRAFT

22

Fig. 8: Five datasets: (from left to right) Beach, Trees, Lights, Jug, and Railway. Top row: first frame in

the sequence; Middle row: one key frame; Bottom row: hand-labeled foreground mask.

Railway:8 A strong breeze causes the camera to jitter [22], which leads to a multi-modal switching

background distribution.

In addition to MoG, here the performance of the proposed algorithms is also compared to Sheikh et

al. [22].

Figure 9 provides a visual comparison of recursive MoG, Sheikh et al., SILK and SILK-GC, evaluated

on these datasets. Overall recursive MoG gives inferior results as it tends to produce noisy output. While

SILK adapts quickly to illumination changes e.g. for the Lights dataset, it nevertheless yields label noises.

On the other hand, SILK-GC produces much smoothed segmentation results while still responding quickly

to illumination changes. We notice that Sheikh et al. also produce very competitive foreground segments,

while in term of preserving the shape or silhouette details, it performs less successful when comparing

to SILK-GC. These results empirically support that the proposed approach is capable of dealing with the

challenging situations such as illumination changes, dynamic water backgrounds, and camera jitters. In

addition, in Figure 11 we visually compare our result to two approaches on the Jug sequence, namely

the autoregressive method of [21] and the method of [18] that exploits spatial neighbors, as both report

only visual results. Our method is also shown to provide visually competitive results.

Both the visual comparison and the quantitative analysis (the ROC curves reported on these testbeds

8Downloaded from http://www.cs.cmu.edu/˜yaser/new backgroun dsubtraction.htm

October 5, 2010 DRAFT

23

Fig. 9: First row: Results of MoG. Second row: Result of Sheikh et al. [22]. Third row: Results of

SILK. Fourth row: Results of SILK-GC, and the results with foreground masks in Fifth row. Compared

with SILK, SILK-GC effectively removes noises, and at the same time preserves the detailed shapes of

foreground objects, e.g. the pedestrian in the Railway dataset.

in Figure 10) suggest that our approach perform better or at least comparable to these state-of-the-arts.

Moreover, unlike existing approaches, our result is obtained without resorting to any preamble pure

background images for model training and initialization. We also would like to emphasize that these

state-of-the-art methods including Sheikh et al. [22] (11 fps), [21] (0.125 fps), and [18] (no report on

fps) are non-realtime methods.

Finally, a simple speed test is conducted to evaluate empirically how the speed of the proposed algorithm

scales up with respect to image size, and the influence of different buffer sizes on the processing speed.

The computer used here is a Lenovo ThinkStation W500 Laptop with Intel Core2 Duo CPU and ATI

Mobility FireGL V5700 GPU. As demonstrated in Figure 12a for SILK and Figure 12b for SILK-GC,

the running speed of the proposed algorithms decrease gracefully with respect to the incensement of

October 5, 2010 DRAFT

24

0 0.05 0.1 0.15 0.2 0.25

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Beach

Sheikh et al
MoG
SILK
SILK−GC

0 0.05 0.1 0.15 0.2 0.25 0.3
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Trees

Sheikh et al
MoG
SILK
SILK−GC

0 0.005 0.01 0.015 0.02
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Lights

Sheikh et al
MoG
SILK
SILK−GC

0 0.1 0.2 0.3 0.4 0.5 0.6
0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Jug

Sheikh et al
MoG
SILK
SILK−GC

0 0.04 0.08 0.12 0.16 0.2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Railway

Sheikh et al
MoG
SILK
SILK−GC

Fig. 10: ROC curves of the proposed SILK vs. SILK-GC algorithms on the Trees, Lights, Jug, and Railway datasets, respectively,

from top-left to bottom-right in scanline order.

Fig. 11: Comparisons to other recent offline methods on the Jug dataset. From left to right: test frame, result from

Figure 5 of [21], result from Figure 4 of [18], our result, and ground truth from Figure 4 of [18].

image sizes. Meanwhile, it is also shown that increasing the buffer size from 20 to 50 would result in an

increase of runtime for SILK by almost 50%. Meanwhile, the runtime increment for SILK-GC is much

less dramatic, since the time for graph-cut calculation is independent of the buffer size.

VII. OUTLOOK AND DISCUSSION

In this paper, we explicitly connect the problem of background subtraction to existing work in on-

line learning and novelty detection. We also propose a class of on-line discriminative algorithms using

kernels to specifically address this problem. Our GPU implementation executes at 170 FPS for SILK and

75 FPS for for SILK-GC, for a typical video sequence of 320×240 resolution. Experiments on video

datasets of a variety of scenarios suggest that the results are comparable to the the state-of-the-arts off-line

methods [18, 20–22]. As of future work, we plan to extend our algorithm to other interesting scenarios

such as segmenting foreground objects under water, in the presence of fog or during the night.

October 5, 2010 DRAFT

25

160x120 320x240 640x480
10

100

1000

10000

Image Resolution

P
ro

ce
ss

in
g

S
pe

ed
 (

F
P

S
)

SILK

Buffer size = 20
Buffer size = 50

(a) SILK

160x120 320x240 640x480
10

1,00

1,000

Image Resolution

P
ro

ce
ss

in
g

S
pe

ed
 (

F
P

S
)

Buffer size = 20
Buffer size = 50

(b) SILK-GC

Fig. 12: This figure demonstrates the scalability of the proposed SILK and SILK-GC algorithms with respect to the varying

image size as well as the buffer size.

ACKNOWLEDGMENT

The authors thank Mr. G. Dalley, Dr. J. Krumm, Dr. Y. Sheikh, Dr. S. Sclaroff and and Dr. Z. Zivkovi

for sharing their datasets and (or) codes.

REFERENCES

[1] C. Bregler and J. Malik, “Tracking people with twists and exponential maps,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE Computer Society, 1998, p. 8.

[2] M. Isard and A. Blake, “Condensation – conditional density propagation for visual tracking,” International Journal of

Computer Vision, vol. 29, pp. 5–28, 1998.

[3] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-sensitive hashing,” in IEEE International

Conference on Computer Vision. Washington, DC, USA: IEEE Computer Society, 2003, p. 750.

[4] A. Agarwal and B. Triggs, “Learning to track 3D human motion from silhouettes,” in International conference on Machine

learning. New York, NY, USA: ACM, 2004, p. 2.

[5] D. M. Gavrila, “The visual analysis of human movement: a survey,” Comput. Vis. Image Underst., vol. 73, no. 1, pp.

82–98, 1999.

[6] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based human motion capture and analysis,”

Comput. Vis. Image Underst., vol. 104, no. 2, pp. 90–126, 2006.

[7] R. Poppe, “Vision-based human motion analysis: An overview,” Comput. Vis. Image Underst., vol. 108, no. 1-2, pp. 4–18,

2007.

[8] Q. Shi, L. Wang, L. Cheng, and A. J. Smola, “Discriminative human action segmentation and recognition using semi-markov

model,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[9] L. Ren, G. Shakhnarovich, J. K. Hodgins, H. Pfister, and P. Viola, “Learning silhouette features for control of human

motion,” ACM Trans. Graph., vol. 24, no. 4, pp. 1303–1331, 2005.

October 5, 2010 DRAFT

26

[10] L. Cheng, S. Wang, D. Schuurmans, T. Caelli, and S. V. N. Vishwanathan, “An online discriminative approach to background

subtraction,” in IEEE international conference on advanced video and signal based surveillance (AVSS), 2006.

[11] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus gradient descent for linear predictors,” Information and

Computation, vol. 132, no. 1, pp. 1–64, January 1997.

[12] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, “Estimating the support of a high-dimensional

distribution,” Neural Computation, vol. 13, pp. 1443–1471, 2001.

[13] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the generalization ability of on-line learning algorithms,” IEEE Trans.

Information Theory, vol. 50, no. 9, pp. 2050–2057, September 2004.

[14] E. Rivlin, M. Rudzsky, R. Goldenberg, U. Bogomolov, and S. Lepchev, “A real-time system for classification of moving

objects,” in International Conference on Pattern Recognition (ICPR), 2002.

[15] A. Griesser, S. D. Roeck, A. Neubeck, and L. V. Gool, “GPU-based foreground-background segmentation using an extended

colinearity criterion,” in Vision, Modeling, and Visualization, 2005.

[16] J. Migdal and W. Grimson, “Background subtraction using markov thresholds,” in IEEE Workshop on Motion and Video

Computing, 2005, pp. 58–65.

[17] W. Nam and J. Han, “Motion-based background modeling for foreground segmentation,” in ACM international workshop

on Video surveillance and sensor networks, 2006.

[18] G. Dalley, J. Migdal, and W. Grimson, “Background subtraction for temporally irregular dynamic textures,” in IEEE

Workshop on Application of Computer Vision, 2008.

[19] V. Mahadevan and N. Vasconcelos, “Background subtraction in highly dynamic scenes,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2008.

[20] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles and practice of background maintenance,” in

IEEE International Conference on Computer Vision, 1999.

[21] J. Zhong and S. Sclaroff, “Segmenting foreground objects from a dynamic textured background via a robust Kalman filter,”

in IEEE International Conference on Computer Vision, 2003.

[22] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for object detection,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 27, no. 11, pp. 1778–1792, 2005.

[23] C. Wren, A. Azarbayejani, T. Darrell, and A. Pantland, “Pfinder:real-time tracking of the human body,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780–785, 1997.

[24] N. Friedman and S. Russell, “Image segmentation in video sequences: A probabilistic approach,” in Proc. Thirteenth Conf.

on Uncertainty in Artificial Intelligence, 1997.

[25] Z. Zivkovic and F. Heijden, “Recursive unsupervised learning of finite mixture models,” IEEE T. Pattern Analysis and

Machine Intelligence, vol. 26, no. 5, 2004.

[26] D. Lee, “Effective gaussian mixture learning for video background subtraction,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 27, no. 5, pp. 827–832, 2005.

[27] C. Stauffer and W. Grimson, “Learning patterns of activity using real-time tracking,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 22, pp. 747–757, 2000.

[28] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background modeling and subtraction of dynamic scenes,” in IEEE

International Conference on Computer Vision, 2003.

[29] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for background subtraction,” in European Conference

on Computer Vision, 2000.

October 5, 2010 DRAFT

27

[30] R. Duda and P. Hart, Pattern classification and scene analysis. New York: Wiley, 1973.

[31] A. Mittal and N. Paragios, “Motion-based background subtraction using adaptive kernel density estimation,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2004.

[32] B. Han, D. Comaniciu, , Y. Zhu, and L. Davis, “Incremental density approximation and kernel-based bayesian filtering for

object tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2004.

[33] H. Lin, T. Liu, and J. Chuang, “A probabilistic svm approach for background scene initialization,” in International

Conference on Image Processing, 2002, pp. 893–896.

[34] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov, “Bilayer segmentation of live video,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2006.

[35] T. Parag, A. Elgammal, and A. Mittal, “A framework for feature selection for background subtraction,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2006.

[36] Z. Hao, W. Wen, Z. Liu, and X. Yang, “Rea-ttime foreground background segmentation using adaptive support vector

machine algorithm,” in International Conference on Artificial Neural Networks (ICANN), 2007.

[37] A. Ulges and T. Breuel, “A local discriminative model for background subtraction,” in Symposium of the German Association

for Pattern Recognition (DAGM), 2008.

[38] L. Cheng, S. V. N. Vishwanathan, D. Schuurmans, S. Wang, and T. Caelli, “Implicit online learning with kernels,” in NIPS.

Cambridge MA: MIT Press, 2006.

[39] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[40] K. Crammer and Y. Singer, “On the algorithmic implementation of multiclass kernel-based vector machines,” J. Mach.

Learn. Res., vol. 2, pp. 265–292, 2001.

[41] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond.

Cambridge, MA: MIT Press, 2002.

[42] J. Kivinen, A. Smola, and R. Williamson, “Online learning with kernels,” IEEE Trans. on Signal Processing, vol. 52, no. 8,

pp. 2165–2176, 2004.

[43] N. Schraudolph, “Fast curvature matrix-vector products for second-order gradient descent,” Neural Comput., vol. 14, no. 7,

pp. 1723–1738, 2002.

[44] J. Kivinen, M. Warmuth, and B. Hassibi, “The p-norm generalization of the lms algorithm for adaptive control,” IEEE

Trans. Signal Processing, vol. 54, no. 5, pp. 1782–1793, 2006.

[45] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The forgetron: A kernel-based perceptron on a budget,” SIAM J. Comput.,

vol. 37, no. 5, pp. 1342–1372, 2008.

[46] K. Crammer, J. Kandola, and Y. Singer, “Online classification on a budget,” in Neural Information Processing Systems.

MIT Press, 2003.

[47] J. Weston, A. Bordes, and L. Bottou, “Online (and offline) on an even tighter budget,” in International Workshop on

Artificial Intelligence and Statistics (AISTAT). Society for Artificial Intelligence and Statistics, 2005.

[48] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Tracking the best hyperplane with a simple budget perceptron,” Mach.

Learn., vol. 69, no. 2-3, pp. 143–167, 2007.

[49] “Exact maximum a posteriori estimation for binary images,” Journal of the Royal Statistical Society Series B, vol. 51,

no. 2, pp. 271–279, 1989.

[50] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE T. Pattern Analysis

October 5, 2010 DRAFT

28

and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[51] N. Dixit, R. Keriven, and N. Paragios, “GPU-cuts: Combinatorial optimisation, graphic processing units and adaptive object

extraction,” CERTIS, Ecole Nationale des Ponts et Chaussees, Tech. Rep., 2005.

[52] A. Goldberg and R. Tarjan, “A new approach to the maximum flow problem,” in ACM Symposium on Theory of Computing

(STOC), 1986.

[53] Z.Zivkovic and F. der Heijden, “Efficient adaptive density estimation per image pixel for the task of background subtraction,”

Pattern Recognition Letters, vol. 27, no. 7, pp. 773–780, 2006.

APPENDIX

Proof of Lemma 1
Proof: (sketch) To prove (24), it is sufficient to show

LHS

≤

∣∣∣∣∣∣
t−1∑
i=1

(1− τ)t−iα(i)
i −

ω∑
j=1,i∈N̂(j)

(1− τ)t−iα(i)
i

∣∣∣∣∣∣X2

≤
t−ω∑
i=1

(1− τ)t−i(1− τ)CX2

= (1− τ)ω+1CX2

(
(1− τ)t−ω−1 + (1− τ)t−ω−2 + · · ·+ (1− τ)0

)
≤ RHS.

The Convergence Theorem

Theorem 2: Let (xt, yt)
T
t=1 be an arbitrary sequence of examples such that k (xt, xt) ≤ X2 holds

for any t. Furthermore, assume that the loss function L(xt, yt, f) is Lipschitz continuous in f(xt).

Let (f1, . . . , fT) be the sequence of hypothesis produced by (S)ILK with learning rate ηt = ηt−1/2,∑T
t=1R(xt, yt, ft) the cumulative risk of this sequence, and Rbth(g) the batch regularized risk of (g, . . . , g),

for any g ∈ H. Then

1

T

T∑
t=1

R(xt, yt, ft) ≤ Rbth(g) + aT−1/2 + bT−1, (28)

where U = CXλ−1 and b = U2(2η)−1. For ILK a = 4ηC2X2 + 2U2η−1, while for SILK a =

4(1− τ)(1 + 2/τ)C2X2 + 2U2(1− τ)−1.

In particular, if

g∗ = argmin
g∈H

Rbth(g),

October 5, 2010 DRAFT

29

we obtain

1

T

T∑
t=1

R(xt, yt, ft) ≤ Rbth(g
∗) +O(T−1/2).

We omitted the detailed proof as it essentially follows that of Theorem 4 in [42]. To further understand

this theorem, we first notice that the risk function Rbth(g) has a global minimizer as being a convex

function of g. If risk function converges as 1
T

∑T
t=1R(xt, yt, ft)→ Rbth(g

∗), we would expect to have

the minimizer f → g∗. In addition, the minimum cumulative risk of batch learning Rbth(g
∗) is itself an

upper-bound of the minimum expected risk Rbth(f
∗) , minf E(x,y)∼P (x,y)Rbth(x, y, f) [42]. As stated

in [39] for the structured risk minimization framework, as the sample size T grows (T →∞), we obtain

g∗ → f∗ in probability. This subsequently guarantees the convergence of the average regularized risk of

ILK to R(f∗).

October 5, 2010 DRAFT

