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Abstract. We present a general approach to model selection and regularization that exploits unlabeled data to
adaptively control hypothesis complexity in supervised learning tasks. The idea is to impose a metric structure on
hypotheses by determining the discrepancy between their predictions across the distribution of unlabeled data. We
show how this metric can be used to detect untrustworthy training error estimates, and devise novel model selection
strategies that exhibit theoretical guarantees against over-fitting (while still avoiding under-fitting). We then extend
the approach to derive a general training criterion for supervised learning—yielding an adaptive regularization
method that uses unlabeled data to automatically set regularization parameters. This new criterion adjusts its
regularization level to the specific set of training data received, and performs well on a variety of regression and
conditional density estimation tasks. The only proviso for these methods is that sufficient unlabeled training data
be available.
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1. Introduction

In supervised learning, one takes a sequence of training pairs 〈x1, y1〉, . . . , 〈xt , yt 〉 and
attempts to infer a hypothesis function h : X → Y that achieves small prediction error
err(h(x), y) on future test examples. This basic paradigm covers many of the tasks stud-
ied in machine learning research, including: regression, where Y is typically IR and we
measure prediction error by squared difference err(ŷ, y) = (ŷ − y)2 or some similar loss;
classification, where Y is typically a small discrete set and we measure prediction error with
the misclassification loss err(ŷ, y) = 1(ŷ 	=y); and conditional density estimation, where we
assume, for example, that Y is a classification label from {0, 1} and Ŷ is a probabilis-
tic prediction in [0, 1], and we measure prediction error using the log loss err(ŷ, y) =
−y log ŷ − (1 − y) log(1 − ŷ) (also known as the cross-entropy error (Bishop, 1995)).

Regardless of the specifics of these scenarios, one always faces the classical over-fitting
versus under-fitting dilemma in supervised learning: If the hypothesis is chosen from a class
that is too complex for the data, there is a good chance it will exhibit large test error even
though its training error is small. This occurs because complex classes generally contain
several hypotheses that behave similarly on the training data and yet behave quite differently
in other parts of the domain—thus diminishing the ability to distinguish good hypotheses
from bad. (Note that significantly different hypotheses cannot be simultaneously accurate.)
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Therefore, one must restrict the set of hypotheses to be able to reliably differentiate between
accurate and inaccurate predictors. On the other hand, selecting hypotheses from an overly
restricted class can prevent one from being able to express a good approximation to the ideal
predictor, thereby causing important structure in the training data to be ignored. Since both
under-fitting and over-fitting result in large test error, they must be avoided simultaneously.

This tradeoff between over-fitting and under-fitting is a fundamental dilemma in machine
learning and statistics. In this paper, we are primarily interested in investigating automated
methods for calibrating hypothesis complexity to given training data. Most of the techniques
that have been developed for this process fall into one of three basic categories: model
selection, regularization, and model combination.

In model selection one first takes a base hypothesis class, H , decomposes it into a discrete
collection of subclasses H0 ⊂ H1 ⊂ · · · = H (say, organized in a nested chain, or lattice) and
then, given training data, attempts to identify the optimal subclass from which to choose the
final hypothesis. There have been a variety of methods proposed for choosing the optimal
subclass, but most techniques fall into one of two basic categories: complexity penalization
(e.g., the minimum description length principle (Rissanen, 1986) and various statistical
selection criteria (Foster & George, 1994)); and hold-out testing (e.g., cross-validation and
bootstrapping (Efron, 1979).

Regularization is similar to model selection except that one does not impose a discrete
decomposition on the base hypothesis class. Instead a penalty criterion is imposed on
the individual hypotheses, which either penalizes their parametric form (e.g., as in ridge
regression or weight decay in neural network training (Cherkassky & Mulier, 1998; Ripley,
1996; Bishop, 1995) or penalizes their global smoothness properties (e.g., minimizing
curvature (Poggio & Girosi, 1990)).

Model combination methods do not select a single hypothesis but rather take a weighted
combination of base hypotheses to form a composite predictor. Composing base functions in
this way can have the effect of smoothing out erratic hypotheses (e.g., as in Bayesian model
averaging (MacKay, 1992) and bagging (Breiman, 1996)), or increasing the representation
power of the base hypothesis class through linear combinations (e.g., as in boosting (Freund
& Schapire, 1997) and neural network ensemble methods (Krogh & Vedelsby, 1995)).

All of these methods have shown impressive improvements over naive learning algorithms
in every area of supervised learning research. However, one difficulty with these techniques
is that they usually require expertise to apply properly, and often involve free parameters
that must be set by an informed practitioner.

In this paper we introduce alternative methods for model selection and regularization
that attempt to improve on the robustness of standard approaches. Our idea is to use un-
labeled data to automatically penalize hypotheses that behave erratically off the labeled
training set. In Section 3 we first investigate how unlabeled data can be used to perform
model selection in nested sequences of hypothesis spaces. The strategies we develop are
shown to experimentally outperform standard model selection methods, and are proved
to be robust in theory. Then in Section 4 we consider regularization and show how our
proposed model selection strategies can be extended to a generalized training objective for
supervised learning. Here the idea is to use unlabeled data to automatically tune the degree
of regularization for a given task without having to set free parameters by hand. We show
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that the resulting regularization technique adapts its behavior to a given training set and
can outperform standard fixed regularizers for a given problem. Note, however, that we do
not address model combination methods in this paper (Krogh & Vedelsby, 1995), instead
leaving this to future work.

The work reported here extends the earlier conference papers (Schuurmans, 1997;
Schuurmans & Southey, 2000).

2. Metric structure of supervised learning

In this paper we will consider the metric structure on a space of hypothesis functions
that arises from a simple statistical model of the supervised learning problem: Assume
that the examples 〈x, y〉 are generated by a stationary joint distribution PXY on X × Y .
In learning a hypothesis function h : X → Y we are primarily interested in modeling the
conditional distribution PY |X . However, here we will investigate the utility of using extra
information about the marginal domain distribution PX to choose a good hypothesis. Note
that information about PX can be obtained from a collection of unlabeled training examples
x1, . . . , xr (these are often in abundant supply in many applications—for example, text
processing and computer perception). The significance of having information about the
domain distribution PX is that it defines a natural (pseudo) metric on the space of hypotheses.
That is, for any two hypothesis functions f and g we can obtain a measure of the distance
between them by computing the expected disagreement in their predictions

d( f, g)
�= ϕ

(∫
err( f (x), g(x)) dPX

)
(1)

where err(ŷ, y) is the natural measure of prediction error for the problem at hand (e.g.,
regression or classification) and ϕ is an associated normalization function that recovers the
standard metric axioms. Specifically, we will be interested in obtaining the metric prop-
erties: nonnegativity d( f, g) ≥ 0, symmetry d( f, g) = d(g, f ), and the triangle inequality
d( f, g) ≤ d( f, h) + d(h, g). It turns out that most typical prediction error functions admit
a metric of this type.

For example, in regression we measure the distance between two prediction functions by

d( f, g) =
(∫

( f (x) − g(x))2 dPX

)1/2

where the normalization function ϕ(z) = z1/2 establishes the metric properties. In classifi-
cation, we measure the distance between two classifiers by

d( f, g) =
∫

1( f (x)	=g(x)) dPX

= PX ( f (x) 	= g(x))

where no normalization is required to achieve a metric. (In conditional density estima-
tion, one can measure the “distance” between two conditional probability models by their
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Kullback-Leibler divergence, which technically is not a metric but nevertheless supplies a
useful measure (Cover & Thomas, 1991)).

In each of these cases, the resulting distances can be efficiently calculated by making
a single pass down a list of unlabeled examples. Importantly, these definitions can be
generalized to include the target conditional distribution in an analogous manner:

d(h, PY |X )
�= ϕ

(∫ ∫
err(h(x), y) dPY |x dPX

)
(2)

That is, we can interpret the true error of a hypothesis function h with respect to a target
conditional PY |X as a distance between h and PY |X . The significance of this definition is
that it is consistent with the previous definition (1) and we can therefore embed the entire
supervised learning problem in a common metric space structure.

To illustrate, in regression the definition (2) yields the root mean squared error of a
hypothesis

d(h, PY |X ) =
(∫ ∫

(h(x) − y)2 dPY |x dPX

)1/2

and in classification it gives the true misclassification probability

d(h, PY |X ) =
∫ ∫

1(h(x)	=y) dPY |x dPX

= PXY (h(x) 	= y)

(In conditional probability modeling it gives the expected log loss—or KL-divergence to
PY |X —which again, yields a useful measure, although it is not a metric).

Together, definitions (1) and (2) show how we can impose a global metric space view of
the supervised learning problem (Figure 1): Given labeled training examples 〈x1, y1〉, . . . ,
〈xt , yt 〉, the goal is to find the hypothesis h in a space H that is closest to a target conditional

Figure 1. Metric space view of supervised learning: Unlabeled data can accurately estimate distances between
functions f and g within H , however only limited labeled data is available to estimate the closest function h to
PY |X .
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PY |X under the distance measure (2). If we are also given a large set of auxiliary unlabeled
examples x ′

1, . . . , x ′
r , then we can also accurately estimate the distances between alternative

hypotheses f and g within H; effectively giving us (1)

d( f, g)
�= ϕ

(
1

r

r∑
j=1

err( f (x ′
j ), g(x ′

j ))

)
(3)

That is, for sufficiently large r , the distances defined in (3) will be very close to the distances
defined in (1). However, the distances between hypotheses and the target conditional PY |X
(2) can only be weakly estimated using the (presumably much smaller) set of labeled training
data

̂d(h, PY |X )
�= ϕ

(
1

t

t∑
i=1

err(h(xi ), yi )

)
(4)

which need not be close to (2). The challenge then is to approximate the closest hypothesis
to the target conditional as accurately as possible using the available information (3) and
(4) in place of the true distances (1) and (2).

Below we will use this metric space perspective to devise novel model selection and
regularization strategies that exploit inter-hypothesis distances measured on an auxiliary set
of unlabeled examples. Our approach is applicable to any supervised learning problem that
admits a reasonable metric structure. In particular, all of our strategies will be expressed
in terms of a generic distance measure which does not depend on other aspects of the
problem. (However, for the sake of concreteness, we will focus on regression as a source
of demonstration problems initially, and return to classification and conditional density
estimation examples near the end of the paper.)

3. Model selection

We first consider the process of using model selection to choose the appropriate level
of hypothesis complexity to fit to data. This, conceptually, is the simplest approach to
automatic complexity control for supervised learning: the idea is to stratify the hypothesis
class H into a sequence (or lattice) of nested subclasses H0 ⊂ H1 ⊂ · · · = H , and then,
given training data, somehow choose a class that has the proper complexity for the given
data. To understand how one might make this choice, note that for a given training sample
〈x1, y1〉, . . . , 〈xt , yt 〉 we can, in principle, obtain the corresponding sequence of empirically
optimal functions h0 ∈ H0, h1 ∈ H1, . . .

hk = arg min
h∈Hk

ϕ

(
1

t

t∑
i=1

err(h(xi ), yi )

)
= arg min

h∈Hk

̂d(h, PY |X )

The problem is to select one of these functions based on the observed training errorŝd(h0, PY |X ), ̂d(h1, PY |X ), . . . (figure 2). Note, however, that these errors are monotonically
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Figure 2. Sequence of empirically optimal functions induced by a chain H0 ⊂ H1 ⊂ · · · on a given training set:
Dotted lines indicate decreasing optimal training distances ̂d(h0, PY |X ), ̂d(h1, PY |X ), . . . and solid lines indicated
distances between hypotheses. The final hypothesis must be selected on the basis of these estimates.

decreasing (assuming we can fully optimize in each class) and therefore choosing the
function with smallest training error inevitably leads to over-fitting. So the trick is to invoke
some other criterion beyond mere empirical error minimization to make the final selection.

As mentioned, two basic model selection strategies currently predominate: complexity
penalization and hold-out testing. However, neither of these approaches attends to the
metric distances between hypotheses, nor do they offer an obvious way to exploit auxiliary
unlabeled data. But by adopting the metric space view of Section 2 we obtain an useful
new perspective on model selection: In our setting, the chain H0 ⊂ H1 ⊂ · · · ⊂ H can be
interpreted as a sequence of hypothesis spaces wherein we can measure the distance between
candidate hypotheses (using unlabeled data). Unfortunately, we still cannot directly measure
the distances from hypotheses to the target conditional PY |X (just as before) and therefore
must estimate them based on a small labeled training sample. However, we can now exploit
the fact that we have the distances between functions in the sequence, and hence attempt to
use this additional information to make a better choice (figure 2).

3.1. Strategy 1: Triangle inequality

The first intuition we explore is that inter-hypothesis distances can help us detect over-
fitting in a very simple manner: Consider two hypotheses hk and hk+1 that both have a small
estimated distance to PY |X and yet have a large true distance between them. In this situation,
it should be clear that we should be concerned about selecting the second hypothesis,
because if the true distance between hk and hk+1 is indeed large then both functions cannot
be simultaneously close to PY |X , by simple geometry. This implies that at least one of the
distance estimates to PY |X must be inaccurate, and we know intuitively to trust the earlier
estimate more than the latter (since hk+1 is chosen from a larger class). In fact, if botĥd(hk, PY |X ) and ̂d(hk+1, PY |X ) really were accurate estimates they would have to satisfy the
triangle inequality with the known distance d(hk, hk+1); that is

̂d(hk, PY |X ) + ̂d(hk+1, PY |X ) ≥ d(hk, hk+1) (5)

Since these empirical distances eventually become significant underestimates in general
(because the hi are explicitly chosen to minimize the empirical distance on the labeled
training set) the triangle inequality provides a useful test to detect when these estimates
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Figure 3. Triangle inequality model selection procedure.

become inaccurate. In fact, this basic test forms the basis of a simple model selection
strategy, TRI, that works surprisingly well in many situations (figure 3).

3.2. Example: Polynomial regression

To demonstrate this method (and all subsequent methods we develop in this paper) we
first consider the problem of polynomial curve fitting. This is a supervised learning prob-
lem where X = IR, Y = IR, and the goal is to minimize the squared prediction error,
err(ŷ, y) = (ŷ − y)2. Specifically, we consider polynomial hypotheses h : IR → IR un-
der the natural stratification H0 ⊂ H1 ⊂ · · · into polynomials of degree 0, 1, . . . , etc. The
motivation for studying this task is that it is a classical well-studied problem, that still at-
tracts a lot of interest (Cherkassky, Mulier, & Vapnik, 1997; Galarza, Rietman, & Vapnik,
1996; Vapnik, 1996). Moreover, polynomials create a difficult model selection problem
which has a strong tendency to produce catastrophic over-fitting effects (figure 4). Another
benefit is that polynomials are an interesting and nontrivial class for which there are efficient
techniques for computing best fit hypotheses.

Figure 4. An example of minimum squared error polynomials of degrees 1, 2, and 9 for a set of 10 training
points. The large degree polynomial demonstrates erratic behavior off the training set.
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To apply the metric based approach to this task, we define the metric d in terms of the
squared prediction error err(ŷ, y) = (ŷ − y)2 with a square root normalization ϕ(z) = z1/2,
as discussed in Section 2. To evaluate the efficacy of TRI in this problem we compared its
performance to a number of standard model selection strategies, including: structural risk
minimization, SRM (Cherkassky, Mulier, & Vapnik, 1997; Vapnik, 1996), RIC (Foster &
George, 1994), SMS (Shibata, 1981), GCV (Craven & Wahba, 1979), BIC (Schwarz, 1978),
AIC (Akaike, 1974), CP (Mallows, 1973), and FPE (Akaike, 1970). We also compared
it to 10-fold cross validation, CVT (a standard hold-out method (Efron, 1979; Weiss &
Kulikowski, 1991; Kohavi, 1995)).

We conducted a simple series of experiments by fixing a domain distribution PX on X = IR
and then fixing various target functions f : IR → IR. (The specific target functions we used
in our experiments are shown in figure 5). To generate training samples we first drew
a sequence of values, x1, . . . , xt , computed the target function values f (x1), . . . , f (xt ),
and added independent Gaussian noise to each, to obtain the labeled training sequence
〈x1, y1〉, . . . , 〈xt , yt 〉. For a given training sample we then computed the series of best fit
polynomials h0, h1, . . . of degree 0, 1, . . . , etc. Given this sequence, each model selection
strategy will choose some hypothesis hk on the basis of the observed empirical errors. To
implement TRI we gave it access to auxiliary unlabeled examples x ′

1, . . . , x ′
r in order to

compute the true distances between polynomials in the sequence.

(a) (b)

(c) (d)

Figure 5. Target functions used in the polynomial curve fitting experiments (in order): (a) step(x ≥ 0.5), (b)
sin(1/x), (c) sin2(2πx), and (d) a fifth degree polynomial.
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Our main emphasis in these experiments was to minimize the true distance between
the final hypothesis and the target conditional PY |X . That is, we are primarily concerned
with choosing a hypothesis that obtains a small prediction error on future test examples,
independent of its complexity level.1 To determine the effectiveness of the various selection
strategies, we therefore measured the ratio of the true error (distance) of the polynomial
they selected to the best true error among polynomials in the sequence h0, h1, . . . , etc. (This
means that the optimum achievable ratio is 1). The rationale for doing this is that we wish
to measure the model selection strategy’s ability to approximate the best hypothesis in the
given sequence—not find a better function from outside the sequence.2

Table 1 shows the results obtained for approximating a step function f (x) = step(x ≥ 0.5)

corrupted by Gaussian noise. (The strategy ADJ in the tables is explained in Section 3.3
below.) We obtained these results by repeatedly generating training samples of a fixed size
and recording the approximation ratio achieved by each strategy. These tables record the
distribution of ratios produced by each strategy for training sample sizes of t = 20 and
30 respectively, using r = 200 unlabeled examples to measure inter-hypothesis distances—
repeated over 1000 trials. The initial results appear to be quite positive. TRI achieves median
approximation ratios of 1.06 and 1.08 for training sample sizes 20 and 30 respectively.
This compares favorably to the median approximation ratios 1.39 and 1.54 achieved by
SRM, and 1.17 achieved by CVT in both cases. (The remaining complexity penalization
strategies, GCV, FPE, etc., all performed significantly worse on these trials.) However,
the most notable difference was TRI’s robustness against over-fitting. In fact, although the
penalization strategy SRM performed reasonably well much of the time, it was prone to
making periodic but catastrophic over-fitting errors. Even the normally well-behaved cross-
validation strategy CVT made significant over-fitting errors from time to time. This is

Table 1. Fitting f (x) = step(x ≥ 0.5) with PX = U (0, 1) and σ = 0.05. Table gives distribution of approximation
ratios achieved at training sample size t = 20 and t = 30, showing percentiles of approximation ratios achieved in
1000 repeated trials.

TRI CVT SRM RIC GCV BIC AIC FPE ADJ

t = 20

25 1.00 1.06 1.14 7.54 5.47 15.2 22.2 25.8 1.02

50 1.06 1.17 1.39 224 118 394 585 590 1.12

Percentiles 75 1.17 1.42 3.62 5.8e3 3.9e3 9.8e3 1.2e4 1.2e4 1.24

95 1.44 6.75 56.1 6.1e5 3.7e5 7.8e5 9.2e5 8.2e5 1.54

100 2.41 1.1e4 2.2e4 1.5e8 6.5e7 1.5e8 1.5e8 8.2e7 3.02

t = 30

25 1.00 1.08 1.17 4.69 1.51 5.41 5.45 2.72 1.06

50 1.08 1.17 1.54 34.8 9.19 39.6 40.8 19.1 1.14

Percentiles 75 1.19 1.37 9.68 258 91.3 266 266 159 1.25

95 1.45 6.11 419 4.7e3 2.7e3 4.8e3 5.1e3 4.0e3 1.51

100 2.18 643 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 2.10
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evidenced by the fact that in 1000 trials with a training sample of size 30 (Table 1) TRI
produced a maximum approximation ratio of 2.18, whereas CVT produced a worst case
approximation ratio of 643, and the penalization strategies SRM and GCV both produced
worst case ratios of 1.6 × 107. (The 95th percentiles were TRI 1.45, CVT 6.11, SRM 419,
GCV 2.7 × 103).3

In fact, TRI’s robustness against over-fitting is not a surprise: One can prove that TRI
cannot produce an approximation ratio greater than 3 if we make two simple assumptions:
(i) that TRI makes it to the best hypothesis hm in the sequence, and (ii) that the empirical
error of hm is an underestimate; that is, ̂d(hm, PY |X ) ≤ d(hm, PY |X ). (Note that this second
assumption is likely to hold because we are choosing hypotheses by explicitly minimizinĝd(hm, PY |X ) rather than d(hm, PY |X ); see Table 6.)

Proposition 1. Let hm be the optimal hypothesis in the sequence h0, h1, . . . (that is,
hm = arg minhk d(hk, PY |X )) and let h
 be the hypothesis selected by TRI. If (i) m ≤ 
 and
(ii) ̂d(hm, PY |X ) ≤ d(hm, PY |X ) then

d(h
, PY |X ) ≤ 3d(hm, PY |X ) (6)

Proof: Consider a hypothesis hn which follows hm in the sequence, and assume
d(hn, PY |X ) > 3d(hm, PY |X ). We show that hn must fail the triangle test (5) with hm and
therefore TRI will not select hn . First, notice that the initial assumption about hn’s error
along with the triangle inequality imply that 3d(hm, PY |X ) < d(hn, PY |X ) ≤ d(hm, hn) +
d(hm, PY |X ), and hence d(hm, hn) > 2d(hm, PY |X ). But now recall that ̂d(hn, PY |X ) ≤̂d(hm, PY |X ) for n > m (since the training errors are monotonically decreasing), and also, by
assumption, ̂d(hm, PY |X ) < d(hm, PY |X ). Therefore we have d(hm, hn) > 2d(hm, PY |X ) >̂d(hm, PY |X ) + ̂d(hn, PY |X ), which contradicts (5). Thus TRI will not consider hn . Fi-
nally, since h
 cannot precede hm (by assumption (i)), h
 must satisfy d(h
, PY |X ) ≤
3d(hm, PY |X ). ✷

(Note that in Proposition 1, as well as Propositions 2 and 3 below, we implicitly assume
that we have the true inter-hypothesis distances d(hm, h
), which in principle must be
measured on unlimited amounts of unlabeled data. We discuss relaxing this assumption in
Section 3.4 below).

Continuing with the experimental investigation, we find that the basic flavor of the results
remains unchanged at different noise levels and for different domain distributions PX . In
fact, much stronger results are obtained for wider tailed domain distributions like Gaussian
(Table 2) and “difficult” target functions like sin(1/x) (Table 3). Here the complexity
penalization methods (SRM, GCV, etc.) can be forced into a regime of constant catastrophe,
CVT noticeably degrades, and yet TRI retains similar performance levels shown in Table 1.

Of course, these results might be due to considering a pathological target function from
the perspective of polynomial curve fitting. It is therefore important to consider other more
natural targets that might be better suited to polynomial approximation. In fact, by repeating
the previous experiments with a more benign target function f (x) = sin2(2πx) we obtain
quite different results. Table 4 shows that procedure TRI does not fare as well in this
case–obtaining median approximation ratios of 3.11 and 3.51 for training sample sizes 20
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Table 2. Fitting f (x) = step(x ≥ 0.5) using σ = 0.05 (as in Table 1), but here using PX = N (0.5, 1) instead of
PX = U (0, 1). Table gives distribution of approximation ratios achieved at training sample size t = 20 and t = 30,
showing percentiles of approximation ratios achieved in 1000 repeated trials.

TRI CVT SRM RIC GCV BIC AIC FPE ADJ

t = 20

25 1.00 1.01 1.23 1.9e7 3.0e5 7.0e7 1.4e8 3.5e7 1.00

50 1.09 1.36 10.2 9.8e8 1.5e8 2.2e9 3.1e9 1.4e9 1.00

Percentiles 75 1.27 3.75 982 2e10 5.9e9 4e10 5e10 3e10 1.04

95 2.32 47.5 5.6e4 1e12 5e11 1e12 1e12 1e12 1.21

100 33.2 4.9e5 7.3e6 2e14 1e14 4e14 4e14 1e14 2.24

t = 30

25 1.01 1.02 10.9 1.9e7 3.2e4 2.1e7 2.3e7 2.4e6 1.00

50 1.13 1.36 606 9.9e7 7.3e6 1.1e8 1.1e8 3.7e7 1.00

Percentiles 75 1.51 4.82 8.4e5 6.1e8 1.1e8 6.2e8 6.5e8 2.8e8 1.08

95 3.68 92.0 2.8e8 5.6e9 2.4e9 5.9e9 5.9e9 4.2e9 1.20

100 44.4 5.2e5 2e10 2e11 1e11 2e11 2e11 2e11 2.05

Table 3. Fitting f (x) = sin(1/x) with PX = U (0, 1) and σ = 0.05. Table gives distribution of approximation
ratios achieved at training sample size t = 20 and t = 30, showing percentiles of approximation ratios achieved in
1000 repeated trials.

TRI CVT SRM RIC GCV BIC AIC FPE ADJ

t = 20

25 1.00 1.08 1.20 3.11 4.34 3.86 4.81 9.89 1.07

50 1.11 1.21 1.64 11.9 22.8 15.8 24.9 72.8 1.18

Percentiles 75 1.30 1.76 6.58 77.4 193 104 196 1.3e3 1.38

95 1.77 18.5 39.0 1.4e4 2.6e4 2.4e4 3.7e4 1.2e5 3.79

100 3.80 5.8e3 9.2e3 1.0e9 1.0e9 1.0e9 1.0e9 2.7e9 22.9

t = 30

25 1.02 1.08 1.34 2.80 1.89 3.16 3.67 2.80 1.08

50 1.14 1.20 4.74 12.1 9.67 14.1 15.8 13.8 1.17

Percentiles 75 1.30 1.63 33.2 61.5 55.2 70.1 81.6 72.4 1.30

95 1.72 23.5 306 1.2e3 479 1.3e3 1.3e3 1.3e3 1.81

100 2.68 325 1.4e5 5.2e5 1.4e5 5.2e5 5.2e5 3.9e5 9.75

and 30 respectively (compared to 1.33 and 1.03 for SRM, and 1.37 and 1.16 for CVT).
A closer inspection of TRI’s behavior reveals that the reason for this performance drop
is that TRI systematically gets stuck at low even-degree polynomials (cf. Table 6). In
fact, there is a simple geometric explanation for this: the even-degree polynomials (after
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Table 4. Fitting f (x) = sin2(2πx) with PX = U (0, 1) and σ = 0.05. Table gives distribution of approximation
ratios achieved at training sample size t = 20 and t = 30, showing percentiles of approximation ratios achieved in
1000 repeated trials.

TRI CVT SRM RIC GCV BIC AIC FPE ADJ

t = 20

25 2.04 1.03 1.00 1.00 1.06 1.00 1.01 1.58 1.02

50 3.11 1.37 1.33 1.34 1.94 1.35 1.61 18.2 1.32

Percentiles 75 3.87 2.23 2.30 2.13 10.0 2.75 4.14 1.2e3 1.83

95 5.11 9.45 8.84 8.26 5.0e3 11.8 82.9 1.8e5 3.94

100 8.92 105 526 105 2.0e7 2.1e3 2.7e5 2.4e7 6.30

t = 30

25 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01

50 3.51 1.16 1.03 1.05 1.11 1.02 1.08 1.45 1.27

Percentiles 75 4.15 1.64 1.45 1.48 2.02 1.39 1.88 6.44 1.60

95 5.51 5.21 5.06 4.21 26.4 5.01 19.9 295 3.02

100 9.75 124 1.4e3 20.0 9.1e3 28.4 9.4e3 1.0e4 8.35

degree 4) all give reasonable fits to sin2(2πx) whereas the odd-degree fits have a tail in
the wrong direction. This creates a significant distance between successive polynomials
and causes the triangle inequality test to fail between the even and odd degree fits, even
though the larger even-degree polynomials give a good approximation. Therefore, although
the metric-based TRI strategy is robust against over-fitting, it can be prone to systematic
under-fitting in seemingly benign cases. Similar results were obtained for fitting a fifth
degree target polynomial corrupted by the same level of Gaussian noise (Table 5). This
problem demonstrates that the first assumption used in Proposition 1 above can be violated
in natural situations (see Table 6). Consideration of this difficulty leads us to develop a
reformulated procedure.

3.3. Strategy 2: Adjusted distance estimates

The final idea we explore for model selection is to observe that we are actually dealing with
two metrics here: the true metric d defined by the joint distribution PXY and an empirical
metric d̂ determined by the labeled training sequence 〈x1, y1〉, . . . , 〈xt , yt 〉. Note that the
previous model selection strategy TRI ignored the fact that we could measure the empirical
distance between hypotheses ̂d(hk, h
) on the labeled training data, as well as measure their
“true” distance d(hk, h
) on the unlabeled data. However, the fact that we can measure both
inter-hypothesis distances actually gives us an observable relationship between d̂ and d in
the local vicinity. We now exploit this observation to attempt to derive an improved model
selection procedure.

Given the two metrics d and d̂ , consider the triangle formed by two hypotheses hk and h


and the target conditional PY |X (figure 6). Notice that there are six distances involved—three
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Table 5. Fitting a fifth degree polynomial f (x) with PX = U (0, 1) and σ = 0.05. Table gives distribution of
approximation ratios achieved at training sample size t = 20 and t = 30, showing percentiles of approximation
ratios achieved in 1000 repeated trials.

TRI CVT SRM RIC GCV BIC AIC FPE ADJ

t = 20

25 7.52 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00

50 8.62 1.00 1.00 1.00 1.05 1.00 1.00 10.2 1.00

Percentiles 75 9.75 1.20 1.03 1.01 2.68 1.04 1.35 850 1.06

95 12.1 3.89 2.17 1.35 2.2e3 2.68 28.5 2.3e5 2.32

100 17.6 582 233 15.2 2.6e8 3.5e3 1.0e6 3.3e8 16.9

t = 30

25 7.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 8.58 1.01 1.00 1.00 1.01 1.00 1.00 1.08 1.00

Percentiles 75 9.36 1.11 1.01 1.00 1.20 1.01 1.14 2.40 1.02

95 11.0 2.59 1.42 1.13 8.92 1.35 5.46 131 1.18

100 14.2 45.3 24.1 8.00 3.1e4 11.8 9.9e3 1.4e5 13.6

Table 6. Strengths of the assumptions used in Propositions 1 and 2. Table shows frequency (in percent) that
the assumptions hold over 1000 repetitions of the experiments conducted in Tables 1, 3, 4 and 5 (at sample size
t = 20).

step(x ≥ 0.5) sin(1/x) sin2(2πx) poly5(x)

(Table 1) (Table 3) (Table 4) (Table 5)

Proposition 1(i) holds 73 80 10 4

Proposition 1(ii) holds 87 86 99 98

Proposition 1 holds 61 66 9 4

Proposition 2(i) holds 27 32 28 67

Proposition 2(ii) holds 22 26 14 24

Proposition 2 holds 15 17 12 21

Figure 6. The real and estimated distances between successive hypotheses hk and h
 and the target PY |X . Solid
lines indicate real distances, dotted lines indicate empirical distance estimates.
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Figure 7. Adjusted-distance-estimate model selection procedure.

real and three estimated, of which the true distances to PY |X are the only two we care about,
and yet these are the only two that we do not have. However, we can now exploit the observed
relationship between d and d̂ to adjust the empirical training error estimate ̂d(h
, PY |X ). In
fact, one could first consider the simplest possible adjustment based on the naive assumption
that the observed relationship of the metrics d̂ and d between hk and h
 also holds between
h
 and PY |X . Note that if this were actually the case, we would obtain a better estimate of
d(h
, PY |X ) simply by re-scaling the training distance ̂d(h
, PY |X ) according to the observed
ratio d(hk, h
)/ ̂d(hk, h
). (Since we expect d̂ to be an underestimate in general, we expect
this ratio to be larger than 1). In fact, by adopting this as a simple heuristic we obtain
another model selection procedure, ADJ, which is also surprisingly effective (figure 7).
This simple procedure overcomes some of the under-fitting problems associated with TRI
and yet retains much of TRI’s robustness against over-fitting.

Although at first glance this procedure might seem to be ad hoc, it turns out that one
can prove an over-fitting bound for ADJ that is analogous to that established for TRI. In
particular, if we assume that (i) ADJ makes it to the best hypothesis hm in the sequence, and
(ii) the adjusted error estimate ̂̂d(hm, PY |X ) is an underestimate, then ADJ cannot over-fit
by a factor much greater than 3.

Proposition 2. Let hm be the optimal hypothesis in the sequence h0, h1, . . . and let h
 be

the hypothesis selected by ADJ. If (i) m ≤ 
 and (ii) ̂̂d(hm, PY |X ) ≤ d(hm, PY |X ) then

d(h
, PY |X ) ≤
(

2 +
̂d(hm, PY |X )̂d(h
, PY |X )

)
d(hm, PY |X ) (7)

Proof: By the definition of ADJ we have that

̂̂d(h
, PY |X ) ≤ ̂̂d(hm, PY |X ) (8)

since ADJ selects h
 in favor of hm . We show that this implies a bound on h
’s true test
error d(h
, PY |X ) in terms of the optimum available test error d(hm, PY |X ). First, by the
triangle inequality we have d(h
, PY |X ) ≤ d(h
, hm) + d(hm, PY |X ) as well as ̂d(h
, hm) ≤̂d(h
, PY |X ) + ̂d(hm, PY |X ), and hence

d(h
, hm)̂d(h
, hm)
≥ d(h
, PY |X ) − d(hm, PY |X )̂d(hm, PY |X ) + ̂d(h
, PY |X )



METRIC-BASED MODEL SELECTION 65

Note that by the definition of ADJ (and since m ≤ 
) this yields

̂̂d(h
, PY |X ) ≥ d(h
, hm)̂d(h
, hm)

̂d(h
, PY |X )

≥ ̂d(h
, PY |X )
d(h
, PY |X ) − d(hm, PY |X )̂d(hm, PY |X ) + ̂d(h
, PY |X )

(9)

So from (9) and (8) and the assumption that ̂̂d(hm, PY |X ) ≤ d(hm, PY |X ), we obtain

̂d(h
, PY |X )
d(h
, PY |X ) − d(hm, PY |X )̂d(hm, PY |X ) + ̂d(h
, PY |X )

≤ ̂̂d(h
, PY |X )

≤ ̂̂d(hm, PY |X )

≤ d(hm, PY |X )

Simple algebraic manipulation then shows that

d(h
, PY |X ) ≤ d(hm, PY |X )̂d(h
, PY |X )
( ̂d(hm, PY |X ) + ̂d(h
, PY |X )) + d(hm, PY |X )

= d(hm, PY |X )̂d(h
, PY |X )
( ̂d(hm, PY |X ) + ̂d(h
, PY |X )) + d(hm, PY |X )̂d(h
, PY |X )

̂d(h
, PY |X )

= d(hm, PY |X )̂d(h
, PY |X )
( ̂d(hm, PY |X ) + 2 ̂d(h
, PY |X ))

= d(hm, PY |X )

( ̂d(hm, PY |X )̂d(h
, PY |X )
+ 2

)
✷

In this respect, not only does ADJ exhibit robustness against over-fitting, it also has a
(weak) theoretical guarantee against under-fitting. That is, if we make the assumptions that:
(i) the empirical distance estimates are underestimates, and (ii) the adjusted distance esti-
mates strictly increase the empirical distance estimates; then if the true error of a successor
hypothesis hm improves the true error of all of its predecessors h
 by a significant factor,
hm will be selected in lieu of its predecessors.

Proposition 3. Consider a hypotheses hm, and assume that (i) ̂d(h
, PY |X ) ≤ d(h
, PY |X )

for all 0 ≤ 
 ≤ m, and (ii) ̂d(h
, PY |X ) ≤ ̂̂d(h
, PY |X ) for all 0 ≤ 
 < m. Then if

d(hm, PY |X ) <
1

3

̂d(h
, PY |X )
2

d(h
, PY |X )
(10)

for all 0 ≤ 
 < m (that is, d(hm, PY |X ) is sufficiently small) it follows that ̂̂d(hm, PY |X ) <̂̂d(h
, PY |X ) for all 0 ≤ 
 < m, and therefore ADJ will not choose any predecessor in lieu
of hm.
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Proof: By the triangle inequality we have ̂d(h
, PY |X ) ≤ ̂d(h
, hm) + ̂d(hm, PY |X ) and
d(h
, hm) ≤ d(h
, PY |X ) + d(hm, PY |X ), yielding

d(h
, hm)̂d(h
, hm)
≤ d(h
, PY |X ) + d(hm, PY |X )̂d(h
, PY |X ) − ̂d(hm, PY |X )

(11)

Recall that by the definition of ˆ̂d we have

̂̂d(hm, PY |X ) = d(h
, hm)̂d(h
, hm)

̂d(h
, PY |X )

for some 0 ≤ 
 < m (specifically, the 
 leading to the largest ̂̂d(hm, PY |X )). Therefore by
applying (11) to this particular 
 we obtain

̂̂d(hm, PY |X ) ≤ ̂d(h
, PY |X )
d(h
, PY |X ) + d(hm, PY |X )̂d(h
, PY |X ) − ̂d(hm, PY |X )

< d(hm, PY |X )
2d(h
, PY |X )̂d(h
, PY |X ) − d(hm, PY |X )

The second step above follows from the assumption (i) that ̂d(hm, PY |X ) ≤ d(hm, PY |X )

and the fact that d(hm, PY |X ) < d(h
, PY |X ) (by both (i) and (10)). Now, by applying (10)
to both occurrences of d(hm, PY |X ) we obtain

̂̂d(hm, PY |X ) <
̂d(h
, PY |X )

2

3d(h
, PY |X )

(
2d(h
, PY |X )̂d(h
, PY |X ) − ̂d(h
, PY |X )

2
/3d(h
, PY |X )

)

= 2d(h
, PY |X ) ̂d(h
, PY |X )
2

̂d(h
, PY |X )3d(h
, PY |X ) − ̂d(h
, PY |X )
2

<
2d(h
, PY |X ) ̂d(h
, PY |X )

2

̂d(h
, PY |X )(2d(h
, PY |X ) + ̂d(h
, PY |X )) − ̂d(h
, PY |X )
2

since d(h
, PY |X ) > ̂d(h
, PY |X ) by assumption (i)

= 2d(h
, PY |X ) ̂d(h
, PY |X )
2

2d(h
, PY |X ) ̂d(h
, PY |X ) + ̂d(h
, PY |X )
2 − ̂d(h
, PY |X )

2

= ̂d(h
, PY |X )

<
̂̂d(h
, PY |X ) by assumption (ii) ✷

Therefore, although ADJ might not have originally appeared to be well motivated, it
possesses worst case bounds against over-fitting and under-fitting that cannot be established
for conventional methods. However, these bounds remain somewhat weak: Table 6 shows
that both ADJ and TRI systematically under-fit in our experiments. That is, even though
assumption (ii) of Proposition 1 is almost always satisfied (as expected), assumption (ii) of
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Proposition 2 is only true one quarter of the time. Therefore, Propositions 1 and 2 can only
provide a loose characterization of the quality of these methods. However, both metric-based
procedures remain robust against over-fitting.

To demonstrate that ADJ is indeed effective, we repeated the previous experiments with
ADJ as a new competitor. Our results show that ADJ robustly outperformed the standard
complexity penalization and hold-out methods in all cases considered—spanning a wide
variety of target functions, noise levels, and domain distributions PX . Tables 1–5 show the
previous data along with the performance characteristics of ADJ. In particular, Tables 4–6
show that ADJ avoids the extreme under-fitting problems that hamper TRI; it appears to
responsively select high order approximations when this is supported by the data. Moreover,
Tables 1–3 show that ADJ is still extremely robust against over-fitting, even in situations
where the standard approaches make catastrophic errors. Overall, this is the best model
selection strategy we have observed for these polynomial regression tasks, even though it
possesses a weaker guarantee against over-fitting than TRI.

Note that both model selection procedures we propose add little computational overhead
to traditional methods, since computing inter-hypothesis distances involves making only
a single pass down the reference list of unlabeled examples. This is an advantage over
standard hold-out techniques like CVT which repeatedly call the hypothesis generating
mechanism to generate pseudo-hypotheses—an extremely expensive operation in many
applications.

Finally, we note that ADJ possesses a subtle limitation: the multiplicative re-scaling
it employs cannot penalize hypotheses that have zero training error. (Therefore, we had
to limit the degree of the polynomials to t − 2 in the above experiments to avoid null
training errors). However, despite this shortcoming, the ADJ procedure turns out to per-
form very well in practice and most often outperforms the more straightforward TRI
strategy.

3.4. Robustness to unlabeled data

Before moving on to regularization, we briefly investigate the robustness of these model
selection techniques to limited amounts of auxiliary unlabeled data. In principle, one can
always argue that the preceding empirical results are not useful because the metric-based
strategies TRI and ADJ might require significant amounts of unlabeled data to perform
well in practice. (However, the 200 unlabeled examples used in the previous experiments
does not seem that onerous.) In fact, the previous theoretical results (Propositions 1–3)
assumed infinite unlabeled data. To explore the issue of robustness to limited amounts
of unlabeled data, we repeated our previous experiments but gave TRI and ADJ only a
small auxiliary sample of unlabeled data to estimate inter-hypothesis distances. In this ex-
periment we found that these strategies were actually quite robust to using approximate
distances. Table 7 shows that small numbers of unlabeled examples were still sufficient
for TRI and ADJ to perform nearly as well as before. Moreover, Table 7 shows that
these techniques only seem to significantly degrade once we consider fewer unlabeled
than labeled training examples. This robustness was observed across the range of problems
considered.
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Table 7. Fitting f (x) = step(x ≥ 0.5)with PX = U (0, 1) andσ = 0.05 (as in Table 1). This table gives distribution
of approximation ratios achieved with t = 30 labeled training examples and r = 500, r = 200, r = 100, r = 50,
r = 25 unlabeled examples, showing percentiles of approximation ratios achieved after 1000 repeated trials. The
experimental set up of Table 1 is repeated, except that a smaller number of unlabeled examples are used.

Percentiles of approximation ratios

t = 30 25 50 75 95 100

TRI (r = 500) 1.00 1.07 1.19 1.48 2.21

TRI (r = 200) 1.00 1.08 1.19 1.45 2.18

TRI (r = 100) 1.00 1.08 1.19 1.45 2.49

TRI (r = 50) 1.01 1.08 1.19 1.65 7.26

TRI (r = 25) 1.01 1.10 1.27 2.74 64.6

ADJ (r = 500) 1.06 1.14 1.26 1.51 1.99

ADJ (r = 200) 1.06 1.14 1.25 1.51 2.10

ADJ (r = 100) 1.07 1.16 1.31 1.67 2.21

ADJ (r = 50) 1.07 1.17 1.29 1.58 3.19

ADJ (r = 25) 1.09 1.22 1.40 1.85 8.68

In fact, it is a straightforward exercise to theoretically analyze the robustness of these
procedures TRI and ADJ to approximation errors in the estimated inter-hypothesis distances.
In a model selection sequence h0, h1, . . . , hK−1, there are only K (K − 1)/2 pairwise
distances that need to be estimated from unlabeled data. This means that a straightforward
“union bound” can be combined with standard uniform convergence results (Anthony &
Bartlett, 1999) to obtain an O( 1√

r
ln K

δ
) error bar on these estimates (at the 1− δ confidence

level). These error bars could easily be used to suitably adjust Propositions 1–3 to account for
the estimation errors. However, we do not pursue this analysis here since it is straightforward
but unrevealing.

Although the empirical results in this section are anecdotal, the paper (Schuurmans,
Ungar, & Foster, 1997) pursues a more systematic investigation of the robustness of these
procedures and reaches similar conclusions (also based on artificial data). Rather than
present a detailed investigation of these model selection strategies in more serious case
studies, we first consider a further improvement to the basic method.

4. Regularization

One of the difficulties with model selection is that its generalization behavior depends on
the specific decomposition of the base hypothesis class one considers. That is, different
decompositions of H can lead to different outcomes. To avoid this issue, we extend the
previous ideas to a more general training criterion that uses unlabeled data to decide how to
penalize individual hypotheses in the global space H . The main contribution of this section
is a simple, generic training objective that can be applied to a wide range of supervised
learning problems.
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Continuing from above, we assume that we have access to a sizable collection of unlabeled
data which we now use to globally penalize complex hypotheses. Specifically, we formu-
late an alternative training criterion that measures the behavior of individual hypotheses on
both the labeled and unlabeled data. The intuition behind our criterion is simple—instead
of minimizing empirical training error alone, we in addition seek hypotheses that behave
similarly both on and off the labeled training data. This objective arises from the observation
that a hypothesis which fits the training data well but behaves erratically off the labeled
training set is not likely to generalize to unseen examples. To detect erratic behavior we
measure the distance a hypothesis exhibits to a fixed “origin” function φ (chosen arbitrar-
ily) on both data sets. If a hypothesis is behaving erratically off the labeled training set
then it is likely that these distances will disagree. This effect is demonstrated in figure 8
for two large degree polynomials that fit the labeled training data well, but differ dramat-
ically in their true error and their differences between on and off training set distance to
a simple origin function. (Note that we will use trivial origin functions throughout this
section, such as the zero function φ = 0 or the constant function φ = ȳ at the mean of the y
labels).

To formulate a concrete training objective we first propose the following tentative mea-
sures: empirical training error plus an additive penalty

̂d(h, PY |X ) + d(h, φ) − ̂d(h, φ) (12)

Figure 8. Two nineteenth degree polynomials h and g that fit 20 given training points. Here h approximately
minimizes ̂d(h, PY |X ), whereas g optimizes an alternative training criterion defined in (13). This plot demonstrates
how the labeled training data estimate ̂d(g, PY |X ) for the smoother polynomial g is much closer to its true distance
d(g, PY |X ). However, for both functions the proximity of the estimated errors ̂d(·, PY |X ) to the true errors d(·, PY |X )

appear to be reflected on the relative proximity of the estimated distances ̂d(·, φ) to the true distances d(·, φ) to
the simple constant origin function φ.
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and empirical error times a multiplicative penalty

̂d(h, PY |X ) × d(h, φ)̂d(h, φ)
(13)

In each case we compare the behavior of a candidate hypothesis h to the fixed origin φ.
Thus, in both cases we seek to minimize empirical training error ̂d(h, PY |X ) plus (or times)
a penalty that measures the discrepancy between the distance to the origin on the labeled
training data and the distance to the origin on unlabeled data. The regularization effect
of these criteria is illustrated in figure 8. Somewhat surprisingly, we have found that the
multiplicative objective (13) generally performs much better than (12), as it more harshly
penalizes discrepancies between on and off training set behavior. Therefore, this is the form
we adopt below.

Although these training criteria might appear to be ad hoc, they are not entirely unprin-
cipled. One useful property they have is that if the origin function φ happens to be equal to
the target conditional PY |X , then minimizing (12) or (13) becomes equivalent to minimizing
the true prediction error d(h, PY |X ). However, despite the utility of this technique, it turns
out that these initial training objectives have the inherent drawback that they subtly bias the
final hypotheses towards the origin function φ. That is, both (12) and (13) allow minima
that have “artificially” large origin distances on the labeled data ̂d(h, φ) and simultaneously
small distances on unlabeled data d(h, φ). For example, this is illustrated in figure 8 for a
hypothesis function g that minimizes (13) but is clearly attracted to the origin φ at the right
end of the domain (off of the labeled training data). Of course, such a bias towards φ can
be desirable if φ happens to be near the target conditional PY |X . In this sense, φ could serve
as a useful prior on hypotheses. However, there is no reason to expect φ to be anywhere
near PY |X in practice, especially when considering the trivial constant functions used in this
paper.

Nevertheless, there is an intuitive way to counter this difficulty: to avoid the bias towards
φ, we introduce symmetric forms of the previous criteria that also penalize hypotheses
which are unnaturally close to the origin off the labeled data. That is, one could consider a
symmetrized form of the additive penalty (12)

̂d(h, PY |X ) + ∣∣d(h, φ) − ̂d(h, φ)
∣∣ (14)

as well as a symmetrized form of the multiplicative penalty (13)

̂d(h, PY |X ) × max

(
d(h, φ)̂d(h, φ)

,
̂d(h, φ)

d(h, φ)

)
(15)

These penalties work in both directions: hypotheses that are much further from the origin
on the training data than off are penalized, but so are hypotheses that are significantly closer
to the origin on the training data than off. The rationale behind this symmetric criterion is
that both types of erratic behavior indicate that the observed training error is likely to be
an unrepresentative reflection of the hypothesis’s true error. The value of this intuition is
demonstrated in figure 9, where the hypothesis f that minimizes the symmetric criterion
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Figure 9. A comparison of the asymmetric and symmetrized training objectives. Here g is the nineteenth degree
polynomial which minimizes the original asymmetric criterion (13) on 20 data points, whereas f minimizes the
symmetrized criterion (15). This plot shows how g is inappropriately drawn towards the origin φ near the right
end of the interval, whereas f behaves neutrally with respect to φ.

(15) is not drawn towards the origin inappropriately, and thereby achieves a smaller true
prediction error than the hypothesis g that minimizes (13).

These symmetric training criteria can also be given a technical justification: First, if
the origin function φ happens to be equal to the target conditional PY |X , then minimizing
either (14) or (15) comes very close to minimizing the true prediction error d(h, PY |X ).
To see this for the multiplicative criterion (15), let h be the hypothesis that achieves
the minimum and note that if ̂d(h, PY |X ) ≤ d(h, PY |X ) the criterion becomes equivalent
to ̂d(h, PY |X )d(h, PY |X )/ ̂d(h, PY |X ) = d(h, PY |X ), and otherwise if ̂d(h, PY |X ) > d(h, PY |X )

the criterion becomes equivalent to d(h, PY |X )r2 for r = ̂d(h, PY |X )/ d(h, PY |X ). In the lat-
ter case, since h minimizes (15) we must have d(h, PY |X ) < d(h, PY |X )r2 ≤ d(h∗, PY |X )r∗2

for the Bayes optimal hypothesis h∗. But since h∗ is not directly optimized on the training
set (it remains fixed), we will usually have d(h∗, PY |X ) ≈ ̂d(h∗, PY |X ) and hence r∗ ≈ 1,
which means that d(h, PY |X ) will tend to be close to d(h∗, PY |X ). Thus, minimizing (15) will
result in near optimal generalization performance in this scenario. (Note that this property
would not hold for naively smoothed versions of this objective.)

In the more general case where the origin does not match the target, the symmetric criteria
will also still provably penalize hypotheses that have small training error and large test error.
To see this for (15), note that for any hypothesis h

d(h, φ)̂d(h, φ)
≥ d(h, PY |X ) − d(φ, PY |X )̂d(h, PY |X ) + ̂d(φ, PY |X )

(16)

by the triangle inequality. Since φ and PY |X are not optimized on the training set we can ex-
pect ̂d(φ, PY |X ) ≈ d(φ, PY |X ) for moderate sample sizes. Thus, (16) shows that if ̂d(h, PY |X )
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is small (say, less than d(φ, PY |X )) and d(h, PY |X ) is large (greater than k × d(φ, PY |X ),
k ≥ 3), then h’s training error must be penalized by a significant ratio (at least k−1

2 ). By con-
trast, an alternative hypothesis g that achieves comparable training error and yet exhibits bal-
anced behavior on and off the labeled training set (that is, such that ̂d(g, PY |X ) ≈ d(g, PY |X ))
will be strongly preferred; in fact, such a g cannot over-fit by the same amount as h with-
out violating (16). Importantly, the Bayes optimal hypothesis h∗ will also tend to havêd(h∗, PY |X ) ≈ d(h∗, PY |X ) and ̂d(h∗, φ) ≈ d(h∗, φ) since it too does not depend on the
training set. Thus, h∗ will typically achieve a small value of the objective, which will
force any hypothesis that has a large over-fitting error (relative to d(φ, PY |X )) to exhibit an
objective value greater than the minimum.

Note that the sensitivity of the lower bound (16) clearly depends on the distance be-
tween the origin and the target. If the origin is too far from the target then the lower
bound is weakened and the criterion (15) becomes less sensitive to over-fitting. How-
ever, our experiments show that the objective is not unduly sensitive to the choice of φ,
so long as is not too far from the data. In fact, even simple constant functions generally
suffice.4

The outcome is a new regularization procedure that uses the training objective (15) to pe-
nalize hypotheses based on the given training data and on the unlabeled data. The resulting
procedure, in effect, uses the unlabeled data to automatically set the level of regularization
for a given problem. Our goal is to apply the new training objective to various hypothesis
classes and see if it regularizes effectively across different data sets. We demonstrate this
for several classes below. However, the regularization behavior is even subtler: Since the
penalization factor in (15) also depends on the specific labeled training set under consid-
eration, the resulting procedure regularizes in a data dependent way. That is, the procedure
adapts the penalization to the particular set of observed data. This raises the possibility of
outperforming any regularization scheme that keeps a fixed penalization level across dif-
ferent training samples drawn from the same problem. In fact, we demonstrate below that
such an improvement can be achieved in realistic hypothesis classes on real data sets.

4.1. Example: Polynomial regression

The first supervised learning task we consider is the polynomial regression problem con-
sidered in Section 3.2. The regularizer introduced above (15) turns out to perform very
well in such problems. In this case, our training objective can be expressed as choosing a
hypothesis to minimize

t∑
i=1

(h(xi ) − yi )
2/t × max

(∑r
j=1(h(x j ) − φ(x j ))

2/r∑t
i=1(h(xi ) − φ(xi ))2/t

,

∑t
i=1(h(xi ) − φ(xi ))

2/t∑r
j=1(h(x j ) − φ(x j ))2/r

)

where {〈xi , yi 〉}t
i=1 is the set of labeled training data, {〈x j 〉}r

j=1 is a set of unlabeled examples,
and φ is a fixed origin (which we usually just set to be the constant function at the mean
of the y labels). Note again that this training objective seeks hypotheses that fit the labeled
training data well while simultaneously behaving similarly on the labeled and unlabeled
data.
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To test the basic effectiveness of our approach, we repeated the experiments of Section 3.2.
The first class of methods we compared against were the same model selection meth-
ods considered before: 10-fold cross validation CVT, structural risk minimization SRM
(Cherkassky, Mulier, & Vapnik, 1997), RIC (Foster & George, 1994), SMS (Shibata, 1981),
GCV (Craven & Wahba, 1979), BIC (Schwarz, 1978), AIC (Akaike, 1974), CP (Mallows,
1973), FPE (Akaike, 1970), and the metric based model selection strategy, ADJ, introduced
in Section 3.3. However, since none of the statistical methods, RIC, SMS, GCV, BIC, AIC,
CP, FPE, performed competitively in our experiments, we report results only for GCV
which performed the best among them. For comparison, we also report results for the op-
timal model selector OPT∗ which makes an oracle choice of the best available hypothesis
in any given model selection sequence. In these experiments, the model selection methods
considered polynomials of degree 0 to t − 2.5

The second class of methods we compared against were regularization methods, which
consider polynomials of maximum degree (t −2) but penalize individual polynomials based
on the size of their coefficients or their smoothness properties. The specific methods we
considered were: a standard form of “ridge” penalization (or weight decay) which places a
penalty λ

∑
k a2

k on polynomial coefficients ak (Cherkassky & Mulier, 1998), and Bayesian
maximum a posteriori inference with zero-mean Gaussian priors on polynomial coefficients
ak with diagonal covariance matrix λI (MacKay, 1992).6 Both of these methods require a
regularization parameter λ to be set by hand. We refer to these methods as REG and MAP
respectively.

To test the ability of our technique to automatically set the regularization level we tried
a range of (fourteen) regularization parameters λ for the fixed regularization methods REG
and MAP. For comparison purposes, we also report the results of the oracle regularizers,
REG* and MAP*, which select the best λ value for each training set. Our experiments were
conducted by repeating the experimental conditions of Section 3.2. Specifically, Table 8
repeats Table 1 (fitting a step function), Table 9 repeats Table 3 (fitting sin(1/x)), Table 10
repeats Table 4 (fitting sin2(2πx)), and Table 11 repeats Table 5 (fitting a fifth degree
polynomial). The regularization criterion based on minimizing (15) is listed as ADA in our
figures (for “adaptive” regularization).7 We also tested ADA using different origin functions
φ = mean y, max y, 2 max y, 4 max y, 8 max y to examine its robustness to φ, and also tested
the one-sided version of ADA (13) to verify the benefits of the symmetrized criterion (15)
over (13).

The results once again are quite positive. The first observation is that the model selection
methods generally did not fare as well as the regularization techniques on these problems.
Model selection seems prone to making catastrophic over-fitting errors in these polynomial
regression problems, whereas regularization appears to retain robust control. As noted,
even the frequently trusted 10-fold cross validation procedure CVT did not fare well in
our experiments. The only model selection strategy to perform reasonably well (besides
the oracle model selector OPT∗) was the metric-based method ADJ, which also exploits
unlabeled data.

The new adaptive regularization scheme ADA performed the best among all procedures
in these experiments. Tables 8–11 show that it outperforms the fixed regularization strategies
(REG and MAP) for all fixed choices of regularization parameter λ, even though the optimal
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Table 8. Fitting f (x) = step(x ≥ 0.5) with PX = U (0, 1) and σ = 0.05. Test errors (true distances) achieved at
training sample size t = 20, using r = 200 auxiliary unlabeled examples for the metric procedures ADA and ADJ,
results of 1000 repeated trials. This repeats the conditions of Table 1.

Absolute test errors (distance)

Mean Median Stdev

ADA (15) φ = mean y 0.391 0.366 0.113

φ = 2 max y 0.460 0.355 0.319

φ = 4 max y 0.556 0.367 0.643

φ = 8 max y 0.596 0.369 1.004

Asymmetric (13) 0.403 0.378 0.111

REG λ = 10−9 7.940 0.664 38.50

λ = 10−7 3.930 0.469 13.10

λ = 10−5 2.570 0.457 8.360

λ = 10−4 1.750 0.441 5.640

λ = 10−3 1.050 0.388 2.620

λ = 10−2 0.697 0.397 0.825

λ = 10−1 0.529 0.407 0.480

λ = 0.5 0.495 0.416 0.243

λ = 1.0 0.483 0.468 0.048

λ = 5.0 0.512 0.498 0.050

λ = 50 0.554 0.541 0.042

REG∗ 0.371 0.355 0.049

MAP∗ 0.496 0.400 0.385

Model sel OPT∗ 0.387 0.374 0.076

ADJ 0.458 0.466 0.112

CVT 14.90 0.420 340.0

SRM 29.00 0.510 311.0

GCV 3.2e5 51.9 3.1e6

choice varies across problems (MAP was inferior to REG in these experiments, and therefore
we do not report detailed results). This demonstrates that ADA is able to effectively tune its
penalization behavior to the problem at hand. Moreover, since it outperforms even the best
choice of λ for each data set, ADA also demonstrates the ability to adapt its penalization
behavior to the specific training set, not just the given problem. In fact, ADA is competitive
with the oracle regularizers REG* and MAP* in these experiments, and even outperformed
the oracle model selection strategy OPT* on two problems. It is clear that ADA is fairly
robust to the choice of φ, since moving φ to a distant constant origin (even up to eight times
the max y value) did not completely damage its performance. The results also show that
the one-sided version of ADA based on (13) is inferior to the symmetrized version in these
experiments, confirming our prior expectations.
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Table 9. Fitting f (x) = sin(1/x) with PX = U (0, 1) and σ = 0.05. Test errors (true distances) achieved at training
sample size t = 20, using r = 200 auxiliary unlabeled examples for the metric procedures ADA and ADJ, results
of 1000 repeated trials. This repeats the conditions of Table 3.

Absolute test errors (distance)

Mean Median Stdev

ADA (15) φ = mean y 0.444 0.425 0.085

φ = 2 max y 0.495 0.436 0.171

φ = 4 max y 0.533 0.427 0.326

φ = 8 max y 0.591 0.426 0.639

Asymmetric (13) 0.466 0.439 0.102

REG λ = 10−9 4.250 0.758 28.00

λ = 10−7 3.250 0.588 28.50

λ = 10−5 1.830 0.588 12.80

λ = 10−4 1.060 0.486 2.640

λ = 10−3 0.774 0.489 1.560

λ = 10−2 0.558 0.452 0.550

λ = 10−1 0.514 0.464 0.156

λ = 0.5 0.488 0.459 0.104

λ = 1.0 0.484 0.473 0.040

λ = 5.0 0.494 0.485 0.032

λ = 50 0.509 0.502 0.029

REG∗ 0.429 0.424 0.041

MAP∗ 0.651 0.476 0.989

Model sel OPT∗ 0.433 0.427 0.049

ADJ 0.712 0.504 0.752

CVT 2.410 0.516 14.20

SRM 29.40 0.781 469.0

GCV 1.4e5 11.3 2.6e6

4.2. Example: Radial basis function regression

To test our approach on a more realistic task, we considered the problem of regularizing
radial basis function (RBF) networks for regression. RBF networks are a natural gener-
alization of interpolation and spline fitting techniques. Given a set of prototype centers
c1, . . . , ck , an RBF representation of a prediction function h is given by

h(x) =
k∑

i=1

wi g

(‖x − ci‖
σ

)
(17)

where ‖x − ci‖ is the Euclidean distance between x and center ci , and g is a response
function with width parameter σ . In this experiment we use a standard local (Gaussian)
basis function g(z) = e−z2/σ 2

.



76 D. SCHUURMANS AND F. SOUTHEY

Table 10. Fitting f (x) = sin2(2πx) with PX = U (0, 1) and σ = 0.05. Test errors (true distances) achieved at
training sample size t = 20, using r = 200 auxiliary unlabeled examples for the metric procedures ADA and ADJ,
results of 1000 repeated trials. This repeats the conditions of Table 4.

Absolute test errors (distance)

Mean Median Stdev

ADA (15) φ = mean y 0.107 0.081 0.066

φ = 2 max y 0.137 0.083 0.168

φ = 4 max y 0.157 0.084 0.273

φ = 8 max y 0.230 0.084 0.844

Asymmetric (13) 0.111 0.087 0.060

REG λ = 10−9 0.964 0.115 3.850

λ = 10−7 0.797 0.124 3.120

λ = 10−5 0.660 0.159 2.370

λ = 10−4 0.714 0.181 1.570

λ = 10−3 0.582 0.237 1.150

λ = 10−2 0.446 0.212 0.940

λ = 10−1 0.509 0.291 0.500

λ = 0.5 0.405 0.355 0.145

λ = 1.0 0.358 0.342 0.066

λ = 5.0 0.353 0.341 0.040

λ = 50 0.353 0.342 0.033

REG∗ 0.140 0.092 0.099

MAP∗ 0.496 0.232 0.983

Model sel OPT∗ 0.122 0.085 0.086

ADJ 0.188 0.114 0.150

CVT 0.559 0.132 1.980

SRM 0.576 0.128 2.430

GCV 4.8e3 0.227 5.6e4

Fitting with RBF networks is straightforward. The simplest approach is to place a pro-
totype center on each training example and then determine the weight vector w that allows
the network to fit the training y labels. The best fit weight vector can be obtained by solving
for w in


g

(‖x1 − x1‖
σ

)
· · · g

(‖x1 − xt‖
σ

)
...

...

g

(‖xt − x1‖
σ

)
· · · g

(‖xt − xt‖
σ

)



w1

...

wt

 =


y1

...

yt


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Table 11. Fitting a fifth degree polynomial f (x) with PX = U (0, 1) and σ = 0.05. Test errors (true distances)
achieved at training sample size t = 20, using r = 200 auxiliary unlabeled examples for the metric procedures
ADA and ADJ, results of 1000 repeated trials. This repeats the conditions of Table 5.

Absolute test errors (distance)

Mean Median Stdev

ADA (15) φ = mean y 0.077 0.060 0.090

φ = 2 max y 0.073 0.059 0.054

φ = 4 max y 0.072 0.059 0.056

φ = 8 max y 0.075 0.059 0.115

Asymmetric (13) 0.110 0.074 0.088

REG λ = 10−9 0.753 0.099 2.850

λ = 10−7 0.514 0.094 1.780

λ = 10−5 0.440 0.118 1.330

λ = 10−4 0.462 0.195 1.030

λ = 10−3 0.558 0.225 1.190

λ = 10−2 0.524 0.360 0.539

λ = 10−1 0.454 0.337 0.508

λ = 0.5 0.523 0.396 0.337

λ = 1.0 0.532 0.499 0.086

λ = 5.0 0.520 0.511 0.038

λ = 50 0.519 0.513 0.030

REG∗ 0.147 0.082 0.121

MAP∗ 0.460 0.352 0.511

Model sel OPT∗ 0.071 0.060 0.071

ADJ 0.116 0.062 0.188

CVT 0.321 0.065 3.160

SRM 0.163 0.062 1.230

GCV 2421 0.072 4.2e4

(the solution is guaranteed to exist and be unique for distinct training points and most natural
basis functions g, including the Gaussian basis used here (Bishop, 1995)).

Although exactly fitting data with RBF networks is natural, it has the problem that
it generally over-fits the training data in the process of replicating the y labels. Many
approaches therefore exist for regularizing RBF networks. However, these techniques are
often hard to apply because they involve setting various free parameters or controlling
complex methods for choosing prototype centers, etc. (Cherkassky & Mulier, 1998; Bishop,
1995). The simplest regularization approaches are to add a ridge penalty to the weight vector,
and minimize

t∑
i=1

(h(xi ) − yi )
2 + λ

t∑
i=1

w2
i (18)
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where h is given as in (17) (Cherkassky & Mulier, 1998). An alternative approach is to add
a non-parametric penalty on curvature (Poggio & Girosi, 1990), but the resulting procedure
is similar. To apply these methods in practice one has to make an intelligent choice of the
width parameter σ and the regularization parameter λ. Unfortunately, these choices interact
and it is often hard to set them by hand without extensive visualization and experimentation
with the data set.

In this section we investigate how effectively the ADA regularizer is able to auto-
matically select the width parameter σ and regularization parameter λ in an RBF net-
work on real regression problems. Here the basic idea is to use unlabeled data to make
these choices automatically and adaptively. We compare ADA (15) to a large number
of ridge regularization procedures, each corresponding to the penalty (18) with different

Table 12. RBF results showing mean test errors (distances) on the AAUP data set (1074 instances on 12 inde-
pendent attributes). Results are averaged over 100 splits of the dataset (1/10 train, 7/10 unlabeled, 2/10 test), with
standard deviations given for ADA and REG∗.

AAUP data set

ADA (15) 0.0197 ± 0.004 REG∗ 0.0329 ± 0.009

REG λ = 0.0 0.1 0.25 0.5 1.0

σ = 0.0001 0.0400 0.0479 0.0508 0.0535 0.0566

0.0005 0.0363 0.0447 0.0482 0.0515 0.0554

0.001 0.0353 0.0435 0.0475 0.0512 0.0554

0.0025 0.0350 0.0425 0.0473 0.0514 0.0555

0.005 0.0359 0.0423 0.0475 0.0516 0.0554

0.0075 0.0368 0.0424 0.0478 0.0517 0.0553

0.01 0.0376 0.0426 0.0480 0.0518 0.0551

Table 13. RBF results showing mean test errors (distances) on the ABALONE data set (1000 instances on
8 independent attributes). Results are averaged over 100 splits of the dataset (1/10 train, 7/10 unlabeled, 2/10
test), with standard deviations given for ADA and REG∗.

ABALONE data set

ADA (15) 0.034 ± 0.0046 REG∗ 0.049 ± 0.0063

REG λ = 0.0 0.1 0.25 0.5 1.0

σ = 4 0.4402 0.04954 0.04982 0.05008 0.05061

6 0.3765 0.04952 0.04979 0.05007 0.05063

8 0.3671 0.04951 0.04979 0.05007 0.05069

10 0.3474 0.04952 0.04979 0.05007 0.05073

12 0.3253 0.04953 0.04979 0.05008 0.05079

14 0.5702 0.04954 0.04979 0.05009 0.05084

16 1.0549 0.04954 0.04980 0.05010 0.05089
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fixed choices of σ and λ (thirty five in total). To apply ADA in this case we simply ran
a standard optimizer over the parameter space (σ, λ) while explicitly solving for the w
vector that minimizes (18) for each choice of σ and λ (which involves solving a linear
system (Cherkassky & Mulier, 1998; Bishop, 1995)). Thus, given σ , λ and w we could
calculate (15) and supply the resulting value to the optimizer as the objective to be minimized
(cf. Footnote 7).

To conduct an experiment we investigated a number of regression problems from the
StatLib and UCI machine learning repositories.8 In our experiments, a data set was randomly
split into a training (1/10), unlabeled (7/10), and test set (2/10), and then each of the
methods was run on this split. We repeated the random splits 100 times to obtain our results.
Tables 12–15 show that ADA regularization is able to choose width and regularization

Table 14. RBF results showing mean test errors (distances) on the BODYFAT data set (252 instances on 14
independent attributes). Results are averaged over 100 splits of the dataset (1/10 train, 7/10 unlabeled, 2/10 test),
with standard deviations given for ADA and REG∗.

BODYFAT data set

ADA (15) 0.131 ± 0.0171 REG∗ 0.125 ± 0.0151

REG λ = 0.0 0.1 0.25 0.5 1.0

σ = 0.05 0.1623 0.1303 0.1328 0.1344 0.1357

0.1 0.1658 0.1299 0.1325 0.1341 0.1354

0.5 0.1749 0.1294 0.1321 0.1337 0.1352

1 0.1792 0.1294 0.1321 0.1336 0.1353

2 0.1837 0.1296 0.1322 0.1337 0.1356

4 0.1883 0.1299 0.1323 0.1339 0.1362

6 0.1910 0.1301 0.1325 0.1340 0.1366

Table 15. RBF results showing mean test errors (distances) on the BOSTON-C data set (506 instances on 12
independent attributes). Results are averaged over 100 splits of the dataset (1/10 train, 7/10 unlabeled, 2/10 test),
with standard deviations given for ADA and REG∗.

BOSTON-C data set

ADA (15) 0.150 ± 0.0212 REG∗ 0.151 ± 0.0197

REG λ = 0.0 0.1 0.25 0.5 1.0

σ = 0.01 0.1611 0.15908 0.1622 0.1650 0.1684

0.05 0.1614 0.15798 0.1615 0.1645 0.1679

0.075 0.1619 0.15785 0.1614 0.1645 0.1679

0.1 0.1624 0.15779 0.1614 0.1645 0.1679

0.15 0.1633 0.15776 0.1615 0.1646 0.1680

0.2 0.1642 0.15777 0.1615 0.1647 0.1682

0.25 0.1649 0.15780 0.1616 0.1648 0.1683
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parameters that achieve effective generalization performance across a range of data sets.
Here ADA performs better than any fixed regularizer on every problem (except BODYFAT),
and even beats the oracle regularizer REG∗ on all but one problem. This shows that the
adaptive criterion is not only effective at choosing good regularization parameters for a
given problem, it can choose them adaptively based on the given training data to yield
improvements over fixed regularizers.

5. Classification

Finally, we note that the regularization approach developed in this paper can also be easily
applied to classification and conditional density estimation problems. In conditional den-
sity estimation, one can use KL divergence as a proxy distance measure and still achieve
interesting results (however we do not report these experiments here).

In classification, the label set Y is usually a small discrete set and we measure prediction
error by the misclassification loss, err(ŷ, y) = 1(ŷ 	=y). Here, distances are measured by
the disagreement probability d( f, g) = PX ( f (x) 	= g(x)). Using this metric, our generic
regularization objective (15) can be directly applied to classification problems. In fact, we
have applied (15) to the problem of decision tree pruning in classification, obtaining the
results shown in Table 16. Unfortunately, the results achieved in this experiment are not
strong, and it appears that the techniques proposed in this paper may not work as decisively
for classification problems as they do for regression and conditional density estimation
problems.

We believe that the weakness of the proposed methods for classification might have an
intuitive explanation however: Since classification functions are essentially histogram-like
(i.e., piecewise constant), they limit the ability of unlabeled data to detect erratic behavior
off the labeled training sample. This is because histograms, being flat across large regions,
tend to behave similarly in large neighborhoods around training points—to the extent that

Table 16. Some decision tree pruning results on UCI repository data sets, showing size and test error over 100
splits.

Un-pruned C4.5 Pruned ADA-pruned

Size Test Size Test Size Test

random 120 50.5 105 50.5 51 50.2

optdigit 269 15.3 250 15.2 234 15.2

iris 7 8.9 6 8.8 6 9.3

glass 11 10.8 11 10.8 10 12.8

ecoli 32 24.1 22 22.4 22 23.6

vote 21 6.7 8 5.2 14 6.9

crx 56 19.8 28 18.0 23 17.3

soybean 146 19.7 75 17.5 124 19.7

hypo 25 0.94 19 0.83 23 0.87
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distances on labeled and unlabeled data points are often very similar, even for complex
histograms. Coping with this apparent limitation in our approach remains grounds for
future research.

6. Conclusion

We have introduced a new approach to the classical complexity-control problem that is based
on exploiting the intrinsic geometry of the function learning task. These new techniques
seem to outperform standard approaches in a wide range of regression problems. The
primary source of this advantage is that the proposed metric-based strategies are able to
detect dangerous situations and avoid making catastrophic over-fitting errors, while still
being responsive enough to adopt reasonably complex models when this is supported by
the data. They accomplish this by attending to the real distances between hypotheses.
(Standard complexity-penalization strategies completely ignore this information. Hold-out
methods implicitly take some of this information into account, but do so indirectly and less
effectively than the metric-based strategies introduced here.) Although there is no “free
lunch” in general (Schaffer, 1994) and we cannot claim to obtain a universal improvement
for every complexity-control problem (Schaffer, 1993), we claim that one should be able to
exploit additional information about the task (here, knowledge of PX ) to obtain significant
improvements across a wide range of problem types and conditions. Our empirical results
for regression support this view.

A substantial body of literature has investigated unlabeled data in the context of supervised
learning, although not in the same way we have considered in this paper. Most work in this
area adopts the perspective of parametric probability modeling and uses unlabeled data
as part of a maximum likelihood (EM) or discriminative training procedure (Miller &
Uyar, 1997; Castelli & Cover, 1996; Ratsaby & Venkatesh, 1995; Gutfinger & Sklansky,
1991; O’Neill, 1978). Another common idea is to supply artificial labels to unlabeled
examples and use this data directly in a supervised training procedure (Blum & Mitchell,
1998; Towell, 1996). Unlabeled examples can also be used to construct a “cover” of the
hypothesis space and improve some worst case bounds on generalization error (Lugosi
& Pinter, 1996). However, none of this previous research explicitly uses unlabeled data
for automated complexity control. Perhaps the closest work in spirit to ours is Krogh and
Vedelsby (1995) which uses unlabeled examples to calculate optimal combination weights
in an ensemble of regressors. The emphasis in Krogh and Vedelsby (1995) is on model
combination rather than model selection and regularization, but nevertheless there appears
to be a close relationship between their ideas and ours.

An important direction for future research is to develop theoretical support for our
strategies—in particular, a stronger theoretical justification of the regularization methods
proposed in Section 4 and an improved analysis of the model selection methods proposed
in Section 3. It remains open as to whether the proposed methods TRI, ADJ, and ADA are
in fact the best possible ways to exploit the hypothesis distances provided by PX . We plan
to continue investigating alternative strategies which could potentially be more effective
in this regard. For example, it remains future work to extend the multiplicative ADJ and
ADA methods to cope with zero training errors. Finally, it would be interesting to adapt
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the approach to model combination methods, extending the ideas of Krogh and Vedelsby
(1995) to other combination strategies, including boosting (Freund & Schapire, 1997) and
bagging (Breiman, 1996).
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Notes

1. Prediction error is not the only criteria one could imagine optimizing in model selection. For example, one
could be interested in finding a simple model of the underlying phenomenon that gives some insight into its fun-
damental nature, rather than simply producing a function that predicts well on future test examples (Heckerman
& Chickering, 1996). However, we will focus on the traditional machine learning goal of minimizing prediction
error.

2. One could consider more elaborate strategies that choose hypotheses from outside the sequence; e.g., by
averaging several hypotheses together (Krogh & Vedelsby, 1995; Opitz & Shavlik, 1996; Breiman, 1996).
However, as mentioned, we will not pursue this idea in this paper.

3. Although one might suspect that the large failures could be due to measuring relative instead of absolute error,
it turns out that all of these large relative errors also correspond to large absolute errors—which we verify in
Section 4.1 below.

4. One could easily imagine trying more complex origin functions such as low dimensional polynomials or smooth
interpolant functions. We did not explore these ideas in this paper, primarily because we wished to emphasize the
robustness of the method to even very simple choices of origin. However, one extension that we did investigate
was to use a set of origin functions φ1, . . . , φn and penalize according to the maximum ratio—but this did not
yield any significant improvements.

5. Note that we restricted the degree to be less than t−1 to prevent the maximum degree polynomials from achieving
zero training error, which as discussed in Section 3, destroys the regularization effect of the multiplicative
penalty.

6. We did not test the more elaborate approach to Bayesian learning of polynomials described in Young (1977).
7. We used a standard optimization routine (Matlab 5.3 “fminunc”) to determine coefficients that minimize (14)

and (15). Although the nondifferentiability of (15) creates difficulty for the optimizer, it does not prevent
reasonable results from being achieved. Another potential problem could arise if h gets close to the origin φ.
However, since we chose simple origins that were never near PY |X , h was not drawn near φ in our experiments
and thus the resultant numerical instability did not arise.

8. The URLs are lib.stat.cmu.edu and www.ics.uci.edu/∼mlearn/MLRepository.html.
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