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Abstract. The problem of learning linear-discriminant concepts can be solved by various mistake-driven update

procedures, including th&/innowfamily of algorithms and the well-knowRerceptronalgorithm. In this paper

we define the general class of “quasi-additive” algorithms, which includes Perceptron and Winnow as special
cases. We give a single proof of convergence that covers a broad subset of algorithms in this class, including
both Perceptron and Winnow, but also many new algorithms. Our proof hinges on analyzing a e@stice

of progressconstruction that gives insight as to when and how such algorithms converge.

Our measure of progress construction also permits us to obtain good mistake bounds for individual algorithms.
We apply our unified analysis to new algorithms as well as existing algorithms. When applied to known algo-
rithms, our method “automatically” produces close variants of existing proofs (recovering similar bounds)—thus
showing that, in a certain sense, these seemingly diverse results are fundamentally isomorphic. However, we also
demonstrate that the unifying principles are more broadly applicable, and analyze a new class of algorithms that
smoothly interpolate between the additive-update behavior of Perceptron and the multiplicative-update behavior
of Winnow.
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1. Introduction

Many iterative mistake-driven algorithms have been proposed for learning linear-
discriminant concepts from examples, including the famd&sceptron algorithm
(Rosenblatt, 1962; Minsky & Papert, 1969; Duda & Hart, 1973) and LittlestoNaimow
family of algorithms (Littlestone, 1988, 1989, 1991; Kivinen, Warmuth & Auer, 1997).
This is an important, well-studied, collection of algorithms with interesting properties and
practical applications (Blum, 1997; Dagan, Karov & Roth, 1997; Golding & Roth, 1999;
Khardon, Roth & Valiant, 1999). In this paper we define a general class of algorithms and
provide a unified theoretical analysis which covers not only Perceptron and Winnow, but
also many new algorithms.

All of the algorithms we consider represent linear-discriminant concepts by maintaining
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a current weight vectow € R" and classifying instancesc R" into classes labeledt1
according to the rule — sign(w - x).! It is most natural to think of these algorithms as
working in an on-line setting where learning occurs in a sequence of trials. In tial
instancex; is observed. The algorithm makes the prediction 6igrx; ) and then observes
thelabel y. (We speak of a paiix;, y;) as arexample) The algorithms we consider update
the current weight vectow if and only if they make a mistake (that is, if the prediction
does not match the label). The various known algorithms of this type differ in the specific
policies they use to update the weight vector. For example, Perceptron uadditive
update policy, whereas the Winnow algorithms madtiplicativeupdates.

A striking fact about these algorithms is that teeyvergethat is, they make a finite num-
ber of mistakes when given a sequence of examples labeled by a target linear-discriminant
concept—provided there is a gap between the positive and negative examples (i.e., there ex-
ists two parallel separating hyper-planes such that no example in the sequence falls between
them). This is true even for infinite sequences of examples.

However, beyond mere convergence, the classical proofs of Perceptron convergence
(for instance (Minsky & Papert, 1969; Duda & Hart, 1973)) and Littlestone’s proofs for
members of the Winnow family (Littlestone, 1988, 1989) also probiniendn the number
of mistakes made before a perfect classifier is found for the sequence. In all cases, this
bound depends on the width of the gap and is independent of the number of examples in
the sequence. Interestingly, these proofs all have the same overall structure: one postulates
a function of the weight vector, which we callnaeasure of progres&nd proves that it
(eventually) makes progress towards a solution after each mistake. However, aside from
this broad similarity, the proofs seem quite distinct. Moreover, since the various measures
of progress seem to have been discovered on a case-by-case basis, these proofs do not seem
to help very much in identifying or analyzing new algorithms.

The first contribution of this paper, presented in Section 2, is a simple unifying framework
for expressing algorithms that includes both Perceptron and Winnow as special cases. We
accomplish this by expressing the Winnow algorithms in a simpbesi-additiveform that
makes clear how fundamentally similar they are to the Perceptron procedure. This leads
us to define a general class of algorithms which includes both Perceptron and Winnow as
special cases, but also includes new algorithms that have not been previously studied.

One of the central contributions of this paper is the introduction of a general approach
for understanding and constructing measures of progress for analyzing quasi-additive algo-
rithms. We outline the motivating ideas for our approach in Section 3. As will be apparent
there, our basic method can be completed using one of several slightly different elaborations.
A particularly straightforward version is used in Section 4 to prove a general convergence
theorem for a large class of quasi-additive algorithms. Specifically, we characterize a gen-
eral class of quasi-additive algorithms (including known ones) that converge under the stated
conditions. This result, however, has the drawback that it does not give strong bounds.

In Section 5 we discuss a second version of our basic strategy. This leads to more
refined measures of progress, usually capable of generating much tighter mistake bounds
for individual algorithms. Interestingly, for both Perceptron and Winnow our method gives
the same or very similar results to existing analyses, and our measure of progress reduces to
variants of the traditional measures (Section 6). For example, for Perceptron, our method



GENERAL CONVERGENCE RESULTS FOR LINEAR DISCRIMINANT UPDATES 175

yields the same measure of progress used in one of the most famous proofs of Perceptron
convergence (Papert, 1961; Minsky & Papert, 1969). When applied to the Winnow family,
our construction leads to almost exactly the same measures of progress used by Littlestone
in (1989). Thus, we show that, in a certain sense, the tacit principles by which these previous
measures of progress were developed are the same, and are well captured by our generic
method.

Then in Section 7 we apply our method to analyze a new family of quasi-additive learn-
ing algorithms that has not been previously investigated. We call these algoptimmism
Perceptron algorithmsTheir convergence is assured by the results in Section 4. In prov-
ing specific mistake bounds for this family we reveal two interesting facts. First, as the
parametep is varied, one can “interpolate” between the additive Perceptron algorithm and
multiplicative Winnow algorithms in a flexible and principled fashion. Second, bounds for
these algorithms can be given that depend on particular productmpfgate normgsee
Section 7) varying with the parametpr offering the possibility that the new algorithms
may be superior to both Perceptron and Winnow in certain contexts.

Section 8 contains a short discussion of some other possible measures of progress and
how they relate to ours. We close, in Sections 9-11, with a discussion of other related work,
some speculation about future work, and our conclusions.

2. Quasi-additive algorithms

An on-line mistake-driven algorithm is determined byutsdaterule; i.e., how it revises
w when it makes a mistake. Perceptron is very simple: it just adds some multiple, with a
suitable sign, of the vector on which a mistake was made.

Perceptron(w, (X, y)):
If sign(w - X) # y then
WI=W + ayx

Here the parameteris a positive constant.

Littlestone has analyzed a humber of other algorithms for learning linear-discriminant
concepts. These algorithms are closely related to one another; we refer to them collectively
as theWinnowfamily. On the surface, these might seem very different from Perceptron.
But as we now show, there is a fundamental similarity. Consider the balanced version of
Winnow described in Littlestone (1989, 1995). As it is normally presented, it maintains
two weight vectorsw™ andw—, and updates each separately:

BalancedWinnoww™, w™, (X, y)):
If sign(w* - x —w~ - X) # ythen
If y =+1 then, for alli,

wh =% wr;  wi=p%w
Else ify = —1 then, for alli,
w =5 w’ wT = w

(Herep is a parameter between 0 and 1.) The key observation is that this is equivalent to a
procedure that simply keeps track of the scaled sum of the mistake vectors, as Perceptron
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does (with the scale factar = log(1/8)), but then computes the final weight vector as a
function of this sum:f (z) = & —e % (= 2 sinh(z)).? Thus we can re-express the algorithm
as follows:

BalancedWinnoww, z, (X, y)):
If sign(w - X) # y then
=7+ (Iog%)yx
w:=2sinh(z) (i.e.,w; = 2sinhz) for alli)®

Thus, Balanced Winnow is just like Perceptron with the exception that it classifies examples
using a transformed version of the sum-of-mistakes vector, using the componentwise trans-
formation f (z) = 2sinh(z). This motivates a natural class of “generalized” Perceptron
algorithms. The idea is to distinguish the cumulative sum of mistake vecfians the final

weight vectom that we actually use to classify examples. The latter will be a transformed
version of the former, based on some transformation fundtiapplied componentwise to

z; different functionsf lead to different algorithms. We call this general family of algo-
rithmsquasi-additive as they essentially involve an additive update (i.ez) &t their core.

The quasi-additive algorith®A( f) constructed from functiod is:

QA(f) (w,z (x,¥)):
If sign(w - x) # y then
Z:=7+ ayx
w:="f(2) (i.e.,wj = f(z)foralli)

We assume the initial value afis 0 unless specified otherwise.

We can express the other algorithms in the Winnow family as members of the quasi-
additive family. For example, the algorithm call&eighted Majorityin Littlestone &
Warmuth (1989) and Littlestone (1989) is equivafentanother quasi-additive procedure
defined by choosing (2) = € and settinga = 1 log 3.

Finally, the Fixed Thresholdvariant of the Winnow algorithm (Littlestone, 1988;
Littlestone, 1989) can also be expressed in quasi-additive form, if we make one minor
extension. In general, we can consider quasi-additive functions that use a different function
f; for each component. The Fixed Threshold algorithm can be expressedfusing= €%
foralli < n, but adding am + 1'st component such thédt,; is a constant function (es-
sentially, the negative of the threshold value). Nevertheless, in the current paper we are
primarily concerned with algorithms defined using a single funcfion

The family of quasi-additive learning algorithms extends well beyond the known algo-
rithms; in fact we obtaisomeprocedure for any choice df. Clearly we should not expect
every f to yield a reasonable algorithm. The only “reasonableness” condition we mention
now is thatf be a continuous monotonically increasing function defined on dk ahd
not everywhere negative. We assume this in the remainder of the paper. We show in the
Section 4 that a few simple additional (and broad) condition$ enffice to guarantegon-
vergencdor QA( f). This raises the hope that we might be able to discover new algorithms
that actually perform better than Perceptron and Winnow in some cases. Before presenting
this convergence result, however, we first give an overview of our general technique for
analyzing quasi-additive algorithms.
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3. Measures of progress

The main contribution of this paper is to present a particular approach to analyzing quasi-
additive algorithms. In this section we present the key ideas, deferring various details and
examples to later sections.

Throughout this pape!S € R" x {£1} denotes a fixed (but possibly infinite) set of
labeledtiraining exampleswhich are presented to the learning algorithm in some order. By
assumption, the examples are linearly separable;ddR" be a fixedtarget vectorthat is,

a vector such that for alk, y) € Swe have sigriu - x) = y.

Mistake bounds for quasi-additive algorithms usually depend on a quantity we call the

gap. In this paper, we define the gap as a function of ho#md S:

Sus= inf u-(yx).
UST xyes ()

(We sometimes omit the subscripts and write jiist the context is clear.) Roughly
speaking, the gap bounds how close the examples are to the separating hyper-plane defined
by u. Generally, a (noise-free) convergence resulingtake boundfor a quasi-additive
algorithm will assume there is some lower bound on the size of the gap over the training
setS.

Our central claim is that quasi-additive algorithms can be (and generally have been, even
if this was not explicit) analyzed by examining the relationship between the dot product
u - z and a specific functio® (z) defined below. We also introduce an important auxiliary
function Hy (2) that will be helpful in relating the two.

First, the significance af - z is straightforward and indeed is largely conventional within
existing proofs. Consider how- z changes when we make a single update by adding
a vectora yx for some exampléx, y) € S: We have

Auyz=U-Zpew—U-2Z
=Uu- (Znew_ Z)
= u- (ayx)
> aau,S

using the definition of the gap together with the positivityaofThus,u - z grows steadily
with each update ta, and afterm updates we must hawe- z > m aé, s. The simplicity
of this argument is perhaps the key consequence of the additive nature of quasi-additive
algorithms.
The remainder of our general analysis strategy is to find some scalar fuhktimnsuch
that for allu: Hy(z) > u -z for all z; and H,(2) eventually grows more slowly than- z
(by an amount bounded away from zero) as we continue to make mistakes. Supposing we
can do this, we can then define a plausible measure of progress as

M@ =H(@ —u-z

(We generally suppress the possible dependenté afid M uponu in the notation.) On
one handM is non-negative by the first assumption. On the other hand, after sufficiently
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many mistakes the second term must increase faster than the first, showiiv) waatld
eventually become negative. This contradiction shows that there must be a finite limit to
the number of updates (mistakes) our algorithm can make.

The challenge, then, is to find a suitalte We do so by introducing another (and in
some sense more fundamental) funct®as follows. Letf be the transformation function
defining our quasi-additive algorithm. L&t be that point such thaf (ty) = 0; lettg
be —oco if no such point exists. (Recall thdtis monotonically increasing, 4gis unique.)

We then defing to be a particular integral function df:

gx) = f(s)ds

to

for all x. (All our later results will include sufficient restrictions to ensure thaixists.)
Finally, we let

G2 =) d@). €Y
i=1

(Note thatG(z) > 0 since, by constructiorg is a positive function.) Now consider any
function H that is a monotonic rescaling &: i.e., such that there exists a monotonically
increasing scalar functiog (possibly parameterized hy) such that

H@) = ¥ (G(2).

We restrict attention to increasing differentialglethat validate our first desired constraint
on H; that is, we consider only that preserve the inequality(G(z)) > u - z for all z.
(As we show in later sections, there are various automatic rules for finding/sdich

We now propose that this construction Idf yields a plausible function to use in our
measure of progress. To see this, recall that the main issue is ensurittyhatoes not
grow too fast as we update But consider how such ad would change as we update
at a mistake, by adding yx. To a first-order approximation we have

Any ~ VH(2) - (Znew — 2)
= ¥'(G(2)f(2) - (ayx)
= ayy' (G(2)w-x
<0.

Here VH(z) denotes the gradient dfi atz. The second step uses the chain rule, the
definition of g as an integral off (sog’s derivative isf), and the fact that is updated
simply by addinga yx. The penultimate step uses the definition of the quasi-additive rule
QA(f), i.e., thatf(z) is the current weight vector. The final step uses the assumption
that is an increasing function (so its derivative is positive) and, most critically, the fact
thata yx is a vector on which anistakehas just been made. This impliggw - x) < O (for
otherwise, the prediction usingwould not have been mistaken).



GENERAL CONVERGENCE RESULTS FOR LINEAR DISCRIMINANT UPDATES 179

(v: Hw)=H(@)}

Figure L A two dimensional depiction of the surfagé = {v : H(v) = H(2)} and its tangent plane at

Therefore, at least to a first-order approximatidh,decreasesfter an update. This
motivates our interest in considering functiadsthat depend oz only throughG in this
manner. It will also be the only use we ever make of the mistake-driven nature of the
algorithms.

A geometric intuition might be helpful to further understand this constructiorHfor
For anyz, consider the level surface passing throagtefined byH, = {v: H(v) = H(2)},
which is depicted for a simple two dimensional case in figure 1. The fun@i@nconvex
(since f is increasing and thug is convex) andy is increasing, thereforel (zZ) < H(2)
for all Z' in the interior of the region bounded By,. The key property oH is that the
transformed weight vectav = f(z) (componentwise) inormalto the surfacé<, atz, and
hence determines the tangent plangftaatz, {v : (v — z) - w = 0}. When we move away
from z in the directionayx (whereayx is an example on which we make a mistake), we are
constrained to move on one side of this plane—in patrticular, the side corresponding to the
interior of the region bounded bj{,. So, at least to a first-order approximati¢th,does
not increase.

In summary, we have (or will have, once we have shown how to chgoss we do in
later sections) given a generic recipe for deriving measures of progress that can plausibly
lead to mistake bounds for quasi-additive algorithms. In the past, constructing measures of
progress has (apparently) required considerable ingenuity.

Constructing a measure of progress, however, is only half a mistake bound analysis; one
must also analyze the chosehrigorously to see how fast it really does grow relative to
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u - z. The remaining issue is to account for the curvaturélofTo be complete, we will
have to analyze

Ay = VH@) - (Znew — 2) + R(Znew 2) )

whereR(Znew 2) ZH (Znew) — H(2) — VH(2) - (znew — 2) is a residual term that accounts
for the high order change due to the curvature-of We will be required to prove that
this growth is (eventually) bounded by a sufficiently small quantity at every update. In this
paper we demonstrate a few standard techniques that help in doing this, notably analyses
which study thesecondderivative ofH more carefully. Beyond this, however, we do not
have any especially powerful or unifying theory to solve this second stage of the analysis,
and so considerable further work remains.

In the next section we give a concrete application of the ideas just discussed, showing
how they appear and are used in practice. Specifically, we show that these ideas lead
straightforwardly to a very broad convergence result for quasi-additive algorithms.

4. A general convergence theorem

In this section we focus on giving conditions under which algorithms make a bounded
number of mistakes, but we do not pay close attention to the size of the bound. The
particular notion of convergence we use, formalized in the following theorem, states that
the number of mistakes made on the training Setepends only on the gap (suitably
normalized by the size of the target vector), and on the size of the vect8rérimparticular,

when the theorem applies, the bound does not depend on the cardindity of

Notation Recall that, fok € R™, ||x||x denotes th&-norm ofx; i.e., [|X[lk = (31, [xi [OVX.
We also usé{x||.c = max |x;|, and let|| S||x denote sup. s ||X]lk.

Theorem 4.1. Suppose f is monotonically increasjidas a continuous first derivatiye
is odd(i.e, f(—z) = —f(2) forze R), and

. f'(v)
lim su =cC
Z_’°°0§u<pz f(2)

for some finite ¢ 0.

Then there exist functionsgspa < oo and g g > 0 such thatQA(f), when run with
parameter a= as g, makes at most g1y » mistakes when trained on any set of examples S
such that| S| = B is finite ands, s > 0 for someu.

If c = O then there is a mistake bound; @, for any value of the parameter a.

Theorem 4.2. The same result holds if we replace the oddness condition on f by the
condition thatlim,_, _, Z2f(2) = 0, add the condition thatt > 0, and redefine c as

) f'(v)
= | .
=T
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Proof: We prove both results together, because the differences are minor. As shorthand,
we refer to the conditions of Theorems 4.1 and 4.2 respectively as Cases 1 and 2. The
proof follows the pattern of Section 3, and we continue to use the notation defined therein.
Throughout this proof, fix an arbitrary target vector

First note that the condition lign, _, Z2f (z) = 0 from Case 2 can be used to establish
the existence of the functiamintroduced in Section 3 (i.e., under these conditions one can
show thath:_oo f (s)dsexists for allx). A second consequence of this condition, together
with the monotonicity off, is that in Case 2 we have(x) > 0 for all x. In Case 1g is
always well defined (and in fag(x) = fox f (s)ds, becausef (0) = 0) and is an even
function. We letg-? denote the inverse function gf in Case 1, we take the inverse of
the restriction ofg to R* (i.e., the non-negative reals). It is easy to verify that, in both
casesg~? is well defined orR™, is increasing, and is continuously differentiable except
possibly at 0.

We consider the functioB(z) = Zin=l g(z) definedin Section 3. Consider the following
measure of progress, defined by taking

M (@) = [lull.g" " (G@) —u-z (3)

So hereH (2) = [lull19” (G (2)).
As suggested in Section 3, the theorem will follow quickly if we prove three claims:

Claim 1. M is non-negative.

Claim 2. The quantityu - zincreases by a fixed amount (in fact, by at lests) at each
step.

Claim 3. After s steps, whers does not depend on the particular sequence of examples,
H either decreases, or increases by at mégst/2.

Together these clearly suffice to yield a bound on the number of updates that can per-
formed, and therefore on the number of mistakes.

Proof of Claim 1. We wish to show thaH (z) > u - z. Note first thag=Y (3", 9(z)) >
9P (g(z))) for everyj, using the positivity ofy and the monotonicity of .

The rest of the argument differs slightly between the two cases. In Cagéslan
even function and thug=?(g(zj)) = Izj|, soH > |ullymax’, |z;|. We clearly have
max'_, |zj| > u - z/|lu|l1, so we are done.

In Case 2, we havgY(g(zj)) = zj, so thatH > |ull; max_, zj. However, since
S luil = Y-, ui (using the assumed positivity afin this case), we see that z/||u,
is some weighted average of the elements, @nd is thus less than or equal to the largest
element ofz. Thatis,|lully max_, zj > u - z, so again we are done.

Proof of Claim 2. We have already shown in Section 3 thatz grows by at leasad, s
with each update.

Proof of Claim 3. Finally, and most interestingly, we consider héWwchanges after an
update. We express this change using a second-order Taylor-series expansionz Since
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changes by ax, we are interested iny = H(z+ yax) — H(2). In particular, we need
to show that (eventuallyAy must be small. By Taylor's theorem there is some pdgint
betweerz andz + y ax such that

&\ 92H

Ay =yavVH(2) - x4+ —
2! IX;JZ 0Z0Z; ¢

2,2
yea’xix;.

The notation indicates that the second-order term is evaluaigdbat it is important for
the following to note that the first-order derivatives (to obtain the gradient) are evaluated
with respect to theurrent (pre-update) value .

Recall that in Section 3 we gave a very general argument showing that the first-order
term cannot be positive given that we are updating on a mistake vector (this followed from
our general construction df). Therefore, to upper bourtl; we need only consider the
second-order term. Analyzing this term comprises the remainder of the proof.

Itis easy to show, by applying the chain rule to the definitioildllowing (3) and the
definition of G in (1), that

ZZ az.azJ

5 n
X %g(—n/(@o)z f/(Gi)x?
i—1

2
a®|lully =Y/ . Ny,
+ 597G i;f(c.)x. :

We can use the standard inverse-function differentiation rule to evaluate the derivatives
of g“=Y, obtaining

1
f(g=2(G@)’
~ '@V (G©@))
f(g=D(G@))*

9V (G@) =

9" Y"(Gw@) =

Note that (using the assumption thiais differentiable) all these derivatives exist, except
perhaps in Case 1 whef = 0 (becausef (0) = 0 and this is the only point where
g=P(G(¢)) = 0). But an argument we give shortly will show that this possibility need not
concern us; we ignore it for now.

Given these observations, we can now write the second-derivative bound on the change
inH as

Ay < a? ||ully Z F(6)x2
T2 f (oo Zg(cl i

afuf; (9" (3 9@@))) ( . )
- (I)I .
2 £ (g (o))’ 2 fa
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The expressiorf (g~ (G(2))) is never negative. (In Case 4. ? is non-negative and
f is positive for positive arguments, while in Casef2is always positive anyway.) Also,
f’ is non-negative. Thus, the second term above is always positive and so subtracting it
only helps decreast&y ; we can thus ignore it. Therefore,

aZllulls o0, F/(@IX2 A
< = . 4
S 2t (s a@) )

We denote this upper bound @y, by Q.
We finish the proof first just for Case 1. First, observe

Ap < Qg
@ ulls YL, Fx?
— 2 (Y (X 9@)))
_ @llullan maxl, f'(6)x?
B 2 f(lI¢llo)
- a?|uf1np? SUR; |<jep F/CIED
B 2 (<o)

where the new denominator in the second step is justified using the same argument we
used in the proof of Claim 1 and by the monotonicity fof The third step simply uses
IZi| < €]l for alli, and the fact thaf’ is even (sincef is odd). Also for the third step
recall that = || S|l = SURs [IX]leo by definition.
But now we can obtain a lower bound ¢§d||», as follows. Clearly, if we have made
updates them - z will be at leasta §, sm. We have already shown that z < [|u||1]|Z]|«
in the proof of Claim 1, so that aften updates we haviz| ., > asy, sm/|lull1. Since( is
betweerz andz + y ax, we know that|¢[lee > [1Zllec — allX|l0e > aﬁfjusm —apB. (Note that
after the first(8 + 1) ||u||1/8u,s mistakes we must hayg || > 0, implying that the earlier
concern we raised about the existence of the derivatives cannot arise after this point.)
We are now essentially done. Recall the condition in the theorem, that

: f(Z)
lim su =
>0 ng’gz f(2)

In particular ifc £ 0 there is some fixed valug; > 0 such that for alk > z,, we have
SURy-y_, fg)) < 2¢. Supposé (|l > Z2c. Then, if we choose ang less than, - nﬁ2
we haveQ; < aé, s/2 asrequired. From our earlier bound, we also knowt &
will hold whenevem > W so we are done. In the case where 0 we can make
SUR<7 -, ff g)) arbitrarily small for all suitably large. It follows that we can find a mistake
boundm (which now, however, may depend apfor any value ofa > 0.

The closing argument in Case 2 is very similar, and we simply point out the differences.
By the argument used to prove Claim 1, we know that/||u|; < max z, and thus am

grows we know that the largegbsitivecomponent o grows without bound. (In Case 1,
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we only knew this aboufz|..) The rest of the argument is isomorphic, except that we
lower-boundf (g(‘l)(zi g(&i))) by f(max._, &) using the monotonicity of , and we use
the modified assumption that

exists. (Note the difference from Case 1 is that here we must also coasidér) Other-
wise, we argue exactly as above. O

Observe that Theorems 4.1 and 4.2 immediately apply to standard algorithms, and there-
fore provide a unified proof of their convergence. For example, the Perceptron algorithm,
which in the quasi-additive framework is defined by the identity transformdtian = z,
trivially satisfies the conditions of Theorem 4.1. Moreover, as pointed out in Section 2,
Balanced Winnow can also be defined as a quasi-additive algorithm under the transfor-
mation f (z) = 2sinhz, and this too satisfies the conditions of Theorem 4.1. A slightly
different case is Weighted Majority, which is defined by the positive funcfiGn) = €,
but this satisfies the conditions of Theorem 4.2. So, in effect, we have given a single proof
of convergence that applies to all these existing cases.

Of course, this convergence result is more interesting because we can apply it to new
algorithms that correspond to other appropriate transformation functions. We investigate
one new family of such algorithms in Section 7.

The two theorems in this section only address (eventual) convergence. Althoughthere are
mistake bounds implicit in the general proof, these bounds are not especially good (relative
to what is known from other proofs). In the next section we describe a technique for finding
“tighter” functionsH that potentially lead to better mistake bounds.

5. An optimized measure of progress

In Section 3 we deferred the question of finding a suitabl@nd henceH) to define the
measure of progress, although we subsequently showed in Sectiony4 thaju|; g
is one possible such choice. In this section we give a different constructidh fdrich is
potentially “tighter” thanu|1 g~ (G(2)).

Recall that we wish to choogeto be an increasing function that preserves the inequality
¥(G(2)) > u -z Given the structure of the proofs, one might suspect there would be an
advantage in choosing to yield a “small” functionHy, (z2) = ¥ (G(2)). For example, if
H1(2) < Ha(z) everywhere, then, all else being equal, perhaps we should investigate
first. To explain this intuition, recall that a mistake bound analysis proceeds by bounding the
number of updates that can be made teeforeM (z) < 0. Therefore, ifM1(2) < Mz (2),
thenM; can only reach zero at or befokd&,—which suggests that smallth (and hence a
small M) is desirable.

In fact, there often existssamallestsuitable function; that is, a functiad* such that for
any other suitablél we haveH*(z) < H (2) everywhere. In this section we show that such
anH* can be characterized in a few different ways. In Section 6 we give concrete examples
of H* applied to specific cases, and demonstrate the mistake bounds that it leads to.
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To defineH* initially, consider any suitablél = v (G(z)) and consider the sét, =
{v : G(v) = G(2)} for a givenz. Trivially, H(z) = H(v) for all v € G,. However, by
assumptiorH (v) > u - v for all v, and specifically fow € G,. Therefore, we have not just
H(2) > u -z, but more strongly

H(z) > sup  u-Vv.
v:G(v)=G(2)

Now defineH* to be the supremum

H* 2= sup u-v.
v:G(V)=G(2)

It immediately follows thatH*(z) is a lower envelope on all suitablé(z)—assuming the
supremum actually exists—and is hence the function we seek. Note that the above definition
of H* is trivially equivalent to definingd*(2) = v*(G(2)) wherey* is defined by

Y*(r)= sup u-v.
v:G(V)=r

Therefore,H* is of the appropriate form for functiortd given in Section 3. Furthermore,
by construction we havél*(z) > u - z for all z. The remaining requirement given in
Section 3 is that/* be monotonically increasing. This will follow from properties laf
that we now develop.

The following proposition gives a somewhat more explicit characterizatid*of

Theorem 5.1. If f satisfies the conditions of Theoretnl, or if every component of
u is strictly positive and f satisfies the conditions of Theorker®, then the supremum
SUR.g, U - V is attained at a vectov* given byv* = f "V (au), wherew is the unique
positive scalar that satisfies @Y («u)) = G(2).

The results holds in general under the conditions of Theoteth(.e., even if some
components af are 0), so long as we allow* to include components with valueso and
define f-Y(0) = —oo0, f(—00) = g(—o0) = 0.

Proof: We first argue that the supremum not only exists, but is actually attained at some
pointinG,. If G(v) = Y[ , g(v) = G(2) then (by positivity ofg) we havey; < g~ (G(2))

for each componeny;. In fact, under the assumptions of Theorem 4.1 (whé&nan even
function) we havev;| < g (G(z)), showing that the s&g; is entirely contained within

a bounded region dR". Given this, and the continuity d&, it follows thatg, is closed

and thus also compact. Hence, under the conditions of Theorem 4.1, the supremum value
of u - v not only exists but is actually attained at sowie We now consider the conditions

of Theorem 4.2, but for the meantime restrict attentiomts 0. G, is not necessarily
bounded below (recall thaf(x) — 0 asx — —oo in this case). However, we argue that

all v with any “sufficiently large” negative component must havev bounded away the
supremum (indeed, bounded belawz), and hence to find the supremum we can restrict
attention to a closed and bounded subsefgfthe argument based on compactness is
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then the same as before. Specifically, considenangving some coordinatg such that

v < (U-Z2—(n—1)g"Y(G(2) maxf., u)/ min"_; u;. Using the earlier bound on the
size of the other components wf and the fact that all; > 0 by assumption (including
min’_, u;), itis easy to see that for suglwe haveu-v < u-z. Thus, existence is established
for the two cases.

Now, to discover the point at which the supremum is attained in the case wheré,
we use the technique of Lagrange multipliers. We wish to chaose minimize the
objective —u - v subject to the constraire(v) — G(z) = 0. The Lagrangian is given
by —u - v+ A(G(v) — G(2)) and the first-order necessary conditions are

Puvirilew-c@ =0
oV v

for all i. This immediately gives-u; + Af (v;) =0 for all i, and thereforef (vi) =u; /1.
Since f is monotonic and hence one-to-one, its inverse is well defined ang se

f “V(u;/2); as long as\ is chosen so that; /A is in the range off for all i. Letting
o = 1/) we can write the solution ag = f Y (au) (i.e., applyingf —» componentwise
to wu). We must choose so thatG(f 2 (au)) = G(z). We restrict attention ta > 0
(since itwillbecome apparent thatif we considesed 0we would find the infimum afi-v,
not the supremum). Using the propertiesfadndg, it is easy to see th&(f “Y(xu)) is a
monotonically increasing function effor fixed u. It quickly follows that there is a unique
o > 0forwhich all components afu; are in the range of and alsdaa(f Y (au)) = G(2).
In the following, we assume thathas been chosen to be this value.

It remains to verify that tha - v* is indeed a global maximum. We have already remarked

that, sinceg’ = f is increasing, the functiog is convex and therefor& is also convex.
So the graph o6 lies on or above any tangent plane®f The gradient ofs atv* is just
f(v*) =au. Thus, the plane tangent ® at v* is given byau - (v — v*) + G(v*) (as a
function ofv). So forv € G, we haveG(v) > au- (v —Vv*) + G(V*). SinceG(v) = G(V*),
this implies thatru - v* > au - v. Sincea > 0 this gives the desired result.

We now consider the remaining case, i.e., under the conditions of Theorem 4.2 but
where some components wfare zero. Since lim, _, g(2) = 0, g is an order preserving
bijection fromR U {—o0} toR. Thus with the natural order topology #U {—oc}, gis a
homeomorphism and hence continuous. From this, it is not hard to see that tfe aets
compact in the spad® U {—oo}. Furthermore, using earlier arguments about the upper
bounds org, andu > 0, we see that - zis bounded oveg,. Existence of the supremum,
and ofv*, follows.

Itis also not hard to determing in this case. LeK ={i :u; >0} C {1,...,n},and let
k = |K|. Under the conditions of Theorem 4@js monotone increasing. The supremum
must be attained at a poiat such that; = —oo for all i ¢ K, since ifv; > —oo for
somei ¢ K, we can increase - v by decreasing; and increasing; for somej € K in
a way that keeps the point @,. Since f Y (au;) = fY(0) = —oo, we have shown
thatv; has the desired value for¢ K. LetG, = {v R*: Zik=1 g(vi) = G(2)}, and let
U’ e R¥ be obtained fronu by omitting the components that are 0. Singte-co) = 0, we
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{v: G(v)=§}(z>}

Figure 2 A two dimensional depiction of the surfae = {v : G(v) = G(2)}, showing thatv = f(z) is normal
to G; atz, andu is normal to tog, atv* € G,. Herev* is given byv* = £ (¢u) wherea is defined such that
G(v*) = G(2); i.e.,a is chosen so that* lands on the surfacg,.

have reduced the proof of the proposition to proving tha‘;@,zm’ -V is attained at a vector

v* € G, satisfyinguy = fY(au)) fori = 1,..., k, whereq is the unique positive scalar
that satisfie{}‘zl g(f(‘l)(ozu{)) = G(2). The result now follows from our argument for
the earlier ¢ > 0) case. O

We can interpret the proposition as saying tHas just the pre-image of a suitably scaled
version ofu, au, set to land on the surfacg (see figure 2). Thus, we achieve a simple
geometric observation that the classification vecteandu are normal to the surfagg,
at their pre-transformed “cumulative sum” vectarandv* respectively. This proposition
now allows us to rewrite the standard measure of progress whichHisas

Mi@ =u-fP@u)—u-z
wherew is such thaG (f Y (au)) = G(2). (5)
One immediate use of the proposition is to find an expression for the derivatié of

with respect td5(z) (and hence also with respectz(, which we will need in later mistake
bound analyses. Recall that we choose the fungfivso thatH*(z2) = ¥*(G(2)).
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Theorem 5.2. For f satisfying the conditions of Theoretrl or 4.2,the scalar function
Y* defined as

Y*(r) = u- f“Y(au) for « such that Gf "V (au)) =r

has the first derivativdl: = 1. It follows thatZ" = 12 for alli; thatis VH*(2) = ¥

Proof: Fix an arbitraryu. Sincey* depends om via «, we can apply the chain rule to
obtain

dy* d

dr d

Z 2§ (qup) d—“.

=1

LG 1)( U)

To compute‘é—‘r’, note that is given by the equation= A(x) whereA(x) = G(f “Y(au)).
Therefore, we can write = ATV (r). This is justified becausa is invertible ona > 0
(by the definition off andG) and because > 0 forr > 0 (sinceG(f‘-Y(0)) = 0). We
can then apply the rule for differentiating inverse functiohs;?’(r) = 1/ A'(a), to obtain

dor 1
dr — £G(f )
1
S au? Y (up)

Combining these calculations yieldat‘r' = 0—1( as desired. O

Recall that, although we have been assuming Hvais indeed a suitablél function
in the sense of Section 3, we have not yet shown that it is monotonically increasing as a
function of G. We can now remedy this omission:

Corollary 5.3.  The function/* is monotonically increasing of, co].
Proof. This follows immediately from the fact that we hawe> 0 whenever > 0. O

Now consider usingH* = ¢*(G) to prove a mistake bound. We already know by
Theorem 5.2 that, to a first-order approximatidit; will decrease when we updateon
a mistake vectoyx. However, we will need to bound the actual growth ratéHof The
only general strategy we can currently suggest at this point is to perform a second-order
Taylor-series analysis, as in Section 4.

To proceed with the analysis, recall that we are interested in obtaining a bound on
An. = H*(z + yax) — H*(2) when we update by y ax for an example on which a
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mistake is made. In particular, we need to show that (eventually)must be small. By
Taylor's theorem there is some poifibetweere andz + y ax such that

aZHt
Ay =yaVH*2) - x—|—— Zzaz-az-
i0Zj |¢

i=1 j=

2 52
y© a’x X;.

However, we know that the first-order term is negative, and hence can be omitted. Therefore,
we can bound\ - by

aZH*
An- = 2 ZZ 7020z |,

i=1j=

Using the results of Theorem 5.2, we compute the second partial derivatives (notiag that
is an implicit function ofz) as

2H* -f@)f(z)
0292) o3y, £ (uiu?

fori # j,and
PH @) f(z)?
9z @ o3y, Y (qupu?

Given these observations, we can now write the second-derivative bound on the change in
H* as

az s fl(g)x?  a? 1
Apr < — - — f@)x) .
S S ; o 2 S 1V Ut Z (&)X

We have already established tat- 0 after the first update, a9 > 0 by assump-
tion, therefore the second term above is always positive and subtracting it only reduces the
bound onAy.; so we ignore it. This yields the simpler bound

azZ. Ly F@x? a

Ay
H 2

= Qs. (6)
We again denote this upper bound an. by Q+.

Unfortunately, the analysis stops paralleling Section 4 here. At this point we have a
bound on the growth ofi* which is analogous to (4). However, an apparent paradox has
arisen: The bound (6) on the growth lgf* is no longer guaranteed to be smaller than the
bound (4) on the growth of the olld function—even thougld* guaranteed to be smaller
than the previousi.

The reason for this failure is not with the measure of progress itself, but with the strategy
used to analyze it (i.e., second-order Taylor-series analysis). A funigtiazan be strictly
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smaller tharM; and yet still have larger second-order derivatives (periodically but infinitely
often) over the domain. Given the very weak conditionsfoirmposed by Theorems 4.1

and 4.2, this situation cannot be ruled out, and thus the second-order bound is not capable of
exploiting the full power of this new measure of progress. In particular, we ourselves have
not yet been able to prove Theorems 4.1 and 4.2 in their full strength tisirdirectly.

However,H* and the bound); obtained in (6) still prove to be very valuable. When
we consider particular quasi-additive learning algorithms such as Perceptron and Winnow
(corresponding to particular choices bf we find that weautomaticallyrecover measures
of progress nearly identical to those used in the most famous mistake bound analyses of
these algorithms. Furthermor®,s turns out to be very effective in analyzidy* in these
particular cases.

The incompleteness of this situation emphasizes the main limitation of this paper’s central
contribution. We systematize the discovery of measures of progress and rationalize this
phase of earlier analyses. But the second part of a mistake-bound proof, the actual algebraic
analysis, remains mostly an art and (as we illustrate again in Section 7) there remains plenty
of scope for unsystematic tricks and clever insights in this phase.

6. Deriving mistake bounds

The new measure of progress derived in Section 5 can be used to prove better mistake bounds
than those implicit in the proof from Section 4, while using a similar style of argument. As

in Section 4, we will first want to show that after some number of mistakewe have

Qs < % It should then be clear that after the finst mistakes the actual value &f is
monotonically decreasing. Once this has been achieved, the next step is to find some upper
boundB on the value oM. Given this, we know we can only make at most

2B
- aSu.s

mp

additional mistakes (otherwise the measure of progress would become negative). Thus, the
totalm; + m; gives our mistake bound. Much of our general approach to proving mistake
bounds (e.g., the definition &f}) is fairly automatic. The rest of the details, notably the
analysis ofQ ¢, tends to be specific to the particular functibnTo illustrate the technique,

we work through two examples.

Weighted Majority. First, we consider the Weighted Majority algorithm. Recall thatthisis

a quasi-additive algorithm with the transformatib(z) = €*. Here we obtain the functions

g(2) = ¢ and f “V(2) = logz. (Note that we assume > 0 in this case.) To determine

the instantiation of the optimized measure of progress (5) for this algorithm we need only
solve for the scalax that gives

i e|09(ﬂtui) — i e
i=1 i=1
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This is easily determined to khe= Huul Z. —1 € (usingu > 0), and so we automatically
obtain the measure of progress

M @ = lulls Iog<ZeZ'> i Z <”' 90l ) 0

Our analysis then proceeds by obtaining @e bound, which is obtained by simply sub-
stituting into (6)

aZfully Y, € X2
ZZ| le{I

a2 |ull1 ISII%,

T T

Qwm =

This follows becaus@uu is simply 14l &l times a weighted average of théterms (that
is, weighted with positive welght? that sum to 1). Hence i < TR ||su2 then
Qwm < 2. Assuminga satisfies this constraint, we can takg = 0. Now suppose we
start atz = 0. Then the original value ok, is clearly||ull; logn + 3", u; log 74— T
Putting these facts together, and usMg,, > 0, we see that if we chooseas abovet en
Weighted Majority cannot possibly make more than

2”“”1”5”2 (logn+3°; fuf; 109 )
- 8s

mistakes. Thus in a few lines we have obtained a bound that is identical to Littlestone’s.
In fact, this should not be surprising, sinb&,, is essentially the same as Littlestone’s
measure of progress. We can also apply the technique to derive mistake bounds for Bal-
anced Winnow (i.e.f (z2) = 2 sinhz), which again achieves bounds that are comparable to
Littlestone’s (1989) in an equally short argument.

Perceptron. Next, we consider the Perceptron Algorithm. Here) = z, the identity
function, and s@(z) = z°/2 and f ~Y (z) = z. Again we can determine the explicit instan-
tiation of the optimized measure of progress merely by solving fior

. o?u? Nz

>

i=1 i=1

This givese = 1212 which plugging into (5) immediately yields

Tullz”

MI;ercep(Z) = [lullzllzllz —u -z
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(The appearance of the 2-norm here rather than the 1-norm leads to tighter bounds than
we would have obtained if we had used the measure of progress proposed in Section 4.)
Proceeding to analyze th@; bound, and using the fact th&t(z) = 1 in this case, we are

left with

2 n 2
aZlull2 > iy X
2|<ll2
2 2
as ||ull2]| S|

- lull211 SIS

~ 2Kz

QPercept:

We just sketch the remaining analysis, which is straightforward but somewhat messy. Let
t= %"S”% Clearly, if |C]l2 > t thenQpercept< 3—25 The argument in Section 4 can also
be used to show thd||, > T}L‘JS—H"; — a||SJl2. (In Section 4, we considered the-norm, but
the argument still holds for the 2-norm.) Thus, it suffices to tae= 1412021812 - Now,
for a bound orB for Mg, NOte that the largest possible value of the measure of progress
must be attained at a point satisfyifg|, <t +2a||S||,. Forsupposéz|, >t +2a| 9.

Then, by the triangle inequalitg, (denoting the vector on the preceding step) will satisfy
IZll2 > t+a| S||2, and hence (using triangle again), the corresponding vécidt satisfy
I{'ll > t. Butas we have just seen, this implies tNgl,, .. ,decreases as we update from
Z' to z. Hence, sucl cannot maximizeMg,c.p, It follows that|jull2(t + 2aS]2) is a
suitableB. Definingm, as discussed at the beginning of this section, we thus get

lull2t +allSll2)  2[lull2(t +2aS|2)
= +
asd asd
_ 3||ull3]ISI13 + 58]|ull2[| Sl
— >

_ O(nunéznsné)
Su,S

where we use the fact that by the Cauchy-Schwarz inequélity|u||2| Sl|2.

Up to a constant factor, this is just the classic result (see Papert, 1961; Block, 1962;
Nilsson, 1965; Minsky & Papert, 1969; Duda & Hart, 1973). The similarity is even deeper:
our measure of progress is in fact very closely related to that used in Papert (1961), Minsky
& Papert (1969). The main technical difference is inessential: in effect they used the
guotient rather than the difference of the two terms defining our measure of progress. (We
return to the issue of equivalence between measures of progress in Section 8.)

Although in the cases just discussed our proof essentially reduces to known analyses
(at least insofar as the measure of progress is defined), the real significance is that we
find our measure of progress “automatically” by instantiating a far more general argument.
Furthermore, much of our proof (excluding the final analysi€®fis common to all of
them. We believe that it deepens our understanding of the older results to see that, although
they appear quite diverse, they are in fact largely isomorphic. This suggests that in some
sense the “reasons” why the different algorithms work are, at heart, the same.

my 4+ my
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7. A new family of algorithms

In this section we introduce a nelamily of quasi-additive algorithms which, for reasons
explained below, we call th@-norm Perceptroralgorithms. As will be seen, one can
apply Theorem 4.1 to immediately conclude that these algorithms converge. However the
main result of this section is Theorem 7.1, which states mistake bounds for this family. This
theorem s inherently interesting, but also has several important consequences. Inthe second
half of this section we show that for small valuegmpthe family has characteristics similar
to Perceptron (and indeedid,Perceptron whep = 2). On the other hand, as the parameter
p increases, the family tends to look more and more like a “Winnow” algorithm. This
“interpolating” property is potentially significant because it is known, from both experiment
and theory (e.g. Kivinen, Warmuth & Auer (1997)), that Perceptron and Winnow-like
algorithms can perform very differently on various types of problem. It might therefore be
useful if we could trade-off their relative strengths in a flexible and principled way. Thus,
this family could be significant from a practical point of view.

The p-norm Perceptroralgorithms are quasi-additive algorithms which are defined by
the transformation function$,(z) = sign(z) piz| P-1 for 2< p <oo. This form of fp
is easier to appreciate once we observe that this yiglds = |z|P, and henceG(z) =
S 1zIP = |z|lp, for2 < p < oo.

In the following, we will useq to denote the conjugate exponentmfthat is, the value
g such that% + é =1 (henceg = p/(p — 1)). An interesting and important property of
conjugate exponents i$6lder’s inequality which says thati - v < ||ul 5 ||V]lq wheneverp
andq are conjugates. (The inequality also holds for the paiir and|| - ||, which are also
considered conjugate.) ditler’s inequality generalizes, for instance, the Cauchy-Schwarz
inequality (which is the case whepe= q = 2.) As we now show, products of conjugate
norms also appear in the bounds for these algorithms.

The first step in our analysis of the clasgmshorm Perceptron algorithms is to determine
H*. By Theorem 5.1, we need to solve for the scaldhat gives

SIgﬂ(ozU)(I . ) ‘ Z|Zl|p

The left hand side immediately S|mpI|f|es ([%)q Z, _11Ui|% and it is easily verified that

the equality is satisfied when= p”ﬂjﬁ Thus, we obtain:

H*2) = Zu. sign(au; )(|au |>l

i=1

P
_Z< ) |u||’31+l
—iinz”” Juj |9
- 1/(p—1 ™!
= Jullg®

= [zl pllullg

n

2

i=1
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and the final measure of progress is readily determined to be
M5(@ = llzllp llullg —u - z.

Note that this measure automatically incorporates the conjygatelq norms and bears
an interestingly close relationship twldér’s inequality.

The following theorem, proved by analyzimdy, gives mistake bounds for thenorm
Perceptron family. In addition to the dependence on conjugate norms, note that we have
explicitly included the influence of the initial vectag (whereas in previous sections we
always assumed that tlzg was the zero vector). As explained after the theorem, the ini-
tial vector can have a surprisingly important effect on mistake bounds for this family of
algorithms.

Theorem 7.1. Let2 < p < oo, andu be a target vector for some set of examples S.

(a) The p-norm Perceptron algorithravhen trained on S and usirlg = 0, has a mistake
bound of

GRS THETH

2
5u,S

for any update coefficient a 0.
(b) Ifthe algorithm uses argp satisfyingu-zo > 0,and a=
of mistakes made by the algorithm is at most

(p—l)llunéllsllﬁ(l_< u- 2z >2>
5 s Iullglizollp/) /°

Proof: To obtain a mistake bound, we must obtain an upper bourtdl'én) = ||z||, ||ullq
as a function oy andm, the number of mistakes that have been made. It turns out to be
easier to obtain a useful bound if we analjfize2 instead of|z||,. (Note that given a bound
on ||z||2 we can just take a square root to obtam the desired bounid|gyn and hence on
H*(2). ) In the following, leté(z) = ||z||2 We also usgs, as shorthand fof S| ,.

Note that¢ still has the general form of ahl function in the sense of Section 3, in
that it can be written as(z) = 1 (G(2)) for a monotonically increasing wrapper function
¥ (r) = r?P. Therefore, just as in Section 3 we can ignore the first-order Taylor term
and concentrate on the second-order terms. As we see shortly, squiradtpws us to
simplify the second-order bound considerably. The second derivatiearef

suslizoll3

DUl ST then the number

%(2) 2(3

= — -1 2-2p £ 2 f(z:
7292, ~ o\ p )nzup @) f(z))
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fori # j,and
@)  2(2 _ o oo
i 5<5 - 1)||z||%, 2PE(z)?+2(p— Dzl5 Plz P

Using Taylor’s theorem and some algebraic simplification we obtain

az (2 n ?
Agz) = —<— - 1>||C||%_2p (Z f(Ci)Xi>
p\p =

n
+a%(p—DICIEPY 16 1P ?x
i=1

A

_ (- Y, 6P 2
- s>

for some¢ betweere andz + ayx. The second step follows because the first term is never
greater than zero (sinc%— 1 < 0for p > 2) and the remaining factors are positive.

The sum in the numerator can be viewed as a dot product between vectors whose com-
ponents argg; |P~2 andx? respectively. If we use dlder’s inequality on this sum (using
the conjugate pai% andg) then we obtain the following upper bound

_ 2(p— DICIE X3

ICIE
=a*(p— DXl

Note thatthe dependence®has vanished completely. Sin¢&as unknown, and moreover
could have been any size, avoiding this dependence is an important simplification. In
fact, this is the major advantage of usigdi.e., squaringH*).® Thus, afterm mistakes,

£(2) < £(20) + m(p — D)ap3, and so

Izllp < \/lIzol12 + m(p — 1)a2p3.

As we saw in Section 3, we also know that aftemistakes we have-z> u-zg+m aé.
Hence, aftem mistakes the measure of progréds is at most

M < llullg/l1Zoll3 +m(p — Da2p3 —u - z0 — ma.

Thus, the greatesh at which this quantity is non-negative is a bound on the number of
mistakes we can make. (Note that bgltér's inequality, it is non-negative at = 0.) The
greatest such will occur at a point where

lulla /10013 + m(p — 1)a2p3 = u - 20 — mas.
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Squaring both sides, we see that the bound we seek must be a root of the quadratic equation

<u-zo+m38

2
) — llzoll — m(p — Da’B; =0,
lullq

and clearly the larger root will be a bound on the number of mistakes that can be made.
Solving the equation is straightforward, but is simplified using the abbreviatioas

u-zZg _ lzoll _ 3 __D i niti
Tulafs’ Z= —ﬂp”, D= TolBs andy = D Using these definitions, one can then show
that
m= P— 1(1— Uy +/(1—2Uy)2+4(Z2 - U2)y2>
2D?
_pP- 1 _ _ 2,,2
=5 (1 2Uy +1—4Uy + 472y )

This bound depends, through on the update coefficieat So the next phase of the
proofis to find the optimal value of this coefficient. The derivative of the bound with respect
to y is proportional to (and of the same sign as)

~2U + 4y 72
J1—4Uy + 4722

—2U +

This can only be 0, indicating a possible minimumyif= U/Z? or Z? = U2. We now
examine various cases. Note ti#at= 0 and also, by Mlder’s inequality, that)? < Z2.
Our bound on the measure of progress dependsx@ing non-negative, and thus we require
y > 0. First note that iU = Z = 0, (that is, ifzp = 0), then the bound i = (pD—‘Zl)
independent of . This proves part (a) of the theorem.

For part (b) we assume thdt > 0, so we do not need to consider the cllse: 0. If
U = Z > 0, the two roots of the quadratic equation are 0 amet ®=28-2UY) |t can be
seen that for large enough O is the larger of these roots, implying that the algorithm makes
no mistakes. In fact, whenever = Z, we haveu - zg = | 0]l pllullg, and the measure of
progress is initially 0. When in addition we halde # 0, the initial weight vector of the
algorithm is simply a scalar multiple of the target veator

The remaining case is whe#® > U2 andU > 0. Examining the derivative, we see
that it is positive for sufficiently large and negative wher-y is sufficiently large. Thus
in this case, the best bound is obtained whea U/Z2. Our bound becomes

(p—-1 U2

B (p—l)IIUIISﬂS<1_( u- 2z >2>
82 lullglizollp/ /-
72D sllzoll3

:’ehe Ict:h0|ce we have made gfcorresponds ta = Up-D = (p-Dusp?’ as stated in éhe
sult.
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The bounds in Theorem 7.1 dependpand therefore one might think that they would
necessarily become worseagicreases. This isindeed a problem whkggr= 0. However,
things can change if we choose different initial vectr.sConsider, in particular, the case
wherezg = (1,1, 1, ..., 1) (which we denote byt). As we now show, the bounds above
can have a finite limit even g3 — oo.

Corollary 7.2. Fix zo = 1, and suppose that all componentsuocf4 0 are non-negative.
Let p go to infinity. With the update coefficigatset as specified in pafb) of Theorenv.1,
the bounds stated in that theorem converge to

_ 2ASI3 Nl (| n+§:
83 s uwu |mm

Proof: We can write the bound from Theorem 7.1 as

(p—DIIS|3
—sizrz UGzl - -20)?)
p

whereq is conjugate t@. Sinceu-zy = |lu||; (it is here we use the requirement thiat 0)
and||zo]lp = nY/P, this is

(P—DISI?

2, 2 2
sz (N/Plullg — llullz)

Thus we consider the limit afp — 1)(n?/?|u||% — lul|?) asp goes to infinity andj remains
conjugate (i.e., so that — 1). Note that

(p — D(n*Pflull — llull3)
= p(n¥Pullg — lullf) — (n?Plullf — fulf)

and that the limit ag| goesto 1 of the second term is 0. The limit of the first term
(M2 3—|ull?)

is I|m ' @y Both the numerator and denominator go to 0, so we can apply

I'H op|tals rule. (Note that in the foIIowm% = (logu; )uq where this is taken to be O if

ui =0.)

dr?~2/9ju)g dlog |lullf
4 _“Zq 2=2/9 14112 2-2/q__"°7°79
aq g2 1oamn*lullg +n ag g

= ||U|||§|(q (lognyn?=2/9 4 n2- 2/‘4[ Iog(Zuq)

2 Zl(logu )U; D
q 21 -
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Thus the limit is just

(2 logn — 2 Iogz ui + ZM) lullf
i=1

- lulla
which leads to the stated result. O

Note that bounds from this corollary are exactly the same as those derived in Section 6 for
the Weighted Majority algorithm. Of course this is not a coincidence, as we now explain.
The p-norm Perceptron rule with initial vectag = 1is clearly equivalent to using a quasi-
additive rule defined byf (z) = psign(1 + z)|1 + z|P~! and beginning withzy = 0.
Comparing thep-norm Perceptron rule with Weighted Majority, we next note that they use
different values of the update coefficiemtbut in the limit asp — oo the former uses a
coefficient ¥ (p— 1) times smaller than the latter. Thus in thenorm Perceptron we could
use Weighted Majority’s coefficient, so long as we compensate by considering instead the
function f (2) = psign(1 + J5)I11+ ﬁﬂj‘l. Finally we note that ap — oo this tends
to a function proportional teg. In other words, the behavior of this algorithm tends to that
of Weighted Majority, exactly as suggested by the bounds in the theorem.

Note that to keep the limiting bound finite gsgoes to infinity, we required that the
components of the target weight vector be non-negative. Of course, since Weighted Majority
can only learn non-negative separators, it is not surprising that this restriction becomes
necessary.

Itis also possible to construct families that interpolate between Perceptr@atarted
Winnow, and thus do not lose the ability to learn targets with negative components. One
such family is defined by transformation functiofisof the form

z\¥ z\¥

fk(2) = <1+ k) <1 k)
for integralk > 1. Note that folk = 1 this is equivalent to Perceptron, andkas> oo this
tends to 2 sinte), i.e., the Balanced Winnow algorithm. The earlier results in this section
can actually be invoked to prove mistake bounds for this family as well. The basic idea
is to note that we can double the number of attributes, then rurptherm Perceptron
algorithm giving it both then original attributes anch additional attributes formed by
negating each of the original attributes. There are now two weights associated with each
of the original attributes, and by making the appropriate one larger in the target vector, we
can handle target vectors with negative as well as positive weights while keeping all of the
components of the extendednon-negative. However, we omit details of the rest of this
(fairly straightforward) analysis.

We have performed some simple experiments which suggest that the new interpolating
algorithms suggested in this section can indeed sometimes blend the empirical performance
of Perceptron and Winnow in a useful way. In some of these experiments, when one algo-
rithm was significantly stronger than the other we found that the mistake performance of an
interpolating strategy (e.g., usinfg for k = 5) was roughly average between the two. But
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other early experiments suggest there can also be “intermediate” problem conditions where
the interpolating algorithm does slightly better than both Perceptron and Winnow. However,
we emphasize that these results are very preliminary, and more thorough experiments are
important future work.

8. Other measure of progress constructions

In our proofs we have always considered the measure of progress to be constructed as
¥ (G(2)) —u-z > 0, but clearly this specific form is not essential. To prove this point rather
trivially, note that the same ends could be achieved in principle by analyzingtibeof

¥ (G(2)) tou - z (as is in fact done in Papert (1961) and Minsky and Papert (1969)).

What, thenjs a measure of progress? When are two measures of progress only superfi-
cially different, and when is the difference truly significant? Are some measures objectively
better than others in any sense? In this section we do two things. First, we sketch a frame-
work for answering such questions. We then present a different family of constructions
for measures of progress, and appeal to our framework to discuss how these constructions
relate to the preceding sections. Since the material in this section is less central to the main
results of this paper, we omit various details and proofs where appropriate.

We begin by taking a rather abstract view of the structure of our mistake-bound proofs.
Recall that in each proof we showed that, aftemistakes,H (z2) (= ¥ (G(2))) has some
upper bound(m). We also show thati - z > asm for somea andé$. So in effect, we
show that the paifG(z), u - 2) is in the regionR,, = {(X, y) : X < c(m) andy > asm} for
c(m) = v (b(m)). However, one can imagine other proofs with the same structure but
which find the bounding functioo(m) in quite different ways.

A second element of our proofs uses the key inequalitg) — u - z > 0. An abstract
view of this is that the inequality defines a open reg®rin R? with the property that
there is n@ € R" such thatG(z), u- z) € E. (It may not necessarily be the smallest such
region.) We say that the measure of progfdss- ¢ (G(z)) —u - zdetermines thexclusion
region E= {(x,y) : v(X)—y < 0 orx is notin the range o6}. Inthese abstractterms, a
convergence proof following our canonical recipe is completed by observing Ratdf E
for somem, then fewer thamm mistakes must be made. It should also be clear that there
are other ways of defining an appropriate exclusion region without using an assertion of
the particular formH (z) — u - z > 0. In the following, we generalize the term “measure
of progress” to include any algebraic inequality determining an open exclusion region for
(G(®),u- 2.

With respect to proofs that fit the above abstract framework, it is now natural to call a
measure of progresmptimalif no other measure of progress of this type can lead to better
mistake bounds. A simple sufficient condition for optimality is that its exclusion region
contains all of the exclusion regions of other measures of progress in the family. A weaker
condition that also suffices is that for all regioRg, of the above form, wheneveR,, is
not a subset o then it is not a subset of the exclusion region of any other measure of
progress in the collection. It should not be surprising to learn that under weak conditions
of continuity and monotonicity of (such as the conditions of Theorems 4.1 or 4.2) the
measure of progredd* defined in Section 5 is indeed optimal.



200 A.J. GROVE, N. LITTLESTONE, AND D. SCHUURMANS

Proposition 8.1. Let E* = {(X, ) : SUR,.g«)=x U - V < Y} be the exclusion region corre-
sponding to M. Let E be any other plausible exclusion regior., an open set such that
for all zwe have(G(z),u-2) ¢ E. Let R= {(X, y):x < c and y> d} for some c in the
range of G. Then if RE E we must also have R E*.

Proof: We want to show that for allx, y) such thatx < candy > d, eitherx is not in
the range ofG or sup.g)—x U -V < Y. SinceE is open, there is an open bdl C E
around(x, y). Thus, for some > 0 we have{(x,y') : ¥ >y — €} C E. Therefore, for
all v such thatG(v) = x we haveu - v < y — ¢ (for otherwise there would bewasuch that
G(v) = xandu-v >y — ¢, which implies thatG(v), u - v) would be inE—contradicting
the assumption that no suetexists). This gives sypg,—x U-V <y —€ <Y, as desired.
O

In the remainder of this section we discuss another family of constructions for measures
of progress. It turns out that these are of no greater power than those already discussed,
and indeed are often equivalent (although the surface form might appear quite different).
Although these constructions are in a certain sense redundant with our earlier results, there
are several reasons for discussing them briefly. First, theoretical equivalence (even where it
exists) is not necessarily the same as practical tractability, and it is useful to have different
forms of the same underlying idea especially when the correspondence is non-obvious.
Second, it may become easier to see how certain other known proofs—and especially a
second famous proof of Perceptron convergence that appears in Duda and Hart (1973)—are
instances of the same underlying ideas that we have been discussing. But mostimportantly,
the ideas that these constructions appeal to—tangency arguments, Bregman distances, and
Legendre transforms—are current in related literature, notably work on general theories of
on-line regression learning (as opposed to classification learning, which we are considering
here) (Kivinen & Warmuth, 1998; Azoury & Warmuth, 1999). We say somewhat more
about this in Section 9.

For these alternative constructions, we start with some candidate fundtian=
¥ (G(2)), wherey is a monotonically increasing function such thditis convex. (Note
that this is always the case whenis the identity and hencél =G.) A useful geo-
metric intuition about convexity is gained by thinking about the grapkioi.e., the set
{(z,y) : y = H(2)} in R"". Given convexity, the tangent plane to this graph considered
at some poinv will lie entirely below the graph. The tangent at a pairs defined by

{zy) : y=HM+VH(WV) - (z—-Vv)}.
It follows, then, that
Duz V) 2 H@) — H(V) = VH(V) - Z—V)
>0 (7

for anypointv. Now suppose we choose some- 0 and choos# so thatf(v) = nu. We
haveVH (v) = ¥/ (G(v))f(v) = ¥'(G(v))nu. We can then rewrite the above as

H(2) — ¥ (G()nu-z— (H(V) — ¥'(G(V))nu - V)
=H®@ -qn, wu-z—r(n,u) (8)
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where we introduce the two functiogsandr for convenience. Note also that> 0 since
n > 0 andy must have positive first derivative.

Since (8) relate$s(z) to u - z in an appropriate fashion, and is always nonnegative,
it is potentially useful as a measure of progress. The forrDgf—namely, the differ-
ence between a convex function and the tangent plane at a chosen point—is often called
a Bregman distanée(Bregman, 1967; Censor & Zenios, 1997). Thus we call this the
Bregman constructiofor measures of progress.

The Bregman construction depends on a paramgtiergeneral, we get different mea-
sures of progress for different choicesmpfand thus obtain a whole family of measures of
progress. There are a variety of ways of treating the choiee of

First, note that) need not be a fixed number: it can in fact be chosen as a function of
z. In this case, it is natural to choose thevhich, for eachz, minimizes the value of (8).
(However, once we lej depend orz we no longer have a Bregman distapes se) It can
be shown that this optimal depends oz only throughu - z. Furthermore, it can be shown
that (given our standard regularity conditions) when we optimirethis way, the measure
of progress ioptimalin the sense above. (The proof is nontrivial, but we omit it.) Thus,
this gives us an alternative to ti&* construction.

A very different strategy for choosing is to just select one fixed value. It should be
clear that this does not necessarily lead to an optimal measure of progress or a good mistake
bound. However, there are two interesting cases where it does, and both appear in the
literature.

First, it sometimes turns out that the choicenof simply irrelevant. To see how this
can occur, note that = ¥'(G(v))n, andv depends implicitly om. If ¥'(G(v)) happens
to have at dependence there will be no genuipdependence ig.8 In the earlier version
of this paper (Grove, Littlestone & Schuurmans, 1997), we followed the Bregman distance
approach (although we did not call it this), beginning with= g (G(2)) and in effect
simply stipulated thay = 1. Yet, surprisingly, for all the examples in Section 6 and 7 we
obtained the same measure of progress (up to a constant multiple) ld$ ttomstruction
from the current paper. How did choosing a constamad to an optimal measure of
progress? The answer is that, as it turns out, no matter ywvathad used we would have
achieved the same measure of progress (as in Footnote 8). As noted previguslyhidsen
optimally (as a function af) we get an optimal measure of progress. It follows immediately
that when there is ng dependence at all, the measure of progress is also optimal.

A second approach to choosings to leave it as a fixed but “unknown” parameter and
analyze the measure of progress to find a bound in terms\fe can then optimize for
the best bound. We now show how the second approach works with our familiar example:
Perceptron. The simplest choice fpris just the identity, sothal = G =) ', z2/2 for
the Perceptron. What atgandr? Sinceq = ¢'(G(v))n in general, and/” = 1 in this
case, we geg = n. Similarly, we can evaluate that= n2||u(|3/2—n?||u||3 = —n?|ul|3/2.

Thus,

2 2 2
z u
o Vg I
2
12— nul3

2



202 A.J. GROVE, N. LITTLESTONE, AND D. SCHUURMANS

Instead of giving a second-order Taylor analysis, one can more directly argue that

Iz +ayx) — null3 = llz— null3 + 2(z — yu) - (@yx) + a?[Ix||3
< llz—null3 — 2qu - (ayx) + a%||x||3
< llzo — null} — m(2nas — a?sup|x|3)

X€S

= n?|lull3 — m(2nas — a? supllx|)

XeS

where in the second step we use the fact thatade an incorrect prediction on and in
the final step we assunzg = 0. Since the measure of progress can never fall below zero,
we get a mistake bound of

2 2
u
< nzll 2 .
2nasd — a‘ sup.s XI5

alxly i
5 2, giving

This mistake bound holds for any It is minimized by choosing =

2 2
m < 1ullz SUBes [IXI2
S5

which is the classic Perceptron bound. We have just duplicated the proof of Perceptron
convergence given in Duda and Hart (1973) except, of course, that we arrived at the measure
of progress in a very principled way.

Interestingly, the strategy of optimizingafter the fact can be shown to give the same
bounds as an optimal measure of progress would, under certain conditions and assuming
proofs are restricted to those of the type discussed earlier. This is in spite of the fact that the
measure of progress for any particutais not necessarily optimaler se As we discuss
in Section 9, the possibility of “after the fact” optimization is also important in finding a
connection to perhaps the closest piece of related work, Gentile and Warmuth’s (1999).

We close by simply mentioning one further measure-of-progress construction related
to the Bregman approach. Our presentation so far has made a number of regularity as-
sumptions, notably differentiability. This is not so innocuous: for instance, ¢zgn
is not differentiable az = 0. The theory and language b&gendre-Fenchel transforms
(Ellis, 1985) (also called conjugate functions in convex analysis (Rockafellar, 1970)) can
simplify such issues. Briefly, the Legendre-Fenchel transfornt &) is the function
H*(u) equal to the smallest value such th&€z) — u - z + H*(u) is non-negative for all
z. In particular, this is exactly the correction we need to obtain a non-negative measure
of progress (or more generalld (z) — nu - z+ H*(yu) > 0). This definition may seem
somewhat empty, butin fact there is a rich theory of these transformations and the associated
duality relationship. This theory can be used to give an alternative, and somewhat cleaner
and more general, formulation of the preceding ideas. We omit further details, but refer the
interested reader to Ellis (1985) and Rockafellar (1970).
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9. Related work

We are aware of two other explicitly proposed schemes to unify additive (Perceptron-like)
algorithms with multiplicative algorithms such as Winnow. Littlestone (1997) has shown
that they can be viewed apobayesiamlgorithms. Roughly speaking, this is an algorithm

that has the formal structure of Bayesian probabilistic reasoning, in that it maintains a
distribution over models and updates this distribution by conditionalization, but with the
difference that it only updates on examples for which a mistaken prediction has been made.
Perhaps surprisingly, such an algorithm can still converge on separable data, although this
depends on the space of models and the prior distribution being used. This insight has not
yet lead to a common proof of convergence for Perceptron and Winnow, but it does suggesta
particular style of proof that can be used in either case. Many other apobayesian algorithms
can be defined but no general condition is known under which such an algorithm converges.
The apobayesian approach has not, so far, suggested any natural way to interpolate between
the Perceptron algorithm and Winnow family algorithms. In fact, the approach seems very
different in spirit from the framework we discuss in this paper, and we suspect that the two
are largely unrelated to each other.

There appears to be a much closer connection with the work of Warmuth and others,
developed in Kivinen and Warmuth (1997) and several subsequent papers (Kivinen &
Warmuth, 1998; Azoury & Warmuth, 1999; Warmuth & Jagota, 1998). In an extensive
ongoing body of research, they apply related techniques to a variety of tasks. Their algo-
rithms, like ours, base predictions @n x for some weight vectow and instance, but
typically their predictions can be some continuous functoof w - X and the loss can be
a continuous functiorh. of the true labely and¢ (w - x). (The choice of these functions
is discussed in Helmbold, Kivinen and Warmuth (1999).) This is sometimes referred to
as aregressiorproblem, as compared to tletassificationproblem type we consider. For
example, a typical case is to choasé¢o be the identity and the loss to be the square loss
(y —w - x)2. Around the time we first presented our quasi-additive algorithms (Grove,
Littlestone & Schuurmans, 1997), Kivinen and Warmuth were independently studying an
analogous family for the regression case that they terng#meral additive algorithms
(Kivinen & Warmuth, 1998). They make additive updates t@8 parameter that corre-
sponds to oue parameter. (The regression case also involves components that have no
immediate counterpart in the classification case, notably techniques for dealing with a va-
riety of loss functions.) Azoury and Warmuth (1999) give some general discussion of
Bregman distances and of the duality that arises between the weight vectors on the one
hand and the vectors (thei® vectors) on the other. Jagota and Warmuth (1998) also use
closely related techniques.

So the key features common to these works and our own include a parameter (i.e.,
0, z) that is modified with additive updates during learning, the appearance of Bregman
distancesin the analysis, and the use of a second-order Taylor analysis to bound the progress.
A particularly interesting technical difference is that although some of our work can be
formulated using the terminology of Bregman distances, as discussed in Section 8, we do
not necessarily get good mistake bounds this way without an extra optimization step (i.e.,
optimizing the choice of}, as discussed briefly in Section 8). This extra optimization
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step is an inherent feature of the zero-threshold classification task that we consider, which
is actually related to the fact that the prediction is unaffected by rescaling the weights.
This is why the “optimal measure of progress” we present (either abl thef Section 5,

or alternatively the “optimizedr’ construction of Section 8) is in fact not necessarily a
Bregman distance itself.

The natural question suggested by this other work is whether the classification problem
can be treated as a special case of the regression problem. One might consider the clas-
sification problem as simply a regression problem with the funatianentioned above
chosen to be the functiah(x) = sign(x). If one then chooses the loss to%iq— d(W-X)]
one obtains the classification setting. However, this form offtifienction does not fit the
assumptions made in the regression work and, as it turns out, does not lead to any straight-
forward way to analyze the classification problem using the usual regression machinery.
However, very recent work in Gentile and Warmuth (1999) describes another way to see
the relationship between classification and regression problems, and with this we can draw
some very tight connections. They introduce a continuous loss function that they call the
hinge loss. Itis 0 if sigiw - x) = sign(y) and otherwise equalg —w - x|. They show how
to construct regression algorithms for learning with respect to the hinge loss that exactly
match classification algorithms such as we consider here, making exactly the same form of
mistake-driven updates. In fact the measures of progress they use to analyze the regression
algorithms are essentially equivalent to the measures of progress that we discuss in our
work (in their Bregman distance forms). One cannot, however, complete the analysis for
the classification setting by just carrying the analysis of the matching regression algorithm
through to its completion. Gentile and Warmuth identify where the analyses diverge, and
discuss what needs to be done to complete the analysis for the classification setting. In-
deed, though their analysis starts from the regression point of view, it ends up being quite
close to our analysis of Grove, Littlestone and Schuurmans (1997) and hence to one of the
Bregman-style technigues of Section 8.

For readers interested in understanding this connection to Gentile and Warmuth (1999)
on a technical level, we now give an abbreviated discussion of the issues. The key is the
central Theorem 3 in Gentile and Warmuth (1999), giving their results for classification
algorithms. That theorem says that\it is the set of trials in which a mistake is made, then

aZyi(U‘Xi —W; - X)) < D(u, W) + Z D (Wi, Wi11) 9
ieM ieM

whereD is a Bregman distanc® (u, W) = P(u) — P(W) — VP(W) - (u — W), for some
function P. (The tildes over the weight vectors reflect the fact that that they use a different
normalization in their notation for weights than we do; their normalization is more conve-
nient than ours for the purpose of this comparison.) The fund®iplike our functionH,
depends on the particular algorithm being analyzed. Specific mistake bounds are obtained
from this theorem by instantiating and bounding the resultind. As we discussed in
Section 8, in general in this style of analysis, one needs to alldw be scaled by an
arbitraryn, and then optimize at the end of the analysis. Because of this “after the fact”
optimization we do not worry about getting the scalinguofo match that of previous
sections.
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To compare this to our analysis, recall that in our case we can write the chaHggt ian
update (2) ad\y = VH(2) - (Znew—2) + R(Znew 2), WhereR(znew, 2) = H (Znew) —H (2) —
VH(2) - (znew — 2). This form for R in fact corresponds to the definition of a Bregman
distance (7) we gave in Section 8 (where the distdbgés applied taz andz,ey). Ris the
quantity that we bound in our second order analysesiso has a second role; if we choose
v so thatu = VH (v), thenR(z, v) is in fact the Bregman form of the measure of progress
for a target vecton. Combining these observations, together with the non-negativity of the
measure of progress at the end of a sequence of trials, leads directly to the inequality

aZ Yi(U-Xi —W; -X) < R(zg,V) + Z R(z41,2). (10)
ieM ieM

wherew; = VH (z) is proportional to our usual weight vectar, andv is chosen so that
u= VH(v).

It turns out that in the substantial area of overlap between our two analyses, Gentile and
Warmuth’s inequality (9) is equivalent to our inequality (10). Just as in our analysis, the
choice ofH fixes the algorithm through the mappisig= VH (2), in their analysis the
choice of P fixes the algorithm through the inverse mapping- VP (W). By choosing
P to be the Legendre transform ¢f one obtains the same algorithm, awd and z
correspond to each other in the Legendre duality. TBegind ourR are just Bregman
distances for the dual functiomsandH. By a general property of such Bregman distances
we haveD (W, Wi ;1) = R(z41, z) (the reversal of the arguments is intended); similarly
D(u,W1) = R(z1,Vv). This implies that the right-hand sides of the two inequalities are
in fact equal. This shows, in some sense, that our analysis already captures the essence
of these recent developments, although the connections are technically non-trivial to draw
and there is still significant value in the alternative viewpoint (particularly with respect to
relating the classification and regression frameworks).

Since the original version of this paper (Grove, Littlestone & Schuurmans, 1997) intro-
duced thep-norm Perceptron algorithms, a family of variants of thaorm algorithms has
been constructed for the regression setting by Gentile and Littlestone (1999). In the setting
of that paper the prediction, instead of being the sign of the dot product of the weight vector
and the instance vector, is the actual value of the dot product. As in our analysis here,
the weight vector of the algorithm is the gradient of the funct@ror more generally the
gradient ofH, whereH is some monotone function &. Itis easy to see that the particular
function of G that one chooses to get affects only how the gradient is normalized, not
its direction. In our setting, the choice of normalization does not affect the sign of the
dot product, and thus it can be ignored. However, in the regression setting it does make a
difference. The main insight needed to derive the regression version pftioem algo-
rithms is that, for an analysis in the present style to go through (at least in a straightforward
way) one needs to choose the normalization to be the one obtained by chbbsinige
the square of th@-norm ofz. Once this is done, bounds for the algorithms follow directly
from a combination of results from this paper and from previous work of Warmuth, et al.
Gentile and Littlestone also consider the classification version optherm algorithms
that we consider here, extending the analysis to include noise. (Comparing the regression
and classification analyses in that paper is another way to see how analyses for the two
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settings relate.) Finally, that paper makes the interesting observation that if one chooses
to be logarithmic im, then we can obtain bounds for thenorm algorithms (classification
and regression) that are logarithmicrirwithout needing to carefully choose the update
rate as for the Winnow family of algorithms.

Another relevant observation about Kivinen and Warmuth’s work is that they had al-
ready (in the earlier conference (STOC) version of Kivinen and Warmuth (1997)) observed
products of dual norms (overandS, just as in Section 7), albeit in the regression case.
Specifically, they prove a lower bound involving such norms and conjectured that there
exist algorithms with upper bounds corresponding to any dual pair. Our results concerning
the existence of th@-norm family do not directly answer this conjecture, firstly because
these are classification and not regression algorithms, and second because the conjecture
also addresses particular constants that appear in their lower bounds. However, our results
are surely very relevant and a step in the direction of an answer.

Aside from the regression case, another different but seemingly related learning model
is the so-calleé@xpertcase (e.g., Littlestone & Warmuth, 1989; Vovk, 1990; Cesa-Bianchi
et al., 1997; Cesa-Bianchi, Helmbold & Panizza, 1996), where there is only a single rel-
evant attribute (that is, perfect classification can be accomplished by a discriminant with
a single non-zero weight). Algorithms for learning general linear discriminants can be of
course still be applied in this case, so it would be interesting to see if our analysis adds any
additional insight.

The final subject we consider in this section revolves around a conceptually simple
refinement one might make the analyses, specifically the linear growthzoés mistakes
are made. Another lower bound an z is clearlyu - z; + a| M|y, wherez; is the initial
value ofz, M is the set of trials in which mistakes are made, and ﬁ Diem YiU-xi),
that is, theaveragevalue ofy; u - x; in trials where mistakes are maée. We can then express
mistake bounds in terms of instead ofs. The idea of doing this is suggested in Gentile
and Warmuth (1999), where is called theaverage margin The problem, of course, is
that the size of the average margin is not a well-defined property of the input sequeznce
se since it is an average over triaé® which a mistake is madérhus it depends on the
algorithm itself, and furthermore the mistakes might turn out to be concentrated on trials
with small margins. The simplest thing one can say about the average meangiioyri,

i.e., thatitis at least, of course leads to the standard formulation of mistake-bound results
(in particular, as we have given them in this paper.) However, as one attempts to gain a
more detailed understanding of the behavior of the algorithms, it is potentially useful to
realize that the average margin is indeed the quantity that mattepest For example,

using the average margin one can see that the algorithms and analysis do not break down
when there are occasional noisy trials in whigh - x; < 0, if there is still a positive gap

that applies to the non-noisy trials. The key to success here is to assume that there are few
enough noisy trials that even if mistakes are made on all of them this cannot bring down the
overall average margin too much in the long run. (This use of the average margin applies,
for example, to oump-norm Perceptron analysis. It does not apply directly to the form of
our analysis used in Section 4, since there we use the facythak; > § at mistakes for

a second purpose, to show that the nornz gfows. It appears that it should not be hard

to modify that style of argument, perhaps with some mild additional assumption, to also
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apply when there are noisy trials.) For another example, if we retain our usual assumption
about the existence of a positive gap of sifer all trials, and if at early mistakes the value

of u - x; is frequently substantially greater th&nthen this can translate into a substantial
advantage in the progress made. This advantage must persist, since at each subsequent
mistakeu - x; will still be at leasts.

10. Future work

A number of directions for further research stand out. Potentially the most significant of
these is the search for useful new algorithms suggested by our analysis, complementing
theoretical analysis (in the style of Section 7) with appropriate empirical work pIiam
Perceptron algorithm raises the intriguing possibility of choosing within a continuous range
the particular conjugate pair of norms that the mistake bound depends on, thus blending the
behavior of Perceptron and Winnow. Itwould be interesting to see if there are circumstances
in which this leads to a practical advantage.

There are also open theoretical questions. We have already noted some of the extensions
to the basic model that interest us. We would like to better underdtaad threshold
algorithms (where, roughly speaking, instead of compasingwith 0 we compare the dot
product against some fixed val@g We have noted that these algorithms are quasi-additive
so long asf; is allowed to vary withi . Furthermore, the key functia®@ can still be defined
appropriately. Note that in generalizing the current paper, the important issu ifor
clearly not the particular form we have given, but rather the propertyGlsagradient must
be the prediction vector.

11. Conclusion

We have introduced a new general class of linear discriminant learning algorithms which
we call quasi-additive. This new class generalizes several existing algorithms, such as
Perceptron and members of the Winnow family, and brings them under a simple unifying
framework that makes clear their similarities to one another. The main contribution of
this paper is the introduction of a general approach for constructing measures of progress
that can be used to analyze the convergence and mistake bound properties of these quasi-
additive algorithms. Using this general construction, we have provided a single proof of
convergence that applies to a wide range of algorithms in this class, including several known
algorithms like Perceptron and Winnow, but also covering interesting new algorithms that
had not been previously studied.

Our basic technique can also be used to derive reasonable mistake bounds for these
algorithms in a fairly systematic way. This is the second main contribution of our paper.
In the case of known algorithms, the results from our technique are the same as or very
similar to those from existing analyses, and our measures of progress reduce to variants of
the traditional measures.

Perhaps the most important aspect of our approach in general is that we can also analyze
severalnew algorithms in a straightforward and mostly programmatic fashion. In fact,
we were able to achieve not only convergence results, but also specific mistake bounds
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for these algorithms. We illustrated this for a new family of quasi-additive algorithms
that interpolate between known algorithms in an interesting way. In particular, one family
which we analyzed in detail interpolates between the Perceptron algorithm and Weighted
Majority.

In summary, we feel that the general framework we have is valuable because it suggests
new algorithms for linear discriminant learning algorithms and brings some insight into
how and why these algorithms converge. Our framework also provides a uniform way
of generating results for known algorithms, so perhaps helps us better understand these
existing algorithms and the significant similarities between them.
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Notes

1. We will define sigrix) to be—1 if x < 0 and to be 1 ik > 0. The value chosen at= 0 is not important.
Note that often the class of linear-discriminant concepts are taken to be those defined by a ee&fband
a threshold € R, with the label beingt1 if and only ifx - u > 6. However our assumption, thét= 0, is
not restrictive. To cope with # 0 one can add an + 1’st attribute to all training examples which has the
constant value 1. We can imagine similarly extendingy adding am + 1'st attribute with value-6. This
“equivalent” concept has threshold 0 as we require.

2. Recall that the hyperbolic sine function sinh is defined by 15i|a!:1e)(*2‘rx .

3. Throughout this paper we adopt the convention of writing a componentwise transformatiof (z) as
w = f(z)—i.e., writing the function name in bold to highlight the fact that its value is a vector.

4. To show this equivalence, itis necessary to transform the samples as well. Littlestone assuxnes[that].

In this setting, the quasi-additive procedure is equivalent only after a transformatien2x; — 1 to each
component. Since the transformation is linear, it does not affect the class of concepts that can be learned.

5. The comparison is complicated slightly since Littlestone uses a slightly different definiiphudfthe bounds
turn out to be equivalent, even having the same constant.

6. Italso suggests that a similar strategy be tried in other complicated proofs: i.e., find some funktiotinaf
simplifies the bounds, and particularly one that can be used to avoid expliefiendence in the second-order
Taylor bound. Although we do not expand this notion further in this paper, we believe that this technique might
have the potential to lead to a way of systematizing some of the second (algebraic) part of the analysis.

7. Since this is not symmetric in its two variables, some authors prefer to avoid calling it a distance, calling it, for
example, 8Bregman divergencélVe also note that many definitions require additional conditions that we do
not, for instance requiringl to be strictly convex. Bregman distances for non-strictly cortdexinctions are
useful in our application; for example, the optimal measure of progress fqr-tieem Perceptron algorithm
is a Bregman distance fdt (z) = |lullq ||zl p, which is not strictly convex.

8. Forexample, this occurs when there is only one possible value for the gradi¢im tfe direction of any given
u. To illustrate the point concretely, consider the definitidtz) = ||z||> and notice thaV H (v) = v/|v| 2 is
a vector of unit length (measured by the 2-norm) in the direction dflere, for anyn andu we can indeed
choose & such thaf(v) = nu: in fact we just choose = (1/2)u, sincef(v) = 2v. But the gradient oH in
this case will bau/||u||2, independent of.

9. An attentive reader might notice that this description does not accurately cover our analysipefdimne
Perceptron algorithm given in Section 7. In that case, the second-order analysis is not baseld of de
measure of progress, but 6n= H?; it boundsD; instead ofDy. To perform an analysis that fits the pattern
we mention here more precisely, one could work with a Bregman measure of progress that is Bas&d on
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mentioned in Section 8 one can show that, as long as one optimiaethe end, one will obtain the same
bounds with this measure of progress.
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